
Rejuvenator: A Static Wear Leveling Algorithm for
NAND Flash Memory with Minimized Overhead

Muthukumar Murugan
University Of Minnesota
Minneapolis, USA-55414

Email: murugan@cs.umn.edu

David.H.C.Du
University Of Minnesota
Minneapolis, USA-55414
Email: du@cs.umn.edu

Abstract—NAND flash memory is fast replacing traditional
magnetic storage media due to its better performance and low
power requirements. However the endurance of flash memory
is still a critical issue in using it for large scale enterprise
applications. Rethinking the basic design of NAND flash memory
is essential to realize its maximum potential in large scale storage.
NAND flash memory is organized as blocks and blocks in turn
have pages. A block can be erased reliably only for a limited
number of times and frequent block erase operations to a few
blocks reduce the lifetime of the flash memory. Wear leveling
helps to prevent the early wear out of blocks in the flash
memory. In order to achieve efficient wear leveling, data is moved
around throughout the flash memory. The existing wear leveling
algorithms do not scale for large scale NAND flash based SSDs.
In this paper we propose a static wear leveling algorithm, named
as Rejuvenator, for large scale NAND flash memory. Rejuvenator
is adaptive to the changes in workloads and minimizes the cost of
expensive data migrations. Our evaluation of Rejuvenator is based
on detailed simulations with large scale enterprise workloads and
synthetic micro benchmarks.

I. INTRODUCTION

With recent technological trends, it is evident that NAND
flash memory has enormous potential to overcome the short-
comings of conventional magnetic media. Flash memory has
already become the primary non-volatile data storage medium
for mobile devices, such as cell phones, digital cameras and
sensor devices. Flash memory is popular among these devices
due to its small size, light weight, low power consumption,
high shock resistance and fast read performance [1], [2].
Recently, the popularity of flash memory has also extended
from embedded devices to laptops, PCs and enterprise-class
servers with flash-based Solid State Disks (SSDs) widely being
considered as a replacement for magnetic disks. Research
works have been proposed to use NAND flash at different
levels in the I/O hierarchy [3], [4]. However NAND flash
memory has inherent reliability issues and it is essential to
solve the basic issues with NAND flash memory to fully utilize
its potential for large scale storage.

NAND flash memory is organized as an array of blocks. A
block spans 32 to 64 pages, where a page is the smallest unit

978-1-4577-0428-4/11/$26.00 c⃝ 2011 IEEE

of read and write operations. NAND flash memory has two
variants namely SLC (Single Level Cell) and MLC (Multi
Level Cell). SLC devices store one bit per cell while MLC
devices store more than one bit per cell. Flash memory-based
storage has several unique features that distinguish it from
conventional disks. Some of them are listed below.

1) Uniform Read Access Latency: In conventional magnetic
disks, the access time is dominated by the time required
for the head to find the right track (seek time) followed
by a rotational delay to find the right sector (rotational
latency). As a result, the time to read a block of random
data from a magnetic disk depends primarily on the
physical location of that data. In contrast, flash memory
does not have any mechanical parts and hence flash
memory - based storage provides uniformly fast random
read access to all areas of the device independent of its
address or physical location.

2) Asymmetric read and write accesses: In conventional
magnetic disks, the read and write times to the same
location in the disk, are approximately the same. In
flash memory-based storage, in contrast, writes are sub-
stantially slower than reads. Furthermore, all writes in a
flash memory must be preceded by an erase operation,
unless the writes are performed on a cleaned (previously
erased) block. Read and write operations are done at the
page level while erase operations are done at the block
level. This leads to an asymmetry in the latencies for
read and write operations.

3) Wear out of blocks: Frequent block erase operations
reduce the lifetime of flash memory. Due to the physical
characteristics of NAND flash memory, the number of
times that a block can be reliably erased is limited. This
is known as wear out problem. For an SLC flash memory
the number of times a block can be reliably erased is
around 100𝐾 and for an MLC flash memory it is around
10𝐾 [1].

4) Garbage Collection: Every page in flash memory is
in one of the three states - valid, invalid and clean.
Valid pages contain data that is still valid. Invalid pages
contain data that is dirty and is no more valid. Clean
pages are those that are already in erased state and
can accommodate new data in them. When the number

of clean pages in the flash memory device is low,
the process of garbage collection is triggered. Garbage
collection reclaims the pages that are invalid by erasing
them. Since erase operations can only be done at the
block level, valid pages are copied elsewhere and then
the block is erased. Garbage collection needs to be
done efficiently because frequent erase operations during
garbage collection can reduce the lifetime of blocks.

5) Write Amplification: In case of hard disks, the user
write requests match the actual physical writes to the
device. However in the case of SSDs, wear leveling and
garbage collection activities cause the user data to be
rewritten elsewhere without any actual write requests.
This phenomenon is termed as write amplification [5].
It is defined as follows

Write Amplification = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑎𝑔𝑒 𝑤𝑟𝑖𝑡𝑒𝑠
𝑁𝑜. 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑝𝑎𝑔𝑒 𝑤𝑟𝑖𝑡𝑒𝑠

6) Flash Translation Layer (FTL): Most recent high per-
formance SSDs [6], [7] have a Flash Translations Layer
(FTL) to manage the flash memory. FTL hides the inter-
nal organization of NAND flash memory and presents
a block device to the file system layer. FTL maps the
logical address space to the physical locations in the
flash memory. FTL is also responsible for wear leveling
and garbage collection operations. Works have also been
proposed [8] to replace the FTL with other mechanisms
with the file system taking care of the functionalities of
the FTL.

In this paper, our focus is on the wear out problem. A wear
leveling algorithm aims to even out the wearing of different
blocks of the flash memory. A block is said to be worn out,
when it has been erased the maximum possible number of
times. In this paper we define the lifetime of flash memory
as the number of updates that can be executed before the first
block is worn out. This is also called the first failure time [9].
The primary goal of any wear leveling algorithm is to increase
the lifetime of flash memory by preventing any single block
from reaching the 100𝐾 erasure cycle limit (we are assuming
SLC flash). Our goal is to design an efficient wear leveling
algorithm for flash memory.

The data that is updated more frequently is defined as hot
data, while the data that is relatively unchanged is defined as
cold data. Optimizing the placement of hot and cold data in
the flash memory assumes utmost importance given the limited
number of erase cycles of a flash block. If hot data is being
written repeatedly to certain blocks, then those blocks may
wear out much faster than the blocks that store cold data.
The existing approaches to wear leveling fall into two broad
categories.

1) Dynamic wear leveling: These algorithms achieve wear
leveling by repeatedly reusing blocks with lesser erase
counts. However these algorithms do not attempt to
move cold data that may remain forever in a few blocks.
These blocks that store cold data wear out very slowly
relative to other blocks. This results in a high degree of

unevenness in the distribution of wear in the blocks.
2) Static wear leveling: In contrast to dynamic wear level-

ing algorithms, static wear leveling algorithms attempt to
move cold data to more worn blocks thereby facilitating
more even spread of wear. However, moving cold data
around without any update requests incurs overhead.

Rejuvenator is a static wear leveling algorithm. It is impor-
tant that the expensive work of migrating cold data during
static wear leveling is done optimally and does not create
excessive overhead. Our goal in this paper is to minimize this
overhead and still achieve better wear leveling.

Most of the existing wear leveling algorithms have been
designed for use of flash memory in embedded devices or
laptops. However the application of flash memory in large
scale SSDs as a full fledged storage medium for enterprise
storage requires a rethinking of the design of flash memory
right from the basic FTL components. With this motivation,
we have designed a wear leveling algorithm that scales for
large capacity flash memory and guarantees the required
performance for enterprise storage.

By carefully examining the existing wear leveling algo-
rithms, we have made the following observations. First, one
important aspect of using flash memory is to take advantage
of hot and cold data. If hot data is being written repeatedly
to a few blocks then those blocks may wear out sooner than
the blocks that store cold data. Moreover, the need to increase
the efficiency of garbage collection makes placement of hot
and cold data very crucial. Second, a natural way to balance
the wearing of all data blocks is to store hot data in less
worn blocks and cold data in most worn blocks. Third, most
of the existing algorithms focus too much on reducing the
wearing difference of all blocks throughout the lifetime of
flash memory. This tends to generate additional migrations
of cold data to the most worn blocks. The writes generated
by this type of migrations are considered as an overhead and
may reduce the lifetime of flash memory. While trying to
balance the wear more often might be necessary for small
scale embedded flash devices, this is not necessary for large
scale flash memory where performance is more critical. In
fact, a good wear leveling algorithm needs to balance the
wearing level of all blocks aggressively only towards the end
of flash memory lifetime. This would improve the performance
of the flash memory. These are the basic principles behind
the design and implementation of Rejuvenator. We named
our wear leveling algorithm Rejuvenator because it prevents
the blocks from reaching their lifetime faster and keeps them
young.

Rejuvenator minimizes the number of stale cold data migra-
tions and also spreads out the wear evenly by means of a fine
grained management of blocks. Rejuvenator clusters the blocks
into different groups based on their current erase counts. Reju-
venator places hot data in blocks in lower numbered clusters
and cold data in blocks in the higher numbered clusters. The
range of the clusters is restricted within a threshold value.
This threshold value is adapted according to the erase counts
of the blocks. Our experimental results show that Rejuvenator

outperforms the existing wear leveling algorithms.
The rest of the paper is organized as follows. Section II

gives a brief overview of existing wear leveling algorithms.
Section III explains Rejuvenator in detail. Section IV provides
performance analysis and experimental results. Section V
concludes the paper.

II. BACKGROUND AND RELATED WORK

As mentioned above, the existing wear leveling algorithms
fall into two broad categories - static and dynamic. Dynamic
wear leveling algorithms are used due to their simplicity in
management. Blocks with lesser erase counts are used to store
hot data. L.P. Chang et al. [10] propose the use of an adaptive
striping architecture for flash memory with multiple banks.
Their wear leveling scheme allocates hot data to the banks that
have least erase count. However as mentioned earlier, cold data
remains in a few blocks and becomes stale. This contributes to
a higher variance in the erase counts of the blocks. We do not
discuss further about dynamic wear leveling algorithms since
they obviously do a very poor job in leveling the wear.

TrueFFS [11] wear leveling mechanism maps a virtual erase
unit to a chain of physical erase units. When there are no free
physical units left in the free pool, folding occurs where the
mapping of each virtual erase unit is changed from a chain
of physical units to one physical unit. The valid data in the
chain is copied to a single physical unit and the remaining
physical units in the chain are freed. This guarantees a uniform
distribution of erase counts for blocks storing dynamic data.
Static wear leveling is done on a periodic basis and virtual
units are folded in a round robin fashion. This mechanism
is not adaptive and still has a high variance in erase counts
depending on the frequency in which the static wear leveling
is done. An alternative to the periodic static data migration is
to swap the data in the most worn block and the least worn
block [12]. JFFS [13] and STMicroelectronics [14] use very
similar techniques for wear leveling.

Chang et al. [9] propose a static wear leveling algorithm
in which a Bit Erase Table (BET) is maintained as an array
of bits where each bit corresponds to 2𝑘 contiguous blocks.
Whenever a block is erased the corresponding bit is set. Static
wear leveling is invoked when the ratio of the total erase count
of all blocks to the total number of bits set in the BET is
above a threshold. This algorithm still may lead to more than
necessary cold data migrations depending on the number of
blocks in the set of 2𝑘 contiguous blocks. The choice of the
value of 𝑘 heavily influences the performance of the algorithm.
If the value of 𝑘 is small the size of the BET is very large.
However if the value of 𝑘 is higher, the expensive work of
moving cold data is done more than often.

The cleaning efficiency of a block is high if it has lesser
number of valid pages. Agrawal et al. [15] propose a wear
leveling algorithm which tries to balance the tradeoff between
cleaning efficiency and the efficiency of wear-leveling. The
recycling of hot blocks is not completely stopped. Instead
the probability of restricting the recycling of a block is
progressively increased as the erase count of the block is

nearing the maximum erase count limit. Blocks with larger
erase counts are recycled with lesser probability. Thereby the
wear leveling efficiency and cleaning efficiency are optimized.
Static wear leveling is performed by storing cold data in the
more worn blocks and making the least worn blocks available
for new updates. The cold data migration adds 4.7% to the
average I/O operational latency.

The dual pool algorithm proposed by L.P. Chang [16]
maintains two pools of blocks - hot and cold. The blocks are
initially assigned to the hot and cold pools randomly. Then
as updates are done the pool associations become stable and
blocks that store hot data are associated with the hot pool and
the blocks that store cold data are associated with cod pool. If
some block in the hot pool is erased beyond a certain threshold
its contents are swapped with those of the least worn block
in cold pool. The algorithm takes a long time for the pool
associations of blocks to become stable. There could be a lot
of data migrations before the blocks are correctly associated
with the appropriate pools. Also the dual pool algorithm does
not explicitly consider cleaning efficiency. This can result in
an increased number of valid pages to be copied from one
block to another.

Besides wear leveling, other mechanisms like garbage col-
lection and mapping of logical to physical blocks also affect
the performance and lifetime of the flash memory. Many works
have been proposed for efficient garbage collection in flash
memory [17], [18], [19]. The mapping of logical to physical
memory can be at a fine granularity at the page level or at a
coarse granularity at the block level. The mapping tables are
generally maintained in the RAM. The page level mapping
technique consumes enormous memory since it contains map-
ping information about every page. Lee et al. [20] propose
the use of a hybrid mapping scheme to get the performance
benefits of page level mapping and space efficiency of block
level mapping. Lee et al. [21] and Kang et al. [22] also propose
similar hybrid mapping schemes that utilize both page and
block level mapping. All the hybrid mapping schemes use a set
of log blocks to capture the updates and then write them to the
corresponding data blocks. The log blocks are page mapped
while data blocks are block mapped. Gupta et al. propose a
demand based page level mapping scheme called DFTL [23].
DFTL caches a portion of the page mapping table in RAM
and the rest of the page mapping table is stored in the flash
memory itself. This reduces the memory requirements for the
page mapping table.

III. REJUVENATOR ALGORITHM

In this section we describe the working of the Rejuvenator
algorithm. The management operations for flash memory have
to be carried out with minimum overhead. The design objective
of Rejuvenator is to achieve wear leveling with minimized per-
formance overhead and also create opportunities for efficient
garbage collection.

Fig. 1. Working of Rejuvenator algorithm

A. Overview

As with any wear leveling algorithm the objective of Rejuve-
nator is to keep the variance in erase counts of the blocks to a
minimum so that no single block reaches its lifetime faster than
others. Traditional wear leveling algorithms were designed for
use of flash memory in embedded systems and their main focus
was to improve the lifetime. With the use of flash memory
in large scale SSDs, the wear leveling strategies have to be
designed considering performance factors to a greater extent.
Rejuvenator operates at a fine granularity and hence is able to
achieve better management of flash blocks.

As mentioned before Rejuvenator tries to map hot data
to least worn blocks and cold data to more worn blocks.
Unlike the dual pool algorithm and the other existing wear
leveling algorithms, Rejuvenator explicitly identifies hot data
and allocates it in appropriate blocks. The definition of hot
and cold data is in terms of logical addresses. These logical
addresses are mapped to physical addresses. We maintain a
page level mapping for blocks storing hot data and a block
level mapping for blocks storing cold data. The intuition
behind this mapping scheme is that hot pages get updated
frequently and hence the mapping is invalidated at a faster
rate than cold pages. Moreover in all of the workloads that
we used, the number of pages that were actually hot is a very
small fraction of the entire address space. Hence the memory
overhead for maintaining the page level mapping for hot pages
is very small. This idea is inspired by the hybrid mapping
schemes that have already been proposed in literature [20],
[21], [22]. The hybrid FTLs typically maintain a block level
mapping for the data blocks and a page level mapping for the
update/log blocks.

The identification of hot and cold data is an integral part
of Rejuvenator. We use a simple window based scheme with
counters to determine which logical addresses are hot. The
size of the window is fixed and it covers the logical addresses
that were accessed in the recent past. At any point in time the
logical addresses that have the highest counter values inside
the window are considered hot. The hot data identification
algorithm can be replaced by any sophisticated schemes that
are available already [24], [25]. However in this paper we stick
to the simple scheme.

B. Basic Algorithm

Rejuvenator maintains 𝜏 lists of blocks. The difference
between the maximum erase count of any block and the

minimum erase count of any block is less than or equal to
the threshold 𝜏 . Each block is associated with the list number
equal to its erase count. Some lists may be empty. Initially all
blocks are associated with list number 0. As blocks are updated
they get promoted to the higher numbered lists. Let us denote
the minimum erase count as min wear and the maximum erase
count as max wear. Let the difference between max wear and
min wear be denoted as diff. Every block can have three types
of pages: valid pages, invalid pages and clean pages. Valid
pages contain valid or live data. Invalid pages contain data
that is no more valid or dead. Clean pages contain no data.

Let 𝑚 be an intermediate value between min wear and
min wear + (𝜏 − 1). The blocks that have their erase counts
between min wear and min wear + (𝑚 − 1) are used for
storing hot data and the blocks that belong to higher numbered
lists are used to store cold data in them. This is the key idea
behind which the algorithm operates. Algorithm 1 depicts the
working of the proposed wear leveling technique. Algorithm 2
shows the static wear leveling mechanism. Algorithm 1 clearly
tries to store hot data in blocks in the lists numbered min wear
and min wear + (𝑚−1). These are the blocks that have been
erased lesser number of times and hence have more endurance.
From now, we call list numbers min wear to min wear +
(𝑚 − 1) as lower numbered lists and list numbers min wear
+ 𝑚 to min wear + (𝜏 − 1) as higher numbered lists.

As mentioned earlier, blocks in lower numbered lists are
page mapped and blocks in the higher numbered lists are block
mapped. Consider the case where a single page in a block
that has a block level mapping becomes hot. There are two
options to handle this situation. The first option is to change
the mapping of every page in the block to page-level. The
second option is to change the mapping for the hot page alone
to page level and leave the rest of the block to be mapped
at the block level. We adopt the latter method. This leaves
the blocks fragmented since physical pages corresponding to
the hot pages still contain invalid data. We argue that this
fragmentation is still acceptable since it avoids unnecessary
page level mappings. In our experiments we found that the
fragmentation was less than 0.001% of the entire flash memory
capacity.

Algorithm 1 explains the steps carried out when a write
request to an LBA arrives. Consider an update to an LBA. If
the LBA already has a physical mapping, let 𝑒 be the erase
count of the block corresponding to the LBA. When a hot
page in the lower numbered lists is updated, a new page from
a block belonging to the lower numbered lists is used. This is
done to retain the hot data in the blocks in the lower numbered
lists. When the update is to a page in the lower numbered lists
and it is identified as cold, we check for a block mapping for
that LBA. If there is an existing block mapping for the LBA,
since the LBA had a page mapping already, the corresponding
page in the mapped physical block will be free or invalid.
The data is written to the corresponding page in the mapped
physical block (if the physical page is free) or to a log block
(if the physical page is marked invalid and not free). If there
is no block mapping associated with the LBA, it is written to

Algorithm 1 Working of Rejuvenator
Event = Write request to LBA

if LBA has a pagemap then

if LBA is hot then
Write to a page in lower numbered lists
Update pagemap

else
Write to a page in higher numbered lists (or to log
block)
Update blockmap

end if

else if LBA is hot then
Write to a page in lower numbered lists
Invalidate (data) any associated blockmap
Update pagemap

else if LBA is cold then
Write to a page in higher numbered lists (or to log block)
Update blockmap

end if

one of the clean blocks belonging to the higher numbered lists
so that the cold data is placed in a block in the more worn
blocks.

Similarly when a page in the blocks belonging to higher
numbered lists is updated, if it contains cold data, it is stored
in a new block from higher numbered lists. Since these blocks
are block mapped, the updates need to be done in log blocks.
To achieve this, we follow the scheme adopted in [26]. A log
block can be associated with any data block. Any updates to
the data block go to the log block. The data blocks and the
log block are merged during garbage collection. This scheme
is called Fully Associative Sector Translation [26]. Note that
this scheme is used only for data blocks storing cold data that
have very minimum updates. Thus the number of log blocks
required is small. One potential drawback of this scheme is that
since log blocks contain cold data, most of them remain valid.
So during garbage collection, there may be many expensive
full merge operations where valid pages from the log block
and the data block associated with the log block need to be
copied to a new clean block and then the data blocks and log
block are erased. However in our garbage collection scheme as
explained later, the higher numbered lists are garbage collected
only after the lower numbered lists. Hence the frequency of
these full merge operations is very low. Even if otherwise,
these full merges are unavoidable tradeoffs with block level
mapping. When the update is to a page in the higher numbered
lists and the page is identified as hot, we simply invalidate
the page and map it to a new page in the lower numbered
lists. The block association of the current block to which the
page belongs is unaltered. As explained before this is to avoid
remapping other pages in the block that are cold.

C. Garbage Collection

Garbage collection is done starting from blocks in the lowest
numbered list and then moving to higher numbered lists. The
reasons behind these are two fold. The first reason is that since
blocks in the lower numbered lists store hot data, they tend
to have more invalid pages. We define cleaning efficiency of
a block as follows.

Cleaning Efficiency = 𝑁𝑜. 𝑜𝑓 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑎𝑛𝑑 𝑐𝑙𝑒𝑎𝑛 𝑝𝑎𝑔𝑒𝑠
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘

If the cleaning efficiency of a block is high, lesser pages
need to be copied before erasing the block. Intuitively the
blocks in the lower numbered lists have a higher cleaning
efficiency since they store hot data. The second reason for
garbage collecting from lower numbered lists is that, the
blocks in these lists have lesser erase counts. Since garbage
collection involves erase operations, it is always better to
garbage collect blocks with lesser erase counts first.

Algorithm 2 Data Migrations

if No. of clean blocks in lower numbered lists < 𝑇𝐿 then
Migrate data from blocks in list number min wear to
blocks in higher numbered lists
Garbage collect blocks in list numbers min wear and
min wear + (𝜏 − 1)

end if
if No. of clean blocks in higher numbered lists < 𝑇𝐻 then

Migrate data from blocks in list number min wear to
blocks in lower numbered lists
Garbage collect blocks in list numbers min wear and
min wear + (𝜏 − 1)

end if

D. Static Wear Leveling

Static wear leveling moves cold data from blocks with low
erase counts to blocks with more erase counts. This frees up
least worn blocks which can be used to store hot data. This
also spreads the wearing of blocks evenly. Rejuvenator does
this in a well controlled manner and only when necessary. The
cold data migration is generally done by swapping the cold
data of a block (with low erase count) with another block with
high erase count [16], [11]. In Rejuvenator this is done more
systematically.

The operation of the Rejuvenator algorithm could be visu-
alized by a moving window where the window size is 𝜏 as
in Figure 1. As the value of min wear increases by 1, the
window slides down and thus allows the value of max wear
to increase by 1. As the window moves, its movement could
be restricted on both ends - upper and lower. The blocks in the
list number min wear + (𝜏−1) can be used for new writes but
cannot be erased since the window size will increase beyond
𝜏 .

The window movement is restricted in the lower end be-
cause the value of min wear either does not increase any fur-
ther or increases very slowly. This is due to the accumulation

of cold data in the blocks in the lower numbered lists. In other
words the cold data has become stale/static in the blocks in
the lower numbered lists. This condition is detected when the
number of clean blocks in the lower numbered lists is below a
threshold. This is considered as an indication that cold data is
remaining stale at the blocks in list number min wear and so
they are moved to blocks in higher numbered lists. The blocks
in list number min wear are cleaned. This makes these blocks
available for storing hot data and at the same time increasing
the value of min wear by 1. This makes room for garbage
collecting in the list number min wear + (𝜏 − 1) and hence
makes more clean blocks available for cold data as well.

The movement of the window could also be restricted at the
higher end. This happens when there are a lot of invalid blocks
in the max wear list and they are not garbage collected. If no
clean blocks are found in the higher numbered lists it is an
indication that there are invalid blocks in list number min wear
+ (𝜏−1) and they cannot be garbage collected since the value
of diff would exceed the threshold. This condition happens
when the number of blocks storing cold data is insufficient. In
order to enable smooth movement of the window, the value of
min wear has to increase by 1. The blocks in list min wear
may still have hot data since the movement of the window is
restricted at the higher end only. Hence data in all these blocks
are moved to blocks in lower numbered lists itself. However
this condition does not happen frequently since before this
condition is triggered, the blocks storing hot data are updated
faster and the value of min wear increases by 1. Rejuvenator
takes care of the fact that some data which is hot may turn
cold at some point of time and vice versa. If data that is cold
is turning hot then it would be immediately moved to one of
the blocks in lower numbered lists. Similarly cold data would
be moved to more worn blocks by the algorithm. Hence the
performance of the algorithm is not seriously affected by the
accuracy of the hot - cold data identification mechanism. As
the window has to keep moving, data is migrated to and from
blocks according to its degree of hotness. This migration is
done only when necessary rather than forcing the movement
of stale cold data. Hence the performance overhead of these
data migrations is minimized.

E. Adapting the parameter 𝜏

The key aspect of Rejuvenator is that the parameter 𝜏 is
adjusted according to the lifetime of the blocks. We argue
that this parameter value can be large at the beginning where
the blocks are much farther away from reaching their lifetime.
However as the blocks are reaching their lifetime the value of
𝜏 has to decrease. Towards the end of lifetime of the flash
memory, the value of 𝜏 has to be very small. To achieve this
goal, we adopt two methods for decreasing the value of 𝜏 .

1) Linear Decrease: Let the difference between 100𝐾
(maximum number of erases that a block can endure) and
max wear (maximum erase count of any block in the flash
memory) be life diff. As the blocks are being used up, the
value of 𝜏 is 𝑟% of life diff. For our experimental purposes
we set the value of 𝑟 as 10%. As the value of max wear

increases, the value of life diff decreases linearly and so does
the value of 𝜏 . Figure 2 illustrates the decreasing trend of the
value of 𝜏 in the linear scheme.

2) Non-Linear Decrease: The linear decrease uniformly
reduces the value of 𝜏 by 𝑟% everytime a decrease is triggered.
Instead if a still more efficient control is needed, the value of
𝜏 should be done in a non - linear manner i.e., the decrease
in 𝜏 has to be slower in the beginning and get steeper towards
the end. Figure 3 illustrates our scheme. We choose a curve
as in Figure 3 and set the value of the slope of the curve
corresponding to the value of life diff as 𝜏 . We can see that
the rate of decrease in 𝜏 is much steeper towards the end of
lifetime.

F. Adapting the parameter 𝑚

The value of 𝑚 determines the ratio of blocks storing hot
data to the blocks storing cold data. Initially the value of 𝑚 is
set to 50% of 𝜏 and then according to the workload pattern,
the value of 𝑚 is incremented or decremented. Whenever the
window movement is restricted at the lower end, the value of
𝑚 is incremented by 1 following the stale cold data migrations.
This makes more blocks available to store hot data. Similarly,
whenever the window movement is restricted at the higher
end, the value of 𝑚 is decremented by 1 so that there are more
blocks available for cold data. This adjustment of 𝑚 helps to
further reduce the data migrations. Whenever the value of 𝑚 is
incremented or decremented, the type of mapping (block - level
or page - level) of the blocks in the list number min wear +
(𝑚− 1) is not changed immediately. The mapping is changed
to the relevant type only for write requests after the increment
or decrement. This causes a few blocks in the lower numbered
lists to be block mapped. But this is taken care of during the
static wear leveling and garbage collection operations.

IV. EVALUATION

This section discusses the overheads involved with the
implementation of Rejuvenator analytically and evaluates the
performance of Rejuvenator via detailed experiments.

A. Analysis of overheads

The most significant overhead of Rejuvenator is the man-
agement of the lists of blocks. This overhead could possibly
manifest in terms of both space and performance. However
our implementation tries to minimize these overheads.

First we analyze the memory requirements of Rejuvenator.
The number of lists is at most 𝜏 . Each list contains blocks
with erase counts equal to the list number. We implemented
each list as a dynamic vector numbered from 0 to 𝜏 . The free
blocks are always added in the front of the vector and the
blocks containing data are added in the back. Assuming that
each block address occupies 8 bytes of memory, a 32 GB flash
memory with 4 KB pages and 64 KB blocks would require 2
MB of additional memory. Since these maps are maintained
based on erase counts, the logical to physical address mapping
tables have to be maintained separately. Rejuvenator maintains
both block level and page level mapping tables. A pure page

Fig. 2. Linear decrease of 𝜏 Fig. 3. Non-linear decrease of 𝜏

level mapping table for the same 32 GB flash would require 64
MB of memory. However since Rejuvenator maintains page
maps only for hot LBAs and the proportion of hot LBAs is
much smaller (< 10%), the memory requirement is much
smaller. For the above mentioned 32 GB flash the memory
occupied by mapping tables does not exceed 3 MB. The
page level mappings are also maintained for the log blocks.
However they occupy a very small portion of the entire flash
memory (< 3% [21]) and hence their memory requirement is
insignificant.

Next we discuss the performance overheads of Rejuvenator.
The association of blocks with the appropriate lists and the
block lookups in the lists are the additional operations in
Rejuvenator. The association of blocks to the lists is done
during garbage collection. As soon as a block is erased, it
is moved from its current list and associated with the next
higher numbered list. Since garbage collection is done list by
list starting from the lower numbered lists and all the blocks
containing the data blocks are at the back of the lists, this
operation takes 𝑂(1) time. The block lookups are done in
the mapping tables. Since the hot pages are page mapped,
the efficiency of writes is improved since there are no block
copy operations which are typically involved with block level
mapping. For cold writes, the updates are buffered in the log
blocks and are merged together with data blocks later during
garbage collection. The log blocks typically occupy 3% [21]
of the entire flash region. This is to buffer writes to the entire
flash region. However in Rejuvenator the log blocks buffer
writes to only the blocks storing cold data. So the log buffer
region can be much smaller. In our experiments we did not
exclusively define a log block region. We pick a free block
with the least possible erase count in the higher numbered
lists and use it as a log block.

Hot data identification is an integral part of Rejuvenator.
Rejuvenator maintains an LRU window of fixed size (𝑊)
with the LBAs and corresponding counters for the number
of accesses. Every time the window is full, the LBA in the
LRU position is evicted and the new LBA is accommodated
in the MRU position. The most frequently accessed LBAs in
the window are considered hot and are page mapped. Instead
of sorting the LBAs based on frequency count, we maintain

the average access count of the window and any LBA that has
an access count more than the average count is considered
hot. The hot data algorithm accounts for both recency and
frequency of accesses of the LBAs. Every time the window is
full, the counters are divided by 2 to prevent any single block
from increasing the average.

B. Experiments

This section explains in detail our experimental setup and
the results of our simulation. We compare Rejuvenator with
two other wear leveling algorithms - the dual pool algo-
rithm [16] and the wear leveling algorithm adopted by M
- Systems in the True Flash Filing System (TrueFFS) [11].
While the TrueFFS is an industry standard, the emphasis on
static wear leveling is much less. On the other hand, the
dual pool algorithm is a well known wear leveling algorithm
in the area of flash memory research and primarily aims at
achieving good static wear leveling. We believe that all other
wear leveling algorithms either do not attempt to achieve a fine
grained management of the blocks or adopt a slight variation
of these two schemes and hence are not suitable candidates
for comparison with Rejuvenator.

TABLE I
FLASH MEMORY CHARACTERISTICS

Page Size Block Size Read Time Write Time Erase Time
4 KB 128 KB 25𝜇s 200𝜇s 1.5𝑚𝑠

1) Simulation Environment: The simulator that we used is
trace driven and provides a modular framework for simulating
flash based storage systems. The simulator that we have built is
exclusively to study the internal characteristics of flash mem-
ory in detail. The various modules of flash memory design like
FTL design (right now integrated with Rejuvenator), garbage
collection and hot data identification can be independently
deployed and evaluated. We simulated a 32 GB NAND flash
memory with the specifications as in Table I. However we
restrict the active region of accesses to which the reads and
writes are done so that the performance of wear leveling
can be observed in close detail. The remaining blocks do
not participate in the I/O operations. The same method has

Fig. 4. Number of write requests serviced before a single block reaches its
lifetime

been adopted in [23]. An alternate way to demonstrate the
performance of the wear leveling scheme is the one followed
in [15]. The authors consider the entire flash memory for
reads and writes but they assume that the maximum life
time of every block is only 50 erase cycles. However this
technique may not give an exact picture of the performance
of Rejuvenator because with a larger erase count limit, the
system can have much more relaxed constraints. The main
objective of Rejuvenator is to reduce the migrations of data
due to tight constraints on erase counts of blocks. We have
adopted both of these techniques to evaluate the performance
of Rejuvenator. We consider a portion of the SSD as the active
region and set the maximum erase count limit for the blocks
as 2K. This way the impact of Rejuvenator on the lifetime and
performance of the flash memory can be studied in detail.

2) Workloads: We evaluated Rejuvenator with three avail-
able enterprise-scale traces and two synthetic traces. The first
trace is a write intensive I/O trace provided by the Storage
Performance Council [27] called the Financial trace. It was
collected from an OLTP application hosted at a financial
institution. The second trace is a more recent trace data that
was collected from a Microsoft Exchange Server serving 5000
mail users in Microsoft [28]. The third trace is the Cello99
trace from HP labs [29]. This trace was collected over a period
of one year from Cello server at HP labs. We replayed the
traces until a block reaches its lifetime. Even though the traces
are replayed, the behavior of the system is completely different
for two different runs of the same trace since the blocks are
becoming older.

We also generated two synthetic traces. The access pattern
of the first trace consisted of a random distribution of blocks
and the second trace had 50% of sequential writes. All the
write requests are 4𝐾𝐵 in size.

3) Performance Analysis: The typical performance metric
for a wear leveling algorithm is the number of write requests
that are serviced before a single block achieves its maximum
erase count. We call this the lifetime of the flash. Another
metric that is typically used to evaluate the performance of
wear leveling is the additional overhead that is incurred due
to data migrations. These are the erase and copy operations

that are done without any write requests.
To make a fair comparison we set the value of threshold for

dual pool at 16. Dual pool uses a block level mapping scheme
for all the blocks. We used the Fully Associative Sector
Translation [26] in dual pool for the block-level mapping. In
TrueFFS a virtual erase unit consists of a chain of physical
erase units. Then during garbage collection these physical
erase units are folded into one physical erase unit. We assume
that these physical erase units are in the units of blocks (128K)
and the reads and writes are done at the level of pages. Hence
TrueFFs also employs a block-level address mapping.

Figure 4 shows the number of write requests that are
serviced before a single block reaches its lifetime. Rejuvenator
(Linear) means that the value of 𝜏 is decremented linearly
and Rejuvenator (Non Linear) is the scheme where the value
of 𝜏 is decremented non-linearly. On the average Rejuvenator
increases the lifetime of blocks by 20% compared to dual pool
algorithm for all traces. The dual pool algorithm performs
much worse than Rejuvenator for the Exchange trace and
Trace A. This is simply because the dual pool algorithm simply
could not adapt to the rapidly changing workload patterns.
Since all the blocks have a block - level mapping, random page
writes in these traces lead to too many erase operations. The
TrueFFS algorithm on the other hand consistently performs
badly since some of the blocks reach very high erase counts
much faster than other blocks.

Fig. 5. Overhead caused by extra block erases during wear leveling
(normalized to Rejuvenator (non-linear))

Fig. 6. Overhead caused by extra block copy operations during wear
leveling(normalized to Rejuvenator (non-linear))

Fig. 7. Distribution of erase counts in the blocks

Fig. 8. Comparison of standard deviation of erase counts of blocks (> 350
for TrueFFS)

Figure 5 shows the overhead due to the extra copy opera-
tions that are done during static wear leveling. Note that this
does not include the copy and erase operations that are done
during the merge operations of log blocks and data blocks.
These merges are due to the block-level mapping scheme
(FAST) and so cannot be counted as a wear-leveling overhead.
These are infact garbage collection overheads. In the dual pool
algorithm in order to achieve wear leveling, the data from the
block that has been erased maximum number of times storing
hot data is swapped with a block containing cold data. This
swapping involves erasing of both the blocks. This swapping

is done whenever the threshold condition is triggered. Since
the threshold remains the same throughout the simulation,
these swapping operations are done more than necessary. From
Figure 5 it can be seen that the number of erases done in
dual pool during wear leveling are more than 15 times higher
than those done in Rejuvenator. In TrueFFS the swapping of
data is forced periodically. Also it does not perform well in
controlling the variance and hence has lesser number of cold
data migrations than dual pool. The same pattern is seen in the
number of copy operations that are done during wear leveling
in Figure 6. Rejuvenator performs stale cold data migrations
in a very controlled manner and hence the number of copy
and erase operations are reduced considerably.

Figure 7 shows the cumulative distribution of erase counts
in the blocks at the end of the simulation. At the end of the
simulation, the value of 𝜏 was maintained at 10. Hence for
Rejuvenator the block erase count is in the range of 1990 to
2000. We see that in Rejuvenator the erase counts are mostly
evenly distributed across all the blocks. This demonstrates the
efficiency of Rejuvenator in controlling the erase counts of
blocks even towards the end of the lifetime of the blocks.
In the case of dual pool since we set the threshold value
at 16 the erase counts of the blocks range from 1984 to
2000. However dual pool algorithm constantly maintains this
threshold throughout the lifetime of the flash memory and does
too many data migrations to stay within this threshold. In the
case of TrueFFS a few blocks had erase counts even below
1980 since there is no threshold for the variance in erase

Fig. 9. Trend in standard deviation of erase counts of blocks in Rejuvenator

Fig. 10. Trend in number of cold data migrations done in Rejuvenator

counts. Figure 8 shows the standard deviation in the erase
counts of all blocks. Lower values of standard deviation mean
that the erase counts are more evenly distributed. The results
in Figure 8 correspond to the CDF presented in Figure 7. In
the TrueFFS algorithm the standard deviations have very high
values and hence we do not show them in the graphs.

Figure 9 shows the standard deviation in erase counts as
the value of 𝜏 is decreasing. Initially the standard deviation is
very large. As the value of 𝜏 decreases, the standard deviation
also decreases since the control on erase counts is tightened. A
similar trend is also seen in the number of cold data migrations
that are done during static wear leveling as shown in Figure 10.
It can be seen that the increase in cold data migrations is much
larger towards the end than at the beginning. This increase
is much more prominent in the non-linear scheme where the
decrease in 𝜏 is slower in the beginning compared to the linear
scheme. It can be seen that 50% of the cold data migrations
are done only after the value of 𝜏 has decreased from 200
down to 50.

Figure 11 shows the average percentage of LBAs that
are identified as hot among all the LBAs and the average
percentage of blocks that are in the lower numbered lists. If the
data access pattern is skewed so that most of the data is cold
then the number of blocks in the lower numbered lists needs
to be much less. Rejuvenator controls this by adjusting the pa-
rameter 𝑚. The number of blocks in the lower numbered lists
is computed after every write request. We see that Rejuvenator
manages the hot data with 30% of the blocks. This includes
clean blocks and blocks containing invalid pages. Rejuvenator
adapts to handle the data allocation according to the workload

Fig. 11. Proportion of hot data and the blocks used for storing hot data

Fig. 12. Average Cleaning Efficiency of Garbage Collection

characteristics. As mentioned before, Rejuvenator explicitly
identifies hot data which the other algorithms do not. This
helps to allocate data in the appropriate blocks according to
its degree of hotness.

Figure 12 shows the average cleaning efficiency of the
garbage collected blocks in Rejuvenator. We see that the
average cleaning efficiency is more than 60%. This is because
garbage collection starts from the lower numbered lists and
since these blocks contain hot data, most of them are invalid
and hence result in a better cleaning efficiency. This directly
translates to the reduction of number of valid pages that are
copied during garbage collection.

In our evaluation we do not explicitly measure the system
response time. There are two reasons for it. Firstly, the system
response time is not a metric to capture the efficiency of
wear leveling. The main objective of wear leveling is to delay
the failure of the first block. Secondly, the system response
time is dependent on several other factors like the available
parallelism, system bus speed and cache hits. Our goal in
this paper, is to demonstrate the ability of Rejuvenator to
improve the lifetime of flash memory and to measure the
overheads involved. Nevertheless, wear leveling and garbage
collection affect the system response time both directly and
indirectly. A write response received to a block involved in
garbage collection or wear leveling delays the write response
time considerably. If too many valid pages are copied around
during these operations that also contributes to an increase in
the write response time. We leave quantifying the impact of
these operations on the system response time as a future work.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented the case for finer control of
erase cycles of the blocks in flash memory and its improved
performance and lifetime. We have proposed and evaluated
a static wear leveling algorithm for NAND flash memory to
enable its use in large scale enterprise class storage. Reju-
venator explicitly identifies hot data and places them in less
worn blocks. This helps to manage the blocks more efficiently.
Experimental results show that Rejuvenator can adapt to the
changes in workload characteristics better than the existing
wear leveling algorithms. Rejuvenator does a fine grained
management of flash memory where the blocks are logically
divided into segments based on their erase cycles. Rejuve-
nator achieves this fine grained management with minimum
overhead. We have presented and validated our argument that
a slight increase in the management overhead can lead to
significant improvement in the lifetime and performance of
the flash memory.

The memory requirements for the lists of blocks can be
reduced by storing a portion of the lists in the flash itself,
similar to the manner in which DFTL [23] stores a major
portion of the page mapping tables in flash. Rejuvenator can
also enable a more precise prediction of the time of failure of
the first block which is critical in avoiding data losses in large
scale storage environments due to disk failures. Developing
such a prediction model is a possible extension of this work.
Another future direction that we wish to pursue is to exploit the
inherent parallelism that is available in flash memory with the
presence of multiple segments. The wear leveling operations
can be carried out in parallel to other commands when they
are on different planes of the flash memory.

ACKNOWLEDGEMENTS

This work was partially supported by NSF Awards 0934396
and 0960833. This work was carried out in part using com-
puting resources at the Minnesota Supercomputing Institute.

REFERENCES

[1] M. Sanvido, F. Chu, A. Kulkarni, and R. Selinger, “NAND Flash
Memory and Its Role in Storage Architectures,” in Proceedings
of the IEEE, vol. 96. IEEE, 2008, pp. 1864–1874.

[2] E. Gal and S. Toledo, “Algorithms and data structures for flash
memories,” ACM Comput. Surv., vol. 37, no. 2, pp. 138–163,
2005.

[3] S. Hong and D. Shin, “NAND Flash-Based Disk Cache Using
SLC/MLC Combined Flash Memory,” in Proceedings of the
2010 International Workshop on Storage Network Architecture
and Parallel I/Os, ser. SNAPI ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 21–30.

[4] T. Kgil, D. Roberts, and T. Mudge, “Improving nand flash based
disk caches,” in Proceedings of the 35th Annual International
Symposium on Computer Architecture, ser. ISCA ’08, 2008, pp.
327–338.

[5] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka,
“Write amplification analysis in flash-based solid state drives,”
in Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference. New York, NY, USA: ACM, 2009, pp.
10:1–10:9.

[6] “FusionIO ioDrive specification sheet,” http://www.fusionio.
com/PDFs/Fusion∖%20Specsheet.pdf.

[7] “Intel X25-E SATA solid state drive.” http://download.intel.
com/design/flash/nand/extreme/extreme-sata-ssd-datasheet.pdf.

[8] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li, “DFS: A
File System for Virtualized Flash Storage,” in FAST, 2010, pp.
85–100.

[9] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo, “Endurance enhance-
ment of flash-memory storage systems: an efficient static wear
leveling design,” in DAC ’07: Proceedings of the 44th annual
Design Automation Conference. New York, NY, USA: ACM,
2007, pp. 212–217.

[10] L.-P. Chang and T.-W. Kuo, “An Adaptive Striping Architecture
for Flash Memory Storage Systems of Embedded Systems,”
in RTAS ’02: Proceedings of the Eighth IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’02).
Washington, DC, USA: IEEE Computer Society, 2002.

[11] D. Shmidt, “Technical Note: TrueFFS wear leveling mecha-
nism,” Technical Report, Msystems, 2002.

[12] D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J. Lee, “A group-
based wear-leveling algorithm for large-capacity flash memory
storage systems,” in Proceedings of the 2007 international con-
ference on Compilers, architecture, and synthesis for embedded
systems, ser. CASES ’07. New York, NY, USA: ACM, 2007,
pp. 160–164.

[13] D. Woodhouse, “JFFS: The Journalling Flash File System,,”
Proceedings of Ottawa Linux Symposium, 2001.

[14] “Wear Leveling in Single Level Cell NAND Flash Memories,,”
STMicroelectronics Application Note(AN1822), 2006.

[15] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Man-
asse, and R. Panigrahy, “Design tradeoffs for SSD perfor-
mance,” in ATC’08: USENIX 2008 Annual Technical Confer-
ence on Annual Technical Conference. Berkeley, CA, USA:
USENIX Association, 2008, pp. 57–70.

[16] L.-P. Chang, “On efficient wear leveling for large-scale flash-
memory storage systems,” in SAC ’07: Proceedings of the 2007
ACM symposium on Applied computing. New York, NY, USA:
ACM, 2007, pp. 1126–1130.

[17] O. Kwon and K. Koh, “Swap-Aware Garbage Collection for
NAND Flash Memory Based Embedded Systems,” in CIT
’07: Proceedings of the 7th IEEE International Conference on
Computer and Information Technology. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 787–792.

[18] L.-P. Chang, T.-W. Kuo, and S.-W. Lo, “Real-time garbage col-
lection for flash-memory storage systems of real-time embedded
systems,” ACM Trans. Embed. Comput. Syst., vol. 3, no. 4, 2004.

[19] Y. Du, M. Cai, and J. Dong, “Adaptive Garbage Collection
Mechanism for N-log Block Flash Memory Storage Systems,”
in ICAT ’06: Proceedings of the 16th International Conference
on Artificial Reality and Telexistence–Workshops. Washington,
DC, USA: IEEE Computer Society, 2006.

[20] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J.
Song, “A log buffer-based flash translation layer using fully-
associative sector translation,” ACM Trans. Embed. Comput.
Syst., vol. 6, no. 3, 2007.

[21] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: locality-
aware sector translation for NAND flash memory-based storage
systems,” SIGOPS Oper. Syst. Rev., vol. 42, no. 6, pp. 36–42,
2008.

[22] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A superblock-based
flash translation layer for NAND flash memory,” in EMSOFT
’06: Proceedings of the 6th ACM & IEEE International con-
ference on Embedded software. New York, NY, USA: ACM,
2006, pp. 161–170.

[23] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation
layer employing demand-based selective caching of page-level
address mappings,” in Proceeding of the 14th international

conference on Architectural support for programming languages
and operating systems, ser. ASPLOS ’09. New York, NY, USA:
ACM, 2009.

[24] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, “Efficient identifi-
cation of hot data for flash memory storage systems,” Trans.
Storage, vol. 2, pp. 22–40, February 2006.

[25] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang, “Using data
clustering to improve cleaning performance for flash memory,”
Softw. Pract. Exper., vol. 29, no. 3, pp. 267–290, 1999.

[26] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J.
Song, “A log buffer-based flash translation layer using fully-
associative sector translation,” ACM Trans. Embed. Comput.
Syst., vol. 6, July 2007.

[27] “University of Massachusetts Amhesrst Storage Traces,” http:
//traces.cs.umass.edu/index.php/Storage/Storage.

[28] S. Kavalanekar, B. L. Worthington, Q. Zhang, and V. Sharda,
“Characterization of storage workload traces from production
windows servers,” in IISWC, 2008, pp. 119–128.

[29] “HP Labs - Tools and Traces,” http://tesla.hpl.hp.com/public
software/.

