
Proceedings ofthe 28th Annual Hawaii International Conference on System Sciences - 1995

RELACS: A Communications Infrastructure for Constructing
Reliable Applications in Large-scale Distributed Systems*

Ozalp Babaoglu Renzo Davoli Luigi- Albert0 Giachini Mary Gray Baker

Department of Mathematics
University of Bologna
40127 Bologna (Italy)

Abstract

Dis t r ibu ted s y s t e m s t h a t s p a n large geographic d is -
t a n c e s o r m a n a g e large n u m b e r s of objects a re a lready
c o m m o n p lace . In s u c h s y s t e m s , p r o g r a m m i n g applica-
t i ona with e v e n m o d e s t re l iab i l i t y r equ i remen t s t o run
correc t ly and e f f ic ien t ly i s a d i f f i cu l t t a sk due t o asyn -
c h r o n y a n d t h e poss ib i l i t y of complez fa i lu re scenar -
i o s . In this paper , w e descr ibe t h e archi tec ture of t h e
RELACS c o m m u n i c a t i o n s u b s y s t e m t h a t cons t i t u t e s t h e
m i c r o k e r n e l of a layered approach t o reliable c o m p u t i n g
in large-scale d is t r ibu ted s y s t e m s . RELACS i s des igned
t o be h ighly por tab le a n d i m p l e m e n t s a v e r y s m a l l num-
ber of abs t rac t ions and p r i m i t i v e s t h a t should be suffi-
c i e n t f o r bui ld ing a v a r i e t y of i n t e res t ing h igher- leve l
p a r a d i g m s .

1 Introduction

Traditionally, global networks such as the Internet
have been thought of exactly as that - networks.
With recent gains in bandwidth and connectivity, these
networks increasingly resemble the communication in-
frastructures of large-scale distributed systems. As
such, it is tempting to deploy distributed reliable ap-
plications on them that permit higher levels of c o o p
eration between geographically-distant sites than the
traditional electronic mail exchanges or file transfers.

The principal impediment t o exploiting the poten-
tial of large-scale distributed systems is the possibility
of failures. In a system that spans large geographic dis-
tances, failures may result in complex scenarios with
respect to communication patterns and network par-
titions. Furthermore, transient failures and unpre-

'This work has been supported in part by the Commission of
European Communities under ESPRIT Programme Basic Re-
search Project 6360 (BROADCAST), the National Research
Council of Italy (CNR) and the Ministry of University, Research
and Technology.

Department of Computer Science
Stanford University

Stanford, California 94305 (USA)

dictable communication and computation delays make
reasoning based on time and timeouts impractical. De-
veloping and reasoning about applications to be de-
ployed in wide-area distributed systems would be an
extremely difficult task if all of the above complexities
had to be confronted directly.

Over the last decade, process groups and g r o u p
based communication have emerged as appropriate
technologies for reliable computing in traditional dis-
tributed systems [SI. Process groups were initially
introduced by the V Kernel as a convenient struc-
turing and naming mechanism [I 11. Subsequently,
the paradigm has been extended by the inclusion
of multicast communication primitives with powerful
consistency guarantees even in the presence of fail-
ures [7, 17, 1, 161. Experience with these systems has
confirmed the adequacy of process groups in greatly
simplifying the construction of reliable distributed a p
plications [6].

In this paper we examine the problem of design-
ing communication infrastructures that enable reli-
able computing in distributed systems with dimen-
sions considerably larger than previously considered.
We believe that the process group approach remains
a valid paradigm even in such large-scale distributed
systems. To investigate this claim, we have imple-
mented RELACS, a system explicitly designed to s u p
port g roup based communication over wide-area net-
works. The system is based on off-the-shelf technolo-
gies for both communication (Internet UDP service)
and computation (UNIX boxes). We describe the ar-
chitecture of RELACS, the design issues we faced, and
why we believe the system should scale efficiently to
very large dimensions.

RELACS can be considered the microkernel of a lay-
ered architecture for the full suite of group mecha-
nisms [4].' I t implements a very small set of prim-

'RELACS corresponds to the core layer of the architecture
described in [4].

1060-3425795 $4.00 0 1995 IEEE
612

Prorredings of the 28th Aiinuul Hawaii lnternationul Corgerence on Systrm Sciences - 1995

itives that allow user applications to join, leave and
multicast messages within groups. The consistency
guarantees provided by RELACS are based on the no-
tion of view synchrony [zZ, 211.' Informally, view
synchrony cleanly transforms failures into group mem-
bership changes and provides global guarantees about
the messages that have been delivered by a group
as a function of changes to the group's composition.
Higher-level services and abstractions, such as total-
order and causal-ordered message delivery, uniformity,
and atomic transactions, can be easily built on top of
RELACS [20]. Being able to reason even with just view
synchrony should greatly simplify application develop
ment. For example, in [3] Babaoglu et al. describe
how an interface very similar to RELICS can be used
to manage replicated files in a large-scale system with
one-copy serialisability semantics.

A number of other systems have goals similar to
those of -LACS. Historically, the Isis system [7] has
been one of the most influential sources for ideas in a p
plying groupbased technology to reliable distributed
computing. Our microkernel approach for structur-
ing group mechanisms is shared by the more recent
incarnation of Isis as Horus [19]. These systems, how-
ever, are still oriented towards local-area network en-
vironments and do not deal adequately with large
scale. Transis [I] and Newtop (141 are perhaps the sys-
tems that are closest to RELICS with respect to large
scale. Both systems, like -LACS, are able to deal
with network partitions and mergers. Starting from a
system model that is quite similar to RELICS, New-
top guarantees total-order message delivery within a
highly-flexible group architecture. The Transis system
model is composed of broadcast domains representing
local-area networks that are in turn interconnected
through point-tc+point links. Our system model, on
the other hand, is motivated by applications that re-
sult in uniformly distributed groups spanning large ge-
ographic distances. Thus the architecture of RELACS
does not distinguish local-area segments, but rather,
treats the system uniformly as a network of point-to-
point links. Furthermore, RELACS and Transis differ
with rcapect to the multicast primitives that they im-
plement. Whereas RELICS provides only view syn-
chrony and leaves ordering guarantees to higher layers,
Transis offers the full suite of ordering semantics.

The next sections describe the assumptions made
by RELACS about the underlying communication layer,
the semantics of view synchrony in a large-scale sys-
tem, and the architecture of RELICS in light of these

'In [21], the abstractionis called virtual synchrony. We arc
reluctant to use this term since it is loaded with other semantics,
including c a d - and total-order delivery that are assousted
with the k i n system.

assumptions and considerations. We conclude by de-
scribing the current state of the system and outlining
directions for future work.

2 The System Model

The system characteristics and services that
RELACS builds upon are those typical of distributed
systems. Abstractly, the system can be modeled as a
collection of processes executing at potentially remote
sites. Processes communicate through a message ex-
change service provided by the network. Informally,
the consequences of large scale on the system are the
following. The network is not fully connected and is
typically quite sparse. Both processes and communi-
cation links may fail by crashing. Furthermore, the
network may allow delivery of duplicate messages and
it provides no message sequencing guarantees. Given
that the computing and communication resources may
be shared by large numbers of processes and messages,
the load on the system will be highly variable and un-
predictable. Thus, it is not possible to place bounds on
communication delays or relative speeds of processes.
As such, the system is adequately modeled as an asyn-
chronous distributed system.

Asynchronous systems place fundamental limits on
what can be achieved by distributed computations in
the presence of failures [15, 51. In particular, the in-
ability of some process p to communicate with another
process q cannot be attributed to its real cause - q
may have crashed, q may be slow, communication to q
may have been disconnected or it may be slow. From
the point of view of p , all of these scenarios result in
process q being unreachable.

What further distinguishes communication in the
presence of failures in large-scale asynchronous dis-
tributed systems are the resulting properties of reach-
ability. Formally, we can define reachability as follows:
given two processes p and q, let - be a binary relation
such that p -+ q if and only if q is reachable from p in
the sense that if p were to send a message to q, q would
eventually receive it. Note that as defined, reachability
is a non-stable predicate on the evolving global state of
the system. As such, in an asynchronous system, the
reachability relation can never be known accurately
but can only be approximated. The system service
that is typically used for deriving approximations of
reachability is called a failure svspector [lo, 93. Infor-
mally, failure suspectors generate suspicions of failures
by relying on timeouts to detect missing responses to
either application-generated messages or forced mes-
sages from periodic "pings". The resulting information
can only be classified as suspicions since timeouts in an

613

Proceedings of the 28th Annuul Hawaii International Conference on System Sciences ~ 1995

asynchronous system can never be set perfectly. Fur-
thermore, information that is obtained through com-
munication can only reflect some past state of the sys-
tem due to message delays. By deriving it directly
from suspicions (processes that are suspected are de-
clared unreachable while all others are reachable), we
obtain approximations for reachability.

In an asynchronous system, no matter what mecha-
nism is used, conclusions regarding reachability derived
by individual processes can never be totally accurate
and may be mutually inconsistent. Furthermore, in
a large-scale system, communication delays could be
comparable to inter-failure times. This may result in
significant periods during which symmetry and transi-
tivity of the reachability relation are not satisfied due
to inconsistencies either among the failure suspectors
or the network routing tables. Despite these possibil-
ities, we assume that the communication layer we are
building upon satisfies the following properties for the
reachability relation (the symbols 0 and 0 denote the
temporal operators "always" and "eventually", respec-
tively) :

Eventual symmetry. If process q is reachable from
process p and there are no new failures for a suffi-
ciently long time, then process p will be eventually
reachable from process q:

q P - 4 O(q - P) .

Eventual transitivity. If process q is reachable
from process p , process r is reachable from process
q and there are no new failures for a sufficiently
long time, then process r will be eventually reach-
able from process p:

Achieving these properties requires two conditions.
First, the failure-free communication structure must be
fully connected. Second, the failure suspectom must be
constructed such that if the interval between failures
is sufficiently long, then a process that has not crashed
and remains connected should eventually not be sus-
pected.

Note that the above properties do not exclude the
possibility of network partitions [18]. It may be that
the set of processes is partitioned into several disjoint
islands that are mutually unreachable. In addition to
these so-called clean partitions, periods during which
symmetry or transitivity are not satisfied may lead to
more complex scenarios with partitions that have non-
empty intersections. In RELACS we are able to cope
even with these cases as discussed in the next section.

3 View Synchrony

The basic abstractions of view synchrony are process
groups, views and messages. A group is a named set
of processes that can be treated as a single unit from
the outside. Processes may join a group by naming it
or may leave the group they are currently in. Once
a member of the group, a process may communicate
with the other group members through multicasts of
messages. View synchrony guarantees that the delivery
of these messages are totally ordered with respect to
changes in the group's membership.

At the level of RELACS, our design does not allow
groups to overlap in membership. As discussed in [4],
this restriction is not limitingin that overlapping group
structures may be permitted by higher levels of the ar-
chitecture that do not require view synchrony. Given
that a process is a member of at most one group, we
will omit the group name from our notation for sim-
plicity. Furthermore, issues related to the interaction
between a group and processes external to it are be-
yond the scope of this paper [4].

3.1 Views and View Changes

At any given time, each process in the group has
its own perception of which other known group mem-
bers are reachable. For each process p , this perceived
reachability set is called its view of the group, and
denoted V,. Views are assigned unique names such
that they can be distinguished even if their compo-
sition is iden t i~a l .~ View synchrony tracks relevant
system events and transforms them into view changes
that are delivered to processes for installation. View
changes are triggered by process crashes and recoveries,
communication failures and repairs, network partitions
and mergers, or explicit requests to join or leave the
group.

At each process, the set of installed views forma a
sequence, with the successor view relation defined as
follows:

Definition 3.1 View Vj is called the successor of
view v', denoted Vi < VJ, if and only if there ezwts
some process p at which Vj is installed immediately
after v'. Let > denote the trunsitive closure of this
successor view relation.

The last view in this sequence at process p is called
p's current view. Two processes p and q may share the
same current view, which we denote as

SFor notational simplicity, we UM the view mane also when
referring to the set of its members.

614

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - I995

One of the problems in asynchronous systems is that
the reachability sets perceived by individual processes
may be mutually inconsistent and inaccurate with re-
spect to the actual system state. View synchrony ren-
ders the reachability information encoded within views
nevertheless useful. In particular, it guarantees that
views installed at individual processes (i) have some
relation to the actual state of the system with respect
to failures, and (ii) are mutually consistent. We can
formalize these ideas through the following definition:

Definition 3.2 View installation.

1 . If no new failures occur for a suficiently long
time, the current view V, of each process p that
h a not crushed is such that

In other words, view synchrony guarantees that in-
stalled views are closed under reachability and maxi-
mally shared. Furthermore, views are installed so as
to preserve the partial order structure defined by the
4 relation on the global set of views. Note that the
maximal sharing property of views would be sufficient
to guarantee that partitions result in non-overlapping
concurrent views. The property, however, can only be
guaranteed only during sufficiently long periods with-
out failures. Thus, there may be transient periods
where the property does not hold, resulting in over-
lapping views. In &LACS, view installations are not
performed as atomic actions since the resulting cost in
a large-scale system would be prohibitive. Thus, fail-
ures that occur during the view agreement phase may
cause a process to install a view that is Meren t from
the one it initially agreed upon. The consequences of
this possibility are discussed further below.

Another problem in large-scale distributed systems
is the possibility of network partitions. In terms of
view synchrony, network partitions reault in concur-
rent views, which are views unrelated through 4. As a
simple example, consider the scenario depicted in Fig-
ure 1 where two processes p and q initially belong to
and share the view 5ttn. Due to a partition, they be-
come mutually unreachable and install two different
successor views &’ and Vb.

More complex failure scenarios, such as the one de-
picted in Figure 2, may cause a given view to partition

*

V L G V

V’

Local evolution of views Global evolution of views

Figure 1: Partitioned processes install distinct views.

into multiple concurrent views that overlap. Initially,
four processes p, q , r and s all belong to and share
the same view V’. Process q is partitioned from the
rest, provoking a view change. The successor view of
V’ for p is V’ which includes only q . The remaining
processes agree on a new reachable set (p, r, s), and
processes r and s install this as their new view V 3 .
However, before having a chance to install this view
itself, p is partitioned from the others, resulting in p
installing V4, which includes only p, as the successor
view of V I . According to their views, r and s believe
p to be reachable, but p’s view indicates that r and s
are not. The situation may seem bothersome, in that
p appears to participate in two views simultaneously.
But in fact, at any given time, p has a unique current
view; it simply appears in some other view (V 3) that
it does not share. Furthermore, Property l(b) of view
installation ensures that overlapping concurrent views
cannot persist, since there will always be future views
that exclude the overlapping elements. In the exam-
ple, if r and s try to communicate with p, they will
realize that p is in fact unreachable and will trigger a
new view change to exclude it, leading to V 5 .

Partition mergers result in view changea in which
several processes with distinct current views all install
a common successor view. In Figure 2, if proceases
p and q, which were partitioned with current views
V4 and V’, once again become mutually reachable,
they will both install view V6 including themselves.
RELACS does not specify any special action when view
mergers occur. Appropriate handling of these situa-
tions is application-specific and is left to higher layers
which may implement primitives such as state trans-
fer [7].

615

Proceedings of the 28th Annual Hawnu Internatronnl Conference on System Sclences - 1995

P

4

r. s

mS.0,.

Local evolution of views

Global evolution of views

Figure 2: Failures during view agreement may result
in overlapping concurrent views.

3.2 Message Delivery

In addition to managing views, RELACS imple-
ments a reliable multicast primitive for communication
among group members. Informally, reliable multicast
within a group ensures that the message is received
by all or none of the group members. In defining the
exact semantics of reliable multicast, we distinguish
between a process receiving and delivering a message.
Whereas the fist primitive is provided by the underly-
ing network transport services, delivery is implemented
by RELACS by invoking an application-specified han-
dler routine. A message m is said to be delivered by
process p during view V, if V, is the current view a t p
when the handler is invoked with message m.

The real power of view synchrony is not in its indi-
vidual components - view changes and reliable multi-

casts - but in their integration. Informally, view syn-
chronv permits a process to reason globally about the
set of messages other processes have delivered based
on local information maintained as the sequence of in-
stalled views. In particular, view synchrony guarantees
that for each path in the partial order of views, mes-
sage deliveries are totally ordered with respect to view
changes. Thus, during the phase when some view V
is being terminated and the successor view V' is be-
ing established, processes must agree not only on the
composition of V' but also on the set of messages that
need to be delivered during V .

Ultimately, the semantics of view synchrony should
allow an application process to reach useful conclusions
regarding the set of messages delivered by other pro-
cesses during a given view. As it turns out, formalizing
the above ideas in a manner that can be implemented
leads to decisions about what the agreed-upon set of
messages should be, and to refinements of view mem-
bership semantics.

Figure 3: Scenarios that illustrate choices between pos-
sible message delivery semantics.

One decision concerning the message set agreement
arises due to network partitions. As illustrated in Sce-
nario 1 of Figure 3, suppose three processes p , q, and
r initially belong to and share the common view V1.
Process p becomes partitioned from q and r , provok-
ing a view change. Processes q and r construct a new
view V 3 . To do so, they agree both on the new view
and the set of messages that must be delivered dur-
ing V'. Thus, once they have installed V 3 , they may
be sure of the messages delivered by each other. In
deciding upon the set of messages, however, two se-
mantics are possible. Processes q and r may either

616

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

agree on the set of messages that have already been de-
livered during V', or that should be delivered during
V'. The former semantics allows p and r to know for
certain that they have delivered exactly the same set
of messages. Achieving such a guarantee, however, re-
quires additional communication (essentially, the sec-
ond phase of a 2-phase commit protocol) during the
agreement phase. The latter semantics guarantees only
that q and r will deliver the same set of messages pro-
vided that they survive the view change. In RELACS we
currently adopt this weaker semantics since incurring
the additional cost for each view change may not be
practical in a large-scale system.

A second issue arises from the fact that concurrent
views may intersect in arbitrary ways. As an example
consider the second scenario presented in Figure 3. As
before, process p becomes partitioned from q and r ,
provoking a view change. Process p does not realise
that the partition has occurred, and continues execut-
ing and delivering a set of messages N. Meanwhile,
q and r initiate a view change to exclude p and agree
to deliver a set of messages M while constructing V 2 .
Process q installs V 2 as the successor to V'. Yet an-
other partition between q and r causes r to abandon
view V' and initiate a new view change. While doing
so, p and r become mutually reachable while q remains
partitioned. So when constructing V 3 together, p and
r agree to deliver a set of messages that is the union of
M (those known to r) and N (those known to p). Pro-
cess q , on the other hand, delivers the set of messages
M and installs view V' as the successor to V'.

The guarantees provided by view synchrony in this
situation are unsatisfactory for two reasons. First, pro-
cess p is forced to deliver a set of messages (M) that
are potentially from a process (e.g., q) extraneous to
its successor view V 3 . Second, process q can only know
about the message set M delivered by r while r actu-
ally delivers more messages (M U N) . In other words, a
process is constrained to reason about another process
in its view having delivered at least a set of messages as
opposed to ezactly the set of messages. In particular,
views V z and V 3 have r as a common member but they
include other disjoint members (p and q). The com-
mon member acts as a bridge between the two views
and causes undesirable message deliveries with respect
to the disjoint members.

To handle this problem we impose the following
restrictions on view evolutions to define a member-
ship semantics that is intermediate between weak- and
strong- partial [2 11:

Property 3.1 Quasi strong-partial membership ser-
vice.

1. (Partitioning Rule:) If V', V' and V 3 are three

views such that

(v' 4 v') A (v' 4 v-3) A (1'' # v3),
then (V 2 c V 3) v (V3 c V ') v (V z n v3 = 0).

2. (Merging Rule:) If V', V 2 and V 3 are three views
such that

(v' 4 v3) A (v2 4 v3) A (v' # v'),
then (V' n V2 = 0).

In other words, two concurrent views that result
from the partitioning of a common view may overlap
only if one is a proper subset of the other; two concur-
rent views that merge to form a single common view
cannot intersect. &LACS guarantees these properties
for view evolutions by not allowing unreachable pro-
cesses to become reachable during view termination.
The consequence of this restriction is a potential in-
crease in the number of view changes. The benefit, on
the other hand, is a stronger guarantee.

In light of these considerations, we can finally define
view synchronous communication as implemented by
-LACS.

Definition 3.3
View-synchronous communication. F o r each multicast
message m, if there ezists some process p that deliv-
ers m during view v', then for all views VJ arch that
v' 4 Vj ami p E V j , all processes q E v' n vJ that
have not crashed also deliver m. Furthermore, if a
message is delivered, it is delivered in ezactly one view
that must include the sending process as a member.

Note that there is a subtle but important M e r -
ence between the above definition and the one given
by Schiper and Ricciardi in [21]. The Schiper-Ricciardi
definition requires all processes in V' n VJ to deliver
the same set of messages that were multicast in view
V'. Our definition does not mention the view in which
the message was multicast. All we require is that if
some process p delivers message m in view V', then all
processes that survive together with p into the same
next view also deliver m. In our case, the message
may have been multicast in view v' or some earlin
view since the notion of "multicasting in a view" as
we have defined it, is with respect to the process local
state (the last view installed before issuing the multi-
cast). The alternative definition is made with respect
to the global system state in which the multicast actu-
ally occurs. Unfortunately, asynchrony between appli-
cations and the support layer makes it impossible for
a process to know in which (future) view its multicast
request will be serviced.

617

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Finally, note that view synchrony as implemented in
RELACS guarantees nothing about the relative order of
messages delivered during a given view. Applications
that require ordering guarantees such as uniform [20],
causal [8] or total [13] will have to rely on layers built
on top of -LACS.

4 The Application Interface

Applications that require RELACS services invoke
them through a small set of library functions. The
proposed interface is an attempt to maximize flexibil-
ity while minimizing complexity. The following is an
informal description of the RELACS application pro-
gramming interface.

v i n i t 0 global system initialization and data
structure allocation.

v-join(gname, <handlers>) join the group iden-
tified through the string gname. Attempts to join mul-
tiple groups or the same group more than once gener-
ate an error. If the group to be joined does not ex-
ist or has no members in the current partition, it will
be created. For groups representing a unique global
service, ensuring that a single instance is created de-
spite partitions, requires that the application consult
a global naming service in constructing the (globally
unique) group name. Upon partition mergers, pro-
cesses belonging to groups with matching names will
be automatically joined. The call includes optional pa-
rameters for associating application-specified handlers
with view change, message delivery and state transfer
events. Each handler invocation is indivisible with re-
spect to others in the sense that future events do not
preempt an active handler: Thus, handler executions
are serialized as defined by view synchrony semantics.

v l eave (type) leave the group. Since a process can
belong to at most one group, the group name is im-
plicit. The parameter type selects if the leave is to
be i m m e d i a t e or de layed . In the former case, the call
returns immediately and the leave is treated as if the
process crashed. In the latter case, the call returns
only after a new view has been established in which
the exiting process is marked as such. Thus, the ex-
iting process has the same view synchrony guarantees
as those remaining in the view.

v-cast(msg) multicast message msg to the current
group with view-synchronous semantics.

vmsend(des t1 i s t . msg) multisend message msg
to the list of processes in d e s t l i s t . The call is
equivalent to a sequence of point-to-point send opera-
tions, one for each destination, with best-effort deliv-
ery guarantees. Reception is performed through the
same message delivery handler mechanism as multi-

casts. The destination process addresses can be ex-
tracted from the information contained in the view.
This call is extraneous to the view synchrony seman-
tics and is included to facilitate group interactions with
non-member processes.

Note that RELACS itself does not include a threads
(light-weight processes) package. If the underlying sys-
tem supports such a mechanism, then application pro-
grams could be structured so as to associate each event
handling within a separate thread. In this case, the
handler terminates with the thread invocation. Con-
sequently, event management enclosed within a thread
cannot rely on view synchrony.

5 System Architecture

This section briefly describes the current implemen-
tation of the RELACS system. Further details can be
found in [2]. Whereas the RELACS model treats all
processes uniformly, for performance reasons, the im-
plementation distinguishes between processes local to
a given site and those that are remote. Architectural
design choices are based on the following assumptions
about the system model:

Communication between processes local to a sin-
gle site is reliable.

0 Crashes of local processes can be reliably detected
rather than simply suspected.

0 Sites, like processes, may fail by crashing. A site
crash is equivalent to the crash of all processes
local to that site.

0 While the number of processes that belong to
groups may be large, the number of sites they span
is typically small.

The first two assumptions simplify the management
of reachability information within a given site since a
local process is either reachable or has crashed, but can
never be unreachable while operational.

Each site runs a single instance of the RELACS
server. Processes requiring RELACS services link a p
propriate library functions and invoke them by sending
requests to the local server. Figure 4 illustrates this
organization. It is the servera that actually perform
reachability management, multicaste, message deliver-
ies, view changes, and communication with other re-
mote sites. For example, a request to multicast a mes-
sage is handled as follows: the process issues the re-
quest by invoking the function v-cast (). The RELACS
server local to the site receives the request and deliv-
ers the message to all other local group members. The

618

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - I995

SeNW A
I

Site A Site B

Server B
I 'r

I... -
Wide Area Network

0 Per group Persire

I view change I multicast I

Communication Communication
with remote sites with local processes

Figure 4: Procesaes do not communicate directly but
request RELACS services by contacting the local server. Figure 5: The architecture of the RELACS server.

message is also sent to all other RELACS servers on r e
mote sites that have at leaat one member of the group.
Each server delivers the message to its local processes.
Delivering the message to a process triggers the pro-
cess' message delivery handler function.

The RELACS server has a layered structure with the
following logical components:

0 network: Acts as the interface to the low-level (un-
reliable) network services for communicating with
remote sites.

0 transport: Implements reliable point-to-point
communication on top of the underlying network
services.

0 failure swpectot: Uses periodic Upingn messages
and information passed up from the transport
layer in order to construct reachability informa-
tion about remote sites.

0 local communication: Handles process/server
communication internal to a single site.

lower layers are shared by all group at the site and
are instantiated only once.

The above system architecture reflects our empha-
sis on sites. In as much as possible, we strive to
achieve costs that are proportional to the number of
sites rather than the number of processea. In partic-
ular, reachability information derived from the failure
suspectors is with respect to sites. This information
is mapped to reachability of individual processes when
needed by combining it with the data received from
the gosaip seMces.

Failure suspectors for large-scale systems with
highly variable communication delays must be de-
signed with care. The difficulty is in striking a balance
between responsiveness of view changes to actual fail-
ures and overhead due to false suspicions. The RELACS
failure suspector is highly adaptive in that the time-
out periods are established individually for each of the
communication channels based on the mean and vari-
ance of observed delay during a window of recent com-
munication.

0 view change/multicast: Handles view changes,
multicasts and delivery of messages. 6 Status and Conclusions

0 gossip service: Constructs reachability informa-
tion regarding local processes and propagates it
to remote sites.

Figure 5 shows the organization of the Merent lay-
ers. Adjacent layers may exchange information. Since
a single server may handle several different group that
have processes running on the site, the upper layers of
the server are instantiated once for each group. The

We have implemented a prototype of RELACS on
top of SunOS 4.3 (BSD UNIX) using the Internet UDP
datagram service through the socket interface. We
have also built a demonstration program to illustrate
major system events using Tcl/Tk [23] for the graph-
ical interface. We have found the tool useful not only
for observing application behavior, but also for perfor-
mance tuning and debugging of RELACS itself.

Figure 6 illustrates a snapshot of the demonstration

619

Proceedings of the 28111 Annual Hawaii International Conference on Sqstern Science3 - 1995

Coordinator horis
Multicast data fyodor
received multxast data

Figure 6: The graphical presentation of the RELACS
demonstration program.

program. Three sites have processes in the demon-
stration group: papageno, fyodor, and boris with the
name of the current coordinator for view agreements
(see [2] for details) in capital letters. The upper right-
hand window traces view changes and message multi-
casts/deliveries. Below this window, the same events
are shown as a bar graph with black bars representing
view changes and grey bars representing message de-
liveries. The lower right-hand window shows the p r e
cesses active at a given server (here, fyodor) as well
as those having executed a delayed leave (denoted as
Defunct).

The current implementation has several limitations
both in functionality and performance. We assume
that communication satisfies the eventual symmetry
and transitivity properties for reachability. Without
these, sites may have conflicting opinions about reach-
ability, and thus engage in a never-ending sequence of
view agreement steps. In a widearea network such as
the Internet, there can be extended periods where tran-
sitivity is not satisfied. Ideally, the problem should be
solved by modifying the current IP routing algorithms
or inserting a layer on top of the UDP service that
can re-route packets through alternative paths. In this
manner, even if the underlying infiastructure does not
guarantee transitivity, we may still achieve the p rop
erty by forwarding messages between connected sites.
Currently we make use of neither hardware broadcast
capabilities of local-area segments nor the IP multicas-

ting facility over wide-area links of the network [12].
We assume that interprocess communication within

a single site is completely reliable. While this is usually
a reasonable assumption, there may be rare situations
of extreme local resource shortages where it does not
hold. Similarly, on rare occasions (e.g., no more avail-
able inodes), our mechanism to detect local process
crashes through file locks may prove unreliable [2].

In the current implementation there are no provi-
sions for flow control. We assume that the RELACS
server has unlimited buffering capability. Processes
performing multicasts a t a fast rate may overload the
message buffers a t a site with a slow process. One
possible solution to thia problem is to force the slow
process to leave the group so that it may bring itself
up to date through state transfer when rejoining the
group without having to process the back logged mes-
sages.

The current prototype is in too early a stage to draw
any conclusions regarding its performance or complete-
ness. When the above shortcomings have been ad-
dressed and the performance enhanced, we will en-
gage in an evaluation study of the architecture. The
raw performance of multicast communication and view
management has to be quantified. We also need to con-
struct several realistic applications in order to evaluate
the ease of use and completeness of the RELACS prw
gramming model. As distributed systems continue to
grow in geographical scale, tools such as RBLACS will
become indispensable for building reliable applications
to run on them.

Acknowledgements

We are grateful to Ian Jacobs for the extensive ed-
itorial help he provided during the preparation of this
document. Niels Nes programmed the graphical inter-
face, the demonstration program and contributed to
the implementation of the server. The overall design
of RELACS benefited from extensive discussions with
our colleagues Andr6 Schiper, Uwe Wilhelm, Cristoph
Malloth (Ecole Polytechnique FCdirale de Lausanne),
Paulo Verissimo and Luis Rodriguez (INESC, Lisbon).

References

[l] Y. A&, D. Dolev, S. Kramer and D. Malki. Tran-
sis: A Communication Subsystem for High Avail-
ability. In Proc. 22nd Annual International Sym-
posium on Fault- Tolerant Computing, pages 76-84,
July 1992.

[2] 0. Babaoglu, M.G. Baker, R. Davoli, and L.A.
Giachini. RELACS: A Communications Infrastruc-

620

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

ture for Constructing Reliable Applications in
Large-scale Distributed Systems. Technical Report
UBLCS-94-15, Laboratory for Computer Science,
University of Bologna, Italy, June 1994.

6. Babaoglu, A. Bartoli, and G. Dini. Replicated
File Management in Large-scale Distributed Sys-
tems. In Proc. 8th Int. Workshop on Distributed
Algorithms, October 1994.

[14] P.E. Ezhilchelvan, R.A. Macedo and S.K. Shrivas-
tava. Newtop: A Fault-Tolerant Group Communi-
cation Protocol. Technical Report, Computer Lab-
oratory, University of Newcastle upon Tyne, New-
castle upon Tyne, United Kingdom, August 1994.

[15] M.J. Fischer, N.A. Lynch, and M.S. Paterson.
Impossibility of Distributed C O ~ S ~ M U S with One
Faulty Process. Journal of ACM, 32(2):374-382,
April 1985. 6. Babaoglu and A. Schiper. On Group Communi-

cation in Large-scale Distributed System- In Proc. [16] M.F. Kaashoek and A.S. Tanenbaum. Group com-
ACM SIGOPS European Workshop, Dagstuhl, munication in the amoeba distributed operating
Germany, September 1994. system. In Proceedings of the Eleventh Interna-
K. Birman, The Process Group Approach to Re- tional Conference on Distributed Computer Sys-

tems, pages 222-230, Arlington, Texas, May 1991. liable Distributed Computing, Communication of
the ACM, 9(12):36-53, December 1993. IEEE Computer Society.

K. B - ~ and R. cooper. The ISIS project: ~d
Experience with a Fault-Tolerant Programming
System. ACM SIGOPS Operating Systems Review,
25(2):103-107, April 1991.

K. Birman, R. Cooper, T. Joseph, K. Marzullo, M.
Makpangou, K. Kane, F. Schmuck and M. Wood.
The ISIS System Manual, Version 2.1. Department
of Computer Science, Cornell University, Ithaca,
New York, September 1990. 1993.

K. Birman, A. S a p e r and P. Stephenson. [19] R. van Renesse, K. Birman, R. Cooper, B. Glade
Lightweight Causal and Atomic Multicast. ACM and P. Stephenson. The Horus System. In Reliable
h n s . Computer Systems, 9(3):272-314, August Distributed Computing with the Isis Toolkit, K.P.
1991. Birman, R. van Renesse (Ed.), IEEE Computer

Society Press, Los Alamitos, CA, pages 133-147,
1993. T.D. Chandra, V. Hadzilacos, and S. Toueg. The

Weakest Failure Detector for Solving CO~S~MUS. In
Proceedings 11th ACM Symposium on Principles of
Distributed Computing, pages 147-158. ACM, Au-
gust 1992.

[17] L.L. Peterson, N.C. Bucholz, and R.D. Schkht-
ing. Preserving and using context information in
interprocess communication. ACM h m a c t i o m on
Computer Systems, 7(3):217-246, August 1989.

[I81 A. fiCCiar& A. SchiPer and K- Birman, Under-
standing Partitions and the "No Partition" As-
sumption. In Proc. 4th IEEE Workshop on Future
Bends of Distributed Systems, Lisboa, September

1201 A. Schiper and A. Sandoz. Uniform Reliable Mul-
ticast in a Virtually Synchronous Environment. In
Proc. 13th International Conference on Distributed

[lo] T.D. Chandra and S. Toueg. Unreliable Failure
Detectors for Asynchronous Systems. In Proceed-
ings 10th ACM Symposium on Principles of Dis-
tributed Computing, pages 325-340. ACM, August
1991.

[ll] D.R. Cheriton and W. Zwaenepoel. Distributed
Process G r o u p in the V Kernel. ACM %W. Com-
puter Systems. 3(2):77-107, May 1985.

[12] S. Decring. Host Extensions for IP Multicasting.
RFC1112, August 1989.

[13] D. Dolev, S. Kramer and D. Malki. Early De-
livery Totally Ordered Multicast in Asynchronous
Environments. In Proc. 23nd Annual International
Symposium on Fault- Tolerant Computing, pages
544-553, June 1993.

Computing Systems, pages 501-568, May 1993.

[21] A. Schiper and A. Ricciardi. Virtually-Synchre
now Communication Baaed on a Weak Failure Sus-
pector. In Proc. 23rd International Symposium on
Fault- Tolerant Computing, Toulouse, pagca 534-
543, June 1993.

[22] K. P. Birman and T. Joseph. Exploiting virtual
synchrony in distributed systems. In Proceedings
Eleventh Symposium on Operating System Princi-
ples, pages 123-138, November 1987.

[23] J.K. Ousterhout. Tcl and the 2% Toolkit,
Addison-Wesley, 1994.

621

