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The problems of nonlinearity and high dimension have so far prevented a complete solution of the

control of turbulent flow. Addressing the problem of nonlinearity, we propose a flow control

strategy which ensures that the energy of any perturbation to the target profile decays

monotonically. The controller’s estimate of the flow state is similarly guaranteed to converge to the

true value. We present a one-time off-line synthesis procedure, which generalises to accommodate

more restrictive actuation and sensing arrangements, with conditions for existence for the controller

given in this case. The control is tested in turbulent channel flow (Res¼ 100) using full-domain

sensing and actuation on the wall-normal velocity. Concentrated at the point of maximum inflection

in the mean profile, the control directly counters the supply of turbulence energy arising from the

interaction of the wall-normal perturbations with the flow shear. It is found that the control is only

required for the larger-scale motions, specifically those above the scale of the mean streak spacing.

Minimal control effort is required once laminar flow is achieved. The response of the near-wall

flow is examined in detail, with particular emphasis on the pressure and wall-normal velocity fields,

in the context of Landahl’s theory of sheared turbulence. VC 2011 American Institute of Physics.

[doi:10.1063/1.3662449]

I. INTRODUCTION

The return of turbulent wall flow to the laminar state is a

problem with diverse and important applications, such as

those in the aeronautics, shipping, and oil industries. A com-

prehensive solution of the flow control problem still faces

serious challenges. The main obstacles to a complete flow

control theory are that the governing equations are nonlinear

and of infinite dimension. This paper aims to address the prob-

lem of the nonlinearity, and in doing so, improve the under-

standing of the physical processes. As a consequence, some

possible approaches to the problem of high dimensionality

present themselves.

In addition to the nonlinearity, flow control strategies

must deal with model uncertainty and the exogenous distur-

bances such as vibration and free-stream disturbances that

arise in realistic applications. This would suggest the use of

closed-loop control strategies, which involve the feeding

back of measurements of the system output into current and

future control decisions, over open-loop strategies, where the

actual system output is not compared with the desired output.

Of the two classes, closed-loop control, offers superior

robustness characteristics in the face of modelling error, state

uncertainty, and exogenous disturbance.

H1 control theory has been notably successful in pro-

viding good control performance for systems with the large

class of bounded uncertainties, nonlinearities, and exogenous

disturbances.1,2 Importantly for us, the H1 theory can be

generalised to cope with the nonlinearity we face with the

Navier-Stokes equations.

Modern control methods typically make assumptions

about the kind of model error or disturbance that is present

in the system. H2 or optimal control assumes Gaussian state

and measurement disturbances and H1 control typically

gives stability guarantees for model errors up to a certain

bound. The Navier-Stokes nonlinearity is neither stochastic

nor bounded. However in a closed or periodic domain, it is

well known to be conservative with respect to the perturba-

tion energy. In the following, we exploit this fact using the

passivity theorem. The resulting control gives global stability

guarantees (and consequently relaminarisation) for the dis-

cretised, controlled Navier-Stokes flow, where actuation and

measurement requirements are met. This approach has been

proposed3 and outlined4 in the previous work. Results of our

approach applied to simulations of turbulent flows are pre-

sented here for the first time, with application to turbulent

channel flow.

From a control perspective, this work advances on previ-

ous work in at least three important respects. First, the

current approach is demonstrated for a turbulent, three-

dimensional flow. Second, it offers a constructive synthesis

procedure. Third, it provides limits on the turbulent energy
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production where global stabilisation is not possible due to

insufficient actuation or sensing.

With reference to known existing theory, the work also

describes the physics behind the controller action and

explains why a linear control strategy is always sufficient to

attenuate turbulence.

A. Modern flow control

A comprehensive review of modern feedback flow con-

trol is available in the paper by Kim and Bewley.5 Further

physical insight is given in the recent paper by Kim.6 H2

(“optimal”) and H1 (“robust”) designs have been applied to

the linearised transition delay problem for particular wave-

number pairs by Bewley and Liu.7 The optimal control

approach was tried first by Joslin et al.8 Joshi et al.9 have

proposed a simple controller design using classical methods

which was used with some success in the stabilisation of in-

finitesimal and finite-amplitude disturbances. Högberg

et al.10 have demonstrated that linear feedback control can

be used to increase the threshold perturbation amplitudes for

transition to occur. In another work, Högberg et al.11 pre-

sented a gain-scheduling approach which relaminarised tur-

bulent flows in all instances tested, however, no proof of

global stability was offered. Further results on linear flow

control methods are available in the book by Åmo and

Krstić.12 The paper by Fukagata et al.13 investigates interior

forcing targeting the Reynolds stress terms directly.

These H2 and H1 linear flow control strategies have

been designed to delay transition, by preventing the flow

from leaving the regime of small perturbations to the desired

laminar flow. Given the likelihood in practical situations of

large excursions due to transients, exogenous disturbances, or

model error, the assumption of small perturbations seems

inappropriate.

In contrast, the remarkable feature of our approach is

that a linear synthesis problem provides a global, nonlinear

stability result. An implicit consequence of the stability

result is the convergence of the estimation problem. For the

first time, the controller’s internal representation of the flow

is guaranteed to converge to the true value. In contrast to the

H2 setting, the control and estimation problems are inexor-

ably coupled and the “separation principle”1 does not apply.

Perhaps most pertinent to the current approach is the

work described by Balogh, Liu, and Krstić.14 Their approach

uses a Lyapunov stability argument (comparable to the pas-

sivity argument used here) to prove the existence of a glob-

ally stabilising linear control, using relatively realistic

tangential boundary actuation and shear stress measure-

ments. A proof of global asymptotic stability is offered for

the two-dimensional case and it is claimed that the method

will work in three dimensional flows. Their proof is applica-

ble only at “sufficiently low” Reynolds numbers.

B. An overview of the passivity approach

Conceptually, the method of control that we propose is

simple, although the details of the synthesis are more com-

plicated. The idea is to eliminate perturbations to a laminar

flow, which we take as the operating point of the system. We

do not model fluctuations about the mean profile. As such,

the difference between the turbulent mean and the laminar

profile would be included in the perturbations that we wish

to decay.

The flow at any particular wavenumber experiences a

coupling from other wavenumbers, via the nonlinear convec-

tive term, that we consider as a forcing. This nonlinear term

does not produce or destroy perturbation energy. Conse-

quently, if by means of feedback control, the system at every

wavenumber can be made to dissipate energy, then the sys-

tem as a whole will still dissipate energy, even with the non-

linearity. This objective involves only the linear system at

each wavenumber and can therefore be solved using linear

synthesis methods.

There is a direct analogy from circuit theory. The energy

in any circuit made up of passive components like capaci-

tors, resistors, inductors, will always decay, in the absence of

a non-passive component such as a battery.

In the case of turbulent flow, relaminarisation could be

achieved simply by introducing a large dissipative term,

analogous to a resistor. Such an approach of adding more

viscosity cannot generalise to other types of actuation, and

so is not followed.

Henningson and Reddy15 showed that non-normality of

the system matrix governing perturbations to the laminar

flow solution is a necessary condition for subcritical turbu-

lence; hence, imposing linear stability and destroying the

non-normality by means of feedback control provides a suffi-

cient condition for laminar flow.

That this condition is linear greatly simplifies the syn-

thesis procedure, allowing use of the superposition principle,

so that we can find the controller at each Fourier mode sepa-

rately, without sacrificing the nonlinear stability result. The

controller may be found once, off-line, since it applies at all

states at a given Reynolds number. Since the controller is lin-

ear, the most complicated mathematical operation it must

perform on-line is a small number of matrix multiplications

at each time step. This stands in contrast to nonlinear

adjoint-based approaches and has obvious beneficial implica-

tions for eventual practical implementation. With the further

application of model- or controller-reduction methods, the

computations at this step could be reduced further.

Although many results for finite-dimensional systems in

the control literature have analogues in the infinite-

dimensional setting, the finite-dimensional theory is usually

much simpler and is computationally tractable. This is par-

ticularly true for the case of the Navier-Stokes equations,

where proofs of even rudimentary properties remain elu-

sive.16 When the system equations are discretised, as is typi-

cally done for practical control problems, the finite-

dimensional control theory also provides a controller synthe-

sis procedure. The procedure we use is described in the liter-

ature17 and involves a number of transformations of the

linearised equations, then the solution of two algebraic Ric-

cati equations (AREs). Whether solutions to these AREs

exist depends on the actuation and measurement capabilities

available to the control algorithm. Because the conditions for

existence of AREs are well understood and easily checked,

this problem formulation can inform the system designer

125105-2 Sharma et al. Phys. Fluids 23, 125105 (2011)
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about the suitability of proposed sensor and actuation

arrangements at the design stage.

The passivity requirement is a conservative control strat-

egy and may not be achievable with restricted actuation or

sensing capability. To handle this case, the synthesis meth-

odology presented iteratively approaches the ideal case and

offers bounds on the worst-case perturbation energy produc-

tion permitted by the controlled flow. Because we may relax

the control objective of passivity, we envisage that the cur-

rent framework may be applied to more restrictive types of

body forcing.

For this study, full-field volume forcing and measure-

ment of wall-normal velocity only is applied to periodic, tur-

bulent channel flow at Res¼ 100. This simplified forcing and

measurement arrangement are chosen to avoid confusion

between the relative importance of various physical effects

and the choice of any particular type of actuation.

C. Linear processes and structure in wall turbulence

The importance of linear mechanisms in turbulence has

been understood since Batchelor and Proudman18 put for-

ward their theory of rapid distortion (for a review see Hunt

and Carruthers19). Phillips20 has suggested that, in shear

flows, the Reynolds stresses arise from the direct interaction

between the turbulence and the mean shear rather than a

result of indirect, nonlinear interactions. This implies that

linear control schemes taking advantage of these mecha-

nisms may be successful in attenuating turbulence.

Lee, Kim, and Moin21 have shown how many of the im-

portant dynamical processes are captured by rapid distortion

theory (RDT) and comparison with direct numerical simula-

tion (DNS) of sheared homogeneous turbulence shows that,

despite its linear approximations, RDT retains “the essential

mechanism for the development of turbulence structures in

the presence of high shear rate typical of the near-wall region

in a turbulent shear flow.” The qualitatively similar theories

of Ellingsen and Palm22 and Landahl23,24 offer an explana-

tion for the importance of three-dimensional disturbances in

inviscid, parallel shear flow: the latter offers an explanation

for the formation and lift-up of near-wall streaks by an alge-

braic instability and the present work is interpreted in the

context of Landahl’s ideas. The importance of the theory

comes from the fact that it is both linear and is based on an

analysis of the inviscid Rayleigh equation, suggesting that it

is relevant to dynamical processes at any Reynolds number.

Non-normality appears as a recurrent theme in the litera-

ture on transition (Schmid and Henningson,25 Schmid26).

Butler and Farrell27 investigated initial conditions which are

capable of the greatest energy growth (which they call

“global optimal perturbations”) at a given Reynolds number.

They found that, in plane Poiseuille flow, the global optimal

perturbation consists of a pair of counter-rotating streamwise

vortices, though other modes should not be underestimated:

in particular, oblique modes grow less, but faster. It remains

an open question how important the initial condition problem

per se is in flows that are already turbulent.

Farrell and Ioannou28,29 have suggested that the linear-

ised Navier-Stokes equations in plane channel flow under

stochastic forcing can exhibit behaviour reminiscent of the

streamwise vortices and streaks characteristic of turbulent

flow. Kim and Lim30 demonstrated in simulations of turbu-

lent channel flow that the turbulence decays without the term

coupling the wall-normal vorticity and the wall-normal ve-

locity in the linearised Navier-Stokes equations. Henningson

and Reddy15 have shown that non-normality is a necessary

condition for sub-critical transition, i.e., the linearised

Navier-Stokes equations must have either exponentially

growing modes or transiently growing solutions for transi-

tion to occur.

The prevalence of streaks and quasi-streamwise vortices

in near-wall turbulence has been known for some time (Kline

et al.,31 Kim et al.,32 Robinson33), though which feature

causes the other is still a subject of discussion (see for exam-

ple Chernyshenko34). More recently, Kim and Adrian,35

Ganapathisubramani et al.,36 Hutchins and Marusic37 and

Guala et al.38 have shown the importance of very large scale

motions (VLSMs or “superstructures”) which carry approxi-

mately half the Reynolds stress. Recently, they have been

shown to appear on very rough surfaces also (Birch and Mor-

rison39). The description of a streak lift-up (burst) as an

“instability” initiated by the large-scale disturbances from

the outer layer appears in the seminal papers of Kline et al.31

and Kim et al.32 Morrison40 describes more recent ideas

concerning inner-outer interaction and its relationship to

“inactive motion.”41–43

Hall and Sherwin44 take an alternative approach of con-

sidering inviscid waves in the wavy critical layer (where the

wave speed is close to the convective velocity) of a streaky

base flow. Using an earlier theory due to Hall and Smith45 on

vortex/wave interaction, they describe the nonlinear interac-

tion of a self-sustaining process in which the nonlinear terms

of finite-amplitude waves drive the streamwise vortices

through a jump in the stresses at the critical layer, which in

turn drive the streaks present in the base flow. The unstable

equilibrium solution they determine describes the whole

cycle of the self-sustaining process and can be loosely con-

sidered as a nonlinear eigenvalue problem. As such, it may

be kept in mind where we use the description of a linear sys-

tem driven by a nonlinear feedback forcing.

Following Reynolds and Hussain,46 del Álamo and

Jiménez47 have undertaken a temporal stability analysis of

the Orr-Sommerfeld and Squire (OSS) equations in turbulent

channel flow (Res¼ 2000) using a variable eddy viscosity:

they show that maximum amplification of disturbances

occurs at two spanwise wavelengths, one corresponding to

the widely accepted streak spacing, kþx3 ¼ 100, (the “þ”

superscript denotes a variable non-dimensionalised by the

viscous length scale, �/us where � is the kinematic viscosity

and us, the friction velocity, us ¼
ffiffiffiffiffiffiffiffiffiffi

sw=q
p

, where sw is the

wall shear stress and q is the density), the other occurring at

kx3 ¼ 3h, where h is the channel half-height. While the for-

mer is clear evidence of near wall streaks (with streamwise

wavelength of kx1 � 1000), the latter indicates the presence

of VLSMs. They also note that the fluctuations in streamwise

velocity contain nearly all the kinetic energy and last longer

than those in the wall-normal velocity. In a similar vein,

Hwang and Cossu48 have shown that, in a turbulent channel

125105-3 Relaminarisation of Res¼100 channel flow Phys. Fluids 23, 125105 (2011)
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flow for a sufficiently large Reynolds number, two distinct

peaks of optimal growth appear, one scaling with viscous

scales, the other with outer scales.

McKeon and Sharma49 have explored a simple, essen-

tially linear, forcing-response type description of the domi-

nant processes in high-Reynolds-number turbulent pipe flow.

The model reproduces inner scaling of the small scales close

to the wall and outer scaling in the flow interior and displays

features representative of VLSMs including their modulation

of the smaller scale features. In contrast to Landahl’s theory,

the work has addressed scaling with Reynolds number. How-

ever, both theories stress the importance of linear mecha-

nisms. One important feature of the theory is that a high

response to forcing is observed around the critical layer, and

in regions of high shear. At higher Reynolds numbers, the

theory predicts that the effect on the near-wall turbulence of

VLSM-type structures become more important, whereas at

lower Reynolds numbers the lift-up mechanism is more im-

portant. This prediction is supported by the control simula-

tions of Touber and Leschziner.50

D. Passivity

Passivity is an energy concept; its origin lies in circuit

theory.51 A component is called passive if only a finite

amount of energy may be extracted from it. To take a physi-

cal example, if f(t) is a forcing function or field at time t on a

system Z and v(t) is its velocity, such that v¼Zf, then the

power consumed by the system from time t¼ 0 to time T is

f ; vh i½0;T�¼
Ð T

0
f ðtÞvðtÞdt. If we assume the initial conditions

are zero, and this integral is positive for all T, then the sys-

tem is passive. Essentially, it is a statement that the instanta-

neous power consumption is always positive. If Z is linear,

the requirement for h f,vi[0,T]> 0 is then equivalent to the

requirement that Z is positive real, Z( jx)þ Z*( jx)> 0. To

show this, the integral h f,vi[0,T]¼h f,Zf i[0,T] is considered in

the frequency domain.

The passivity theorem simply states that the feedback

interconnection of two passive elements is itself passive.

Intuitively put, if two elements which cannot produce energy

are connected in a feedback arrangement, then the feedback

arrangement as a whole also cannot produce energy. We will

show this for our particular case, and for general proofs and

more information the reader is directed to standard control

texts.1,52

E. Landahl’s theory, scales and waves

It is instructive to preface the current analysis with a

review of the basic ideas of Landahl’s theory,24,53–56 as

inspired by the early wave theories of the viscous sublayer

(Sternberg57 and Morrison, Bullock, and Kronauer58). Here,

we define a wave as a motion that exhibits a convection ve-

locity that is constant over a region in wall-normal distance.

An accepted definition of wave motion is one in which

energy is transported but without bulk motion: hence the

wave motion refers only to the fluctuating pressure and ve-

locity field. Note that this is a stronger requirement (and a

more physical definition) than a superposition of Fourier

modes (Phillips20). Therefore, defining the viscous sublayer

as a wave guide in which the least-damped waves exhibit

significant correlation over large distances,53 while useful,

should not be taken too far.

The current approach is reminiscent of Landahl’s ideas,

because both theories have the nonlinear terms as a right-

hand side forcing to the linear problem as a common point of

departure. However, Landahl’s theory considers perturba-

tions to the mean turbulent profile, whereas we will consider

perturbations about the laminar one. This difference will be

examined more fully below. Specifically, Landahl’s

theory24,54,55 considers the Orr-Sommerfeld and Squire

equations, which respectively, may be written as

Dr2~u2

Dt
� U

00 @~u2
@x1

�
r4~u2

Re
¼ q; (1)

D~g2
Dt

þ U
0 @~u2
@x3

�
r2~g2
Re

¼ r; (2)

where

D

Dt
¼

@

@t
þ U

@

@x1

� �

; (3)

U is the mean flow profile UðyÞdi1 subject to a three-

dimensional disturbance with velocity ~uiðxj; tÞ and pressure,

~pðxi; tÞ. Here, the streamwise direction is x1, the wall-normal

direction is x2 and the spanwise directions is x3, giving the

total velocity field as Uiðxj; tÞ ¼ UðyÞdi1 þ ~uiðxj; tÞ. The

wall-normal vorticity is ~g ¼ r� ~u. The forcing terms q and

r are quadratic terms involving Reynolds stresses. Landahl

proposed that q and r are significant only in localised regions

in space and time, thus giving rise to “compact” source terms

in Eqs. (1) and (2) (see for example Landahl54). The picture

of sublayer motion is therefore one in which regions of

“intense small-scale turbulence of an intermittent nature” are

interspersed by periods of “laminar-like but unsteady motion

of larger scale.”

Landahl56 identified three timescales associated with

parallel mean shear flow, each a measure of the time after

the creation of the structure from the original disturbance:

1. the shear interaction timescale

ts ¼ U
0
w

h i�1

;

where sw ¼ lU
0
w. Hence t

þ
s ¼ 1;

2. the viscous interaction timescale,

t� ¼ L2=ð�U
02
Þ

h i1=3
; tþ� � 20;

3. and the nonlinear timescale,

tn ¼ L=u0; tþn � 100;

where L and u0 are the streamwise length scale and velocity

scale, respectively, associated with the initial disturbance.

Note that here tþn � tþ� , while conventional turbulence time-

scales require l=~u � l2=� where Re ¼ ~ul=� is large. For
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short times after the creation of a structure from the original

disturbance, the effects of both viscosity and nonlinearity

may be neglected; in particular, the nonlinearity is assumed

to operate only during short intermittent bursts of a local,

secondary instability. Neglecting viscosity and linearising

gives the Rayleigh equation for disturbances to parallel

inviscid flow,

Dr2~u2

Dt
� U

00 @~u2
@x1

¼ 0: (4)

In addition to the three timescales, Landahl described two

scales of motion as important in understanding turbulent

shear flow. Decomposing the velocity field into large- and

small-scale components,

~ui ¼ ~uli þ ~usi ; (5)

the motions at the wavelengths of the large and small scales,

kl and ks, respectively, are assumed not to interact if

e ¼ ks=kl�1. A schematic of this description is given in

Figure 1. Substitution of Eq. (5) into Eqs. (1) and (2) and

retaining only terms of leading order in e provides a pair of

equations, one each for the large-scale field and the small-

scale field of the form of Eqs. (1) and (2). Later, we discuss

the relative importance of the different timescales and length

scales to flow control and find these concepts useful even at

relatively low turbulent Reynolds numbers. Landahl’s scale

separation has much in common with the ideas of Town-

send41,43 and Bradshaw42 concerning inactive motion and

inner-outer interaction (Morrison40).

This description also provides a basis for a more formal

analysis in which wavenumber-frequency spectra are domi-

nated by the least-damped Orr-Sommerfeld waves near reso-

nance (see Landahl53). For waves to be identifiable, it is

necessary to form the wavenumber-frequency spectrum from

which an unambiguous convection velocity can be obtained:

then wave motion will appear as a reasonably narrow con-

vective ridge.59 The response may further be localised at a

wall-normal location and is stronger for certain mode

shapes.49 Bark60 has identified the wave-like structure of the

near-wall ~u2–component motion as arising from the Orr-

Sommerfeld eigenvalues, while some eigenvalues relating to

the horizontal components correspond to the viscous decay

of wall-parallel motion. Both Landahl54 and Russell and

Landahl61 note that horizontal pressure gradients are small

during these “quiescent” periods, and much smaller than

those associated with a lift-up.

The large- and small-scale decomposition raises the

question of resonance. Jang, Benney, and Gran62 have pro-

posed that, if the forcing function occurs at a frequency/

wavenumber combination that matches the leading eigenmo-

des of the Squire equation, then resonant forcing occurs and

there is the potential for large growth in amplitude before

viscous damping occurs. They have shown that such a reso-

nance could occur at a spanwise wavenumber corresponding

to a streak spacing of 90 wall units. Zaki and Durbin63 have

discussed resonance in the context of the spatial problem and

have shown that the dispersion relation for the homogeneous

Squire operator is identical to that of the Orr-Sommerfeld

equation, making resonance possible. However, Hultgren

and Gustavsson64 have noted that since this growth mecha-

nism is associated with the continuous spectrum, it is only

possible when the flow is semi-bounded. Since our study is

for a closed flow, we only encounter discrete modes.

McKeon and Sharma offer an interpretation of resonance in

terms of pseudospectra.49 Essentially, they understand this

resonance as the high (but non-singular) system response to

harmonic forcing resulting from left half-plane (stable)

eigenvalues approaching the imaginary axis. Truly neutral or

inviscid modes would be located at the imaginary axis. This

high response is manifested as a high resolvent norm.

II. MODEL FORMULATION

This section describes the model formulation. We con-

sider a three-component velocity field perturbation u(x,t)

about an assumed time-independent solution U0 in the pres-

ence of a divergence-free, bounded exogenous disturbance

forcing. This gives the net velocity vector field

Ui ¼ U0i þ ui: (6)

The steady pressure is similarly perturbed by p(x,t).

In Sec. III, we will seek a control function f(x,t) to glob-

ally stabilise an assumed time-independent solution U0 in the

presence of a divergence-free, bounded exogenous disturb-

ance forcing d(x,t), representing unmodelled disturbances

such as that arising from vibration, thermal disturbance, etc.

This solution may or may not be stable to small perturbations

in the absence of control. The turbulent mean is, in general,

not a time-independent solution. Substitution of Eq. (6) into

the Navier-Stokes equations gives the perturbation equations

@ui
@t

¼ P �U0j

@ui
@xj

� uj
@U0i

@xj

�

þni �
@p

@xi
þ �

@2ui

@x2j
þ Bijfj þ di

!

; (7a)

ni ¼ �uj
@ui
@xj

; (7b)

A substitution has been made for the nonlinear term, giving

coupled linear and nonlinear equations. The pressure term is

eliminated, along with the divergence equation, by the

FIG. 1. Two-scale model of near-wall turbulence showing inner-outer inter-

action (after Landahl54). The small-scale wavelength is denoted by ks and

the larger scale by kl.
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projection P onto the space of divergence-free functions.

We do not make the linearising assumption of small

perturbations.

The forcing resulting from the control is restricted by a

linear operator B(x), representing physical limitations on the

actuation. The range of B spans the space of the divergence-

free body forcing arising from all possible control actions.

Thus, Bf(x,t) is the forcing on the fluid arising from the con-

trol function at time t and position x. For the purposes of

understanding the current simulations, we may consider B as

the identity when acting on the wall-normal velocity and

zero otherwise. Let y(x,t) be the measurements made at time

t, modelled by yi¼Cijuj, so that C(x) is a linear operator

mapping the flow field to y.

A. The discretised equations

Discretised, the Eqs. (7) have the state-space form

_z ¼ Azþ B1nþ B1d þ B2f ; (8a)

y1 ¼ C1z; (8b)

y2 ¼ C2z: (8c)

Matrices C1 and B1 are only used at the synthesis stage.

They give respectively (C1) the flow field at the discretisa-

tion points weighted such that y1(t)
0y1(t) approximates the

perturbation energy EðtÞ ¼
Ð

x2X uiðx; tÞuiðx; tÞdx, and (B1)

the forcing on the flow field from the nonlinearity, similarly

weighted. To find C1, we require the mesh weighting

appropriate for the discretisation chosen. For the discretised

state the perturbation energy E(t) is approximated by the

inner product on a positive-definite matrix R so that

EðtÞ ’ zðtÞ�RzðtÞ, approaching equality in the continuous

limit. Thus, we require simply C�
1C1 ¼ R. The input matrix

B1 associated with the forcing from the nonlinearity n is

determined similarly. The matrix C2 simply gives the meas-

urements y2 from the flow field state z, and is the discrete

approximation of operator C. Similarly, B2 is a matrix

approximating operator B, describing the effect of the actua-

tion on the flow field.

State-space representations of the linearised Navier-

Stokes equations are well known in the literature (see

Bewley7 for a pedagogical example). However, our formula-

tion explicitly retains the nonlinearity as a forcing.

III. CONTROLLER SPECIFICATION AND DESIGN

This section specifies the requirements on the controller.

For the following we will make use of the temporal-spatial

inner product

a; bh i ¼

ðT

0

ð

x2X
a�i ðx; tÞbiðx; tÞdx dt (9)

and the purely spatial inner product

½a; b� ¼

ð

x2X
a�i ðx; tÞbiðx; tÞdx: (10)

The pair a and b is passive if ha,bi	 0.

We define the perturbation energy as the spatial L2
norm (induced by Eq. (10)) of perturbations from the laminar

profile, and the turbulence kinetic energy as the spatial L2
norm of the perturbations from the turbulent mean profile.

The rate of change of the total perturbation energy E of

viscous shear flow integrated over a closed domain X 
 R3

is given by the Reynolds-Orr equation, which in parallel

shear flow is

dE

dt
¼ �

ð

x2X
U0

0ðyÞu1u2 þ
1

Re
D

� �

dx; (11)

where U0
0ðyÞ is the y-derivative of the laminar profile U0(y)

and D is the dissipation rate. As before, x denotes a point in

X. In essence, the aim of the controller is to provide actua-

tion such that dE
dt
< 0 for any disturbance.

The broad design objectives of stability and robustness

are achieved by application of the passivity theorem, which

gives general, open-loop conditions for closed-loop stability

of two arbitrary elements connected in a feedback loop.

A. The nonlinear and pressure terms

We will use the fact that the nonlinear term Eq. (7b) is

passive, specifically that hu,ni¼ 0 for all T. Applying the

divergence theorem and the divergence-free condition, it is

easily shown that the inner integral in this expression is

equivalent to an integral over the boundary @X,

ð

x2X
uini dx ¼

ð

x2@X
ðujðx; tÞujðx; tÞÞuiðx; tÞn̂i dx (12)

where n̂ is the outward-facing unit vector perpendicular to

the boundary of the flow domain.

Physically interpreted, Eq. (12) quantifies the net flux of

disturbance energy out of the domain through the boundary

per unit time. In a closed or periodic domain, the contribu-

tion to this integral from volume forcing is necessarily zero.

However, in an open domain, or with transpiration at the

boundary, the flux of disturbance energy through the inlet

and outlet boundaries and the net rate of flux of disturbance

energy from any boundary control would both contribute.

Were there such a contribution, Eq. (12) would enter as a

nonlinear constraint on the control law. For the open-domain

case there will be a net flux out of the domain of the disturb-

ance energy, where the outflow of perturbation energy is

greater than in inflow of the perturbation energy (i.e., with

relatively quiet inflow conditions). In these cases, the nonli-

nearity has a stabilising influence in the domain of study. In

our case of periodic flow with body forcing, however, the in-

tegral is zero.

Similarly, the contribution due to the pressure term is

given by,

ð

x2X
ui

@p

@xi
dx ¼

ð

x2@X
puin̂i dx ¼ 0: (13)

Again, in the case of actuation by boundary transpiration or

in an open domain, this term would contribute to the
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perturbation energy. In our case, the integral is zero, simpli-

fying the projection onto a divergence-free basis.

B. The closed-loop linear terms

In this section, we will consider the discretised system

equations (8) (the development is almost identical for the

original perturbation equations (7)). We can write the discre-

tised equations in the compact matrix notation

_z

y1
y2

2

4

3

5 ¼
A B1 B2

C1 0 0

C2 0 0

2

4

3

5

�

�

�

�

�

�

z

e

f

2

4

3

5; (14)

where we have defined e¼ dþ n. Let G be the linear system

which, when discretised, has state-space realisation (14) tak-

ing e and f to y1 and y2.

Furthermore, define K as the feedback law which, when

discretised, generates the control action f from measurements

y2, with state-space realisation

_zK
f

� �

¼
AK BK

CK 0

" #

zK
y2

� �

: (15)

Define Q as the system which maps the forcing from the

nonlinearity to the flowfield, u¼Qe. Once discretised, Q is

therefore the closed-loop of Eqs. (14) and (15). This arrange-

ment is depicted as a block diagram in Figure 2, with Q

being the system inside the dashed box. Eliminating f and y2,

the discretised Q therefore has a state-space realisation

_z

_zk� _z

y1

2

6

4

3

7

5
¼

AþB2CK B2CK B1

AK �B2CK �AþBKC2 AK�B2CK �B2

C1 0 0

2

6

6

4

3

7

7

5

�

z

zK � z

e

2

6

4

3

7

5
:

(16)

C. Stability

The control problem, therefore is to find a control forc-

ing f such that u(x,t) ! 0 as t ! 1, given the measurements

and any exogenous bounded disturbance d. To do this, we

must consider the stability properties of the system as a

whole. Applying the passivity theorem, if N is passive and

Q is strictly positive real, then the closed loop in Figure 2

(representing the controlled Navier-Stokes equations) is

internally stable and is also strictly passive. In other words,

hu,d i> 0. The case hu,d i¼ 0 would imply that the forcing d

acts orthogonally to u, and hu,d i> 0 implies that d acts to

reduce u in the feedback system. This result is simply veri-

fied; from Figure 2 and by the strict positivity of Q and the

passivity of N ,

u; dh i ¼ u; e� nh i ¼ u; eh i � u; nh i > 0: (17)

Note that if the uncontrolled, linearised plant is already pas-

sive, no control is required, as u is already bounded. The

expression hu,di quantifies the flow perturbation energy due

to the disturbance. Physically, passivity of the controlled

flow implies it only dissipates perturbation energy. Since this

is true for all bounded d, it implies that all disturbances even-

tually decay.

To achieve this, we wish to find a controller K such that

the discretised Q is strictly positive real, or equivalently,

Q(s)þQ*(s)> 0 or he,y1i[0,T]> 0 for any T. This synthesis

problem is a fairly standard exercise in robust control theory.

The details of the synthesis procedure are in Appendix A.

Bounds on the perturbation energy production of the con-

trolled flow are given in Appendix B.

IV. APPLICATION TO PERIODIC CHANNEL FLOW

To test the controller, we consider three-dimensional

perturbations to plane Poiseuille flow at Res¼ 100, with a

constant mass flux. For this arrangement, laminar flow is the

state with minimal sustainable drag, once control effort has

been taken into consideration.13,65 Accordingly, we aim to

sustain the laminar flow state at conditions where it would

otherwise not persist. The flow domain is the space between

two plates parallel in the (x1,x3)-plane, at x2¼6 1. x1– and

x3–direction periodicity is assumed. We consider actuation

in the whole domain provided by simple body forcing of the

wall-normal velocity which is also the measurement.

The geometry allows Fourier transform of the linearised

problem in the x1 and x3 directions which converts the spa-

tially continuous problem into a number of decoupled con-

tinuous problems at particular Fourier wavenumber pairs.

Truncation at suitably high wavenumber ensures an (x1,x3)-

discrete problem with sufficient resolution. Further projec-

tion onto the Chebyshev polynomials in the wall-normal

direction results in a number of linear time-invariant state-

space control problems. The problem thus decouples at the

(linear) synthesis stage, giving a block-diagonal A matrix in

the state-space formulation. The decoupled wavenumbers

only interact, via the nonlinearity, at the full simulation

stage. The controller synthesis problem is further simplified

because control is unnecessary at the highest wavenumbers

FIG. 2. The feedback loop for controlled Navier-Stokes. The system inside

the dashed box is Q.
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where we find that viscosity dominates and that the linear-

ised system is already close to passive.

Given that the source of the system non-normality is the

interaction of the wall-normal velocity with the shear of the

base profile, it is expected that actuation of wall-normal ve-

locity only will be sufficient for the purposes of this study.

The periodic spanwise and streamwise boundary condi-

tions are naturally enforced by the Fourier transform. Fur-

ther, any forcing is divergence-free as it is expressed in a

divergence-free basis.

A. Implementation

The Reynolds number based on the target parabolic

profile centre-line velocity and channel half-height was

Re¼ 1709 (or Res¼ 100 based on the friction velocity). The

channel width was 4
3
p and the length was 4p, which was

deemed sufficient to provide accurate statistics based on pre-

vious studies.66 The simulation was performed using a modi-

fied version of Channelflow 0.9.15 (Ref. 67) which solves

for the primitive variables using spectral discretisation in the

spatial directions (Chebyshev in the wall-normal direction,

Fourier otherwise). The flow field was advanced in time by a

mixed third-order Runge-Kutta scheme, which treats the lin-

ear terms implicitly and the nonlinear terms explicitly. The

number of modes used was 32� 71� 32. A variable time

step was set capped at Dt¼ 0.01, which was sufficiently short

to ensure convergence. The nonlinear terms were computed

in skew-symmetric format with 3/2 dealiasing in the wall-

parallel directions. The statistics of the unmanipulated flow

were verified by comparing them to a database provided by

Kuroda and Kasagi.68 The profiles of the mean velocity and

the Reynolds stresses largely collapse, with a slight

discrepancy in the ~u1-component normal stress near the

centre-line. Given the accuracy, the discretisation is consid-

ered sufficient for this study.

The control action was integrated using a zero-order

hold, stepped at Dt¼ 0.01. The control penalty was set at

�¼ 0.01 as defined in Eq. (A3). The control action was re-

stricted to forcing on the wall-normal velocity and the sens-

ing was likewise restricted. A value of c< 1.02 was achieved

for the Cayley-transformed system at all wavenumbers, indi-

cating that the controlled flow is very close to passive.

Figure 3 shows the pressure gradient for the controlled

cases decreasing with time. Interestingly, the restriction of

control to lower wavenumbers (k1, k3� 4) produces forcing

that is almost as effective as that for the larger wavenumber

range (k1, k3� 8). The control fails when restricted to k1,

k3� 2. This suggests that the effect of viscous damping is

significant enough at the highest wavenumbers to overcome

the energy production due to the shear interaction. Conse-

quently, we infer that the dominant production mechanisms

occur at these larger scales: the key requirement is that the

control scheme should resolve streaks and streamwise vorti-

ces. Hence, additional control at k1, k3> 8 is ineffective

because the forcing appears at scales shorter than the streak

spacing (k1 ’ 8 corresponds to kþ3 ’ 75).

Figure 4 shows the mean-square averages over wall-

parallel planes of the forcing as it varies with wall-normal

distance at various times. Where variables are expressed in

viscous units (e.g., xþ2 ), the relevant viscous scale is calcu-

lated from the uncontrolled flow (otherwise it would change

with time). The forcing is concentrated around xþ2 ’ 20

where the shear interaction is most significant. The forcing

peak decreases over time and moves further into the flow

interior. This indicates that, as the laminar profile is

approached, only minimal control effort is required. Con-

tours of the forcing at various wall-normal distances are

shown in Figure 5.

Next, we examine the results in relation to the pressure

field. Figure 6 shows the energy of the velocity and pressure

fields over time, for one controlled case. Figures 7–10 show

contours of these fields at xþ2 ¼ 20 for various times. Com-

parison shows that the wall-normal and pressure perturba-

tions are controlled very quickly. The spanwise perturbations

subsequently decay, then lastly the energetic streaky stream-

wise contours. There is a brief spike in the pressure field as

the controller comes on-line. This ordering supports the

FIG. 3. Pressure gradient variation with time: upper (–), uncontrolled; upper

(- -) k1, k3� 2; lower (- -), k1, k3� 4; lower (–), k1, k3� 8.

FIG. 4. Mean-square forcing (averaged over wall-parallel planes) at t¼ 10

(–) and t ¼ 50ð� � �Þ. The forcing decreases substantially over time. It peaks

close to xþ2 ’ 20.
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picture that the interaction of wall-normal motion and shear-

ing is a minimum requirement for the control of streaks.34

V. THE ROLE OF PRESSURE ANDWALL-NORMAL
VELOCITY FLUCTUATIONS

The Poisson equation for pressure fluctuations in

reduced form appropriate for channel flow is given by

�r2~p ¼ 2U
0 @~u2
@x1

�
@2

@x1@x2
½~u1~u2 � ~u1~u2�; (18)

where we are once again considering perturbations to the tur-

bulent mean profile. The first term on the right-hand side is

the linear or “rapid” source and the second term is the non-

linear or “slow” term, the physical distinction coming from

FIG. 5. Contours at various wall-normal distances of the forcing provided

by the controller at t¼ 10.

FIG. 6. Evolution of the average of u21ð�Þ, u22ð��Þ, u23ð� � �Þ, and p2 (- -) with

control at k1, k3� 4. The log scale shows that the rate of decline is fastest for

u2 and p.

FIG. 7. Contours of u1 for the controlled flow at xþ2 ¼ 20, t¼ 10, 20, 50.

FIG. 8. Contours of u2 for the controlled flow at xþ2 ¼ 20, t¼ 10, 20, 50.
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the fact that the linear term changes as soon as the mean rate

of strain changes. Pressure fluctuations are known to be well

correlated across a shear flow: Kim69 has shown that the

two-point correlation extends over both large wall-normal

distances and over large spanwise distances near the centre-

line of turbulent channel flow. He has also shown that contri-

butions come mainly from the slow source term, except close

to the wall where contributions from the rapid and slow

FIG. 10. Contours of p for the controlled flow at xþ2 ¼ 20, t¼ 10, 20, 50.

FIG. 11. Mean-square pressure gradient and mean-square viscous force,

defined by Eq. (21), but with the lower two figures using the target laminar

profile, not the mean profile. The peak of the pressure term occurs at

xþ2 ’ 20 until the control acts.

FIG. 9. Contours of u3 for the controlled flow at xþ2 ¼ 20, t¼ 10, 20, 50.
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terms are about the same. The earlier measurements of Stern-

berg57 also indicate that the linear pressure fluctuation field

at the edge of the sublayer is larger than the nonlinear field.

The rapid term arises from the inviscid, linear term,

associated with the interaction of the wall-normal disturban-

ces with the mean profile. The proposition that this is

the leading term that must be controlled, is consistent with

the controller’s success, and the localisation of the control

near xþ2 ’ 20. This accepted, the control may reasonably be

expected to work when restricted to actuation and sensing on

wall-normal velocity or pressure disturbances. Landahl70 has

formulated the perturbation field in terms of the pressure as:

Dr2~p

Dt
� 2U

0 @2~p

@x1@x2
�
r4~p

Re
¼ s; (19)

where s is the nonlinear term corresponding to that in

Eq. (1). Interpretation of the terms on the left-hand side sug-

gests that terms like r2~p and r4~p will be significant where ~p

changes rapidly.

More physically, Kim69 shows that, in channel flow at

Res¼ 179, the static pressure is only slightly negatively

skewed, but has flatness factors that are typically twice the

Gaussian value of three over much of the channel height.

Writing the mean-square acceleration as

D~ui

Dt

2
� �

¼
@~p

@xi

� �2

þ �2
@2~ui

@x2j

 !2

� 2�
@

@xi
~p
@2~ui

@x2i

 !

; (20)

Batchelor and Townsend71 have shown that, at Reynolds

numbers high enough for local isotropy (such that the diffu-

sion term is negligible), the mean-square pressure gradient is

much larger than the mean-square viscous force. Further,

they suggest that

@p

@xi

� �2

� 20�2
@2ui

@x2j

 !2

; (21)

where the constant is determined empirically. Dunn and

Morrison72 (see Figure 11) show that, outside the viscous

sublayer, the factor is about 5–10, even at low Reynolds

numbers. In the current work (Res¼ 100), we observe it to

be about 2 at xþ2 ¼ 20 for the uncontrolled case, as shown in

Figure 12.

Equation (20) suggests that the mean-square accelera-

tion comprises prolonged viscous intervals “pulsed” periodi-

cally by the mean-square pressure gradient, as illustrated

in Figure 13. Thus a pressure field distribution of small

skewness, but large flatness, gives rise to a pressure-gradient

distribution of which the first moment is very small, but with

even moments that are significantly larger. Kim69 also shows

that contributions to the mean-square wall pressure are prin-

cipally local in nature even though the instantaneous wall

pressure receives significant contributions from the opposite

wall of the channel. Therefore, the mean-square pressure

close to the surface is intimately related to the structure

there. In terms of the sublayer populated with quasi-

streamwise vortices, this means merely that a low-pressure

region (approximately coinciding with the vortex core)

always has two opposite-signed pressure gradients in the

cross-sectional plane of the vortex. Hence, at xþ2 � 25,

ð@~p=@x1Þ
2 � 0:5ð@~p=@x2Þ

2 � 0:5ð@~p=@x3Þ
2
. Kim69 also

notes that @p/@x is not a good indicator of quasi-streamwise

vortices, whereas the vertical and spanwise gradients are.

The relevance of Landahl’s equations lies in the fact

that, over the short time for which the controller is active,

the considerably longer turbulence timescale means that the

turbulence itself is not very significant. They therefore offer

an explanation of the controller’s success. The controller

reduces the pressure gradients over time through action on

the v–component and the linear source term in Eq. (18). In

the short term (t< 35), the pressure term is higher than in the

uncontrolled case, reflecting the controller’s action. In the

very short term, there is a brief spike, perhaps due to the ini-

tialisation of the controller. The viscous term decreases

almost monotonically (not shown). The net result is that the

ratio of the pressure terms to the viscous terms increases for

a short time, then declines as the controller action takes

FIG. 12. Evolution of the ratio of the mean-square pressure perturbation

gradient to the mean-square perturbed viscous terms at xþ2 ¼ 20 (uncon-

trolled (–), controlled (–�) at kx, kz� 4).

FIG. 13. Schematic of variation of mean-square acceleration with time: pro-

longed viscous periods pulsed by pressure “spikes” generated principally by

quasi-streamwise vortices.
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effect. Figure 11 shows that the location of the maximum

mean-square pressure gradient initially occurs at xþ2 � 20,

where the forcing is a maximum. The controller moves the

peak location of this term over time, presumably as the effec-

tive Reynolds number drops.

VI. CONCLUSIONS

A new characterisation of stabilising feedback laws for

incompressible Navier-Stokes flows has been presented in

terms of passivity theory. The control is designed to make

the magnitude of any perturbation to the laminar operating

point decay monotonically. The flow equations are discre-

tised and the ensuing controller synthesis problem results in

two game-theoretic algebraic Riccati equations. When these

Riccati equations have solutions, a globally stabilising, lin-

ear, controller can be synthesised. A simple synthesis proce-

dure has been presented which is derived by the Cayley

transformation of the positivity problem into an auxiliary c-

optimisation H1 problem. Tools for the c-optimisation prob-

lem are widely available in packages such as MATLAB
VR 73 or

Octave.74 A control effort penalty and measurement noise

model has been introduced to avoid a singular control prob-

lem and its associated large control signals. The methodol-

ogy allows an attempt at control with limited or insufficient

actuation or sensing and permits bounds on the maximum

perturbation energy production. It has been applied to turbu-

lent channel flow with wall-normal interior body sensing and

forcing. It was verified that the control relaminarised the

flow, even when the forcing was confined to low wavenum-

bers (kx, kz� 4). It seems likely that an important require-

ment is for the mean streak spacing to be resolved.

Intuitively, this requirement explains the targeting of the

shear interaction mechanism.

We have seen that controlling the wall-normal perturba-

tions successfully, and with it the pressure perturbations,

resulted in the eventual collapse of the streamwise streaky

structures. This causality shows that the interaction of wall-

normal motion and shearing is necessary for the formation of

these streaks.

The success of the control may be understood in terms

of Batchelor and Townsend’s result showing the importance

of pressure-gradient fluctuations, and several essential fea-

tures of the Landahl’s model. We observe that the shear

interaction timescale is shorter than the viscous and nonlin-

ear (turbulent) timescales. Since the shear interaction process

is essentially linear and underpins the turbulent fluctuations,

our control strategy is also linear. The shear interaction is

governed by the wall-normal disturbance, which is related to

the pressure via the linear (“fast”) source term in the Poisson

equation for pressure fluctuations. Consequently, the control

may be satisfactorily restricted to wall-normal velocity or

pressure.

The response of the pressure and wall-normal velocity

disturbances is particularly high for large, wave-like motions

at close to the convective velocity, which correlate over sig-

nificant distances in planes parallel to the wall. These waves

are remarkably non-dispersive, with an approximately con-

stant phase velocity. At higher Reynolds numbers, we might

expect the effect on the near-wall turbulence of superstruc-

tures to become more important, with correspondingly more

stringent requirements on actuation authority. These are also

wave-like disturbances, but associated with a near-singular

response of the linear terms to the nonlinear convection

term49 which may be understood in relation to critical layer

theory.

In Landahl’s theory, when the phase velocity is equal to

the group velocity of disturbances emanating from further

upstream, a secondary instability in the form of a burst

occurs.55,75 Inhibiting the propagation of these waves pre-

cludes the occurrence of such nonlinear secondary instabil-

ities associated with turbulent flow. Again, this aspect to the

control problem is essentially linear and inviscid.

Thus, we may interpret the control via Landahl’s theory;

the linear mechanisms on the “rapid” timescale are most im-

portant, which is why the controller concentrates on the

shear instability. The controller concentrates on regions

where this mechanism is most active, acting to “normalise”

the response of the system. This can be achieved through

manipulation of just the wall-normal component of the ve-

locity field.
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APPENDIX A: THE PASSIVITY CONTROL SYNTHESIS
PROCEDURE

1. Overview

This appendix details the process of finding a discrete

controller that satisfies the closed-loop passivity requirement

for the discretised system.

FIG. 14. A flow diagram giving an overview of the entire controller synthesis procedure.
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The aim is simply to provide the reader with enough

information to replicate the procedure. No proofs are pre-

sented, and lengthy explanation is avoided. Such proofs are

available in the book by Green and Limebeer,1 which our

presentation follows closely. That text, alongside Kailath,76

serves as a good background reference on the systems theory

and robust control theory used in this work.

This appendix is split up into a number of sections. The

first section gives an overview of the synthesis procedure.

The second section presents the transformation of the posi-

tive real synthesis problem into a general H1 problem.

Then, the third section gives the loop-shifting transforma-

tions needed to convert the general problem into a simplified

problem. Finally, in the fourth section, the solution to the

simplified H1 control problem is given.

2. Approach

There are many possible approaches to solving the pas-

sivity control problem. In the approach chosen for this work,

the synthesis problem is solved by applying a transformation

to the system we wish to make passive, giving a new control

problem where we have to find a controller to make the

infinity norm of closed-loop with the transformed plant less

than 1.17 The resulting general H1 problem is in turn solved

using loop-shifting transformations1,77 and Riccati-based

state space methods.1,2 The multi-step process is outlined in

Figure 14.

The chosen approach is not necessarily the simplest (for

instance, that of Sun78 is more direct), however, it is robust

and enables utilisation of readily available software such as

the MATLAB
VR
robust control toolbox.73

Four assumptions are made. Of these assumptions, one

requires the stabilisability and detectability of the uncon-

trolled system. This is automatically satisfied if the flow is

below the critical Reynolds number, where the first unstable

eigenvalue appears. A second assumption is imposed to pre-

vent unbounded control signals. The remaining assumptions

are required for the solution method of the Riccati equations,

and may be relaxed.

The iterative method presented is useful in the case

where there is insufficient actuation or sensing to make the

closed-loop passive. In this case, we iteratively search for a

controller to get the system as close to passive as is possi-

ble. This relaxation loses the strict guarantee of nonlinear

stability, but it is still possible to quantifiably limit the per-

turbation energy production. We choose this method for

our study, because it is more amenable to such a relaxation

and so may be more applicable to cases with physical or

design constraints on the available measurement and

actuation.

The solution to the general H1 problem is somewhat

intricate, however, it can be simplified using loop-shifting

transformations summarised in Sec. A 4, so that the simpli-

fied H1 theory presented in Sec. A 5 can be applied. This

synthesis method requires the solution of two AREs at each

wavenumber.

For brevity, the notation in each appendix is self-

contained.

3. Transformation of the positive real synthesis
problem to a generalH‘ synthesis problem

Let G have state-space matrices given by

G ¼

A B1 B2

C1 0 0

C2 0 0

2

6

4

3

7

5
: (A1)

The closed-loop transfer function of G and a controller K

will be strictly positive real if and only if the closed-loop

transfer function of ~G and K has infinity norm less than 1

(see Safonov et al.17), where

~G ¼

A� B1C1 B1 B2

�2C1 I 0

C2 0 0

2

6

4

3

7

5
: (A2)

The problem, therefore has become to find a controller K

to minimise the H1 norm, c, of the closed-loop of K with
~G. If c< 1, the closed-loop between the original system

G and K is strictly positive real, thereby solving the origi-

nal passivity problem. There is no a priori way to find a

minimal c, so it is necessary to perform an iterative search

over c.

a. Control penalty

The control problem as presented above permits

unbounded control signals, essentially because it does not

penalise the control effort. This is tackled by introducing

a penalty on the control, and a model for sensor noise.

The penalties are made orthogonal to the dynamics, by

augmenting ~G (to give ~Gþ), with scalar the penalty weight-

ing �,

~Gþ ¼

A� B1C1 B1 0½ � B2

�2C1

0

� �

I 0

0 0

� �

0

eI

� �

C2 0 eI½ � 0

2

6

6

6

4

3

7

7

7

5

: (A3)

It will be seen that the penalty is necessary to satisfy rank

assumptions on D12 and D21 of Sec. A 4 D.

At this point, we apply the results of Secs. A 4 and A 5

to find the required controller.

We find that the control penalty is the primary obstacle

to minimising c.

4. The loop shifting transformations

This section describes, without explanation, the loop

shifting transformations required to convert the problem into

a form that is solved for in Sec. A 5.

From Eq. (A3), we have a system of the form

PðsÞ ¼

A B1 B2

C1 D11 D12

C2 D21 D22

2

4

3

5 (A4)
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with A 2 Cn�n, B1 2 Cn�m, C2 2 Cq�n, and other matrices

dimensioned, accordingly.

The H1 controller synthesis formulae are greatly sim-

plified by assuming that D11¼ 0 and D22¼ 0 and that D12

and D21 satisfy some simple rank assumptions.

Let the state-space matrices satisfy the following

assumptions,

A1. (A, B2, C2) is stabilisable and detectable,

A2. rank (D12)¼m and rank (D21)¼ q,

A3. rank
jxI � A �B2

C1 D12

� �

¼ mþ n for all real x,

A4. rank
jxI � A �B1

C2 D21

� �

¼ qþ n for all real x.

The aim is to replace the system P with an equivalent

problem involving P̂, where

P̂ðsÞ ¼

Â B̂1 B̂2

Ĉ1 0 D̂12

Ĉ2 D̂21 0

2

6

4

3

7

5
(A5)

with the simplified assumptions,

A1. rank ðÂ; B̂2; Ĉ2Þ is stabilisable and detectable,

A2. D̂�
12D̂12 ¼ Im and D̂21D̂

�
21 ¼ Iq,

A3. rank
jxI � Â �B̂2

Ĉ1 D̂12

� �

¼ mþ n for all real x,

A4. rank
jxI � Â �B̂1

Ĉ2 D̂21

� �

¼ qþ n for all real x.

a. Minimise jjD̂11jj

We define

PðsÞ ¼

Aþ B2FðI � D22FÞ
�1
C2 B1 þ B2FðI � D22FÞ

�1
D21 B2ðI � FD22Þ

�1

C1 þ D12FðI � D22FÞ
�1
C2 D11 þ D12FðI � D22FÞ

�1
D21 D12ðI � FD22Þ

�1

ðI � D22FÞ
�1
C2 ðI � D22FÞ

�1
D21 ðI � D22FÞ

�1
D22

2

6

6

4

3

7

7

5

¼

A B1 B2

C1 D11 D12

C2 D21 D22

2

6

4

3

7

5
: (A6)

Begin by choosing F such that jjD11jj ¼ c0 is minimised, where c0 ¼ maxfjjD̂�
12D11jj; jjD11D̂

�
21jjg. This can be done in more

that one way (see Green and Limebeer1 for further details).

b. Eliminate D̂11

Define

H11 H12

H21 H22

� �

¼ c�1 c�1D11 ðI � c�2D11D
�
11Þ

1=2

�ðI � c�2D
�
11D11Þ

1=2
c�1D

�
11

" #

: (A7)

We can eliminate D̂11, by substitution, we see directly that

P̂ðsÞ ¼

Âþ B̂1H22ðI � D̂11H22Þ
�1
Ĉ1 B1ðI �H22D11Þ

�1
H21 B2 þ B1H22ðI �D11H22Þ

�1
D12

H12ðI �D11H11H22Þ
�1
C1 0 H12ðI�D11H22Þ

�1
D12

C2 þD21H22ðI �D11H22Þ
�1
C1 D21ðI �H22D11Þ

�1
D22 þD21H22ðI �D11H22Þ

�1
D12

2

6

6

4

3

7

7

5

¼

Â B̂1
~B2

Ĉ1 0 ~D12

~C2
~D21 D̂22

2

6

6

4

3

7

7

5

:

(A8)

c. Eliminate D̂22

Eliminate D̂22 by connecting �D̂22 in parallel with P̂22.

d. Rank conditions on D̂12 and D̂21

Find scaling matrices S1 and S2 such that D̂12 ¼ ~D12S1
with D̂�

12D̂12 ¼ Im, and similarly D̂21 ¼ S2 ~D21 with D̂21D̂
�
21

¼ Iq. The rescaled system is then

P̂ðsÞ ¼

Â B̂1 B̂2

Ĉ1 0 D̂12

Ĉ2 D̂21 0

2

6

6

4

3

7

7

5

: (A9)

e. Controller synthesis

Find the controller ~K to solve the small gain problem for

the system P̂ in Eq. (A9), using the method presented in

Appendix A 5.

f. Reversing the loop shifting

The final step is to apply the preceeding steps of this ap-

pendix to the controller ~K in reverse, where

~K ¼
~Ak

~Bk

~Ck 0

" #

; (A10)
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the final controller is given by

K ¼
~Ak þ ~BkS1D̂22ðI þ FD̂22Þ

�1
S2 ~Ck

~BkS1 � ~BkS1D̂22ðI � D ~DkD̂22Þ
�1
F

S2 ~Ck � FD̂22ðI þ FD̂22Þ
�1
S2 ~Ck �Fþ FD̂22ðI þ FD̂22Þ

�1
F

2

4

3

5: (A11)

5. Solution to the simplified H‘ control synthesis
problem

In this section, we present the controller synthesis

formulae solving the small gain problem of Sec. A 4 e

above.

Suppose the system P, given by

PðsÞ ¼

A B1 B2

C1 0 D12

C2 D21 0

2

6

6

4

3

7

7

5

; (A12)

satisfies the simplified assumptions of Sec. A 4. We seek a

controller K such that the closed-loop of P and K is stable

and the infinity norm of the closed-loop is less than c.

There exists such a K if and only if

1. There exists a solution X to the ARE (A13) such that
~A� ðB2B

0
2 � c�2B1B

0
1ÞX is asymptotically stable and

X	 0.

2. There exists a solution Y to the ARE (A14) such that

A� YðC2C
0
2 � c�2C1C

0
1Þ is asymptotically stable and

Y	 0.

3. The spectral radius, q(XY)< c2.

The AREs in question are

X ~Aþ ~A0X � XðB2B
0
2 � c�2B1B

0
1ÞX þ C0

1ðI � D12D
0
12ÞC1 ¼ 0

(A13)

with ~A ¼ A� B2D
0
12C1, and

~AY þ Y ~A0 � YðC0
2C2 � c�2C0

1C1ÞY þ B1ðI � D0
21D21ÞB

0
1 ¼ 0

(A14)

with A ¼ A� B1D
0
21C2.

When these conditions are met, one such controller is

given by

K ¼
Ak Bk

Ck 0

" #

(A15)

with

Ak ¼ Aþ c�2B1B
0
1X � B2D

0
12C1 þ B0

2X

þ BkðC2 þ c�1D21B
0
1XÞ;

Bk ¼ B1D
0
21YðI � c�2XYÞ�1ðC2 þ c�1D21B

0
1XÞ

0;

Ck ¼� D0
12C1 � B0

2X:

APPENDIX B: BOUNDS ON THE PERTURBATION
ENERGY

The solution of the auxiliary small-gain problem (c< 1)

results in monotonic decay of the disturbance energy. In the

case that c	 1, this property may be lost, however, the

method does optimise for the worst-case perturbation energy

production. This is seen from the following argument.

A transfer function Q is strictly positive real, if and only

if its Cayley transform ~Q has infinity norm less than 1, i.e.,

kQk1< 1.17 The Cayley transform ~Q of system Q is given

by

~QðsÞ ¼ ðQðsÞ � IÞðQðsÞ þ IÞ�1: (B1)

We have transformed the problem of making some transfer

function Q(s) as close as possible to positive real into an

equivalent problem of making ~QðsÞ bounded real, i.e.,

jj ~Qjj1 < c.

Then

det½I � c�1 ~QðsÞ� 6¼ 0; for ReðsÞ > 0: (B2)

Using the Cayley transform (B1) it is straightforward to

show that

~QðsÞ ~Q�ðsÞ

¼ ðQðsÞ � IÞðQðsÞ þ IÞ�1ðQ�ðsÞ þ IÞ�1ðQ�ðsÞ � IÞ

� c2I:

(B3)

Rearrangement gives

QðsÞ þ Q�ðsÞ 	
1� c2

1þ c2
ðQ�ðsÞQðsÞ þ IÞ: (B4)

As c ! 1, Q(s) becomes positive real. Bounding the right

hand side by� a,

� a ¼ inf
s¼jx

1� c2

1þ c2
ðQ�ðsÞQðsÞ þ IÞ

� �

means a	 0 (since c	 1).

If u¼Qe, then it is straightforward to show

u; eh i 	 �
a

2
e; eh i8e: (B5)

Since kuk2 is the perturbation energy, this bounds the rate of

perturbation energy production by any disturbance e and

optimising c optimises this bound.
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10M. Högberg, T. R. Bewley, and D. S. Henningson, “Linear feedback con-

trol and estimation of transition in plane channel flow,” J. Fluid Mech.

481, 149 (2003).
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of state space in plane couette flow,” J. Fluid Mech. 611, 107 (2008).
68K. Horiuti, Y. Miyake, T. Miyauchi, Y. Nagano, and N. Kasagi,

“Establishment of the dns database of turbulent transport phenomena,”

Technical Report No. 02302043 (Report Grants-in-aid for Scientific

Research, 1992) http://www.thtlab.t.u-tokyo.ac.jp/.
69J. Kim, “On the structure of pressure fluctuations in simulated turbulent

channel flow,” J. Fluid Mech. 205, 421 (1989).
70M. T. Landahl, “A wave-guide model for turbulent shear flow,” Technical

Report CR-317, NASA, 1965.
71G. K. Batchelor and A. A. Townsend, “Turbulent diffusion,” in Surveys in

Mechanics, edited by G. K. Batchelor and R. M. Davies (Cambridge Uni-

versity Press, Cambridge, UK, 1956), pp. 352–399.

72D. C. Dunn and J. F. Morrison, “Anisotropy and energy flux in wall

turbulence,” J. Fluid Mech. 491, 353 (2003).
73

MATLAB, version 7.11.0 (R2010b) (The MathWorks Inc., Natick, Massa-

chusetts, 2010).
74John W. Eaton, GNU Octave Manual (Network Theory Limited, Bristol,

UK, 2002).
75M. T. Landahl, “Wave mechanics of breakdown,” J. Fluid Mech. 56, 775

(1972).
76T. Kailath, Linear Systems, Prentice-Hall Information and System Scien-

ces Series (Prentice Hall International, New Jersey, 1998).
77M. G. Safonov and D. J. N. Limebeer, “Simplifying the H1 theory

via loop shifting,” 1988, Proceedings of the 27th IEEE Conference on

Decision and Control, pp. 1399–1404, Vol. 2 (Austin, TX, 1988).
78W. Sun, P. Khargonekar, and D. Shim, “Solution to the positive real

control problem for linear time-invariant systems,” IEEE Trans. Autom.

Control 39, 2034 (1994).

125105-17 Relaminarisation of Res¼100 channel flow Phys. Fluids 23, 125105 (2011)

Downloaded 17 Feb 2012 to 131.215.220.186. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1017/S0022112087000892
http://dx.doi.org/10.1017/S002211200800267X
www.thtlab.t.u-tokyo.ac.jp/
www.thtlab.t.u-tokyo.ac.jp/
http://dx.doi.org/10.1017/S0022112089002090
http://dx.doi.org/10.1017/S0022112003005548
http://dx.doi.org/10.1017/S0022112072002654
http://dx.doi.org/10.1109/9.280776
http://dx.doi.org/10.1109/9.280776



