
Related-key Cryptanalysis of the Full AES-192
and AES-256

Alex Biryukov and Dmitry Khovratovich

University of Luxembourg

Abstract. In this paper we present two related-key attacks on the full
AES. For AES-256 we show the first key recovery attack that works for
all the keys and has 299.5 time and data complexity, while the recent
attack by Biryukov-Khovratovich-Nikolić works for a weak key class and
has much higher complexity. The second attack is the first cryptanalysis
of the full AES-192. Both our attacks are boomerang attacks, which are
based on the recent idea of finding local collisions in block ciphers and
enhanced with the boomerang switching techniques to gain free rounds
in the middle.

The extended version of this paper is available at http://eprint.iacr.
org/2009/317.pdf.

Keywords: AES, related-key attack, boomerang attack.

1 Introduction

The Advanced Encryption Standard (AES) [9] — a 128-bit block cipher, is one
of the most popular ciphers in the world and is widely used for both commercial
and government purposes. It has three variants which offer different security
levels based on the length of the secret key: 128, 192, 256-bits. Since it became
a standard in 2001 [1], the progress in its cryptanalysis has been very slow. The
best results until 2009 were attacks on 7-round AES-128 [10,11], 10-round AES-
192 [5,13], 10-round AES-256 [5,13] out of 10, 12 and 14 rounds respectively.
The two last results are in the related-key scenario.

Only recently there was announced a first attack on the full AES-256 [6]. The
authors showed a related-key attack which works with complexity 296 for one
out of every 235 keys. They have also shown practical attacks on AES-256 (see
also [7]) in the chosen key scenario, which demonstrates that AES-256 can not
serve as a replacement for an ideal cipher in theoretically sound constructions
such as Davies-Meyer mode.

In this paper we improve these results and present the first related-key at-
tack on AES-256 that works for all the keys and has a better complexity (299.5

data and time). We also develop the first related key attack on the full AES-192.
In both attacks we minimize the number of active S-boxes in the key-schedule
(which caused the previous attack on AES-256 to work only for a fraction of all

http://eprint.iacr.org/2009/317.pdf
http://eprint.iacr.org/2009/317.pdf


keys) by using a boomerang attack [15] enhanced with boomerang switching tech-
niques. We find our boomerang differentials by searching for local collisions [8,6]
in a cipher. The complexities of our attacks and a comparison with the best
previous attacks are given in Table 1.

This paper is structured as follows: In Section 3 we develop the idea of local
collisions in the cipher and show how to construct optimal related-key differen-
tials for AES-192 and AES-256 . In Section 4 we briefly explain the idea of a
boomerang and an amplified boomerang attack. In Sections 5 and 6 we describe
an attack on AES-256 and AES-192, respectively.

Attack Rounds # keys Data Time Memory Source

192

Partial sums 8 1 2127.9 2188 ? [10]

Related-key rectangle 10 64 2124 2183 ? [5,13]

Related-key

amplified boomerang
12 4 2123 2176 2152 Sec. 6

256

Partial sums 9 256 285 2226 232 [10]

Related-key rectangle 10 64 2114 2173 ? [5,13]

Related-key differential 14 235 2131 2131 265 [6]

Related-key boomerang 14 4 299.5 299.5 277 Sec. 5

Table 1. Best attacks on AES-192 and AES-256

2 AES Description and Notation

We expect that most of our readers are familiar with the description of AES and
thus point out only the main features of AES-256 that are crucial for our attack.

AES rounds are numbered from 1 to 14 (12 for AES-192). We denote the
i-th 192-bit subkey (do not confuse with a 128-bit round key) by Ki, i.e. the
first (whitening) subkey is the first four columns of K0. The last subkey is K7

in AES-256 and K8 in AES-192. The difference in Ki is denoted by ∆Ki. Bytes
of a subkey are denoted by kli,j , where i, j stand for the row and column index,
respectively, in the standard matrix representation of AES, and l stands for the
number of the subkey. Bytes of the plaintext are denoted by pi,j , and bytes of the
internal state after the SubBytes transformation in round r are denoted by ari,j ,
with Ar depicting the whole state. Let us also denote by bri,j byte in position
(i, j) after the r-th application of MixColumns.



Features of AES-256. AES-256 has 14 rounds and a 256-bit key, which is two
times larger than the internal state. Thus the key schedule consists of only 7
rounds. One key schedule round consists of the following transformations:

kl+1
i,0 ← S(kli+1,7)⊕ kli,0 ⊕ Cl, 0 ≤ i ≤ 3;

kl+1
i,j ← kl+1

i,j−1 ⊕ k
l
i,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 3;

kl+1
i,4 ← S(kl+1

i,3 )⊕ kli,4, 0 ≤ i ≤ 3;

kl+1
i,j ← kl+1

i,j−1 ⊕ k
l
i,j , 0 ≤ i ≤ 3, 5 ≤ j ≤ 7,

where S() stands for the S-box, and Cl — for the round-dependent constant.
Therefore, each round has 8 S-boxes.

Features of AES-192. AES-192 has 12 rounds and a 192-bit key, which is 1.5
times larger than the internal state. Thus the key schedule consists of 8 rounds.
One key schedule round consists of the following transformations:

kl+1
i,0 ← S(kli+1,5)⊕ kli,0 ⊕ Cl, 0 ≤ i ≤ 3;

kl+1
i,j ← kl+1

i,j−1 ⊕ k
l
i,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 5.

Notice that each round has only four S-boxes.

3 Local Collisions in AES

SubBytes

ShiftRows
MixColumns

Key schedule round

Key schedule round

disturbance

correction

Fig. 1. A local collision in AES-256.

The notion of a local collision comes from
the cryptanalysis of hash functions with
one of the first applications by Chabaud
and Joux [8]. The idea is to inject a dif-
ference into the internal state, causing a
disturbance, and then to correct it with
the next injections. The resulting differ-
ence pattern is spread out due to the mes-
sage schedule causing more disturbances
in other rounds. The goal is to have as
few disturbances as possible in order to
reduce the complexity of the attack.

In the related-key scenario we are
allowed to have difference in the key,
and not only in the plaintext as in the
pure differential cryptanalysis. However
the attacker can not control the key it-
self and thus the attack should work for
any key pair with a given difference.

Local collisions in AES-256 are best understood on a one-round example
(Fig. 1), which has one active S-box in the internal state, and five non-zero byte



differences in the two consecutive subkeys. This differential holds with probabil-
ity 2−6 if we use an optimal differential for an S-box:

0x01
SubBytes

=⇒ 0x1f;


0x1f

0
0
0

 MixColumns=⇒


0x3e
0x1f
0x1f
0x21


Due to the key schedule the differences spread to other subkeys thus forming

the key schedule difference. The resulting key schedule difference can be viewed
as a set of local collisions, where the expansion of the disturbance (also called
disturbance vector) and the correction differences compensate each other. The
probability of the full differential trail is then determined by the number of
active S-boxes in the key-schedule and in the internal state. The latter is just
the number of the non-zero bytes in the disturbance vector.

Therefore, to construct an optimal trail we have to construct a minimal-
weight disturbance expansion, which will become a part of the full key schedule
difference. For the AES key schedule, which is mostly linear, this task can be
viewed as building a low-weight codeword of a linear code. Simultaneously, cor-
rection differences also form a codeword, and the key schedule difference code-
word is the sum of the disturbance and the correction codewords. In the simplest
trail the correction codeword is constructed from the former one by just shifting
four columns to the right and applying the S-box–MixColumns transformation.

Disturbance

Correction
+

Key schedule
=

Fig. 2. Full key schedule difference (4.5 key-schedule rounds) for AES-256.

An example of a good key-schedule pattern for AES-256 is depicted in Fig-
ure 2 as a 4.5-round codeword. In the first four key-schedule rounds the distur-
bance codeword has only 9 active bytes (red cells in the picture), which is the
lower bound. We want to avoid active S-boxes in the key schedule as long as
possible, so we start with a single-byte difference in byte k4

0,0 and go backwards.
Due to a slow diffusion in the AES key schedule the difference affects only one
more byte per key schedule round. The correction (grey) column should be po-
sitioned four columns to the right, and propagates backwards in the same way.
The last column in the first subkey is active, so all S-boxes of the first round are



active as well, which causes an unknown difference in the first (green) column.
This “alien” difference should be canceled by the plaintext difference.

4 Related Key Boomerang and Amplified Boomerang
Attacks

In this section we describe two types of boomerang attacks in the related-key
scenario.

A basic boomerang distinguisher [15] is applied to a cipher EK(·) which is
considered as a composition of two sub-ciphers: EK(·) = E1 ◦E0. The first sub-
cipher is supposed to have a differential α → β, and the second one to have a
differential γ → δ, with probabilities p and q, respectively. In the further text
the differential trails of E0 and E1 are called upper and lower trails, respectively.

In the boomerang attack a plaintext pair results in a quartet with probability
p2q2. The amplified boomerang attack [12] (also called rectangle attack [4]) works
in a chosen-plaintext scenario and constructs N2p2q22−n quartets of N plaintext
pairs. We refer to [15,12] for the full description of the attacks.

In the original boomerang attack paper by Wagner [15] it was noted that
the number of good ciphertext quartets is actually higher, since an attacker may
consider other β and γ (with the same α and δ). This observation can be applied
to both types of boomerang attacks. As a result, the number Q of good quartets
is expressed via amplified probabilities p̂ and q̂ as follows:

Q = p̂2q̂22−nN2,

where

p̂ =
√∑

β

P [α→ β]2; q̂ =
√∑

γ

P [γ → δ]2. (1)

4.1 Related-key attack model

The related-key attack model [3] is a class of cryptanalytic attacks in which the
attacker knows or chooses a relation between several keys and is given access to
encryption/decryption functions with all these keys. The goal of the attacker is
to find the actual secret keys. The relation between the keys can be an arbitrary
bijective function R (or even a family of such functions) chosen in advance by
the attacker (for a formal treatment of the general related key model see [2,14]).
In the simplest form of this attack, this relation is just a XOR with a constant:
K2 = K1 ⊕ C, where the constant C is chosen by the attacker. This type of
relation allows the attacker to trace the propagation of XOR differences induced
by the key difference C through the key schedule of the cipher. However, more
complex forms of this attack allow other (possibly non-linear) relations between
the keys. For example, in some of the attacks described in this paper the attacker
chooses a desired XOR relation in the second subkey, and then defines the implied
relation between the actual keys as: K2 = F−1(F (K1) ⊕ C) = RC(K1) where



F represents a single round of the AES-256 key schedule, and the constant C is
chosen by the attacker.1

Compared to other cryptanalytic attacks in which the attacker can manipu-
late only the plaintexts and/or the ciphertexts the choice of the relation between
secret keys gives additional degree of freedom to the attacker. The downside of
this freedom is that such attacks might be harder to mount in practice. Still,
designers usually try to build “ideal” primitives which can be automatically used
without further analysis in the widest possible set of applications, protocols, or
modes of operation. Thus resistance to such attacks is an important design goal
for block ciphers, and in fact it was one of the stated design goals of the Rijndael
algorithm, which was selected as the Advanced Encryption Standard.

In this paper we use boomerang attacks in the related-key scenario. In the
following sections we denote the difference between subkeys in the upper trail
by ∆Ki, and in the lower part by ∇Ki.

4.2 Boomerang switch

Here we analyze the transition from the sub-trail E0 to the sub-trail E1, which
we call the boomerang switch. We show that the attacker can gain 1-2 middle
rounds for free due to a careful choice of the top and bottom differentials. The
position of the switch is a tradeoff between the sub-trail probabilities, that should
minimize the overall complexity of the distinguisher. Below we summarize the
switching techniques that can be used in boomerang or amplified boomerang
attacks on any block cipher.

Ladder switch. By default, a cipher is decomposed into rounds. However, such
decomposition may not be the best for the boomerang attack. We propose not
only to further decompose the round into simple operations but also to exploit
the existing parallelism in these operations. For example some bytes may be
independently processed. In such case we can switch in one byte before it is
transformed and in another one after it is transformed, see Fig. 3 for an illus-
tration.

An example is our attack on AES-192. Let us look at the differential trails
(see Fig. 8). There is one active S-box in round 7 of the lower trail in byte
b70,2. On the other hand, the S-box in the same position is not active in the
upper trail. If we would switch after ShiftRows in round 6, we would “pay” the
probability in round 7 afterwards. However, we switch all the state except b0,2
after MixColumns, and switch the remaining byte after the S-box application in
round 7, where it is not active. We thus do not pay for this S-box.

Feistel switch. Surprisingly, a Feistel round with an arbitrary function (e.g., an
S-box) can be passed for free in the boomerang attack (this was first observed

1 Note that due to low nonlinearity of AES-256 key schedule such subkey relation
corresponds to a fixed XOR relation in 28 out of 32 bytes of the secret key, and a
simple S-box relation in the four remaining bytes.



a1 a2 a3

S S S

k1

k2

k3

S S S

E0

E1E0 / E1 boundary

Fig. 3. The ladder switch in a toy three S-box block. A switch either before or
after the S-box layer would cost probability, while the ladder does not.

in the attack on cipher Khufu in [15]). Suppose the internal state (X, Y ) is
transformed to (Z = X ⊕ f(Y ), Y ) at the end of E0. Suppose also that the E0

difference before this transformation is (∆X , ∆Y ), and that the E1 difference
after this transformation is (∆Z , ∆Y ).

As a result, variable Y in the four iterations of a boomerang quartet takes
two values: Y0 and Y0⊕∆Y for some Y0. Then the f transformation is guaranteed
to have the same output difference ∆f in the quartet. Therefore, the decryption
phase of the boomerang creates the difference ∆X in X at the end of E0 “for
free”. This trick is used in the switch in the subkey in the attack on AES-192.

S-box switch. This is similar to the Feistel switch, but costs probability only
in one of the directions. Suppose that E0 ends with an S-box Y ⇐ S(X) with
difference ∆ If the output of an S-box in a cipher has difference ∆ and if the same
difference ∆ comes from the lower trail, then propagation through this S-box is
for free on one of the faces of the boomerang. Moreover, the other direction can
use amplified probability since specific value of the difference ∆ is not important
for the switch2.

5 Attack on AES-256

In this section we present a related key boomerang attack on AES-256.

2 This type of switch was used in the original version of this paper, but is not needed
now due to change in the trails. We describe it here for completeness, since it might
be useful in other attacks.



5.1 The trail

The boomerang trail is depicted in Figure 7, and the actual values are listed in
Tables 3 and 2. It consists of two similar 7-round trails: the first one covers rounds
1–8, and the second one covers rounds 8–14. The trails differ in the position of
the disturbance bytes: the row 1 in the upper trail, and the row 0 in the lower
trail. This fact allows the Ladder switch.

The switching state is the state A9 (internal state after the SubBytes in
round 9) and a special key state KS , which is the concatenation of the last four
columns of K3 and the first four columns of K4. Although there are active S-
boxes in the first round of the key schedule, we do not impose conditions on
them. As a result, the difference in column 0 of K0 is unknown yet.

Related keys We define the relation between four keys as follows (see also
Figure 4). For a secret key KA, which the attacker tries to find, compute its
second subkey K1

A and apply the difference ∆K1 to get a subkey K1
B , from

which the key KB is computed. The relation between KA and KB is a constant
XOR relation in 28 bytes out of 32 and is computed via a function k′i,0 =
ki,0 ⊕ S(ki+1,7) ⊕ S(ki+1,7 ⊕ ci+1,7), i=0,1,2,3, with constant ci+1,7 = ∆k0

i+1,7

for the four remaining bytes.
The switch into the keys KC ,KD happens between the 3rd and the 4th

subkeys in order to avoid active S-boxes in the key-schedule using the Ladder
switch idea described above. We compute subkeys K3 and K4 for both KA

and KB . We add the difference ∇K3 to K3
A and compute the upper half (four

columns) of K3
C . Then we add the difference ∇K4 to K4

A and compute the lower
half (four columns) of K4

C . From these eight consecutive columns we compute
the full KC . The key KD is computed from KB in the same way.

K0 K1

∆K1

K1

KA

KB

∇K3

K4K3

KD

∇K4

K2 K3 K4 K5

∇K3

K4K3

KC

∇K4

Fig. 4. AES-256: Computing KB , KC , and KD from KA.

Finally, we point out that difference between KC and KD can be computed in
the backward direction deterministically since there would be no active S-boxes



till the first round. The secret key KA, and the three keys KB , KC , KD computed
from KA as described above form a proper related key quartet. Moreover, due
to a slow diffusion in the backward direction, as a bonus we can compute some
values in ∇Ki even for i = 0, 1, 2, 3 (see Table 2). Hence given the byte value
kli,j for KA we can partly compute KB , KC and KD.

Internal state The plaintext difference is specified in 9 bytes. We require that
all the active S-boxes in the internal state should output the difference 0x1f so
that the active S-boxes are passed with probability 2−6. The only exception is
the first round where the input difference in nine active bytes is not specified.

Let us start a boomerang attack with a random pair of plaintexts that fit the
trail after one round. Active S-boxes in rounds 3–7 are passed with probability
2−6 each, so the overall probability is 2−30.

We switch the internal state in round 9 with the Ladder switch technique:
the row 1 is switched before the application of S-boxes, and the other rows are
switched after the S-box layer. As a result, we do not pay for active S-boxes at
all in this round.

The second part of the boomerang trail is quite simple. Three S-boxes in
rounds 10–14 contribute to the probability, which is thus equal to 2−18. Finally
we get one boomerang quartet after the first round with probability 2−30−30−18−18

= 2−96.

5.2 The attack

The attack works as follows. Do the following steps 225.5 times:

1. Prepare a structure of plaintexts as specified below.
2. Encrypt it on keys KA and KB and keep the resulting sets SA and SB in

memory.
3. XOR ∆C to all the ciphertexts in SA and decrypt the resulting ciphertexts

with KC . Denote the new set of plaintexts by SC .
4. Repeat previous step for the set SB and the key KD. Denote the set of

plaintexts by SD.
5. Compose from SC and SD all the possible pairs of plaintexts which are equal

in 56 bits

c

c

c

c
c

c

c

.
6. For every remaining pair check if the difference in pi,0, i > 1 is equal on both

sides of the boomerang quartet (16-bit filter). Note that ∇k0
i,7 = 0 so ∆k0

i,0

should be equal for both key pairs (KA,KB) and (KC ,KD).
7. Filter out the quartets whose difference can not be produced by active S-

boxes in the first round (one-bit filter per S-box per key pair) and active
S-boxes in the key schedule (one-bit filter per S-box), which is a 2 ·2+2 = 6-
bit filter.

8. Gradually recover key values and differences simultaneously filtering out the
wrong quartets.



Each structure has all possible values in column 0 and row 0, and constant
values in the other bytes. Of 272 texts per structure we can compose 2144 ordered
pairs. Of these pairs 2144−8·9 = 272 pass the first round. Thus we expect one
right quartet per 296−72 = 224 structures, and three right quartets out of 225.5

structures.
Let us now compute the number of noisy quartets. About 2144−56−16 =

272 pairs come out of step 6. The next step applies a 6-bit filter, so we get
272+25.5−6 = 291.5 candidate quartets in total.

The remainder of this section deals with gradual recovering of the key and
filtering wrong quartets. The key bytes are recovered as shown in Figure 5.

2 1
0

13

0D

0D 4

3D
4

5

5 0

05

Fig. 5. Gradual key recovery. Digits stand for the steps, ’D’ means difference.

1. First, consider 4-tuples of related key bytes in each position (1, j), j < 4. Two
differences in a tuple are known by default. The third difference is unknown
but is equal for all tuples (see Table 2, where it is denoted by X) and gets
one of 27 values. We use this fact for key derivation and filtering as follows.
Consider key bytes k0

2,2 and k0
2,3. The candidate quartet proposes 22 candi-

dates for both 4-tuples of related-key bytes, or 24 candidates in total. Since
the differences are related with the X-difference, which is a 9-bit filter, this
step reveals two key bytes and the value of X and reduces the number of
quartets to 291.5−5 = 286.5.

2. Now consider the value of ∆k0
1,0, which is unknown yet and might be different

in two pairs of related keys. Let us notice that it is determined by the value of
k0
2,7, and ∇k0

2,7 = 0, so that ∆k0
1,0 is the same for both related key pairs and

can take 27 values. Each guess of ∆k0
1,0 proposes key candidates for byte

k0
2,0, where we have a 8-bit filter for the 4-tuple of related-key bytes. We

thus derive the value of k0
1,0 in all keys and reduce the number of candidate

quartets to 285.5.
3. The same trick holds for the unknown ∆k0

1,4, which can get 27 possible values
and can be computed for both key pairs simultaneously. Each of these values
proposes four candidates for k0

1,1, which are filtered with an 8-bit filter. We
thus recover k0

1,1 and ∆k0
1,4 and reduce the number of quartets to 279.5.

4. Finally, we notice that ∆k0
1,4 is completely determined by k0

1,0, k
0
1,1, k

0
1,2, k

0
1,3,

and k0
2,7. There are at most two candidates for the latter value as well as for

∆k0
1,4, so we get a 6-bit filter and reduce the number of quartets to 272.5.

5. Each quartet also proposes two candidates for each of key bytes k0
0,0, k0

2,2,
and k0

3,3. Totally, the number of key candidates proposed by each quartet is
26.



The key candidates are proposed for 11 bytes of each of four related keys.
However, these bytes are strongly related so the number of independent key
bytes on which the voting is performed is significantly smaller than 11 × 4. At
least, bytes k0

0,0, k0
1,1, k0

2,2 and k0
3,3 of KA and KC are independent so we recover

15 key bytes with 278.5 proposals. The probability that three wrong quartets
propose the same candidates does not exceed 2−80.

We thus estimate the complexity of the filtering step as 277.5 time and mem-
ory. We recover 3 · 7 + 8 · 8 = 85 bits of of KA (and 85 bits of KC) with 299.5

data and time and 277.5 memory.
The remaining part of the key can be found with many approaches. One is

to relax the condition on one of the active S-boxes in round 3 thus getting four
more active S-boxes in round 2, which in turn leads to a full-difference state
in round 1. The condition can be actually relaxed only for the first part of the
boomerang (the key pair (KA,KB)) thus giving a better output filter. For each
candidate quartet we use the key bytes, that were recovered at the previous
step, to compute ∆A1 and thus significantly reduce the number of keys that are
proposed by a quartet. We then rank candidates for the first four columns of
K0
A and take the candidate that gets the maximal number of votes. Since we

do not make key guesses, we expect that the complexity of this step is smaller
than the complexity of the previous step (299.5). The right quartet also provide
information about four more bytes in the right half of K0

A that correspond to
the four active S-boxes in round 2. The remaining 8 bytes of KA can be found
by exhaustive search.

6 Attack on AES-192

The key schedule of AES-192 has better diffusion, so it is hard to avoid active S-
boxes in the subkeys. We construct a related-key boomerang attack with two sub-
trails of 6 rounds each. The attack is an amplified-boomerang attack because we
have to deal with truncated differences in both the plaintext and the ciphertext,
the latter would be expensive to handle in a plain boomerang attack.

6.1 The trail

The trail is depicted in Figure 8, and the actual values are listed in Tables 4
and 5. The key schedule codeword is depicted in Figure 6.

Related keys We define the relation between four keys similarly to the attack
on AES-256. Assume we are given a key KA, which the attacker tries to find.
We compute its subkey K1

A and apply the difference ∆K1 to get the subkey K1
B ,

from which the key KB is computed. Then we compute the subkeys K4
A and

K4
B and apply the difference ∇K4 to them. We get subkeys K4

C and K4
D, from

which the keys KC and KD are computed.
Now we prove that keys KA, KB , KC , and KD form a quartet, i.e. the

subkeys of KC and KD satisfy the equations Kl
C ⊕ Kl

D = ∆Kl, l = 1, 2, 3.



Disturbance

Correction

Key schedule

+

=

E0

Disturbance

Correction

Key schedule

+

=

E1

Fig. 6. AES-192 key schedule codeword.

The only active S-box is positioned between K3 and K4, whose input is k3
0,5.

However, this S-box gets the same pair of inputs in both key pairs (see the
“Feistel switch” in Sec. 4.2). Indeed, if we compute ∇k3

0,5 from ∆K4, then it is
equal to ∆k3

0,5 = 0x01. Therefore, if the active S-box gets as input α and α⊕ 1
in KA and KB , respectively, then it gets a⊕1 and a in KC and KD, respectively.
As a result, K3

C⊕K3
D = ∆K3, the further propagation is linear, so the four keys

form a quartet.
Due to a slow diffusion in the backward direction, we can compute some

values in ∇Kl even for small l (Table 5). Hence given kli,j for KA we can partly
compute KB , KC and KD, which provides additional filtration in the attack.

Internal state The plaintext difference is specified in 10 bytes c

c

c

c
cc

c

cc

c , the dif-
ference in the other six bytes not restricted. The three active S-boxes in rounds
2–4 are passed with probability 2−6 each. In round 6 (the switching round) we
ask for the fixed difference only in a6

0,2, the other two S-boxes can output any
difference such that it is the same as in the second related-key pair. Therefore,
the amplified probability of round 6 equals to 2−6−2·3.5 = 2−13. We switch be-
tween the two trails before the key addition in round 6 in all bytes except b60,2,
where we switch after the S-box application in round 7 (the Ladder switch). This
trick allows us not to take into account the only active S-box in the lower trail
in round 7. The overall probability of the rounds 3–6 is 2−3·6−13 = 2−31.

The lower trail has 8 active S-boxes in rounds 8–12. Only the first four active
S-boxes are restricted in the output difference, which gives us probability 2−24

for the lower trail. The ciphertext difference is fully specified in the middle two
rows, and has 35 bits of entropy in the other bytes. More precisely, each ∇c0,∗ is
taken from a set of size 27, and all the ∇c3,∗ should be the same on both sides
of the boomerang and again should belong to a set of size 27. Therefore, the
ciphertext difference gives us a 93-bit filter.

6.2 The attack

We compose 273 structures of type c

c

c

c
cc

c

cc

c with 248 texts each. Then we encrypt
all the texts with the keys KA and KC , and their complements w.r.t. ∆P on



KB and KD. We keep all the data in memory and analyze it with the following
procedure:

1. Compose all candidate plaintext pairs for the key pairs (KA,KB) and (KC ,KD).
2. Compose and store all the candidate quartets of the ciphertexts.
3. For each guess of the subkey bytes: k0

0,3, k0
2,3, and k0

0,5 in KA; k7
0,5 in KA

and KB :
(a) Derive values for these bytes in all the keys from the differential trail.

Derive the yet unknown key differences in ∆K0 and ∇K8.
(b) Filter out candidate quartets that contradict ∇K8.
(c) Prepare counters for the yet unknown subkey bytes that correspond to

active S-boxes in the first two rounds and in the last round: k0
0,0, k0

0,1,
k0
1,2, k0

3,0 — in keys KA and KC , k8
0,0, k8

0,1, k8
0,2, k8

0,3 — in keys KA and
KB , i.e. 16 bytes in total.

(d) For each candidate quartet derive possible values for these unknown
bytes and increase the counters.

(e) Pick the group of 16 subkey bytes with the maximal number of votes.
(f) Try all possible values of the yet unknown 9 key bytes in K0 and check

whether it is the right key. If not then go to the first step.

Right quartets. Let us first count the number of right quartets in the data.
Evidently, there exist 2128 pairs of internal states with the difference ∆A2.
The inverse application of 1.5 rounds maps these pairs into structures that we
have defined, with 248 pairs per structure. Therefore, each structure has 248

pairs that pass 1.5 rounds, and 273 structures have 2121 pairs. Of these pairs
2(121−31)·2−128 = 252 right quartets can be composed after the switch in the
middle. Of these quartets 252−2·24 = 16 right quartets come out of the last
round.

Now we briefly describe the attack. Full details will be published in the
extended version. In steps 1 and 2 we compose 2152 candidate quartets. The guess
of five key bytes gives a 32-bit filter in step 3, so we leave with 2120 candidate
quartets, which are divided according to ∇c3,0 into 214 groups. Then we perform
key ranking in each group and recover 16 more key bytes. The exhaustive search
for the remaining 9 key bytes can be done with the complexity 272. The overall
time complexity is about 2176, and the data complexity is 2123.

7 Conclusions

We presented related-key boomerang attacks on the full AES-192 and the full
AES-256. The differential trails for the attacks are based on the idea of finding
local collisions in the block cipher. We showed that optimal key-schedule trails
should be based on low-weight codewords in the key schedule. We also exploit
various boomerang-switching techniques, which help us to gain free rounds in
the middle of the cipher. However, both our attacks are still mainly of theoretical
interest and do not present a threat to practical applications using AES.



Acknowledgements. The authors thank Vincent Rijmen and anonymous re-
viewers for their valuable comments, which helped to improve the paper. Dmitry
Khovratovich is supported by PRP ”Security & Trust” grant of the University
of Luxembourg.

References

1. FIPS-197: Advanced Encryption Standard, November 2001, available at http://

csrc.nist.gov/publications/fips/fips197/fips-197.pdf.
2. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks:

Rka-prps, rka-prfs, and applications. In EUROCRYPT’03, volume 2656 of LNCS,
pages 491–506. Springer, 2003.

3. Eli Biham. New types of cryptanalytic attacks using related keys. J. Cryptology,
7(4):229–246, 1994.

4. Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack - rectangling
the Serpent. In EUROCRYPT’01, volume 2045 of LNCS, pages 340–357. Springer,
2001.

5. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and
rectangle attacks. In EUROCRYPT’05, volume 3494 of LNCS, pages 507–525.
Springer, 2005.

6. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and related-
key attack on the full AES-256. In CRYPTO’09, volume 5677 of LNCS, pages
231–249. Springer, 2009.

7. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Examples of differential
multicollisions for 13 and 14 rounds of AES-256, 2009, available at http://eprint.
iacr.org/2009/242.pdf.

8. Florent Chabaud and Antoine Joux. Differential collisions in SHA-0. In
CRYPTO’98, 1998.

9. Joan Daemen and Vincent Rijmen. The Design of Rijndael. AES — the Advanced
Encryption Standard. Springer, 2002.

10. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael. In FSE’00,
volume 1978 of LNCS, pages 213–230. Springer, 2000.

11. Henri Gilbert and Marine Minier. A collision attack on 7 rounds of Rijndael. In
AES Candidate Conference, pages 230–241, 2000.

12. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang attacks
against reduced-round MARS and Serpent. In FSE’00, volume 1978 of LNCS,
pages 75–93. Springer, 2000.

13. Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-key rectangle attacks on
reduced AES-192 and AES-256. In FSE’07, volume 4593 of LNCS, pages 225–241.
Springer, 2007.

14. Stefan Lucks. Ciphers secure against related-key attacks. In FSE’04, volume 3017
of LNCS, pages 359–370. Springer, 2004.

15. David Wagner. The boomerang attack. In FSE’99, volume 1636 of LNCS, pages
156–170. Springer, 1999.

Disclaimer on colors. We intensively use colors in our figures in order to
provide better understanding on the trail construction. In figures, different colors
refer to different values, which is hard to depict in black and white. However,

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://eprint.iacr.org/2009/242.pdf
http://eprint.iacr.org/2009/242.pdf


we also list all the trail differences in the tables, so all the color information is
actually dubbed.

Trail details. By ∆Ai we denote the upper trail difference in the internal
state after the S-box layer, and by ∇Ai the same for the lower trail.

Table 2. Key schedule difference in the AES-256 trail.

∆Ki

0

? 00 00 00 3e 3e 3e 3e
? 01 01 01 ? 21 21 21
? 00 00 00 1f 1f 1f 1f
? 00 00 00 1f 1f 1f 1f

1

00 00 00 00 3e 00 3e 00
00 01 00 01 21 00 21 00
00 00 00 00 1f 00 1f 00
00 00 00 00 1f 00 1f 00

2

00 00 00 00 3e 3e 00 00
00 01 01 00 21 21 00 00
00 00 00 00 1f 1f 00 00
00 00 00 00 1f 1f 00 00

3

00 00 00 00 3e 00 00 00
00 01 00 00 21 00 00 00
00 00 00 00 1f 00 00 00
00 00 00 00 1f 00 00 00

4

00 00 00 00 3e 3e 3e 3e
00 01 01 01 ? ? ? ?
00 00 00 00 1f 1f 1f 1f
00 00 00 00 1f 1f 1f 1f

∇Ki

0

? ? ? ? ? ? ? 00
X X X X 1f 1f 1f 00
? ? ? ? 1f 1f 1f 00
? ? ? ? 21 21 21 00

1

? 01 ? 00 ? ? 00 00
X 00 X 00 1f 1f 00 00
? 00 ? 00 1f 1f 00 00
? 00 ? 00 21 21 00 00

2

? ? 00 00 ? 00 00 00
X X 00 00 1f 00 00 00
? ? 00 00 1f 00 00 00
? ? 00 00 21 00 00 00

3

? 01 01 01 3e 3e 3e 3e
X 00 00 00 1f 1f 1f 1f
? 00 00 00 1f 1f 1f 1f
? 00 00 00 21 21 21 21

4

01 00 01 00 3e 00 3e 00
00 00 00 00 1f 00 1f 00
00 00 00 00 1f 00 1f 00
00 00 00 00 21 00 21 00

5

01 01 00 00 3e 3e 00 00
00 00 00 00 1f 1f 00 00
00 00 00 00 1f 1f 00 00
00 00 00 00 21 21 00 00

6

01 00 00 00 3e 00 00 00
00 00 00 00 1f 00 00 00
00 00 00 00 1f 00 00 00
00 00 00 00 21 00 00 00

7

01 01 01 01 ? ? ? ?
00 00 00 00 1f 1f 1f 1f
00 00 00 00 1f 1f 1f 1f
00 00 00 00 21 21 21 21

Table 3. Non-zero internal state differences in the AES-256 trail.

∆P

? 00 00 00
? ? ? ?
? 00 ? 00
? 00 00 ?

∆A1

? 00 00 00
1f ? 1f 1f
00 00 ? 00
00 00 00 ?

∆A3

00 00 00 00
00 1f 00 1f
00 00 00 00
00 00 00 00

∆A5

00 00 00 00
00 1f 1f 00
00 00 00 00
00 00 00 00

∆A7

00 00 00 00
00 1f 00 00
00 00 00 00
00 00 00 00

∇A7

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

∇A9

1f 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A11

1f 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A13

1f 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆C

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00



Table 4. Internal state difference in the AES-192 trail.

∆P

? ? 3e ?
1f 1f ? 1f
1f 1f 1f ?
? 21 21 21

∆A1

1f ? 00 1f
00 00 ? 00
00 00 00 ?
? 00 00 00

∆A2

00 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A3

00 1f 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A4

00 00 00 1f
00 00 00 00
00 00 00 00
00 00 00 00

∆A5

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A6

00 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

∆A7

00 00 00 1f
00 00 00 00
00 00 00 00
00 00 00 00

∇A6

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

∇A7

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A8

1f 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A9

1f 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A10

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A11

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A12

? ? ? ?
00 00 00 00
00 00 00 00
00 00 00 00

∆C

? ? ? ?
1f 1f 1f 1f
1f 1f 1f 1f
? ? ? ?

Table 5. Key schedule difference in the AES-192 trail.

∆K0

00 3e 3e 3f 3e 01
00 1f 1f 1f 1f 00
00 1f 1f 1f 1f 00
? 21 21 21 21 00

∆K1

00 3e 00 3f 01 00
00 1f 00 1f 00 00
00 1f 00 1f 00 00
00 21 00 21 00 00

∆K2

00 3e 3e 01 00 00
00 1f 1f 00 00 00
00 1f 1f 00 00 00
00 21 21 00 00 00

∆K3

00 3e 00 01 01 01
00 1f 00 00 00 00
00 1f 00 00 00 00
00 21 00 00 00 00

∆K4

00 3e 3e 3f 3e 3f
00 1f 1f 1f 1f 1f
00 1f 1f 1f 1f 1f
? ? ? ? ? ?

∇K0

? ? ? 3e 3f 3e
? ? ? 1f 1f 1f
? ? ? 1f 1f 1f
? ? ? ? 21 21

∇K1

? ? 3f 01 3e 00
? ? 1f 00 1f 00
? ? 1f 00 1f 00
? ? ? 00 21 00

∇K2

? 3e 01 00 3e 3e
? 1f 00 00 1f 1f
? 1f 00 00 1f 1f
? ? 00 00 21 21

∇K3

3e 00 01 01 3f 01
1f 00 00 00 1f 00
1f 00 00 00 1f 00
? 00 00 00 21 00

∇K4

3e 3e 3f 3e 01 00
1f 1f 1f 1f 00 00
1f 1f 1f 1f 00 00
21 21 21 21 00 00

∇K5

3e 00 3f 01 00 00
1f 00 1f 00 00 00
1f 00 1f 00 00 00
21 00 21 00 00 00

∇K6

3e 3e 01 00 00 00
1f 1f 00 00 00 00
1f 1f 00 00 00 00
21 21 00 00 00 00

∇K7

3e 00 01 01 01 01
1f 00 00 00 00 00
1f 00 00 00 00 00
21 00 00 00 00 00

∇K8

3e 3e 3f 3e 3f 3e
1f 1f 1f 1f 1f 1f
1f 1f 1f 1f 1f 1f
? ? ? ? ? ?



SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

9

10

11

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

12

13

SubBytes

SubBytes

ShiftRows
MixColumns

SubBytes

0

4

5

6

14

RCSBAC

ShiftRows

SB

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

SubBytes

SubBytes

ShiftRows
MixColumns

SubBytes

RCSBAC

ShiftRows
MixColumnsSB

7

6

5

4

3

1

RCSBAC

ShiftRows
MixColumnsSB

8

2

1

2

Switch

2−30

2−18

E0

E1

3

4

8

7

SubBytes

SubBytes

SubBytes

SubBytes

Fig. 7. AES-256 E0 and E1 trails. Green ovals show an overlap between the two
trails where the switch happens.



ShiftRows
MixColumns

ShiftRows
MixColumns

ShiftRows
MixColumns

ShiftRows
MixColumns

KS

KS

KS

SubBytes

SubBytes

SubBytes

SubBytes

ShiftRows
MixColumns

ShiftRows

SubBytes

SubBytes

ShiftRows
MixColumns

ShiftRows
MixColumns

ShiftRows
MixColumns

ShiftRows
MixColumns

KS

KS

KS

KS

KS

SubBytes

SubBytes

SubBytes

SubBytes

ShiftRows
MixColumns

ShiftRows
MixColumns

ShiftRows
MixColumns

SubBytes

SubBytes

SubBytes

1

2

3

4

5

7

8

9

10

11

12

7

ShiftRows
MixColumns

KS

KS

SubBytes

6

6

Switch

∆K0

∆K1

∆K2

∆K3

∆K4

∇K4

∇K5

∇K6

∇K7

∇K8

2−31

2−24

Fig. 8. AES-192 trail.


	Alex Biryukov and Dmitry Khovratovich

