
Related-Key Boomerang and Rectangle Attacks

Eli Biham1, Orr Dunkelman1,�, and Nathan Keller2

1Computer Science Department, Technion,
Haifa 32000, Israel

{biham, orrd}@cs.technion.ac.il
2Einstein Institute of Mathematics, Hebrew University,

Jerusalem 91904, Israel
nkeller@math.huji.ac.il

Abstract. The boomerang attack and the rectangle attack are two at-
tacks that utilize differential cryptanalysis in a larger construction. Both
attacks treat the cipher as a cascade of two sub-ciphers, where there ex-
ists a good differential for each sub-cipher, but not for the entire cipher.
In this paper we combine the boomerang (and the rectangle) attack with
related-key differentials.

The new combination is applicable to many ciphers, and we demon-
strate its strength by introducing attacks on reduced-round versions of
AES and IDEA. The attack on 192-bit key 9-round AES uses 256 differ-
ent related keys. The 6.5-round attack on IDEA uses four related keys
(and has time complexity of 288.1 encryptions). We also apply these tech-
niques to COCONUT98 to obtain a distinguisher that requires only four
related-key adaptive chosen plaintexts and ciphertexts. For these ciphers,
our results attack larger number of rounds or have smaller complexities
then all previously known attacks.

1 Introduction

The boomerang attack [23] is an adaptive chosen plaintext and ciphertext attack
utilizing differential cryptanalysis [6]. The cipher is treated as a cascade of two
sub-ciphers, where a short differential is used in each of these sub-ciphers. These
two differentials are combined in an elegant way to suggest an adaptive chosen
plaintext and ciphertext property of the cipher that has high probability.

The boomerang attack was further developed in [18] into a chosen plaintext
attack called the amplified boomerang attack. The transformation uses birthday-
paradox techniques to eliminate the adaptive nature of the attack, by encrypting
large sets of plaintexts with the required input difference. After the encryption
of the plaintext pairs, the attacker searches for quartets of plaintexts that sat-
isfy the same conditions as if these quartets were constructed in the boomerang
process. The transformation to a chosen plaintext attack (instead of an adaptive
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chosen plaintexts and ciphertexts attack) has price both in a much larger data
complexity and a much more complicated algorithm for the identification of the
right quartets. After its introduction, the amplified boomerang attack was fur-
ther developed into the rectangle attack [4]. The rectangle attack uses a more
careful analysis that shows that the probability of a right quartet is significantly
higher than suggested by the amplified boomerang attack. An optimized algo-
rithm for finding and identifying the right rectangle quartets was given in [5].

Related-key attacks [1] consider the information that can be extracted from
two encryptions using related keys. The concept was used in [19] to present
the idea of related-key differentials. These differentials study the development of
differences in two encryptions under two related keys.

In this paper we show how to combine these attacks with related-key differ-
entials. In [20], a boomerang attack that uses one regular differential along with
one related-key differential is introduced. Both this paper and [16] independently
developed the idea of using two related-key differentials, one for each sub-cipher,
simultaneously. The major difference between this work and [16] is the idea of
using more than one key difference in the differentials to obtain much better
attacks.

The basic related-key boomerang attack (which is similar to the one presented
in [16]) is aimed against ciphers whose subkeys are linear functions of the key.
In this case, a fixed key difference yields a known subkey differences.

The more complicated version of the attack deals with ciphers whose subkeys
are not linear functions of the keys. In this case, the attacker has to take into
consideration the fact that the initial key difference does not guarantee the
subkey differences used in the differential. In order to overcome this problem, we
use differential properties of the key schedule algorithm and use several pairs of
keys. This leads to the introduction of structures of keys under which structures
of plaintexts are being encrypted or decrypted.

We take advantage of the fact that in boomerang and rectangle attacks the
used differentials are shorter, and thus the diffusion of differences in the subkeys
can be used better than in ordinary related-key differential case.

Finally, we apply our attack against several block ciphers:AES[12], IDEA [21],
and COCONUT98 [22]. The attack on 9-round AES-192 requires 287 related-key
chosen plaintexts (279 plaintexts encrypted under 256 different keys), and has
running time of 2125 encryption. The attack on 6.5-round IDEA requires 259.8

related-key chosen plaintexts (257.8 plaintexts encrypted under four keys), and
has time complexity of 288.1 encryptions. We also apply these techniques to CO-
CONUT98 to obtain a distinguisher that requires only four related-key adaptive
chosen plaintexts and ciphertexts encrypted under two different keys. We sum-
marize our results along with previously known results on the respective ciphers
in Table 1.

This paper is organized as follows: In Section 2 we give a brief description
of the boomerang and the rectangle attacks. In Section 3 we describe the new
related-key boomerang and rectangle attacks. In Section 4 we present a related-
key rectangle attack on 9-round AES-192 and 10-round AES-256. In Section 5
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Table 1. Summary of the Previous Attacks and of Our New Attacks

Cipher Number of Complexity Number of Source
Rounds Data Time Keys

AES-192 8 2128 − 2119 CP 2188 1 [14]
(12 rounds) 8 289 RK-CP 2183 2 [17]

8 286.5 RK-CP 286.5 4 [16]
9 286 RK-CP 2125 256 Section 4

AES-256 8 2128 − 2119 CP 2204 1 [14]
(14 rounds) 9 285 RK-CP 5 · 2224 256 [14]

10 2114.9 RK-CP 2171.8 256 Section 4

COCONUT98 full 216 ACPC 238 1 [23]

full† 4 RK-ACPC 1 2 Section 5

IDEA 5 224 CP 2126 1 [13]

(8.5 rounds) 5.5† 251.6 RK-ACPC 1 4 Section 6
6 251.6 RK-ACPC 248 4 Section 6

6.5 259.8 RK-CP 288.1 4 Section 6
† – Distinguishing attack, RK – Related-key, CP – Chosen plaintext,
ACPC – Adaptive chosen plaintext and ciphertext
Time complexity is measured in encryption units

we present a related-key boomerang distinguisher for COCONUT98. Section 6
describes our results on IDEA. Finally, Section 7 summarizes this paper.

2 Boomerang and Rectangle Attacks

The main idea behind the boomerang attack [23] is to use two short differentials
with high probabilities instead of one long differential with a low probability.
The motivation for such an attack is quite apparent, as in many block ciphers
it is easier to find short differential with high probability than to find a long
differential with high enough probability (or even impossible).

We assume that a block cipher E :{0, 1}n×{0, 1}k→{0, 1}n can be described
as a cascade, i.e., E = E1 ◦E0, such that for E0 there exists a differential α → β
with probability p, and for E1 there exists a differential γ → δ with probability q.
The distinguisher is the following boomerang process:

– Ask for the encryption of a pair of plaintexts (P1, P2) such that P1⊕P2 = α,
and denote the corresponding ciphertexts by (C1, C2).

– Calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask for the decryption of the
pair (C3, C4). Denote the corresponding plaintexts by (P3, P4).

– Check whether P3 ⊕ P4 = α.

The boomerang attack uses the first differential (α → β) for E0 with respect to
the pairs (P1, P2) and (P3, P4), and uses the second differential (γ → δ) for E1

with respect to the pairs (C1, C3) and (C2, C4). The first differential is used in
the backward direction for the pairs (P3, P4), and the second differential is used
in the backward direction for both respective pairs.
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For a random permutation the probability that the last condition is satisfied
is 2−n. For E, the probability that the pair (P1, P2) is a right pair with respect
to the first differential (α → β) is p. The probability that both pairs (C1, C3)
and (C2, C4) are right pairs with respect to the second differential is q2. If all
these are right pairs, then E−1

1 (C3) ⊕ E−1
1 (C4) = β = E0(P3) ⊕ E0(P4), and

thus with probability p, P3 ⊕ P4 = α. The total probability of this quartet of
plaintexts and ciphertexts to satisfy the boomerang conditions is (pq)2.

The attack can be mounted for all possible β’s and γ’s simultaneously (as
long as β �= γ). Thus, a right quartet for E is encountered with probability no
less than (p̂q̂)2, where:

p̂ =
√∑

β

Pr 2[α → β], and q̂ =
√∑

γ

Pr 2[γ → δ].

For the complete analysis of the boomerang attack see [23].
As the boomerang attack requires adaptive chosen plaintexts and ciphertexts,

many of the techniques that were developed for using distinguishers in key recov-
ery attacks cannot be applied. This led to the introduction of a chosen plaintext
variant of the boomerang attack called the amplified boomerang attack [18]. The
key idea behind the transformation is to encrypt many plaintext pairs with input
difference α, and to look for quartets that conform to the requirements of the
boomerang process.

This kind of transformation is common, and can be achieved by birthday-
paradox arguments. A more careful analysis shows that two pairs, (P1, P2 =
P1 ⊕ α) and (P3, P4 = P3 ⊕ α), form a right quartet if three conditions are
satisfied:

1. E0(P1) ⊕ E0(P2) = β = E0(P3) ⊕ E0(P4).
2. E0(P1) ⊕ E0(P3) = γ (which leads to E0(P2) ⊕ E0(P4) = γ if this condition

and the previous one hold).
3. C1 ⊕ C3 = δ = C2 ⊕ C4.

The usual assumptions are that each of these conditions is independent of the
rest, and that the probability that a quartet would become a right quartet is
p2 · 2−n · q2. We note that if the conditions are dependent on each other, refined
algorithms may use these relations for achieving higher probabilities. The low
probability follows from the fact that the event E0(P1) ⊕ E0(P3) = γ occurs with
probability of 2−n. The analysis in [18] shows that out of N plaintext pairs, the
number of right quartets is expected to be N22−(n+1)p2q2.

Besides the lower probabilities, the transformation into a chosen plaintext
attack introduces the problem of identifying the right quartets. In the boomerang
attack the pair (P3, P4) that we test is known. In the amplified boomerang attack,
this is not the case. Instead, the attacker has to search for the right quartets
among all possible quartets.

The rectangle attack [4] shows that it is possible to use all the possible β’s
and γ’s simultaneously, and presents additional improvements over the amplified
boomerang attack. These improvements increase the probability of a quartet to
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be a right quartet, and N plaintext pairs with input difference α are expected to
produce N22−np̂2q̂2 right quartets1, where p̂ and q̂ are as defined above. In [5]
an optimized method of finding the right rectangle quartets is presented.

3 Related-Key Boomerang and Rectangle Attacks

A regular differential deals with some plaintext difference ∆P and a ciphertext
difference ∆C such that

Pr P,K [EK(P ) ⊕ EK(P ⊕ ∆P ) = ∆C]

is high enough (or zero [3]). The common assumption is that this probability is
quite uniform over all keys and plaintexts. If this is not the case, a weak key
class can be found, i.e., a set of keys for which the above probability is far from
average (either very high or very low).

A related-key differential is a triplet of a plaintext difference ∆P , a ciphertext
difference ∆C, and a key difference ∆K, such that

Pr P,K [EK(P ) ⊕ EK⊕∆K(P ⊕ ∆P ) = ∆C]

is high enough (or zero). Again, there is an assumption that this probability
is independent of P and K. Sometimes the relation between the keys is more
complex than XOR with some constant ∆K (see [1, 9]), but for sake of simplicity
we shall deal only with this kind of relation in this paper, even though our
technique is not restricted for this case.

3.1 Related-Key Boomerang Attacks

Let us assume that we have a related-key differential α → β of E0 under a key
difference ∆K0 with probability p. Assume also that we have another related-key
differential γ → δ for E1 under key difference ∆K1 with probability q.

The related-key boomerang process involves four different unknown (but re-
lated) keys — Ka, Kb = Ka⊕∆K0, Kc = Ka⊕∆K1, and Kd = Ka⊕∆K0⊕∆K1.
The attack is performed by the following algorithm:

– Choose a plaintext Pa at random and compute Pb = Pa ⊕ α.
– Ask for the encryption of Px under Kx, i.e., Ca = EKa

(Pa) and Cb =
EKb

(Pb).
– Compute Cc = Ca ⊕ δ and Cd = Cb ⊕ δ.
– Ask for the decryption of Cx under Kx, i.e., Pc = E−1

Kc
(Cc) and Pd =

E−1
Kd

(Cd).
– Test whether Pc ⊕ Pd = α.

1 This number is a lower bound for the expected number. For the complete analysis
see [4].
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Fig. 1. A Related-Key Boomerang Quartet

It is easy to see that for a random permutation, the probability that the last
condition is satisfied is 2−n. For E the probability that this condition is satisfied
is p2q2 just like for a regular boomerang attack. Figure 1 outlines a quartet
satisfying all the required conditions.

The attack can use multiple differentials for E0 and E1 (just like in a regular
boomerang attack), under the strict condition that all related-key differentials
used in E0 have the same key difference ∆K0 and the same input difference α,
and that all related-key differentials used in E1 have the same key difference
∆K1 and the same output difference δ. Thus, the probability of a quartet to be
a right quartet is p̂2q̂2.

When the key schedule algorithm is linear then given a key difference all
subkey differences are known, and are easily predicted. In this case the attack
algorithm from [5] can be adapted. Otherwise, if the key schedule algorithm is
non-linear, the exact key difference needed to satisfy the subkey differences of
the related-key differential might be unknown. In the latter case, the attacker
examines the differential properties of the key schedule algorithm and computes
the probability that a given key differences evolves into the required subkey dif-
ferences. Then, the attacker repeats the attack with various key differences, such
that in one (or more) of the cases, the key difference causes the subkey differ-
ences needed for the related-key differential. Note that this attack is actually a
multiple application of the basic related-key boomerang/rectangle attacks. An
example of such an attack is the attack on AES-192 presented in Section 4.

3.2 Related-Key Rectangle Attack

The transformation of the related-key boomerang attack into a related-key rect-
angle attack is similar to the transformation of the boomerang attack into the
rectangle attack. Assume that E can be decomposed as before, where α, δ, p̂, and
q̂ have the same meaning. Then, related-key rectangle distinguisher is as follows:

– Choose N plaintext pairs (Pa, Pb = Pa ⊕ α) at random and ask for the
encryption of Pa under Ka and of Pb under Kb.
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– Choose N plaintext pairs (Pc, Pd = Pc ⊕ α) at random and ask for the
encryption of Pc under Kc and of Pd under Kd.

– Search for quartets of plaintexts (Pa, Pb, Pc, Pd) and the corresponding ci-
phertexts (Ca, Cb, Cc, Cd), satisfying Ca ⊕ Cc = Cb ⊕ Cd = δ.

The analysis of the related-key rectangle attack is similar to the analysis
of the rectangle attack (with the same modifications that were presented at
the related-key boomerang attack). Starting with N plaintext pairs with input
difference α to be encrypted under Ka and Kb, we expect N22−n(p̂q̂)2 right
quartets. We note that under the requirement that we encrypt distinct values N
is no longer bounded by 2n−1 (as in the rectangle attack), but rather can be up
to 2n pairs in most of the cases (when ∆K0 = 0,∆K1 = 0, or ∆K0 = ∆K1 the
value of 2n−1 is still the bound).

The step of finding the right quartets is technical in nature (the simplest
algorithm is trying all possible quartets, which is very inefficient). When the key
difference predicts the required subkey differences with probability 1, then the
attack algorithm of [5] can be easily adapted. Otherwise, we have to perform
a method similar to the one of the boomerang attack — repeat the attack for
several quartets of keys.

4 Related Key Rectangle Attacks on AES-192

The advanced encryption standard [12] is an SP-network that supports key sizes
of 128, 192, and 256 bits. The 128-bit plaintexts are treated as byte matrices of
size 4x4, where each byte represents a value in GF (28). An AES round applies
four operations to the state matrix: SubBytes (SB) – applying the same S-box
16 times in parallel on each byte of the state, ShiftRows (SR) – cyclic shift of
each row (the i’th row is shifted by i bytes to the right), MixColumns (MC) –
multiplication of each column by a constant 4x4 matrix over the field GF (28),
and AddRoundKey (ARK) – XORing the state and a 128-bit subkey.

The MixColumns operation is omitted in the last round, and an additional
AddRoundKey operation is performed before the first round (a whitening key).
We denote the subkey of round i by superscript Ki+1, i.e., the first (whitening)
key is K0, the subkey of the first round is K1, etc. We also denote the byte in
the i’th row and the j’th column of the state matrix by byte j ∗ 4 + i, where
i, j ∈ {0, 1, 2, 3}.

The number of rounds depends on the key length: 10 rounds for 128-bit
keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. The rounds are
numbered 0, . . . , Nr− 1, where Nr is the number of rounds (Nr ∈ {10, 12, 14}).
For sake of simplicity we shall denote AES with n-bit keys by AES-n, i.e., AES
with 128-bit keys (and thus with 10 rounds) is denoted by AES-128.

The best published differential-based attack on AES is a boomerang attack
on a 6-round reduced version of AES-128 [7]. The attack requires 271 adaptive
chosen plaintexts and ciphertexts, and its time complexity is equivalent to 271

encryptions. The best known attack on AES-192 is a SQUARE attack on 8
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rounds [14]. The attack requires almost the entire code book (2128 − 2119 cho-
sen plaintexts) and has a time complexity equivalent to 2188 encryptions. The
best related-key attack against AES-192 is a related-key rectangle attack on 8
rounds [16]. It requires 286.5 chosen plaintexts (encrypted under four keys) and
has a time complexity equivalent to 286.5 encryptions.

In this section we present a related-key rectangle attack on 9-round AES-
192. The attack has data complexity of 287 related-key chosen plaintexts (279

chosen plaintexts encrypted under 256 keys), and time complexity of 2125 en-
cryptions. By using similar techniques, one can attack 10-round AES-256 using
2114.9 related-key chosen plaintexts (2106.9 chosen plaintexts encrypted under
256 keys) with time complexity of 2171.8 encryptions.

We concentrate on AES-192, as it demonstrates our attack when the key
schedule is not linear, but is still very close to linear. The attack uses structures
of plaintexts, encrypted under structures of keys, where the structures of keys are
sets of keys selected to assure that there exists a quartet of keys whose subkeys
satisfy the required differences.

4.1 Preliminaries for the Attack on 9-Round AES-192

The application of the related-key rectangle attack to AES-192 is as follows:
We start by finding two good related-key differentials. In the second differential
the key difference cannot guarantee the required subkey differences needed for
the differential. Thus, we repeat the attack with 127 key differences, as we are
assured that for at least one of these values the subkey differences are satisfied.

We decompose 9-round AES-192 (starting in the third round — rounds 2–10)
as follows: rounds 2 and 3 are the rounds before the distinguisher, rounds 4–6
are E0 (without the key addition of round 6), rounds 7–9 (with the key addition
of round 6) are E1, and round 10 is the round after the distinguisher.

Let θ0 be a fixed 8-bit known non-zero difference, and let θ = (θ0, 0, 0, 0) be
a 32-bit difference (the three 0’s are byte differences). Let χ = (χ0, χ1, χ2, χ3) =
MC(θ), where χi are non-zero byte differences, and MC is the MixColumns op-
eration. The value of χ is known as the MC operation is linear, thus, differentials
propagate linearly through it as well.

Let θ by an input difference to the MC(BS()) operations. We denote all 127
possible output differences by MB, i.e., MB = {MC(BS(x))⊕MC(BS(x⊕θ)).

4.2 The First Differential (E0)

The first differential (for rounds 4–6) is as follows: the subkey difference of K4 is
equal to the input difference and being of the form α = ∆K4 = (0, 0, χ, χ) (here
the 0’s are 32-bit differences). After the key addition, the difference of the data
is zero, which remains through round 4 with probability 1. We set ∆K5 = 0,
and we get that the zero difference remains after round 5 with probability 1 as
well. Then, the subkey difference ∆K6 is necessarily (χ, 0, 0, 0), which leads to
the activation of four S-boxes at round 6. As χi are all known and fixed, there
are 127 possible output differences in each of the four active S-boxes, of which
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Fig. 2. The First Differential Used in the Attack (and the Two Preceding Rounds)

one occurs with probability 2−6, and the rest with probability 2−7. Therefore,
the probabilities of the 1274 β output differences are distributed as follows: one
has probability 2−24, 4 ·126 have probability 2−25, and so forth, up to 1264 with
probability 2−28. As we use all these differentials simultaneously, we get that
p̂ =

√∑
β Pr 2[α → β] = 2−13.96.

We note that the above describes a differential characteristic (we predict
the development of the difference in all rounds). In the case of the AES, the
probability that α → β is very close to the probability of the characteristic.

We look for the (related-key) input difference to round 2 that leads to an
α difference at the input of round 4. The input difference for round 2 consists
of four S-boxes with a zero input difference (bytes 9, 10, 14, 15), three S-boxes
whose non-zero difference is known (bytes 3, 4, 5), two additional S-boxes with
unknown non-zero difference (bytes 11, 12), and the remaining seven S-boxes
can have any difference. We denote the difference in the bytes whose difference
is known by ∆M0, where we put zeroes in the bytes whose difference in unknown
(∆M0 has four non-zero bytes). We outline these differences of the differential
and the preceding rounds in Figure 2. The first differential’s key difference is
∆K0 = (χ, 0, 0, 0, χ, 0), and we outline the subkey differences in Table 2.

4.3 The Second Differential (E1)

The second differential predicts the differences in E1 (rounds 7–9). The input
difference γ equals the subkey difference, and both are γ = ∆K7 = (0, 0, θ, θ).
Thus, after the key addition the difference is zero, which passes with probability 1
through round 7. We take ∆K8 = 0, and thus, the zero difference remains with
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Table 2. Subkey Differences for the Key Difference ∆K0 = (χ, 0, 0, 0, χ, 0) (The subkey

differences of the differential are in bold)

Subkey Difference Subkey Difference Subkey Difference Subkey Difference

K0 (χ, 0, 0, 0) K2 (χ, χ,0,0) K4 (0,0, χ, χ) K6 (χ,0,0,0)
K1 (χ, 0, χ, χ) K3 (χ,0, χ,0) K5 (0,0,0,0)
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Fig. 3. The Second Differential Used in the Attack (and the Following Round)

probability 1 also after round 8. Once we select ∆K7 and ∆K8, then necessarily
∆K9 = (θ, 0, 0, 0). Thus, the key mixing before round 9 introduces a difference
θ0 in byte 0. This byte difference creates a difference in a full column before the
addition of K10. The subkey difference is ∆K10 = (0, 0, θ, θ), hence, the output
difference δ of the differential has four active bytes (in bytes 0, . . . , 3) and twelve
bytes with a zero difference. The difference in bytes 0, . . . , 3 is unknown but is
restricted to a set of 127 possible differences. We outline the differences of this
differential and the following round in Figure 3. We note that the differential
has probability 1, leading to q̂ = 1.

The subkey differences of the second differential are given in Table 3. The key
difference that achieves the required subkey differences for the second differential is
of the form ∆K1 = (µ, θ ⊕ µ, θ, 0, θ, 0), where µ = (0, µ1, 0, 0) and θ0 → µ1 by the
S-box. The exact value of µ1 is unknown, but µ1 must be one of 127 possible values.

4.4 The Structure of Keys

Let Ka be the unknown key which we would like to recover. The related-key
that is required for the first differential is Kb = Ka ⊕ ∆K0.
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Table 3. Subkey Differences for the Key Difference ∆K1 = (µ, θ ⊕ µ, θ, 0, θ, 0) (The

subkey differences in the rounds of the attack are in bold)

Subkey Difference Subkey Difference Subkey Difference Subkey Difference

K0 (µ, θ ⊕ µ, θ, 0) K3 (θ, 0, 0, 0) K6 (θ, 0, θ, 0) K9 (θ,0,0,0)
K1 (θ, 0, µ, θ) K4 (θ, 0, θ, θ) K7 (0,0, θ, θ) K10 (0,0, θ, θ)
K2 (0, 0, θ, θ) K5 (θ, θ, 0, 0) K8 (0,0,0,0) K11 (θ, θ, θ, θ)

Table 4. The Keys Required for the Related-Key Rectangle Attack

Key Values # Key Values #

Ka Ka 1 Kc {Ka ⊕ (µ, θ ⊕ µ, θ, 0, θ, 0)} 127
Kb Ka ⊕ (χ, 0, 0, 0, χ, 0) 1 Kd {Ka ⊕ (µ ⊕ χ, θ ⊕ µ, θ, 0, θ ⊕ χ, 0)} 127

Examine Ka and the subkey differences needed for the second differential.
There are 127 possible related keys with which Ka may have the required subkey
differences. Denote this set of keys by KSc, which is actually all the keys that
satisfy Ka ⊕ ∆K1 for some value of µ1, where µ = (0, µ1, 0, 0) and ∆K1 =
(µ, θ ⊕ µ, θ, 0, θ, 0). One key of this set satisfies the required subkey differences
with respect to Ka, and we denote it by Kc.

We denote the key with difference ∆K0 from Kc by Kd, i.e., Kd = Kc⊕∆K0.
If we want to use the four keys, it must hold that Kb and Kd have the subkey
difference required by the second differential, i.e., Kb = Kd ⊕ ∆K1. In this case
this is true, as there is no difference between Ka and Kb in the word that we
need the equality (for the S-box application). Thus, Ka ⊕Kc = Kb ⊕Kd is true.
We outline the sets of keys in Table 4.

Note that we can choose a smaller number of keys, such that using the
birthday-paradox we get with high probability the required quartets of keys,
but then the attack may fail in a small fraction of the cases.

4.5 The Attack

The main idea of the attack is to try all possible quartets of keys (Ka,Kb,Kc,Kd)
that can satisfy the required subkey differences, by performing the rectangle
attack from [5] on each of these possibilities. The attack presented here is an
optimized version of this idea, in which we take advantage of the fact that
once the keys with the right relations are encountered, then there is no need
to continue the attack for other quartets of keys. The attack algorithm is as
follows:

1. Data Generation:
(a) Generate 64 structures Sa

1 , . . . , Sa
64 of 272 plaintexts each, where in each

structure the 56 bits of bytes 3, 4, 5, 9, 10, 14, 15 are fixed. Ask for the
encryption of the structures under Ka.
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(b) XOR any plaintext encrypted under Ka with ∆M0, and ask for the
encryption of the resulting plaintext under Kb (to obtain Sb

1, . . . , S
b
64).

(c) For any possible value µ1 such that θ0 → µ1, let ∆K1 = (µ, θ⊕µ, θ, 0, θ, 0),
perform:
i. Generate 64 structures Sc′

1 , . . . , Sc′
64 of 272 plaintexts each, where in

each structure the 56 bits of bytes 3, 4, 5, 9, 10, 14, 15 are fixed. Ask
for the encryption of the structure under Kc′ = Ka ⊕ ∆K1.

ii. XOR any plaintext encrypted under Kc′ with ∆M0, and ask for the
encryption of the resulting plaintexts under Kd′ = Kc′ ⊕ ∆K0 (to
obtain Sd′

1 , . . . , Sd′
64).

2. Data Analysis: For any Kc′ , the respective Kd′ , and the corresponding struc-
tures:
(a) For any pair of structures Sb

i , S
d′
j perform:

i. Insert the 272 ciphertexts of Sb
i , S

d′
j into a hash table indexed by the

80 bits of bytes 4, 5, 6, 7, 9, 10, 11, 13, 14, 15. About 272 ·272/280 = 264

collisions are expected.
ii. For each 80-bit collision (where one ciphertext is from Sb

i and one is
from Sd′

j ) check that the ciphertext difference in bytes 2 and 3 may
be caused by an input difference θ0 to the S-box. If this is not the
case, discard the pair.

iii. For each of the expected 262 remaining pairs, try all 232 possible
values of bytes 0, 7, 10, 13 of K11, and partially decrypt the pair. If
the difference of the partially decrypted pair is in MB, add the pair
to a list of pairs related to the subkey. We note that each pair is
expected to be in 127 lists, and that each list contains about 127 ·
230 ≈ 237 pairs.

(b) Insert all the ciphertexts of Sa
1 , . . . , Sa

64, S
c′
1 , . . . , Sc′

64 into a hash table
indexed by the 80 bits of bytes 4, 5, 6, 7, 9, 10, 11, 13, 14, 15. About 278 ·
278/280 = 276 collisions are expected.

(c) For each pair of ciphertexts that collide on the 80 bits (one encrypted
under Ka and one under Kc′) do:
i. Check that the ciphertext difference in bytes 2 and 3 may be caused

by an input difference θ0 to the S-box. If this is not the case, discard
the pair. (about 1/4 of the pairs remain after this step).

ii. Let Ca ∈ Sa
l and Cc′ ∈ Sc′

m be the colliding ciphertexts, and Pa and
Pc′ the respective plaintexts. Try all 232 values for the bytes 0, 7, 10, 13
of K11, and partially decrypt the pair. If the difference of the par-
tially decrypted values is in MB, access the list of pairs that corre-
sponds to this subkey guess and the structures Sb

l , S
d′
m from Step 2(a)

(iii). Consider the pair Pa, Pc′ , and each of the 237 pairs of plaintexts
under that subkey (as part of Kb and Kd′) as a candidate quartet
(this leads to a total of 244 candidate quartets with Pa and Pc′).

iii. For any candidate quartet:
– Check what is the key value for which the pairs (Ca, Cc′) and

(Cb, Cd′) are partially decrypted to have a θ0 difference in byte 8.
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This operation can be performed efficiently using precomputed
tables.

– Do the same for byte 12 of the ciphertext pairs.
– Check what is the key value for which the pairs (Pa, Pb) and

(Pc′ , Pd′) are partially encrypted to have a θ0 difference in byte 2.
– Check what is the key value for which the pairs (Pa, Pb) and

(Pc′ , Pd′) are partially encrypted to have a (x, 0, 0, 0) difference
in bytes 1,5,11,12, where x → θ0 by the S-box.

– Do the same for the bytes 2, 7, 8, 13 of the plaintext pairs for the
difference (x ⊕ χ0, χ1, χ2, χ3), where x → θ0 by the S-box.

iv. If some quartet still remains at this point, assume that the subkey
that it suggests is the correct one. Either perform an exhaustive key
search on the remaining key bits, or use key ranking methods to find
the right key.

4.6 Analysis of the Attack

We note that the first two tests of Step 2(c)(iii) can be done efficiently by com-
puting for each pair independently the possible subkey values for which the
condition is satisfied. Then, these tests are reduced to the problem of finding the
intersection of these lists.

Once a right quartet is encountered, then it suggests the right value for 120
subkey bits (the relation between Ka and Kc suggests seven more bits of the
key). Due to technical reasons, the time complexity of this search is 2112 (and
not 265 as might be expected).

For a given Kc′ value, out of the 274 · 244 = 2118 quartets composed in
Step 2(c)(ii), we expect 260 quartets to reach Step 2(c)(iv) (a quartet has a
probability of 2−7 to pass each of the first two tests, a probability of 2−8 to pass
the third test, and a probability of 2−18 to pass each of the last two tests). The
time complexity of the attack is 127 · 2112 · 260 ≈ 2179 encryptions.

If we take twice the data (i.e., 128 structures of 272 encrypted under each
key), we expect four right quartets. In that case, for any guess of the relation
between Ka and Kc′ , we shall perform the exhaustive search on the remaining
key bits only if the same 120-bit value is suggested by two (or more) quartets.
The time complexity in this case is dominated by the filtering done in Step 2(c),
and is equal to 2118 encryptions for a given Kc′ . Repeating the attack for every
Kc′ (until one succeeds) has a worst-case time complexity of 2125 encryptions.

We conclude that the data complexity of our attack is 287 chosen plaintexts,
encrypted under 256 related keys (each key is used to encrypt 279 values). The
time complexity of the attack is 2125 9-round encryptions.

The application of the attack to 10-round AES-256 is very similar. The at-
tack AES-192). The data complexity of the attack is 2114.9 related-key chosen
plaintexts (encrypted under 256 related keys) and the time complexity is 2171.8

encryptions.
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5 Related-Key Boomerang Distinguisher for
COCONUT98

COCONUT98 is a block cipher built according to the decorrelation method-
ology [22]. It contains two 4-round Feistel constructions with a decorrelation
module in between. The differential (and linear) behavior of the decorrelation
module is optimal in the sense that given a non-zero input difference, the proba-
bility to get any non-zero output difference is equal, when taken over all the keys.
However, for any given key, the decorrelation module is an affine permutation.

The key schedule algorithm of COCONUT98 takes 256-bit keys, and divides
them into two parts: a 128-bit subkey that enters the decorrelation module, and
four 32-bit values, denoted by K1,K2,K3, and K4 that are used to derive the
eight subkeys for the Feistel rounds. The subkeys of the first 4-round Feistel
construction are: K1,K1 ⊕ K3,K1 ⊕ K3 ⊕ K4,K1 ⊕ K4, and the subkeys of the
last 4-round Feistel construction are K2,K2 ⊕ K3,K2 ⊕ K3 ⊕ K4,K2 ⊕ K4.

The round function of the Feistel construction of COCONUT98 is

Fi((x, y)) = (y, x ⊕ φ((ROL11(φ(y ⊕ ki)) + c) mod 232))
where φ(x) = (x + 256 · S(x&FFx)) mod 232

where S(·) is an 8-bit to 24-bit S-box, c is a known 32-bit constant, & is the
AND operator, and ki is the 32-bit round subkey.

Our decomposition of COCONUT98 to sub-ciphers is as follows: the first
sub-cipher consists of the first 4-round Feistel construction and the decorrelation
module (denoted by DM). The second sub-cipher consists of the remaining 4-
round Feistel construction.

For the first sub-cipher we use following related-key differential: Let the key
difference be ∆K0 = (0, 0, z, z, 0, 0, 0, 0), then the differential is:

(z, 0) → (0, z) → (z, 0) → (0, z) → (0, z)
DM−−→ (z1, z2)

for some two unknown fixed (z1, z2), with probability 1. This is due to the fact
that in each round where a difference z enters the round function, there is a
subkey difference z to cancel it.

The related-key differential for the second sub-cipher is similar — the key
difference is ∆K1 = (0, 0, z, z, 0, 0, 0, 0) and the second differential is:

(z, 0) → (0, z) → (z, 0) → (0, z) → (z, 0)

with probability 1.
We note that ∆K0 = ∆K1. Hence, Kc = Ka ⊕∆K1 = Ka ⊕∆K0 = Kb, and

Kd = Kb ⊕ ∆K1 = Ka.
Thus, to find whether a given black box is COCONUT98, one can use the

following algorithm:
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Fig. 4. One Round of IDEA

– Choose a non-zero value z of 32 bits. Choose a plaintext Pa.
– Ask the encryption of Pa under the key Ka, and denote the ciphertext by

Ca. Ask the encryption of Pb = Pa ⊕ (z, 0) under the related-key Kb, and
denote the ciphertext by Cb.

– Compute Cc = Ca ⊕ (z, 0) and Cd = Cb ⊕ (z, 0).
– Ask the decryption of Cc under Kc = Kb to obtain Pc. Ask the decryption

of Cd under Kd = Ka to obtain Pd.
– If Pc ⊕ Pd = (z, 0), then output COCONUT98.

We note that if the key of the decorrelation module is such that the input dif-
ference of (z, 0) to the decorrelation module remains (z, 0) after the module, then
we get a related-key differential with probability 1 for the entire COCONUT98
cipher. Otherwise, as (z, 0) �→ (z, 0) we get a related-key impossible differential
(due to the miss in the middle attack [3, 2]).

We conclude that COCONUT98 can be easily distinguished using one related-
key adaptive chosen plaintext and ciphertext quartet under two keys. By using
two different z values, one for the first differential, and one for the second differ-
ential, the distinguisher remains the same in nature, but uses four keys instead
of two.

6 Related-Key Rectangle Attack on IDEA

IDEA [21] is a 64-bit block cipher with 128-bit keys. It uses a composition of
XOR operations, additions modulo 216 and multiplications over GF (216 + 1). It
has 8.5 rounds — 8 full rounds as described in Figure 4, and a final half-round
consists of a layer of key additions and multiplications (Zj

i are round subkeys).
IDEA’s key schedule is linear: each subkey is composed of bits of the key.

Since its introduction in 1991, IDEA has resisted a comprehensive cryptan-
alytic effort [10, 15, 2, 8, 13]. The best known attack against IDEA is on 5-round
reduced version of IDEA. The attack uses 224 chosen plaintexts and has a time
complexity of 2116 encryptions [13]. IDEA also has several weak key classes. The
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largest weak key class (identified by a boomerang technique) contains 264 keys,
and the membership test requires 216 adaptive chosen plaintexts and ciphertexts
and has a time complexity of 216 encryptions [8].

Basically, our rectangle attack on 6.5-round IDEA uses a 6-round boomerang
attack. The 6.5 rounds that we attack, start before the first MA function.

6.1 A Related-Key Boomerang Distinguisher for 5.5-Round IDEA

The 5.5-round distinguisher is used in rounds 2–6.5 (from the second round).
The decomposition of the 5.5-round IDEA into sub-ciphers is as follows: The
first sub-cipher has three rounds, while the second sub-cipher has two and a half
rounds.

The input difference to round 2 (and the first sub-cipher) is α=(0x, 0x, 8000x,
0x). The key difference ∆K0 = e25 (where ei is a difference only in the i’th bit).
The input difference is cancelled by the subkey difference, and the zero difference
remains with probability 1 up to the MA of round 4. The key difference enters
Z4

5 , leading to an unknown β difference after the MA. However, there are at most
232 β values after the MA, and in the worst case all of them are equiprobable
with probability 2−32. As we use all these differentials simultaneously, we obtain
that p̂ = 2−16.

The second differential has a similar structure (but in the backward direc-
tion). The output difference is δ = (0x, 0x, 0100x, 0x) and the key difference is
∆K1 = e75. In the decryption of a pair with difference δ, the key difference
cancels the difference with probability 1/2. If this is the case, the zero differ-
ence remains through the decryption up till the first half round of round 5. This
time, there are only 216 possible γ values, and in the worst case, all of them are
equiprobable 2 with probability 2−17. Again, we use all of them simultaneously,
and thus, q̂2 = 216 · 2−34 = 2−18, and q̂ = 2−9. We note that there are 8 more δ
values (and respective ∆K1 value) for which the attack can be mounted.

This leads to a distinguishing attack on a 5.5-round IDEA using 251.6 quar-
tets of adaptive chosen plaintexts and ciphertexts (249.6 values are to be en-
crypted/decrypted under four keys).

6.2 A Related-Key Boomerang Attack on 6-Round IDEA

Let Ka be the unknown key, Kb = Ka ⊕ e25, Kc = Ka ⊕ e75, and Kd = Ka ⊕
e25 ⊕ e75. The boomerang attack on six rounds of IDEA (starting at the MA in
round 1 till before the MA in round 7) is as follows:

1. For each guess of bits 64–95 of Ka set a counter initialized to 0.
2. Choose 217.6 32-bit value (r, t), and for each such value:

– Choose a structure A of 232 plaintexts of the form (x, y, z, w), such that
x ⊕ z = t and y ⊕ w = r.

2 We have checked the claim experimentally. The values are not equiprobable, and the
true value is q̂ > 2−8.8. For more than 99% of the keys q̂ > 2−8.
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– Choose a structure B of 232 plaintexts of the form (x, y ⊕ 8000x, z, w),
such that x ⊕ z = t and y ⊕ w = r.

– Ask for the encryption of the structure A under Ka to receive A′ and
similarly ask for the encryption of B under Kb to receive B′.

– For any ciphertext in A′ compute its XOR with the output difference of
the second differential to obtain C ′. Ask for the decryption of C ′ under
Kc to obtain C.

– For any ciphertext in B′ compute its XOR with the output difference of
the second differential to obtain D′. Ask for the decryption of D′ under
Kd to obtain D.

– Insert all the plaintexts in C and D to a hash table indexed by the XOR
value of the first and third word and by the XOR value of the second
and fourth words.

– Examine a pair of colliding plaintexts (Pc, Pd). Let Pa be the plaintext
that was encrypted, δ-shifted, and decrypted to Pc, and let Pb be the
plaintext that was encrypted, δ-shifted and decrypted to Pd. For any
guess of the bits 64–95 of Ka:
(a) Partially encrypt Pa, Pb, Pc, Pd through the first MA. If the differ-

ences of the partial encryptions of Pa and Pb, and of the pair Pc and
Pd are both α continue the analysis, if not so, try the next subkey.

(b) Verify that the difference after a partial decryption of the respective
ciphertext pairs is zero (bits 64–95 of the subkey contain the entire
subkey which deals with the third word of the ciphertext). If this is
the case, increment the counter of the subkey.

3. Output the subkey whose counter is maximal.

The structures are chosen so that in each pair of structures A,B there are 232

pairs with input α after the first MA. For each such pair of structures we expect
232 pairs of plaintexts (Pc, Pd) that are analyzed. Under random distribution
assumptions, 232 quartets from each pair of structures are encountered. However,
most of them are discarded, and wrong quartet has probability of 2−32 to agree
on the subkey of the first MA. Hence, we have about 217.6 quartets in total, each
suggesting 32-bit subkey value. The second filtering done, reduces this number
by a factor of four.

We conclude that the attack suggests 215.6 possible values to 32 bits of the key.
As we expect four right quartets, then the right value is expected to be with the
maximal counter with very high probability. The data complexity of the attack
is 251.6 adaptive chosen plaintexts and ciphertexts. The time complexity of the
attack is 251.6 MA evaluations which are equivalent to about 248 encryptions.

6.3 A Related-Key Rectangle Attack on 6.5-round IDEA

The attack can be extended to a rectangle attack on 6.5-round IDEA. The 6.5
rounds starts after the first half round, and end after round 7. We use the same
differentials as before. The algorithm of the attack is as follows:

– Choose 225.8 values of the pair (r, t). Generate two structures of plaintexts
for each value of (r, t) like in the boomerang attack.
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– Ask the encryption of the structures under Ka and Kb, as before.
– Ask the encryption under Kc of each plaintext encrypted under Ka.
– Ask the encryption under Kd of each plaintext encrypted under Kb.
– For each guess of the subkey of the last MA, partially decrypt all ciphertexts

under the guessed subkey, and call the boomerang attack on 6 rounds.

Out of the 257.8 plaintexts encrypted under each key, we get about about 251.6

pairs with the differences required for the previous attack. The attack has time
complexity of 232 · (4 · 257.8/13 + 251.6/13) = 288.1 6.5-round IDEA encryptions,
and data complexity of 259.8 chosen plaintexts under four related-keys.

7 Summary and Conclusions

In this paper we introduced related-key boomerang attacks and related-key rect-
angle attacks. The attacks use weaknesses in the key schedule algorithms of
ciphers to achieve significant improvements over ordinary boomerang and rect-
angle distinguishers.

It is commonly believed that linearity of the key schedule is not a threat to the
security of a block cipher if only its design (except for the key schedule) is mod-
erate enough. Many strong block ciphers use linear or close to linear key schedule
algorithms, e.g., AES, and IDEA. Despite the strong related-key requirements,
our attacks show that it is important to maintain some non-linearity in the key
schedule, even if the other components of the cipher seem strong enough.
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