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Abstract 

Dis t r ibu ted  s y s t e m s  t h a t  s p a n  large geographic d is -  
t a n c e s  o r  m a n a g e  large n u m b e r s  of objects a re  a lready  
c o m m o n  p lace .  In s u c h  s y s t e m s ,  p r o g r a m m i n g  applica- 
t i ona  with e v e n  m o d e s t  re l iab i l i t y  r equ i remen t s  t o  run 
correc t ly  and  e f f ic ien t ly  i s  a d i f f i cu l t  t a sk  due  t o  asyn -  
c h r o n y  a n d  t h e  poss ib i l i t y  of complez  fa i lu re  scenar -  
i o s .  In this paper ,  w e  descr ibe  t h e  archi tec ture  of t h e  
RELACS c o m m u n i c a t i o n  s u b s y s t e m  t h a t  cons t i t u t e s  t h e  
m i c r o k e r n e l  of a layered  approach  t o  reliable c o m p u t i n g  
in large-scale d is t r ibu ted  s y s t e m s .  RELACS i s  des igned  
t o  be h ighly  por tab le  a n d  i m p l e m e n t s  a v e r y  s m a l l  num- 
ber of abs t rac t ions  and  p r i m i t i v e s  t h a t  should  be suffi- 
c i e n t  f o r  bui ld ing  a v a r i e t y  of i n t e res t ing  h igher- leve l  
p a r a d i g m s .  

1 Introduction 

Traditionally, global networks such as the Internet 
have been thought of exactly as that - networks. 
With recent gains in bandwidth and connectivity, these 
networks increasingly resemble the communication in- 
frastructures of large-scale distributed systems. As 
such, it is tempting to  deploy distributed reliable ap- 
plications on them that  permit higher levels of c o o p  
eration between geographically-distant sites than the 
traditional electronic mail exchanges or file transfers. 

The  principal impediment t o  exploiting the poten- 
tial of large-scale distributed systems is the possibility 
of failures. In a system that spans large geographic dis- 
tances, failures may result in complex scenarios with 
respect to  communication patterns and network par- 
titions. Furthermore, transient failures and unpre- 
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dictable communication and computation delays make 
reasoning based on time and timeouts impractical. De- 
veloping and reasoning about applications to  be de- 
ployed in wide-area distributed systems would be an  
extremely difficult task if all of the above complexities 
had to  be confronted directly. 

Over the last decade, process groups and g r o u p  
based communication have emerged as appropriate 
technologies for reliable computing in traditional dis- 
tributed systems [SI. Process groups were initially 
introduced by the V Kernel as a convenient struc- 
turing and naming mechanism [I 11. Subsequently, 
the paradigm has been extended by the inclusion 
of multicast communication primitives with powerful 
consistency guarantees even in the presence of fail- 
ures [7, 17, 1, 161. Experience with these systems has 
confirmed the adequacy of process groups in greatly 
simplifying the construction of reliable distributed a p  
plications [6]. 

In this paper we examine the problem of design- 
ing communication infrastructures that  enable reli- 
able computing in distributed systems with dimen- 
sions considerably larger than previously considered. 
We believe that  the process group approach remains 
a valid paradigm even in such large-scale distributed 
systems. To investigate this claim, we have imple- 
mented RELACS, a system explicitly designed to  s u p  
port g roup  based communication over wide-area net- 
works. The system is based on off-the-shelf technolo- 
gies for both communication (Internet UDP service) 
and computation (UNIX boxes). We describe the ar- 
chitecture of RELACS, the design issues we faced, and 
why we believe the system should scale efficiently to  
very large dimensions. 

RELACS can be considered the microkernel of a lay- 
ered architecture for the full suite of group mecha- 
nisms [4].' I t  implements a very small set of prim- 

'RELACS corresponds to the core layer of the architecture 
described in [4]. 
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itives that allow user applications to join, leave and 
multicast messages within groups. The consistency 
guarantees provided by RELACS are based on the no- 
tion of view synchrony [zZ, 211.' Informally, view 
synchrony cleanly transforms failures into group mem- 
bership changes and provides global guarantees about 
the messages that have been delivered by a group 
as a function of changes to the group's composition. 
Higher-level services and abstractions, such as total- 
order and causal-ordered message delivery, uniformity, 
and atomic transactions, can be easily built on top of 
RELACS [20]. Being able to reason even with just view 
synchrony should greatly simplify application develop 
ment. For example, in [3] Babaoglu et al. describe 
how an interface very similar to RELICS can be used 
to manage replicated files in a large-scale system with 
one-copy serialisability semantics. 

A number of other systems have goals similar to 
those of -LACS. Historically, the Isis system [7] has 
been one of the most influential sources for ideas in a p  
plying groupbased technology to reliable distributed 
computing. Our microkernel approach for structur- 
ing group mechanisms is shared by the more recent 
incarnation of Isis as Horus [19]. These systems, how- 
ever, are still oriented towards local-area network en- 
vironments and do not deal adequately with large 
scale. Transis [I] and Newtop (141 are perhaps the sys- 
tems that are closest to  RELICS with respect to large 
scale. Both systems, like -LACS, are able to deal 
with network partitions and mergers. Starting from a 
system model that is quite similar to RELICS, New- 
top guarantees total-order message delivery within a 
highly-flexible group architecture. The Transis system 
model is composed of broadcast domains representing 
local-area networks that are in turn interconnected 
through point-tc+point links. Our system model, on 
the other hand, is motivated by applications that re- 
sult in uniformly distributed groups spanning large ge- 
ographic distances. Thus the architecture of RELACS 
does not distinguish local-area segments, but rather, 
treats the system uniformly as a network of point-to- 
point links. Furthermore, RELACS and Transis differ 
with rcapect to  the multicast primitives that they im- 
plement. Whereas RELICS provides only view syn- 
chrony and leaves ordering guarantees to higher layers, 
Transis offers the full suite of ordering semantics. 

The next sections describe the assumptions made 
by RELACS about the underlying communication layer, 
the semantics of view synchrony in a large-scale sys- 
tem, and the architecture of RELICS in light of these 

'In [21], the abstractionis called virtual synchrony. We arc 
reluctant to use this term since it is loaded with other semantics, 
including c a d -  and total-order delivery that are assousted 
with the k i n  system. 

assumptions and considerations. We conclude by de- 
scribing the current state of the system and outlining 
directions for future work. 

2 The System Model 

The system characteristics and services that 
RELACS builds upon are those typical of distributed 
systems. Abstractly, the system can be modeled as a 
collection of processes executing at potentially remote 
sites. Processes communicate through a message ex- 
change service provided by the network. Informally, 
the consequences of large scale on the system are the 
following. The network is not fully connected and is 
typically quite sparse. Both processes and communi- 
cation links may fail by crashing. Furthermore, the 
network may allow delivery of duplicate messages and 
it provides no message sequencing guarantees. Given 
that the computing and communication resources may 
be shared by large numbers of processes and messages, 
the load on the system will be highly variable and un- 
predictable. Thus, it is not possible to place bounds on 
communication delays or relative speeds of processes. 
As such, the system is adequately modeled as an asyn- 
chronous distributed system. 

Asynchronous systems place fundamental limits on 
what can be achieved by distributed computations in 
the presence of failures [15, 51. In particular, the in- 
ability of some process p to communicate with another 
process q cannot be attributed to its real cause - q 
may have crashed, q may be slow, communication to q 
may have been disconnected or it may be slow. From 
the point of view of p ,  all of these scenarios result in 
process q being unreachable. 

What further distinguishes communication in the 
presence of failures in large-scale asynchronous dis- 
tributed systems are the resulting properties of reach- 
ability. Formally, we can define reachability as follows: 
given two processes p and q,  let - be a binary relation 
such that p -+ q if and only if q is reachable from p in 
the sense that if p were to  send a message to q,  q would 
eventually receive it. Note that as defined, reachability 
is a non-stable predicate on the evolving global state of 
the system. As such, in an asynchronous system, the 
reachability relation can never be known accurately 
but can only be approximated. The system service 
that is typically used for deriving approximations of 
reachability is called a failure svspector [lo, 93. Infor- 
mally, failure suspectors generate suspicions of failures 
by relying on timeouts to detect missing responses to 
either application-generated messages or forced mes- 
sages from periodic "pings". The resulting information 
can only be classified as suspicions since timeouts in an 
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asynchronous system can never be set perfectly. Fur- 
thermore, information that is obtained through com- 
munication can only reflect some past state of the sys- 
tem due to message delays. By deriving it directly 
from suspicions (processes that are suspected are de- 
clared unreachable while all others are reachable), we 
obtain approximations for reachability. 

In an asynchronous system, no matter what mecha- 
nism is used, conclusions regarding reachability derived 
by individual processes can never be totally accurate 
and may be mutually inconsistent. Furthermore, in 
a large-scale system, communication delays could be 
comparable to inter-failure times. This may result in 
significant periods during which symmetry and transi- 
tivity of the reachability relation are not satisfied due 
to inconsistencies either among the failure suspectors 
or the network routing tables. Despite these possibil- 
ities, we assume that the communication layer we are 
building upon satisfies the following properties for the 
reachability relation (the symbols 0 and 0 denote the 
temporal operators "always" and "eventually", respec- 
tively) : 

Eventual symmetry. If process q is reachable from 
process p and there are no new failures for a suffi- 
ciently long time, then process p will be eventually 
reachable from process q: 

q P -  4 O(q - P ) .  

Eventual transitivity. If process q is reachable 
from process p ,  process r is reachable from process 
q and there are no new failures for a sufficiently 
long time, then process r will be eventually reach- 
able from process p:  

Achieving these properties requires two conditions. 
First, the failure-free communication structure must be 
fully connected. Second, the failure suspectom must be 
constructed such that if the interval between failures 
is sufficiently long, then a process that has not crashed 
and remains connected should eventually not be sus- 
pected. 

Note that the above properties do not exclude the 
possibility of network partitions [18]. It may be that 
the set of processes is partitioned into several disjoint 
islands that are mutually unreachable. In addition to  
these so-called clean partitions, periods during which 
symmetry or transitivity are not satisfied may lead to 
more complex scenarios with partitions that have non- 
empty intersections. In RELACS we are able to cope 
even with these cases as discussed in the next section. 

3 View Synchrony 

The basic abstractions of view synchrony are process 
groups, views and messages. A group is a named set 
of processes that can be treated as a single unit from 
the outside. Processes may join a group by naming it 
or may leave the group they are currently in. Once 
a member of the group, a process may communicate 
with the other group members through multicasts of 
messages. View synchrony guarantees that the delivery 
of these messages are totally ordered with respect to  
changes in the group's membership. 

At the level of RELACS, our design does not allow 
groups to overlap in membership. As discussed in [4], 
this restriction is not limitingin that overlapping group 
structures may be permitted by higher levels of the ar- 
chitecture that do not require view synchrony. Given 
that a process is a member of at most one group, we 
will omit the group name from our notation for sim- 
plicity. Furthermore, issues related to the interaction 
between a group and processes external to  it are be- 
yond the scope of this paper [4]. 

3.1 Views and View Changes 

At any given time, each process in the group has 
its own perception of which other known group mem- 
bers are reachable. For each process p ,  this perceived 
reachability set is called its view of the group, and 
denoted V,. Views are assigned unique names such 
that they can be distinguished even if their compo- 
sition is iden t i~a l .~  View synchrony tracks relevant 
system events and transforms them into view changes 
that are delivered to  processes for installation. View 
changes are triggered by process crashes and recoveries, 
communication failures and repairs, network partitions 
and mergers, or explicit requests to join or leave the 
group. 

At each process, the set of installed views forma a 
sequence, with the successor view relation defined as 
follows: 

Definition 3.1 View Vj is called the successor of  
view v', denoted Vi  < VJ,  if and only if there ezwts 
some process p at which Vj  is installed immediately 
after v'. Let > denote the trunsitive closure of this 
successor view relation. 

The last view in this sequence at  process p is called 
p's current view. Two processes p and q may share the 
same current view, which we denote as 

SFor notational simplicity, we UM the view mane also when 
referring to the set of its members. 
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One of the problems in asynchronous systems is that 
the reachability sets perceived by individual processes 
may be mutually inconsistent and inaccurate with re- 
spect to  the actual system state. View synchrony ren- 
ders the reachability information encoded within views 
nevertheless useful. In particular, it guarantees that 
views installed at individual processes (i) have some 
relation to the actual state of the system with respect 
to failures, and (ii) are mutually consistent. We can 
formalize these ideas through the following definition: 

Definition 3.2 View installation. 

1 .  If no new failures occur for a suficiently long 
time, the current view V, of each process p that 
h a  not crushed is such that 

In other words, view synchrony guarantees that in- 
stalled views are closed under reachability and maxi- 
mally shared. Furthermore, views are installed so as 
to preserve the partial order structure defined by the 
4 relation on the global set of views. Note that the 
maximal sharing property of views would be sufficient 
to guarantee that partitions result in non-overlapping 
concurrent views. The property, however, can only be 
guaranteed only during sufficiently long periods with- 
out failures. Thus, there may be transient periods 
where the property does not hold, resulting in over- 
lapping views. In &LACS, view installations are not 
performed as atomic actions since the resulting cost in 
a large-scale system would be prohibitive. Thus, fail- 
ures that occur during the view agreement phase may 
cause a process to install a view that is Meren t  from 
the one it initially agreed upon. The consequences of 
this possibility are discussed further below. 

Another problem in large-scale distributed systems 
is the possibility of network partitions. In terms of 
view synchrony, network partitions reault in concur- 
rent views, which are views unrelated through 4. As a 
simple example, consider the scenario depicted in Fig- 
ure 1 where two processes p and q initially belong to 
and share the view 5ttn. Due to  a partition, they be- 
come mutually unreachable and install two different 
successor views &’ and Vb. 

More complex failure scenarios, such as the one de- 
picted in Figure 2, may cause a given view to partition 

* 

V L  G V 

V’ 

Local evolution of views Global evolution of views 

Figure 1: Partitioned processes install distinct views. 

into multiple concurrent views that overlap. Initially, 
four processes p, q ,  r and s all belong to  and share 
the same view V’. Process q is partitioned from the 
rest, provoking a view change. The successor view of 
V’ for p is V’ which includes only q .  The remaining 
processes agree on a new reachable set (p, r, s), and 
processes r and s install this as their new view V 3 .  
However, before having a chance to install this view 
itself, p is partitioned from the others, resulting in p 
installing V4, which includes only p, as the successor 
view of V I .  According to their views, r and s believe 
p to  be reachable, but p’s view indicates that r and s 
are not. The situation may seem bothersome, in that 
p appears to  participate in two views simultaneously. 
But in fact, at any given time, p has a unique current 
view; it simply appears in some other view ( V 3 )  that 
it does not share. Furthermore, Property l(b) of view 
installation ensures that overlapping concurrent views 
cannot persist, since there will always be future views 
that exclude the overlapping elements. In the exam- 
ple, if r and s try to  communicate with p, they will 
realize that p is in fact unreachable and will trigger a 
new view change to  exclude it, leading to V 5 .  

Partition mergers result in view changea in which 
several processes with distinct current views all install 
a common successor view. In Figure 2, if proceases 
p and q, which were partitioned with current views 
V4 and V’, once again become mutually reachable, 
they will both install view V6 including themselves. 
RELACS does not specify any special action when view 
mergers occur. Appropriate handling of these situa- 
tions is application-specific and is left to  higher layers 
which may implement primitives such as state trans- 
fer [7]. 
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Figure 2: Failures during view agreement may result 
in overlapping concurrent views. 

3.2 Message Delivery 

In addition to  managing views, RELACS imple- 
ments a reliable multicast primitive for communication 
among group members. Informally, reliable multicast 
within a group ensures that the message is received 
by all or none of the group members. In defining the 
exact semantics of reliable multicast, we distinguish 
between a process receiving and delivering a message. 
Whereas the fist primitive is provided by the underly- 
ing network transport services, delivery is implemented 
by RELACS by invoking an application-specified han- 
dler routine. A message m is said to be delivered by 
process p during view V, if V, is the current view a t  p 
when the handler is invoked with message m. 

The real power of view synchrony is not in its indi- 
vidual components - view changes and reliable multi- 

casts - but in their integration. Informally, view syn- 
chronv permits a process to reason globally about the 
set of messages other processes have delivered based 
on local information maintained as the sequence of in- 
stalled views. In particular, view synchrony guarantees 
that for each path in the partial order of views, mes- 
sage deliveries are totally ordered with respect to  view 
changes. Thus, during the phase when some view V 
is being terminated and the successor view V' is be- 
ing established, processes must agree not only on the 
composition of V' but also on the set of messages that 
need to be delivered during V .  

Ultimately, the semantics of view synchrony should 
allow an application process to  reach useful conclusions 
regarding the set of messages delivered by other pro- 
cesses during a given view. As it turns out, formalizing 
the above ideas in a manner that can be implemented 
leads to  decisions about what the agreed-upon set of 
messages should be, and to  refinements of view mem- 
bership semantics. 

Figure 3: Scenarios that illustrate choices between pos- 
sible message delivery semantics. 

One decision concerning the message set agreement 
arises due to  network partitions. As illustrated in Sce- 
nario 1 of Figure 3, suppose three processes p ,  q, and 
r initially belong to  and share the common view V1. 
Process p becomes partitioned from q and r ,  provok- 
ing a view change. Processes q and r construct a new 
view V 3 .  To do so, they agree both on the new view 
and the set of messages that must be delivered dur- 
ing V'.  Thus, once they have installed V 3 ,  they may 
be sure of the messages delivered by each other. In 
deciding upon the set of messages, however, two se- 
mantics are possible. Processes q and r may either 
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agree on the set of messages that have already been de- 
livered during V', or that should be delivered during 
V'. The former semantics allows p and r to know for 
certain that they have delivered exactly the same set 
of messages. Achieving such a guarantee, however, re- 
quires additional communication (essentially, the sec- 
ond phase of a 2-phase commit protocol) during the 
agreement phase. The latter semantics guarantees only 
that q and r will deliver the same set of messages pro- 
vided that they survive the view change. In RELACS we 
currently adopt this weaker semantics since incurring 
the additional cost for each view change may not be 
practical in a large-scale system. 

A second issue arises from the fact that concurrent 
views may intersect in arbitrary ways. As an example 
consider the second scenario presented in Figure 3. As 
before, process p becomes partitioned from q and r ,  
provoking a view change. Process p does not realise 
that the partition has occurred, and continues execut- 
ing and delivering a set of messages N. Meanwhile, 
q and r initiate a view change to  exclude p and agree 
to  deliver a set of messages M while constructing V 2 .  
Process q installs V 2  as the successor to V'. Yet an- 
other partition between q and r causes r to abandon 
view V' and initiate a new view change. While doing 
so, p and r become mutually reachable while q remains 
partitioned. So when constructing V 3  together, p and 
r agree to deliver a set of messages that is the union of 
M (those known to r )  and N (those known to p). Pro- 
cess q ,  on the other hand, delivers the set of messages 
M and installs view V' as the successor to V'. 

The guarantees provided by view synchrony in this 
situation are unsatisfactory for two reasons. First, pro- 
cess p is forced to deliver a set of messages (M) that 
are potentially from a process (e.g., q )  extraneous to 
its successor view V 3 .  Second, process q can only know 
about the message set M delivered by r while r actu- 
ally delivers more messages ( M U N ) .  In other words, a 
process is constrained to reason about another process 
in its view having delivered at least a set of messages as 
opposed to  ezactly the set of messages. In particular, 
views V z  and V 3  have r as a common member but they 
include other disjoint members (p and q). The com- 
mon member acts as a bridge between the two views 
and causes undesirable message deliveries with respect 
to  the disjoint members. 

To handle this problem we impose the following 
restrictions on view evolutions to define a member- 
ship semantics that is intermediate between weak- and 
strong- partial [ 2 11: 

Property 3.1 Quasi strong-partial membership ser- 
vice. 

1. (Partitioning Rule:) If V', V' and V 3  are three 

views such that 

(v' 4 v') A (v' 4 v-3) A (1'' # v3), 
then ( V 2  c V 3 )  v (V3 c V ' )  v ( V z  n v3 = 0). 

2. (Merging Rule:) If V', V 2  and V 3  are three views 
such that 

(v' 4 v3) A (v2 4 v3) A (v' # v'), 
then (V' n V2 = 0). 

In other words, two concurrent views that result 
from the partitioning of a common view may overlap 
only if one is a proper subset of the other; two concur- 
rent views that merge to form a single common view 
cannot intersect. &LACS guarantees these properties 
for view evolutions by not allowing unreachable pro- 
cesses to become reachable during view termination. 
The consequence of this restriction is a potential in- 
crease in the number of view changes. The benefit, on 
the other hand, is a stronger guarantee. 

In light of these considerations, we can finally define 
view synchronous communication as implemented by 
-LACS. 

Definition 3.3 
View-synchronous communication. F o r  each multicast 
message m, if there ezists some process p that deliv- 
ers m during view v', then for all views VJ arch that 
v' 4 Vj ami p E V j ,  all processes q E v' n vJ that 
have not crashed also deliver m. Furthermore, if a 
message is delivered, it is delivered in ezactly one view 
that must include the sending process as a member. 

Note that there is a subtle but important M e r -  
ence between the above definition and the one given 
by Schiper and Ricciardi in [21]. The Schiper-Ricciardi 
definition requires all processes in V' n VJ to  deliver 
the same set of messages that were multicast in view 
V'. Our definition does not mention the view in which 
the message was multicast. All we require is that if 
some process p delivers message m in view V', then all 
processes that survive together with p into the same 
next view also deliver m. In our case, the message 
may have been multicast in view v' or some earlin 
view since the notion of "multicasting in a view" as 
we have defined it, is with respect to the process local 
state (the last view installed before issuing the multi- 
cast). The alternative definition is made with respect 
to the global system state in which the multicast actu- 
ally occurs. Unfortunately, asynchrony between appli- 
cations and the support layer makes it impossible for 
a process to  know in which (future) view its multicast 
request will be serviced. 

617 



Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995 

Finally, note that view synchrony as implemented in 
RELACS guarantees nothing about the relative order of 
messages delivered during a given view. Applications 
that require ordering guarantees such as uniform [20], 
causal [8] or total [13] will have to rely on layers built 
on top of -LACS. 

4 The Application Interface 

Applications that require RELACS services invoke 
them through a small set of library functions. The 
proposed interface is an attempt to maximize flexibil- 
ity while minimizing complexity. The following is an 
informal description of the RELACS application pro- 
gramming interface. 

v i n i t 0  global system initialization and data 
structure allocation. 

v-join(gname, <handlers>) join the group iden- 
tified through the string gname. Attempts to join mul- 
tiple groups or the same group more than once gener- 
ate an error. If the group to be joined does not ex- 
ist or has no members in the current partition, it will 
be created. For groups representing a unique global 
service, ensuring that a single instance is created de- 
spite partitions, requires that the application consult 
a global naming service in constructing the (globally 
unique) group name. Upon partition mergers, pro- 
cesses belonging to groups with matching names will 
be automatically joined. The call includes optional pa- 
rameters for associating application-specified handlers 
with view change, message delivery and state transfer 
events. Each handler invocation is indivisible with re- 
spect to  others in the sense that future events do not 
preempt an active handler: Thus, handler executions 
are serialized as defined by view synchrony semantics. 

v l eave ( type )  leave the group. Since a process can 
belong to at most one group, the group name is im- 
plicit. The parameter type selects if the leave is to 
be i m m e d i a t e  or de layed .  In the former case, the call 
returns immediately and the leave is treated as if the 
process crashed. In the latter case, the call returns 
only after a new view has been established in which 
the exiting process is marked as such. Thus, the ex- 
iting process has the same view synchrony guarantees 
as those remaining in the view. 

v-cast(msg) multicast message msg to  the current 
group with view-synchronous semantics. 

vmsend(des t1 i s t .  msg) multisend message msg 
to the list of processes in d e s t l i s t .  The call is 
equivalent to  a sequence of point-to-point send opera- 
tions, one for each destination, with best-effort deliv- 
ery guarantees. Reception is performed through the 
same message delivery handler mechanism as multi- 

casts. The destination process addresses can be ex- 
tracted from the information contained in the view. 
This call is extraneous to the view synchrony seman- 
tics and is included to  facilitate group interactions with 
non-member processes. 

Note that RELACS itself does not include a threads 
(light-weight processes) package. If the underlying sys- 
tem supports such a mechanism, then application pro- 
grams could be structured so as to associate each event 
handling within a separate thread. In this case, the 
handler terminates with the thread invocation. Con- 
sequently, event management enclosed within a thread 
cannot rely on view synchrony. 

5 System Architecture 

This section briefly describes the current implemen- 
tation of the RELACS system. Further details can be 
found in [2]. Whereas the RELACS model treats all 
processes uniformly, for performance reasons, the im- 
plementation distinguishes between processes local to  
a given site and those that are remote. Architectural 
design choices are based on the following assumptions 
about the system model: 

Communication between processes local to a sin- 
gle site is reliable. 

0 Crashes of local processes can be reliably detected 
rather than simply suspected. 

0 Sites, like processes, may fail by crashing. A site 
crash is equivalent to  the crash of all processes 
local to  that site. 

0 While the number of processes that belong to  
groups may be large, the number of sites they span 
is typically small. 

The first two assumptions simplify the management 
of reachability information within a given site since a 
local process is either reachable or has crashed, but can 
never be unreachable while operational. 

Each site runs a single instance of the RELACS 
server. Processes requiring RELACS services link a p  
propriate library functions and invoke them by sending 
requests to  the local server. Figure 4 illustrates this 
organization. It is the servera that actually perform 
reachability management, multicaste, message deliver- 
ies, view changes, and communication with other re- 
mote sites. For example, a request to  multicast a mes- 
sage is handled as follows: the process issues the re- 
quest by invoking the function v-cast ( ). The RELACS 
server local to the site receives the request and deliv- 
ers the message to all other local group members. The 
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Figure 4: Procesaes do not communicate directly but 
request RELACS services by contacting the local server. Figure 5: The architecture of the RELACS server. 

message is also sent to all other RELACS servers on r e  
mote sites that have at leaat one member of the group. 
Each server delivers the message to  its local processes. 
Delivering the message to a process triggers the pro- 
cess' message delivery handler function. 

The RELACS server has a layered structure with the 
following logical components: 

0 network: Acts as the interface to the low-level (un- 
reliable) network services for communicating with 
remote sites. 

0 transport: Implements reliable point-to-point 
communication on top of the underlying network 
services. 

0 failure swpectot: Uses periodic Upingn messages 
and information passed up from the transport 
layer in order to construct reachability informa- 
tion about remote sites. 

0 local communication: Handles process/server 
communication internal to a single site. 

lower layers are shared by all group at the site and 
are instantiated only once. 

The above system architecture reflects our empha- 
sis on sites. In as much as possible, we strive to 
achieve costs that are proportional to the number of 
sites rather than the number of processea. In partic- 
ular, reachability information derived from the failure 
suspectors is with respect to sites. This information 
is mapped to  reachability of individual processes when 
needed by combining it with the data received from 
the gosaip seMces. 

Failure suspectors for large-scale systems with 
highly variable communication delays must be de- 
signed with care. The difficulty is in striking a balance 
between responsiveness of view changes to  actual fail- 
ures and overhead due to  false suspicions. The RELACS 
failure suspector is highly adaptive in that the time- 
out periods are established individually for each of the 
communication channels based on the mean and vari- 
ance of observed delay during a window of recent com- 
munication. 

0 view change/multicast: Handles view changes, 
multicasts and delivery of messages. 6 Status and Conclusions 

0 gossip service: Constructs reachability informa- 
tion regarding local processes and propagates it 
to  remote sites. 

Figure 5 shows the organization of the Merent  lay- 
ers. Adjacent layers may exchange information. Since 
a single server may handle several different group that 
have processes running on the site, the upper layers of 
the server are instantiated once for each group. The 

We have implemented a prototype of RELACS on 
top of SunOS 4.3 (BSD UNIX) using the Internet UDP 
datagram service through the socket interface. We 
have also built a demonstration program to illustrate 
major system events using Tcl/Tk [23] for the graph- 
ical interface. We have found the tool useful not only 
for observing application behavior, but also for perfor- 
mance tuning and debugging of RELACS itself. 

Figure 6 illustrates a snapshot of the demonstration 
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Coordinator horis 
Multicast data fyodor 
received multxast data 

Figure 6: The graphical presentation of the RELACS 
demonstration program. 

program. Three sites have processes in the demon- 
stration group: papageno, fyodor, and boris with the 
name of the current coordinator for view agreements 
(see [2] for details) in capital letters. The upper right- 
hand window traces view changes and message multi- 
casts/deliveries. Below this window, the same events 
are shown as a bar graph with black bars representing 
view changes and grey bars  representing message de- 
liveries. The lower right-hand window shows the p r e  
cesses active at a given server (here, fyodor) as well 
as those having executed a delayed leave (denoted as 
Defunct). 

The current implementation has several limitations 
both in functionality and performance. We assume 
that communication satisfies the eventual symmetry 
and transitivity properties for reachability. Without 
these, sites may have conflicting opinions about reach- 
ability, and thus engage in a never-ending sequence of 
view agreement steps. In a widearea network such as 
the Internet, there can be extended periods where tran- 
sitivity is not satisfied. Ideally, the problem should be 
solved by modifying the current IP routing algorithms 
or inserting a layer on top of the UDP service that 
can re-route packets through alternative paths. In this 
manner, even if the underlying infiastructure does not 
guarantee transitivity, we may still achieve the p rop  
erty by forwarding messages between connected sites. 
Currently we make use of neither hardware broadcast 
capabilities of local-area segments nor the IP multicas- 

ting facility over wide-area links of the network [12]. 
We assume that interprocess communication within 

a single site is completely reliable. While this is usually 
a reasonable assumption, there may be rare situations 
of extreme local resource shortages where it does not 
hold. Similarly, on rare occasions (e.g., no more avail- 
able inodes), our mechanism to detect local process 
crashes through file locks may prove unreliable [2]. 

In the current implementation there are no provi- 
sions for flow control. We assume that the RELACS 
server has unlimited buffering capability. Processes 
performing multicasts a t  a fast rate may overload the 
message buffers a t  a site with a slow process. One 
possible solution to  thia problem is to force the slow 
process to  leave the group so that it may bring itself 
up to date through state transfer when rejoining the 
group without having to  process the back logged mes- 
sages. 

The current prototype is in too early a stage to  draw 
any conclusions regarding its performance or complete- 
ness. When the above shortcomings have been ad- 
dressed and the performance enhanced, we will en- 
gage in an evaluation study of the architecture. The 
raw performance of multicast communication and view 
management has to be quantified. We also need to  con- 
struct several realistic applications in order to  evaluate 
the ease of use and completeness of the RELACS prw 
gramming model. As distributed systems continue to  
grow in geographical scale, tools such as RBLACS will 
become indispensable for building reliable applications 
to run on them. 
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