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Abstract

The stream cipher TPypy has been designed by Biham and Seberry in January 2007 as the strongest
member of the Py-family ciphers, after weaknesses in the other members Py, Pypy, Py6 were discovered.
One main contribution of the paper is the detection of related-key weaknesses in the Py-family of ciphers
including the strongest member TPypy. Under related keys, we show a distinguishing attack on TPypy
with data complexity 2193.7 which is lower than the previous best known attack on the cipher by a
factor of 288. It is shown that the above attack also works on the other members TPy, Pypy and Py.
A second contribution of the paper is design and analysis of two fast ciphers RCR-64 and RCR-32
which are derived from the TPy and the TPypy respectively. The performances of the RCR-64 and the
RCR-32 are 2.7 cycles/byte and 4.45 cycles/byte on Pentium III (note that the speeds of the ciphers
Py, Pypy and RC4 are 2.8, 4.58 and 7.3 cycles/byte). Based on our security analysis, we conjecture
that no attacks lower than brute force are possible on the RCR ciphers.

1 Introduction

Timeline: the Py-family of Ciphers

• April 2005, Design. The ciphers Py and Py6, designed by Biham and Seberry, were submitted to
the ECRYPT project for analysis and evaluation in the category of software based stream ciphers
[5]. The impressive speed of the cipher Py in software (about 2.5 times faster than the RC4) made
it one of the fastest and most attractive contestants.

• March 2006, Attack (at FSE 2006). Paul, Preneel and Sekar reported distinguishing attacks
with 289.2 data and comparable time against the cipher Py [20]. Crowley [8] later reduced the
complexity to 272 by employing a Hidden Markov Model.

• March 2006, Design (at the Rump session of FSE 2006). A new cipher, namely Pypy, was
proposed by the designers to rule out the aforementioned distinguishing attacks on Py [6].

• May 2006, Attack (presented at Asiacrypt 2006). Distinguishing attacks were reported
against Py6 with 268.6 data and comparable time by Paul and Preneel [21].

• October 2006, Attack (presented at Eurocrypt 2007). Wu and Preneel showed key recovery
attacks against the ciphers Py, Pypy, Py6 with chosen IVs. This attack was subsequently improved
by Isobe et al. [12].

∗The first author is supported by an IWT SoBeNeT project. The second author is funded by the IBBT (In-
terdisciplinary Institute for BroadBand Technology), a research institute founded by the Flemish Government in
2004. This is a revised version of the paper published in the proceedings of Indocrypt 2007.

1



• January 2007, Design. Three new ciphers TPypy, TPy, TPy6 were proposed by the designers
[4]; the ciphers can very well be viewed as the strengthened versions of the previous ciphers Py,
Pypy and Py6 where the above attacks should not apply. So far there exist no published attacks
on TPypy, TPy and TPy6.

• February 2007, Attack. Sekar, Paul and Preneel published distinguishing attacks on Py, Pypy,
TPy and TPypy with data complexities 2281 each [25].

• June 2007, Attack (to be presented at ISC 2007). Sekar, Paul and Preneel showed new weak-
nesses in the stream ciphers TPy and Py [23]. Exploiting these weaknesses distinguishing attacks
on the ciphers are constructed where the best distinguisher requires 2268.6 data and comparable
time.

• July 2007, Attack and Design (presented at WEWoRC 2007). Sekar, Paul and Preneel
mounted distinguishing attacks on TPy6 and Py6 with 2224.6 data and comparable time each [24].
Moreover, they have modified TPy6 to design two new ciphers TPy6–A and TPy6–B which were
claimed to be free from all attacks excluding brute force ones.

Contribution of the paper. The list that orders the Py-family of ciphers in terms of increasing security
is: Py6→Py→ Pypy → TPy6 → TPy → TPypy (the strongest). The ciphers are normally used with
32-byte keys and 16-byte initial values (or IV). However, the key size may vary from 1 to 256 bytes and
the IV from 1 to 64 bytes. The ciphers were claimed by the designers to be free from related-key and
distinguishing attacks [4, 5, 6].
(i) Related-key Weaknesses. One major contribution of the paper is the discovery of related-key attacks
due to weaknesses in the key scheduling algorithms of the Py-family of ciphers. The main idea behind a
related-key attack is that, the attacker, who chooses a relation f between a pair of keys key1 and key2

(e.g., key1 = f(key2)) rather than the actual values of the keys, is able to extract secret information
from a cryptosystem using the relation f [3, 14]. Related-key weakness is a cause for concern in a
protocol where key-integrity is not guaranteed or when the keys are generated manually rather than
from a pseudorandom number generator [13]. Related-key weaknesses are not new in the literature.
The usefulness of such type of attacks was first outlined by Knudsen in [15, 16]; since then a good deal
of research has been spent on related-key weaknesses on block ciphers [3, 13, 14, 17]. The related-key
weaknesses of a block cipher can be translated into attacking hash functions based on that particular
block cipher and vice versa [10, 11, 19, 22, 26, 27, 29, 31]. Theoretical treatments of related-key attacks
were done in [2] and [18].

On the other hand, discovery of related-key weaknesses of stream ciphers is not very common in the
literature, mainly due to the heavy operations executed in one-time key-scheduling algorithms compared
to the operations performed in iterative block ciphers. However, there is an example where related-key
weaknesses of the stream cipher RC4 are used to break the WEP protocol with practical complexity
[9]. Furthermore, there is a growing tendency by the designers nowadays to build hash functions from
stream ciphers [7] instead of building them from block ciphers. In such attempts, related-key weaknesses
of stream ciphers need to be addressed carefully.

In the paper, we show that, when used with the identical IVs of 16 bytes each, if two long keys key1

and key2 of 256 bytes each, are related in the following manner,

1. key1[16] ⊕ key2[16] = 1,

2. key1[17] 6= key2[17] and

3. key1[i] = key2[i] ∀i 6∈ {16, 17}

then the above relation, exploiting the weaknesses of the key setup algorithms of Py-family of ciphers
(i.e., TPypy, TPy, Pypy, Py), propagates through the IV setup algorithms and finally induces biases in
the outputs at the 1st and the 3rd rounds. Such related key pairs are used to build a distinguisher for
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each of the aforementioned ciphers with 2193.7 output words and comparable time (note that, in total,
there are 22048 such pairs, while our distinguisher needs any 2193.7 randomly chosen pairs of keys). This
result constitutes the best attack on the strongest member of the Py-family of ciphers TPypy; they are
also shown to be effective on the other members TPy, Pypy and Py (see Table 1). These related-key
attacks work with any IV-size ranging from 16 to 64 bytes. However, the attack complexities increase
with shorter keys. Note that the usage of long keys in the Py-family of ciphers makes it very attractive
to be used as fast hash functions (e.g., by replacing of the key with the message). In such cases, these
related-key weaknesses can turn out to be serious impediments.

Table 1: Attacks on the Py-family of stream ciphers (‘X’ denotes that the attack does not work)

Attack Py6 Py Pypy TPy6 TPy TPypy

Crowley [8] X 272 X X 272 X

Isobe et al. [12] X 224 224 X X X

Paul et al. [20] X 289.2 X X 289.2 X

Paul-Preneel [21] 268.6 X X 268.6 X X

Sekar et al. [23] X 2268.6 X X 2268.6 X

Sekar et al. [24] 2224.6 X X 2224.6 X X

Sekar et al.[25] X 2281 2281 X 2281 2281

Wu-Preneel [32] X 224 224 X X X

Related key (this paper) X 2193.7 2193.7 X 2193.7 2193.7

(ii) The Ciphers RCR-32 and RCR-64. Finally, we make simple modifications to the ciphers TPypy
and TPy to build two new ciphers RCR-32 and RCR-64 respectively. In the modified designs, the
key scheduling algorithms of RCR-32 and RCR-64 are identical with those of the TPypy and the TPy.
The changes are made only to the round functions where variable rotations are replaced with constant
rotations. Our extensive analyses show that the modifications not only free the Py-family ciphers from
all the existing attacks, it also improves on the performance of the ciphers without exposing them to
new weaknesses (see Sect. 5 for an elaborate security analysis). As a result, the cipher RCR-64 goes on
to become one of the the fastest stream ciphers published in the literature (approximately 2.7 cycles per
byte on Pentium III). The names are chosen to reflect the functionalities involved in the ciphers. For
example, RCR-64 denotes Rolling, Constant Rotation and 64 bits output/round.

2 Description of the Stream Ciphers TPypy, TPy, Pypy and Py

Each of the Py-family of ciphers is composed of three parts: (1) a key setup algorithm, (2) an IV setup
algorithm and (3) a round function or pseudorandom bit generation algorithm (PRBG). The first two
parts are used for the initial one-time mixing of the secret key and the IV. These parts generate a
pseudorandom internal state composed of (1) a permutation P of 256 elements, (2) a 32-bit array Y of
260 elements and (3) a 32-bit variable s. The key/IV setup uses two intermediate variables: (1) a fixed
permutation of 256 elements denoted by internal permutation and (2) a variable EIV whose size is equal
to that of the IV. The round function, which is executed iteratively, is used to update the internal state
(i.e., P , Y and s) and to generate pseudorandom output bits. The key setup algorithms of the TPypy,
the TPy, the Pypy and the Py are identical. Notation for different parts of the four ciphers is provided
in Table 2.
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Table 2: Description of the ciphers TPypy, TPy, Pypy and Py

TPypy TPy Pypy Py

Key Setup KS KS KS KS

IV Setup IV S1 IV S1 IV S2 IV S2

Round Function RF1 RF2 RF1 RF2

Due to space constraints, the KS, the IV S1, the IV S2, the RF1 and the RF2, as mentioned in Table 2,
are described in Appendix A. The details of the algorithms can also be found in [4, 5, 6].

3 Notation and Convention

The notation and the convention followed in the paper are described below.

• The pseudorandom bit generation algorithm of a stream cipher is denoted by PRBG.

• The outputs generated when key1 and key2 are used are denoted by O and Z respectively.

• Oa
(b) (or Za

(b)) denotes the bth bit (b = 0 is the least significant bit or lsb) of the second output word

generated at round a when key1 (or key2) is used. We do not use the first output word anywhere
in our analysis.

• P a
1 , Y a+1

1 and sa
1 are the inputs to the PRBG at round a when key1 is used. It is easy to see that

when this convention is followed the Oa takes a simple form: Oa = (s⊕Y a[−1])+Y a[P a[208]]. The
same applies to key2.

• Y a
1 [b], P a

1 [b] denote the bth elements of array Y a
1 and P a

1 respectively, when key1 is used.

• Y a
1 [b]i, P a

1 [b]i denote the ith bit of Y a
1 [b], P a

1 [b] respectively.

• The operators ‘+’ and ‘−’ denote addition modulo 232 and subtraction modulo 232 respectively,
except when used with expressions which relate two elements of array P . In this case they denote
addition and subtraction over Z.

• The symbol ‘⊕’ denotes bitwise exclusive-or, ∩ denotes set intersection and ∪ denotes set union.

4 Related-key Weaknesses in the Py-family of Ciphers

We first choose two keys, key1 and key2 (each key is 256 bytes long), such that,
C1. key1[16] ⊕ key2[16] = 1 (without loss of generality, assume lsb of key1[16] is 1),
C2. key1[17] 6= key2[17] and C3. key1[i] = key2[i] ∀i 6∈ {16, 17}.

Now we observe that the above relation between the keys can be traced through various parts of the
Py-family of ciphers.

4.1 Propagation of the Weaknesses through the Key Setup Algorithm

For key1 and key2, the values of the variable s through Algorithm A are tabulated in Table 3. The
Algorithm A is a part of the key setup algorithm KS (described in Algorithm 2 in Appendix A).
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Algorithm A

for(j=0; j<keysizeb; j++)

{

s = s + key[j];

s0 = internal_permutation[s&0xFF];

s = ROTL32(s, 8) ^ (u32)s0;

}

Table 3: The variable s after rounds 15, 16 and 17 of Algorithm A

End of
round

s (using key1) s (using key2)

15 sA
1,15 sA

2,15 = sA
1,15

16 sA
1,16 sA

2,16 = sA
1,16 − δ1 (say)

17 sA
1,17 sA

2,17 = sA
1,17 if key2[17] = key1[17] +

δ1

If x is a 32-bit variable, let B(x) denote the least significant byte of x. In Table 3,

δ1 = sA
1,16 − sA

2,16 (1)

= ROTL32((sA
1,15 + key1[16]), 8) ⊕ ip[B(sA

1,15 + key1[16])] (2)

− ROTL32((sA
2,15 + key2[16]), 8) ⊕ ip[B(sA

2,15 + key2[16])], (3)

where ip denotes internal permutation.

Now, if key2[17] = key1[17] + δ1 (call this the event D1), it is observed from Algorithm A that the
following equation is satisfied:

sA
1,17 = sA

2,17.

For event D1 to occur, δ1 should be an 8-bit integer. Running simulation, it is determined that

Pr[|δ1| = 8] ≈
1

2
.

Hence,

Pr[D1] ≈ 2−9. (4)

If sA
1,17 = sA

2,17, then in the subsequent rounds of Algorithm A, the sA
1 and sA

2 remain the same, that is,

sA
1,k = sA

2,k, where k = 18, 19, ..., 255.

Given that the D1 occurs, that is, sA
1 = sA

2 at the end of Algorithm A, or sA
1,255 = sA

2,255, we now
trace the values of s through Algorithm B which forms another part of the key setup. Table 4 compares
the values of s after rounds 15, 16 and 17 of Algorithm B when key1 and key2 are used.
In Table 4,

δ2 = sB
1,16 − sB

2,16

= ROTL32((sB
1,15 + key1[16]), 8) ⊕ ip[B(sB

1,15 + key1[16])]

− ROTL32((sB
2,15 + key2[16]), 8) ⊕ ip[B(sB

2,15 + key2[16])]. (5)
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Algorithm B

for(j=0; j<keysizeb; j++)

{

s = s + key[j];

s0 = internal_permutation[s&0xFF];

s ^= ROTL32(s, 8) + (u32)s0;

}

Table 4: s after rounds 15, 16 and 17 of Algorithm B given event D1 occurs

End of
round

s (using key1) s (using key2)

15 sB
1,15 sB

2,15 = sB
1,15

16 sB
1,16 sB

2,16 = sB
1,16 − δ2 (say)

17 sB
1,17 sB

2,17 = sB
1,17 if key2[17] = key1[17] +

δ2

Now, given event D1 occurs, i.e., sA
1 = sA

2 at the end of Algorithm A, if δ2 = δ1 (call this the event D2),
we will have key2[17] = key1[17] + δ2 and hence from Algorithm B, the following equation is satisfied:

sB
1,17 = sB

2,17.

For event D2 to occur, δ2 should be an 8-bit integer. Running simulation, it is determined that

Pr[|δ2| = 8] ≈
1

22.4
.

Hence,

Pr[D2|D1] ≈ 2−10.4 ⇒ Pr[D2 ∩ D1] ≈ Pr[D1] · 2
−10.4 ≈ 2−19.4. (6)

If sB
1,17 = sB

2,17, then in the subsequent rounds of Algorithm B, the sB
1 and sB

2 remain the same, that is,

sB
1,k = sB

2,k, where k = 18, 19, ..., 255.

Given that the D2 ∩ D1 occurs, that is, sB
1 = sB

2 at the end of Algorithm B , or sB
1,255 = sB

2,255, the
values of s and Y are traced through Algorithm C which forms the final part of the key setup. Table 6 in
Appendix C compares the values of s and Y after rounds 15, 16 and 17 of Algorithm C when key1 and
key2 are used. Since Algorithm C and Table 6 have striking similarities with Algorithm A and Table 3,
they are described in Appendix C and we provide only the results of our analysis. Now, given that the
event D2 ∩D1 occurs, i.e., sB

1 = sB
2 at the end of Algorithm B, if δ3 = δ1 (call this the event D3), we will

have key2[17] = key1[17] + δ3 and hence from Algorithm C, the following equation is satisfied:

sC
1,17 = sC

2,17.

For event D3 to occur, δ2 should be an 8-bit integer. Running simulation, it is determined that

Pr[|δ3| = 8] ≈
1

2
.

Hence,

Pr[D3|D2 ∩ D1] ≈ 2−9 ⇒ Pr[D3 ∩ D2 ∩ D1] ≈ Pr[D2 ∩ D1] · 2
−9 ≈ 2−28.4. (7)

If sC
1,17 = sC

2,17, then in the subsequent rounds of Algorithm C, the sC
1 and sC

2 remain the same, that is,

sC
1,k = sC

2,k, where k = 18, 19, ..., 255 and Y1[j] = Y2[j], where j 6= 13.
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4.2 Propagation of the Weaknesses through the IV Setup

Algorithm D

for(i=0; i<ivsizeb; i++)

{

s = s + iv[i] + Y(YMININD+i);

u8 s0 = P(s&0xFF);

EIV(i) = s0;

s = ROTL32(s, 8) ^ (u32)s0;

}

Given that the D3 ∩ D2 ∩ D1 occurs, i.e., sC
1 = sC

2 at the end of Algorithm C, or sC
1,255 = sC

2,255, and
Y1[i] = Y2[i] (i 6= 13), we now trace the variables s, Y , P and EIV through the first part of the IV setup.
We now consider Algorithm D which is a part of the IV setup. It is to be noted that s, Y (obtained after
the key setup) and the iv are the basic elements used in the IV setup to define the P and the EIV and
to update the s and the Y . We now model our attack in such a way that the same IV is used with both
the keys. Prior to the execution of Algorithm D, the only elements of array Y which are used in the first
part of the IV setup are Y [0], Y [1], Y [Y MININD] and Y [Y MAXIND]. Since Y [13] is not used, it
follows that P1 (that is, P when key1 is used) and P2 (that is, P when key2 is used) are identical.

In Algorithm D as well, Y [13] is not used to update the s or define the EIV when the IV is of the
recommended size of 16 bytes. For longer IVs, we can induce the first difference in the keys (that is,
where the least significant bits alone differ) according to the size of the IV. An example is provided in
Appendix D. It is to be noted that, if the IV-size is N bytes, the first difference in the keys should be
induced nowhere: neither (1) in the first N −1 bytes (i.e., key bytes 0 to N −1), nor (2) in the last N −3
bytes (i.e., key bytes 260 − N to 256). Otherwise, it is immaterial as to where the first difference is set

Algorithm E

for(i=0; i<ivsizeb; i++)

{

s = s + iv[i] + Y(YMAXIND-i);

/*s = s + EIV((i+ivsizeb-1)mod ivsizeb) + Y(YMAXIND-i); for IVS1.*/

u8 s0 = P(s&0xFF);

EIV(i) += s0;

s = ROTL32(s, 8) ^ (u32)s0;

}

(i.e., anywhere from byte N to 259 − N) – in all the cases, bias induced will be approximately identical
(this is established from a large number of experiments).

We now consider Algorithm E. Again, Y [13] is not used to update the s or the EIV (for both IV S1

and IV S2). Hence, at the end of Algorithm E, we have s1 = s2, EIV1 = EIV2, P1 = P2 and Y1[i] = Y2[i]
(where i 6= 13). With this result, we now proceed to the second part of the IV setup.

In the second part of the IV setup (that is, for IV S2), when i = 16 (i = 17 for IV S1), the s generated
using key1 and key2 are different due to the difference in Y [13]. This causes the EIV s to be different in
the following round and hence P1 6= P2. In the subsequent rounds, the mixing becomes more random with
the result that at the end of 260 rounds, we have Y1[j] = Y2[j] where j ∈ {−3, ..., 12}. This result holds
only if x0 6= 13 when i = 0, ..., 15. The probability that this occurs is (255

256)j+4 ≈ 1 when j ∈ {−3, ..., 12}.
With this result, we now analyze the keystream generation algorithm.
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IV setup part-2

for(i=0; i<260; i++)

{

u32 x0 = EIV(0) = EIV(0) ^ (s&0xFF);

rotate(EIV);

swap(P(0), P(x0));

rotate(P);

Y(YMININD)=s=(s ^ Y(YMININD))+Y(x0);

/*s=ROTL32(s,8)+Y(YMAXIND);

Y(YMININD)+=s^Y(x0); for IVS1.*/

rotate(Y);

}

4.3 Propagation of the Weaknesses through the Round Function

Here, we consider only the round function RF1 of Algorithm 5 (see Appendix A). The formulas for the
lsb of the outputs generated at rounds 1 and 3 when key1 (the output words are denoted by O) and key2

(the output words are denoted by Z) are used are given below.

O1
(0) = s1

1(0) ⊕ Y 1
1 [−1]0 ⊕ Y 1

1 [P 1
1 [208]]0, (8)

O3
(0) = s3

1(0) ⊕ Y 3
1 [−1]0 ⊕ Y 3

1 [P 3
1 [208]]0, (9)

Z1
(0) = s1

2(0) ⊕ Y 1
2 [−1]0 ⊕ Y 1

2 [P 1
2 [208]]0, (10)

Z3
(0) = s3

2(0) ⊕ Y 3
2 [−1]0 ⊕ Y 3

2 [P 3
2 [208]]0. (11)

Let C1, C2, C3 and C4 denote Y 1
1 [P 1

1 [208]]0, Y 3
1 [P 3

1 [208]]0, Y 1
2 [P 1

2 [208]]0 and Y 3
2 [P 3

2 [208]]0 respectively.
Each row in Table 5 gives the conditions on the elements of P1 and P2 which when simultaneously satisfied
gives C1 ⊕ C2 ⊕ C3 ⊕ C4 = 0. The corresponding probabilities are also given. From Table 5, it follows

Table 5: When Gj (1 ≤ j ≤ 4) occurs, C1 ⊕ C2 ⊕ C3 ⊕ C4 = 0

Event Conditions Probability Result

G1 P 1
1 [208] = P 3

1 [208]+2, P 1
2 [208] = P 3

2 [208]+2 2−16 C1 = C2,C3 = C4

G2 P 1
1 [208] = P 1

2 [208], P 1
1 [208], P 1

2 [208] ≤ 12,
P 3

1 [208] = P 3
2 [208], P 3

1 [208], P 3
2 [208] ≤ 12

2−24.6 C1 = C3,C2 = C4

G3 P 1
1 [208] = P 3

2 [208] + 2, 2 ≤ P 1
1 [208] ≤ 12,

P 3
2 [208] ≤ 10, P 1

2 [208] = P 3
1 [208] + 2, 2 ≤

P 1
2 [208] ≤ 12, P 3

1 [208] ≤ 10

2−25.4 C1 = C4,C2 = C3

G4 G2 ∩ G1 Negligible (<< 2−25) C1 = C2 = C3 = C4

that events G2, G3 and G4 can be ignored when compared to G1. We now state the following theorem.

Theorem 1 s1
1 = s3

1 when the following conditions are simultaneously satisfied.

1. P 2
1 [116] ≡ −18 mod 32 (event E1),

2. P 3
1 [116] ≡ −18 mod 32 (event E2),

3. P 2
1 [72] = P 3

1 [239] + 1 (event E3),

8



4. P 2
1 [239] = P 3

1 [72] + 1 (event E4).

Proof.The formulas for s2
1 and s3

1 are given below (see Algorithm 5):

s2
1 = ROTL32(s1

1 + Y 2
1 [P 2

1 [72]] − Y 2
1 [P 2

1 [239]], P 2
1 [116] + 18 mod 32), (12)

s3
1 = ROTL32(s2

1 + Y 3
1 [P 3

1 [72]] − Y 3
1 [P 3

1 [239]], P 3
1 [116] + 18 mod 32). (13)

Condition 1 (i.e., P 2
1 [116] ≡ −18 mod 32) reduces (12) to

s2
1 = s1

1 + Y 2
1 [P 2

1 [72]] − Y 2
1 [P 2

1 [239]].

Therefore, (13) becomes

s3
1 = ROTL32(s1

1 +
3∑

i=2

(Y i
1 [P i

1[72]] − Y i
1 [P i

1[239]]), P 3
1 [116] + 18 mod 32). (14)

Now, condition 3 (i.e., P 2
1 [72] = P 3

1 [239] + 1) and condition 4 (P 2
1 [239] = P 3

1 [72] + 1) together imply∑3
i=2(Y

i
1 [P i

1[72]] − Y i
1 [P i

1[239]]) = 0 and hence reduce (14) to

s3
1 = ROTL32(s1

1, P
3
1 [116] + 18 mod 32). (15)

Now, when event E2 (that is, P 3
1 [116] ≡ −18 mod 32) occurs, (15) becomes

s3
1 = ROTL32(s1

1, 0) = s1
1. (16)

This completes the proof. �

Now, s1
1 = s3

1 ⇒ s1
1(0) = s3

1(0) and Pr[E1] ≈ Pr[E2] ≈ 2−5 and Pr[E3] ≈ Pr[E4] ≈ 2−8. The four
events E1, E2, E3 and E4 are assumed to be independent to facilitate calculation of bias. The actual
value without independence assumption is in fact more, making the attack marginally stronger. Hence,
Pr[E1∩E2∩E3∩E4] = 2−26. Similarly, we have s1

2 = s3
2 when the following conditions are simultaneously

satisfied.

1. P 2
2 [116] ≡ −18 mod 32 (event E5), 2. P 3

2 [116] ≡ −18 mod 32 (event E6),
3. P 2

2 [72] = P 3
2 [239] + 1 (event E7), 4. P 2

2 [239] = P 3
2 [72] + 1 (event E8).

Again, s1
2 = s3

2 ⇒ s1
2(0) = s3

2(0) and

Pr[∩8
i=1Ei] =

1

252
. (17)

From the analysis in Sect. 4.1 and 4.2, when D3 ∩ D2 ∩ D1 occurs, Y 1
1 [j] = Y 1

2 [j] where j ∈ {−3, ..., 12}.
Y 1

1 [i] = Y 1
2 [i] ⇒ Y 1

1 [−1]0 = Y 1
2 [−1]0 and Y 3

1 [−1]0 = Y 1
1 [1]0 = Y 1

2 [1]0 = Y 3
2 [−1]0. Therefore, from

equations (8), (9), (10) and (11), we observe that

O1
(0) ⊕ O3

(0) ⊕ Z1
(0) ⊕ Z3

(0) = 0 (18)

holds when the following events simultaneously occur.

1. D3 ∩ D2 ∩ D1, 2. ∩8
i=1Ei and 3. G1.

In the following section, we calculate the probability that (18) is satisfied.
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4.4 The Distinguisher

Let L denote the event (∩8
i=1Ei) ∩ (D3 ∩ D2 ∩ D1) ∩ (G1). From (7), (17) and Table 5, we get: Pr[L] =

2−52 ·2−28.4 ·2−16 = 2−96.4. Assuming randomness of the outputs when event L does not occur (concluded
from a large number of experiments), we have:

Pr[O1
(0) ⊕ O3

(0) ⊕ Z1
(0) ⊕ Z3

(0) = 0] =
1

2
(1 +

1

296.4
). (19)

To compute the number of samples required to establish an optimal distinguisher with advantage greater
than 0.5, we use the following equation:

n = 0.4624 ·
1

p2
(20)

from [1, 20]. Here, p = 2−97.4. Therefore, the number of samples is 2193.7.

4.5 Attacks with Shorter Keys

The related-key attacks described in the previous sections can be applied with shorter keys also. However,
the data complexity of the distinguisher increases exponentially as key size decreases. For example, when
the key size is 128 bytes, the distinguisher works with 2229.7 data and comparable time. For 64-byte key
size, the data complexity of the distinguisher is 2247.7.

5 New Stream Ciphers: RCR-32 and RCR-64

As mentioned in Sect. 1, in the last couple of years, the Py-family of ciphers have come under several
cryptanalytic attacks. In spite of the weaknesses, the ciphers retain some attractive features such as
modification of the internal states with clever use of rolling arrays and fast mixing of several arithmetic
operations. This motivates us to explore the possibility of designing new ciphers that retain all the good
properties of the Py-family and yet are secure against all the existing and new attacks.

In this section, we propose two new ciphers, RCR-32 (Rolling, Constant Rotation, 32 -bit output per
round) and RCR-64 derived from TPypy and Tpy, which are shown to be secure against all the existing
attacks on the TPypy and TPy. The speeds of execution of the RCR-64 and the RCR-32 in software are
2.7 cycles and 4.45 cycles per byte which are better than the performances of the TPy (2.8 cycles/byte)
and the TPypy (4.58 cycles/byte) respectively.

The key/IV setup algorithms of the RCR-64 and the RCR-32 are identical with those of the TPy and
the TPypy. The PRBGs of the RCR-64 and the RCR-32 are also very similar to those of the TPy and
the TPypy. The only changes in the PRBGs are that: the variable rotation of the quantity s is replaced
by a constant rotation (c) of 19. Single round of RCR-32 and RCR-64 are shown in Algorithm 1.

5.1 Security Analysis

In this section we justify how the new ciphers RCR-32 and RCR-64 should be able to resist several
common attacks against array-based stream ciphers. In the following analysis the symbols xr(i) and Ac

denote the ith bit of the variable x at round r and the bitwise complement of A. This notation is made
slightly different from the one used throughout the paper to accommodate the complement operation.

(i) Resistance to Distinguishing Attacks: The RCR-32 and the RCR-64 are the modified versions of
the TPy and the TPypy. The following distinguishing attacks are applicable to the TPy and TPypy. We
now show why those attacks do not apply to the RCR ciphers.

1. Paul-Preneel-Sekar attack [20]: This attack applies to the TPy. Condition 1 under Theorem 1
in [20], that is, P2[116] ≡ −18 mod 32, is impossible when c = 19 (in which case we have P2[116] ≡

10



Algorithm 1 Round functions of RCR-32 and RCR-64

Require: Y [−3, ..., 256], P [0, ..., 255], a 32-bit variable s

Ensure: 64-bit random output (for RCR-64) or 32-bit random output (for RCR-32)
/*Update and rotate P*/

1: swap (P [0], P [Y [185]&255]);
2: rotate (P );

/* Update s*/
3: s+ = Y [P [72]] − Y [P [239]];
4: s = ROTL32(s, 19); /*Tweak - the variable s undergoes a constant, non-zero rotation (c = 19).*/

/* Output 4 or 8 bytes (the least significant byte first)*/
5: output ((ROTL32(s, 25) ⊕ Y [256]) + Y [P [26]]);/* This step is skipped for RCR-32.*/
6: output (( s ⊕Y [−1]) + Y [P [208]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [153]];
8: rotate(Y );

1 mod 32). Note that when c = 0, P2[116] ≡ −18 mod 32 is satisfied. Therefore, c = 0 is not a safe
choice.

2. Sekar-Paul-Preneel attack [25]: This attack applies to both TPy and TPypy. Again, condition 1
under Theorem 1, that is, P2[116] ≡ −18 mod 32, is violated when c = 19 (in which case we have
P2[116] ≡ 1 mod 32). Note that condition 1 is common to all the 144 sets of conditions (see [25])
and hence its violation nullifies the attack.

3. Sekar et al. attack [23]: This attack applies to the TPy. Condition 1 under Theorem 1, that is,
P1[116] ≡ −18 mod 32, is not satisfied when c = 19 (in which case we have P1[116] ≡ 1 mod 32).
This leads to another important observation: none of the large number of weaknesses detected in
TPy in[23], apply to the RCR-32 or RCR-64. Here again, when c = 0, P1[116] ≡ −18 mod 32 is
satisfied. Therefore, c = 0 is not a safe choice.

In Appendix B, we elaborate more on the usefulness of selection of constant rotation to eliminate any
distinguishing attacks on RCR ciphers. Here, it may appear that a constant rotation results in cyclic
repetition of the variable s every 32 rounds. However, in each round, a 32-bit random is added to s (see
line 3 of Algorithm 1) and hence such a cycle (or any short cycle) can only occur with negligible probability.

(ii) Resistance to Related-key attacks of this paper : The related-key attacks presented in Sect. 4 are
similar to the attacks by Paul et al. described in [20]. Here, the event E5 (i.e., P 2

2 [116] ≡ −18 mod 32),
described in Sect. 4.3, does not occur if c = 19 (in which case we have P 2

2 [116] ≡ 1 mod 32). Note
that when c = 0, P 2

2 [116] ≡ −18 mod 32 is satisfied; therefore, the choice of c to be zero is not very
safe. Apparently, it may seem that the security of the RCR-64 and the RCR-32 are threatened by the
unchanged key setup algorithms. However, the weaknesses in the key setup cannot be translated into
any meaningful attack on any of our designs. This is because of the heavy mixing that takes place in the
second part of the IV setup. As a result, we expect that the variable s, generated at the end of the IV
setup, is uniformly distributed at random. Therefore, the outputs generated in the keystream generation
algorithm are not expected to be correlated unless we have the s to be rotated by a variable term (note
that this variable term is set to different values at different rounds to construct the attacks). In the round
functions of the ciphers RCR-64 and RCR-32, the s is rotated by a constant term and hence the ciphers
are expected to be free from any correlations between the outputs.

(iii) Resistance to Differential attacks: Wu and Preneel found weaknesses in the IV setups of the Py
and the Pypy [32]. Exploiting these weaknesses, some key-dependent information has been recovered.
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The ciphers TPy and TPypy were specifically designed to rule out these weaknesses. Since the IV setup
algorithms of the RCR-64 and the RCR-32 are identical with those of TPy and TPypy, these attacks are
no longer applicable in new ciphers.

(iv) Resistance to Algebraic attacks and Guess-and-Determine Attacks: RCR-32 and RCR-64 are array-
based stream ciphers. The sizes of the internal states of RCR-32 and RCR-64 are 10,400 bits each, which
is very large. Hence, it appears infeasible to mount algebraic attacks that are otherwise common against
LFSR-based stream ciphers which have low footprints. From our experiments, we expect that the RCR-32
and RCR-64 are also secure against guess-and-determine attacks.

6 Future Work and Conclusion

In this paper, for the first time, we detect weaknesses in the key scheduling algorithms of several members
of the Py-family. Precisely, we build distinguishing attacks with data complexities 2193 each. Furthermore,
we modify the ciphers TPypy and TPy to generate two fast ciphers, namely RCR-32 and RCR-64, in an
attempt to rule out all the attacks against the Py-family of ciphers. We conjecture that attacks lower
than brute force are not possible on RCR ciphers.

Our present work leaves room for interesting future work. The usage of long keys and IVs (e.g., possi-
bility of 256-byte keys and 64-byte IVs) in RCR ciphers makes them good candidates to be used as hash
functions. One can also try to combine a MAC and an encryption algorithm in a single primitive using
RCR ciphers. It seems worthwhile to address these issues in future.
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A Various Parts of Py-family of Ciphers

The algorithms are shown in the next page.

B Effect of Any Non-zero Constant Rotation in RCR Ciphers

The distinguishing attacks presented in [20] are based on the fact that, when certain conditions on the
elements of array P are satisfied then sr(i) = sr+2(j), where r denotes the round and i, j (0 ≤ i, j ≤ 31)
denote the bit positions.

We now examine the effect of constant rotation (say c) in step 4 of the PRBGs of TPy and TPypy
(see Algorithm 5).

sr(i) = ROTL32(sr−1 + Yr[Pr[72]] − Yr[Pr[239]], c)i (21)

= (sr−1 + Yr[Pr[72]] − Yr[Pr[239]])i−c mod 32. (22)

Let k denote i − c mod 32. Therefore,

sr(i) = sr−1(k) ⊕ Yr[Pr[72]]k ⊕ Y c
r [Pr[239]]k ⊕ er(k),

where e denotes the carry term generated in (22) and er(0) = 1.
Similarly, if l denotes j − c mod 32, we have,

sr+2(j) = sr+1(l) ⊕ Yr+2[Pr+2[72]]l ⊕ Y c
r+2[Pr+2[239]]l ⊕ er+2(l). (23)

Again, we have

sr+1(l) = sr(m) ⊕ Yr+1[Pr+1[72]]m ⊕ Y c
r+1[Pr+1[239]]m ⊕ er+1(m), (24)

where m denotes l − c mod 32, and

sr(m) = sr−1(n) ⊕ Yr[Pr[72]]n ⊕ Y c
r [Pr[239]]n ⊕ er(n), (25)

where n denotes m − c mod 32. Substituting (24) and (25) in (23), we get that the expression for
sr(i) ⊕ sr+2(j) contains the term sr−1(k) ⊕ sr−1(n). It now follows that if k 6= n, it is very likely that the
terms sr(i) and sr+2(j) are not correlated. Besides, we have a number of Y -terms at different bit-positions
and the terms do not cancel out if i 6= j.

Now, n = j−3c mod 32 and k = i− c mod 32. Hence, when i = j, we have c 6= 0 in order that k 6= n

be satisfied. Thus, with c = 19, we expect that there will be no correlations in the output stream in order
that a distinguisher be built with data complexity less than that of exhaustive search. The constant 19
is not influenced by any factors and any non-zero constant is expected to work.
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Algorithm 2 Key setup: KS

Require: A key, an IV and an initial permutation
Ensure: An array Y [−3, . . . , 256] and a 32-bit variable s

keysizeb = size of key in bytes;

ivsizeb = size of IV in bytes;

YMININD=-3;

YMAXIND=256;

s = internal_permutation[keysizeb-1];

s = (s<<8) | internal_permutation[(s ^(ivsizeb-1))&0xFF];

s = (s<<8) | internal_permutation[(s ^ key[0])&0xFF];

s = (s<<8) | internal_permutation[(s ^ key[keysizeb-1])&0xFF];

for(j=0; j<keysizeb; j++)

{

s = s + key[j];

s0 = internal_permutation[s&0xFF];

s = ROTL32(s, 8) ^ (u32)s0;

}

/* Again */

for(j=0; j<keysizeb; j++)

{

s = s + key[j];

s0 = internal_permutation[s&0xFF];

s ^= ROTL32(s, 8) + (u32)s0;

}

/* Initialize the array Y */

for(i=YMININD, j=0; i<=YMAXIND; i++)

{

s = s + key[j];

s0 = internal_permutation[s&0xFF];

Y(i) = s = ROTL32(s, 8) ^ (u32)s0;

j = j+1 mod keysizeb;

}
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Algorithm 3 Part I of the IV setup algorithms of IV S1 and IV S2 - initialization of P and EIV

Require: The Y , the s from the key setup algorithm and the IV
Ensure: Rolling arrays P [0, . . . , 255], EIV [0, . . . , ivsizeb − 1], the variable s

/* Create an initial permutation */

u8 v= iv[0] ^ ((Y(0)>>16)&0xFF);

u8 d=(iv[1 mod ivsizeb] ^ ((Y(1)>>16)&0xFF))|1;

for(i=0; i<256; i++)

{

P(i)=internal_permutation[v];

v+=d;

}

/* Now P is a permutation */

/* Initialize s */

s = ((u32)v<<24) ^ ((u32)d<<16) ^ ((u32)P(254)<<8) ^ ((u32)P(255));

s ^= Y(YMININD)+Y(YMAXIND);

for(i=0; i<ivsizeb; i++)

{

s = s + iv[i] + Y(YMININD+i);

u8 s0 = P(s&0xFF);

EIV(i) = s0;

s = ROTL32(s, 8) ^ (u32)s0;

}

/* Again, but with the last words of Y, and update EIV */

for(i=0; i<ivsizeb; i++)

{

s = s + iv[i] + Y(YMAXIND-i);

/*s = s + EIV((i+ivsizeb-1)mod ivsizeb) + Y(YMAXIND-i); for IVS1.*/

u8 s0 = P(s&0xFF);

EIV(i) += s0;

s = ROTL32(s, 8) ^ (u32)s0;

}
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Algorithm 4 Part II of the IV setup algorithms IV S1 and IV S2- updating the rolling arrays and the
variable s
Require: Outputs of the Part I of IV setup
Ensure: The rolling arrays Y [−3, . . . , 256], P [0, . . . , 255] and the variable s

for(i=0; i<260; i++)

{

u32 x0 = EIV(0) = EIV(0) ^ (s&0xFF);

rotate(EIV);

swap(P(0), P(x0));

rotate(P);

Y(YMININD)=s=(s ^ Y(YMININD))+Y(x0);

/*s=ROTL32(s,8)+Y(YMAXIND);

Y(YMININD)+=s^Y(x0); for IVS1.*/

rotate(Y);

}

s=s+Y(26)+Y(153)+Y(208);

if(s==0)

s=(keysizeb*8)+((ivsizeb*8)<<16)+0x87654321;

Algorithm 5 Round functions: RF1 and RF2

Require: Y [−3, ..., 256], P [0, ..., 255], a 32-bit variable s

Ensure: 32-bit random output (for RF1) or 64-bit random output (for RF2)
/*Update and rotate P*/

1: swap (P [0], P [Y [185]&255]);
2: rotate (P );

/* Update s*/
3: s+ = Y [P [72]] − Y [P [239]];
4: s = ROTL32(s, ((P [116] + 18)&31));

/* Output 4 or 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25) ⊕ Y [256]) + Y [P [26]]);/* This step is skipped for RF1.*/
6: output (( s ⊕Y [−1]) + Y [P [208]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [153]];
8: rotate(Y );
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C Description of Algorithm C and Table 6

Here, we describe Algorithm C which constitutes the third for -loop of the key setup algorithm KS.

Algorithm C

for(i=YMININD, j=0; i<=YMAXIND; i++)

{

s = s + key[j];

s0 = internal_permutation[s&0xFF];

Y(i) = s = ROTL32(s, 8) ^ (u32)s0;

j = j+1 mod keysizeb;

}

Table 6: s and Y after rounds 15, 16 and 17 of Algorithm C given event D2 ∩ D1 occurs.

End of
round

s (using key1) s (using key2) Y (using key1) Y (using key2)

15 sC
1,15 sC

2,15 = sC
1,15 Y1[12] Y2[12] = Y1[12]

16 sC
1,16 sC

2,16 = sC
1,16 −

δ3 (say)
Y1[13] Y2[13] 6= Y1[13]

17 sC
1,17 sC

2,17 = sC
1,17

if key2[17] =
key1[17] + δ3

Y1[14] Y2[14] = Y1[14]
if key2[17] =
key1[17] + δ3

In Table 6,

δ3 = sC
1,16 − sC

2,16

= ROTL32((sC
1,15 + key1[16]), 8) ⊕ ip[B(sC

1,15 + key1[16])]

− ROTL32((sC
2,15 + key2[16]), 8) ⊕ ip[B(sC

2,15 + key2[16])]. (26)

D Related Keys When Size of the IV is Varied

As mentioned in Sect. 4.2, for longer IVs, one can induce the first difference in the keys (that is, where
the least significant bits alone differ) accordingly as the size of the IV used. For example, when the size
of the IV is 32 bytes, we take two keys, key1 and key2 (each key is 256 bytes long), such that,

1. key1[32] ⊕ key2[32] = 1,

2. the lsb of key1[32] is 1, and

3. key1[33] 6= key2[33].

4. key1[i] = key2[i] ∀i 6∈ {32, 33}.

More generally, if the IV is of size N bytes, the first difference in the keys should not be induced anywhere:
neither (1) in the first N − 1 bytes (i.e., key bytes 0 to N − 1), nor (2) in the last N − 3 bytes (i.e., key
bytes 260−N to 256). Otherwise, it is immaterial as to where the first difference is set, that is, anywhere
from byte N to byte 259 − N .
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