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ABSTRACT GIFT is a lightweight block cipher that was proposed by Banik et al. at CHES 2017, which

is said to be a direct improvement over PRESENT since ‘‘that provides a much increased efficiency in all

domains (smaller and faster)’’ and improves the security weaknesses of the latter. At Asiacrypt in 2014,

Sun et al. introduced a bit-oriented mixed integer linear programming (MILP) method to search for the

differential characteristics of block ciphers. In this paper, we use the differential cryptanalysis method

based on this automated tool to analyse GIFT. We propose 12-round and 13-round related-key differential

characteristics of GIFT-64 and 7-round and 10-round related-key differential characteristics of GIFT-128.

By using them as distinguishers, we apply key recovery attacks on the 19-round and 20-round reduced

GIFT-64with data complexities of 247 and 256 plaintexts, respectively, whichmean that the data complexities

are lower. Furthermore, we improve the GIFT-64 key recovery attack using differential cryptanalysis by one

round over the previous differential cryptanalysis.

INDEX TERMS GIFT block cipher, mixed integer linear programming (MILP), differential cryptanalysis,

related-key differential cryptanalysis.

I. INTRODUCTION

The earliest method utilized to protect the integrity and

confidentiality of vulnerable data was symmetric encryp-

tion, which included block ciphers, stream ciphers, and hash

functions. The data encryption standard (DES) that was pro-

posed in the early 1970s and the advanced encryption stan-

dard (AES) that was determined in October 2000 are the

two most well-known classical encryption algorithms. The

DES is insecure due to the 56-bit key size being too small

to resist attacks because of the rapidly improving computing

capabilities. The AES later replaced the data encryption stan-

dard (DES): it has been widely used and has received much

attention.

The extensive deployment of tiny computing devices in

the internet of things (IoT) and the energy internet is the

main trend in this century. These devices are routinely fea-

tured in consumer items, and they form an integral part of

a pervasive - and unseen - communication infrastructure.

It is already being recognized that such deployments bring

a range of very particular security risks, such as the privacy

leakage and security threats of internet of electric vehicles
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(IoEV)-based demand response (DR) that was introduced

in [1], and the security risks of the vehicle-to-grid (V2G)

energy trading in cyber physical systems that was mentioned

in [2]. In [3], the state-of-the-art lightweight encryption tech-

nologies that are necessary for IoT-based applications, which

can be effectively implemented in constrained devices, are

outlined. In addition, the article also addressed some of

the available lightweight block ciphers and they were com-

pared. The PRESENT [4]–[6] lightweight block cipher that

was proposed at CHES 2007 is one cryptographic primitive

that provides a cryptographic solution for IoT security. It is

a hardware-optimized block cipher that has been carefully

designed with area and power constraints to enhance the

security of the IoT. GIFT [7] is an improved version of the

PRESENT block cipher, and it was designed by the same

team as the PRESENT. GIFT is more efficient in all domains

(smaller and faster) while correcting the well-known weak-

ness of the PRESENT with respect to linear hulls. Therefore,

it is one of the most energy efficient ciphers today. The

designers claimed that it provides strong bounds with regards

to differential/linear attacks.

Differential cryptanalysis [8] assesses a chosen-plaintext

attack and studies the influence of a pair of plaintext dif-

ferences on the output differences of the subsequent rounds
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in an iterative cipher. Due to its generality, differential

cryptanalysis is a cryptanalysis tool that can be widely

used in a large variety of encryption algorithms [9], and

it can also be used to define new attack methods. The

resistance to differential cryptanalysis is one of the basic

criteria to evaluate the security of block encryption algo-

rithms. Related key attacks [10], [11] allow cryptographers

to obtain plaintext/ciphertext pairs by using different keys.

The attacker knows some relations between the keys, but the

actual values of the keys are unknown. In addition, the rela-

tionships between the keys can be selected by the attacker.

In a related-key differential attack model, it is possible to

cancel internal state differences by using corresponding key

differences, which makes the internal state differences to

spread more slowly. For example, when the difference of

the corresponding positions in the exclusive OR operations

of the internal state difference and the round key difference

is 1, the difference of the calculation result is 0. This finding

creates a higher probability differential characteristic and can

cover more rounds than the single key attack, which may

result in greatly improved time complexity. As far as we

know, there are few studies that evaluate the cipher in the

related-key model. Notice that the key schedule of the GIFT

cipher is linear; therefore, the attacks under the related-key

setting may penetrate more rounds, reduce the attack com-

plexity by cancelling the key difference and the state differ-

ence, and reveal a better picture of its security. However, there

is no known related-key differential attack for GIFT.

It has been found that many classical cryptanalysis meth-

ods, including differential cryptanalysis and linear attacks,

can be transformed into mathematical optimization prob-

lems in order to obtain the minimum or maximum value

of the objective function under certain constraints. Mixed

integer linear programming (MILP) is a method that is often

used to solve optimization problems in business and eco-

nomics. MILP-based cryptanalysis techniques greatly reduce

the workloads of designers and cryptanalysts because it only

involves constructing simple equations that are input into the

MILP solvers. Since only a small amount of programming

is required, the time that is spent on cryptanalysis and the

possibility of human errors are significantly reduced. One

of MILP’s most successful applications so far is search-

ing for differential paths. Mouha et al. applied the MILP

method to calculate the active S-boxes of the word-based

block cipher [12]. Sun et al. [6] established an MILP

model for bit-oriented block ciphers based on Mouha et al.’s

algorithm [12]. Xiang et al. proposed an MILP model for

searching for integral distinguishers [5]. Zhang and Rijmen

proposed an accurate description of the division property of

block ciphers by using a binary linear layer [13]. Hao et al.

and Wang et al. independently presented cube attacks on

the stream ciphers based on MILP [14], [15]. Huang et al.,

Song et al., and Li et al. also usedMILP key recovery attacks

on Keccak-MAC and Keyak [16]–[18].

Related work. Shortly after the proposal of the GIFT,

Zhu et al. proposed a differential attack for the 19-round

GIFT-64 based on a 12-round differential distinguisher

under the single-key setting [19]. In addition, the security

of the cipher against meet-in-the-middle (MITM) attacks

was studied in [20]. Liu and Sasaki found 19-round

related-key boomerang distinguishers in the GIFT-64 and

GIFT-128 lightweight block ciphers [21]. In [22], the com-

bination of side-channel analysis (SCA) and the differential

fault attack (DFA) can respectively recover the 32 bits and

64 bits of the last round keys of GIFT-64 and GIFT-128 by

approximating 9-18 fault injections and 6-9 fault injections

in the average cases.

Our contribution. In this paper, by using an MILP model,

we examine the security of GIFT’s resistance to related-key

differential attacks. Although the designers of GIFT do not

claim related-key security, they evaluated its effectiveness

against related-key differential attacks. The best bit posi-

tions of the key addition and 16-bit rotations were chosen

to optimize the related-key differential bounds. Therefore,

the designers did their best to resist related-key differen-

tial attacks. However, in this paper, we present 12-round

and 13-round GIFT-64 related-key differential characteristics

with probabilities of 2−37 and 2−47.83, respectively. In addi-

tion, we also present the related-key differential characteris-

tics for the 7-round and 10-round GIFT-128 with probabili-

ties of 2−15.83 and 2−72.66, respectively. These probabilities

are higher than previous results. We propose key-recovery

attacks by using these related-key differential characteristics.

The data complexities of the attacks are 247 and 256 for

the 19-round reduced GIFT-64 and the 20-round reduced

GIFT-64, respectively, which are lower than the complexities

that were given in previous works. Our key recovery attack

on the 20-round reduced GIFT-64 improves one more round

than the results in [19].

A summary of the comparisons of our results with the pre-

vious cryptanalysis techniques on GIFT is shown in Table 1,

where MITM, RK-B, and RKD stand for meet-in-the-

middle, related-key boomerang and related-key differential,

respectively.

TABLE 1. Summary of cryptography analysis on GIFT.

Organization. The rest of the paper is organized as follows.

Section 2 gives the preliminaries of GIFT and the interpre-

tations of the automatic differential analysis. It is followed

by an algorithm that searches for the related-key differentials

with the highest probabilities in Section 3. In Section 4,

we apply our new related-key differentials to the key recovery
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FIGURE 1. The structure of GIFT-64.

TABLE 2. Specifications of GIFT S-box GS.

attack by using GIFT. Finally, we conclude the paper in

Section 5.

II. PRELIMINARIES

A. DESCRIPTION OF GIFT

GIFT is a substitution-permutation network (SPN) block

cipher. It has two versions, GIFT-64 and GIFT-128, both

of which have 128-bit secret key length. The former has a

block size of 64 bits and 28 iteration rounds, while the latter

has a block size of 128 bits and 40 iteration rounds. The

round function has three operations: SubCells, PermBits and

AddRoundKey. Fig. 1 shows the structure of the round func-

tion of GIFT-64. Similarly, GIFT-128 adopts 32 4-bit S-boxes

for each round. The symbol ‘‘⊕’’ indicates the exclusive OR,

which is abbreviated to XOR. For example, there are two bits

a and b for the XOR operation. Then, if the values of a and

b are not the same, the XOR result is 1; otherwise, the XOR

result is 0. If there are some vectors that are XORed, the bits

of the corresponding positions of these vectors are XORed

according to the above rule, that is, bitwise XOR.

Initialization.The cipher accepts an n-bit state bn−1bn−2...

b1b0 as the internal state S, where n is equal to 64 or 128,

corresponding to GIFT-64 or GIFT-128, respectively. Note

that bn−1 is the most significant bit.

SubCells. The internal state of this operation can be rep-

resented as S = ws−1ws−2...w1w0, where s = 16, 32; and

wi, i ∈ {0, ..., s−1}, are 4-bit nibbles. The nonlinear mapping

applies the S-box parallel to each nibble of the internal state.

wi← GS(wi),∀i ∈ {0, ..., s− 1}. (1)

Both versions of GIFT apply the same invertible 4-bit

S-box, GS. The truth-table for the S-box in hexadecimal nota-

tion is shown in Table 2.

PermBits. This operation maps the bits of the cipher state

S from position i to P(i). The bit permutation specifications

of GIFT-64 and GIFT-128 can be found in the specification

of the cipher [7].

AddRoundKey. The n/2 bit round key is XORed with

part of the internal state bits. The round key is extracted

from the 128-bit key register K as RK = U ‖ V =

us, . . . , u1, u0 ‖ vs, . . . , v1, v0, where s = 16 and 32 cor-

respond to GIFT-64 and GIFT-128, respectively. The symbol

‘‘‖’’ represents a concatenation between vectors (for exam-

ple, (0010) ‖ (1110) = (00101110)). Then, a part of the

internal state bits are XORed with RK as follows.

For GIFT-64, the internal state bits {b4i+1} and {b4i} are

XORed with U and V , respectively.











U ← k1,V ← k0,

b4i+1← b4i+1 ⊕ ui, b4i← b4i ⊕ vi,

∀i ∈ {0, . . . , 15}.

(2)

For GIFT-128, the cipher states {b4i+2} and {b4i+1} are

XORed with U and V , respectively.











U ← k5 ‖ k4,V ← k1 ‖ k0.

b4i+2← b4i+2 ⊕ ui, b4i+1← b4i+1 ⊕ vi,

∀i ∈ {0, . . . , 31}.

(3)

After AddRoundKey, the 128-bit key state for both ver-

sions is then updated as follows.

k7 ‖ k6 ‖ ... ‖ k1 ‖ k0← k1 ≫ 2 ‖ k0 ≫ 12... ‖ k3 ‖ k2,

(4)

where ‘‘≫ i ’’ is an i bit right rotation within a 16-bit word.

Round Constants. A 6-bit round constant RC =

{rc5, rc4, rc3, rc2, rc1, rc0} and a single bit ‘‘1’’ are XORed
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into the cipher state as defined below:










bn−1← bn−1 ⊕ 1,

b23← b23 ⊕ rc5, b19←b19 ⊕ rc4, b15←b15 ⊕ rc3,

b11← b11 ⊕ rc2, b7←b7 ⊕ rc1, b3←b3 ⊕ rc0.

(5)

where n − 1, 23, 19, 15, 11, 7 and 3 denote bit positions in

the internal state S.

The round constant RC = {rc5, rc4, rc3, rc2, rc1, rc0} is

initialized to ‘‘0’’, and it is updated before each round as

follows:

(rc5, rc4, rc3, rc2, rc1, rc0)← (rc4, rc3, rc2, rc1, rc0, rc0

⊕rc4 ⊕ 1). (6)

B. AUTOMATIC DIFFERENTIAL ANALYSIS OF

BIT-ORIENTED BLOCK CIPHERS

In this section, we describe the MILP-based cryptanalysis

methods that were proposed by Mouha et al. and Sun et al.

Mouha et al. [12] first proposed the MILP model to calculate

the number of active S-boxes in the word-oriented block

ciphers propagation process. At Asiacrypt 2014, Sun et al. [6]

established an MILP model for bit-oriented block ciphers

based on Mouha et al.’s algorithm [12]. We briefly recall

Sun et al.’s framework. For more details of their framework,

we refer the readers to [6], [23].

Definition 1: For each input and output bit-wise differ-

ence, we consider a 0-1 variable xi to denote whether this bit

has a nonzero difference or not. Then, the differential vector

x = (x0, x1, ..., xn−1) is defined as follows:

xi =

{

1, for nonzero difference at this bit,

0, otherwise.
(7)

Constraints Describing the XOR Operation. Assum-

ing that the input differences for the XOR operation at the

bit-level are xin1 and xin2 and the corresponding bit-level

output difference is xout , the constraints include










xin1 + xin2 + xout ≥ 2d⊕

xin1 + xin2 + xout ≤ 2

d⊕ ≥ xin1, d⊕ ≥ xin2, d⊕ ≥ xout

(8)

where d⊕ is a dummy bit variable.

Constraints Describing the S-box Operation. Let

(x0, ..., xw−1) and (y0, ..., yv−1) represent the input and output

bit-level differences of a w× v S-box. Then, we have














At − xi ≥ 0, i ∈ {0, 1, . . . ,w− 1}
w−1
∑

j=0

xj − At ≥ 0
(9)

where At ∈ {0, 1} is a dummy variable that describes whether

the S-box is active or not. A = 1 holds if and only if

x0, x1, ..., xw−1 are not all zero.

The non-zero input difference of the bijective S-boxesmust

result in a nonzero output difference and vice versa.

H-representation of a convex hull. The convex hull of

a set X is the minimum convex set that contains X , where

X is a set of discrete points in R
n. A convex hull in R

n

can be described as the common solutions of a system of

linear equalities and inequalities. If we treat all m differential

patterns of a w × v S-box as m different discrete points

in R
w+v, then (x, y) = (x0, ..., xw−1, y0, ..., yv−1) can repre-

sent a differential pattern of aw×v S-box, in which x and y are

the input and output differences vectors, respectively. The set

containing all possible differential patterns of an S-box can

be obtained through the difference distribution table (DDT)

of the S-box, that is, the input and output differences cor-

responding to all non-zero entries in the table. As a result,

we can describe this finite set with the following inequalities:
{

wyj0 + wyj1 + ...+ wyjv−1 − (xi0 + xi1 + xiw−1 ) ≥ 0

vxi0 + vxi1 + ...+ vxiw−1 − (yj0 + yj1 + yjv−1 ) ≥ 0
(10)

This is called the H-representation of a w × v S-box.

By using the SAGE [24] computer algebra system, many

linear inequalities can be obtained for the differential patterns

of the S-box. In general, the number of linear inequalities

in the convex hull of a set X ⊂ R
n increases rapidly as n

increases, and as the number of linear inequalities increases,

the efficiency of the MILP model decreases dramatically.

A 4 × 4 S-box contains hundreds of inequalities that would

be hard to solve in a practical amount of time if all of

them are added to the MILP model. To overcome this issue,

Sun et al. utilized a greedy algorithm to select some ‘‘good’’

inequalities from the convex hull [6].

In [25], Sasaki et al. proposed an MILP-based reduction

algorithm to extract the optimal combination with the mini-

mal number of linear inequalities from hundreds of inequali-

ties in the H-representation of the convex hull, which removes

all the impossible differential patterns of the S-box. The

algorithm considers that every impossible pattern in the DDT

of an S-box should be excluded from the solution space

by at least one linear inequality. Under these constraints,

the number of inequalities can be minimized using the MILP

model.

C. NOTATIONS

κi The i-th bit of the master key.

κ̃i The key bit that needs to be guessed.



















(p2, p1, p0) = (0, 0, 0), if Prs[(x3, x2, x1, x0)→ (y3, y2, y1, y0)] = 1

(p2, p1, p0) = (1, 0, 0), if Prs[(x3, x2, x1, x0)→ (y3, y2, y1, y0)] = 2−1.415

(p2, p1, p0) = (0, 1, 0), if Prs[(x3, x2, x1, x0)→ (y3, y2, y1, y0)] = 2−2

(p2, p1, p0) = (0, 0, 1), if vs[(x3, x2, x1, x0)→ (y3, y2, y1, y0)] = 2−3

(11)
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P Plaintext.

C Ciphertext.

R Round.

1SBiin/out The input/output difference of S-box of the

i-th round.

1LPiin/out The input/output difference of Permutation

of the i-th round.

1AK i
in/out The input/output difference of AddRound-

Key of the i-th round.

III. THE ALGORITHM FOR SEARCHING FOR

THE RELATED-KEY DIFFERENTIAL

CHARACTERISTICS OF GIFT

A. MILP-BASED MODEL TO SEARCH FOR

THE RELATED-KEY DIFFERENTIAL

CHARACTERISTICS FOR GIFT

This section describes the high-probability related-key differ-

ential paths that are found based on theMILPmethod. In [23],

Sun et al. introduced the differential distribution probability

of the S-box into the constraints of the MILP model.

We first calculate the H-presentation of the convex hull of

differential patterns by using the probabilities that are based

on the DDT of the S-box, as shown in Table 3, where α and

β represent the input difference and the output difference of

the S-box, respectively. The S-box of GIFT has four possible

probabilities: 1, 6/16, 4/16, and 2/16, i.e., 1, 2−1.415, 2−2,

and 2−3, respectively. For every possible differential pat-

tern (x3, x2, x1, x0, y3, y2, y1, y0), we need three extra bits

(p2, p1, p0) to encode the differential probability. The corre-

sponding differential pattern with the probability is (x3, x2,

x1, x0, y3, y2, y1, y0, p2, p1, p0) ∈ F
8+2
2 , which satisfies the

rules that are listed in (11), as shown at the bottom of the

previous page. Then, we apply this rule to generate a set of

linear inequalities by using the SAGE [24] computer algebra

system. Furthermore, this set can be reduced by using the

optimization algorithm from [6], [25]. The inequalities in

(12), as shown at the bottom of this page are the 25 inequali-

ties that are used to describe the DDT of the GIFT S-box.

For the bit-oriented block cipher GIFT, supposing that

the input difference of the XOR operation is (x1, x2)

and the corresponding output difference is y, then we

have the inequalities in (13) that describe the XOR







































































































































































































































−p0− p1− p2 >= −1

x3+ 3x2+ 2x1+ 4x0+ 4y3+ 2y2+ 2y1+ 3y0− 10p0− 6p1− 8p2 >= 0

−2x3− x2− x1− x0− 4y3− y2+ y1+ p0+ 6p1+ 9p2 >= 0

4x3+ 3x2+ 3x1− 2x0+ 4y2+ 3y1+ 2y0− 11p0− 9p1+ 2p2 >= 0

−2x3− 4x2− 2x0+ 4y3− y2− 3y1− 3y0+ 11p0+ 9p1+ 11p2 >= 0

x3− x2− x1+ 3x0− 4y3− 3y1− 4y0+ 9p0+ 10p1+ 9p2 >= 0

x3+ x2− x1+ 3x0+ 4y3+ y2+ 2y1+ 2y0− 4p0− 2p1− 5p2 >= 0

5x3+ x2+ 7x1+ 5x0− y3− y2− 3y1+ 3y0− 3p1− p2 >= 0

−3x3+ 3x2− 3x1− 2x0− y3− 3y2+ y1− 2y0+ p0+ 8p1+ 12p2 >= 0

2x2+ x1+ 3x0+ 2y3+ y1+ y0− 4p0− 2p1− 4p2 >= 0

−4x3+ x2− 2x1− 3x0− y3+ 2y2− 2y1+ y0+ 2p0+ 6p1+ 10p2 >= 0

4x3− 4x2− x1− x0+ 2y3− 4y2− y1+ 2y0+ 7p0+ 6p1+ 8p2 >= 0

x3− x2− 2x0+ y3− 2y1− 2y0+ 5p0+ 6p1+ 5p2 >= 0

−x3− x2− x0+ y1+ y0− p0+ 3p1+ 2p2 >= 0

−2x3− 2x2+ 3x1− 2x0− 3y3+ 3y2+ 3y1− y0− 3p0+ 3p1+ 7p2 >= 0

−x3− x2− x1+ x0− y3− y1+ 3p0+ 3p1+ 4p2 >= 0

−x3+ x2+ 2x1− x0− 2y3− 2y2− 2y1+ y0+ 2p0+ 6p1+ 6p2 >= 0

3x3+ x2− x1− x0+ 2y3+ 3y2+ y1− y0− p1 >= 0

2x3− 2x2− 5x1− x0− y3− 5y2− y1− y0+ 9p0+ 11p1+ 14p2 >= 0

−x3+ x2+ 2x1+ 2x0− y3− y1− 2y0+ 2p0+ 5p1+ 2p2 >= 0

−x3+ y3− y2+ y1− y0+ p0+ 2p1+ 2p2 >= 0

x3+ x0+ y3+ y1+ y0− 2p0− p1− 2p2 >= 0

4x3− x2+ 4x1+ 2x0− y3+ y2− y1+ 2y0− p0− 2p1 >= 0

x3+ x2+ x1− y3− y2+ y1− y0+ p1+ 2p2 >= 0

−x3+ x2− 2x1− 2x0− y3+ 2y2− 2y1+ y0+ 2p0+ 5p1+ 6p2 >= 0

pi, xi, yi are binaries

(12)
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TABLE 3. Difference distribution table (DDT) of the GIFT S-box.

operation.






























x1 + x2 − y >= 0

x1 − x2 + y >= 0

−x1 + x2 + y >= 0

x1 + x2 + y <= 2

xi, y are binaries

(13)

The objective function is chosen to minimize
∑

(1415p2+

2000p1+ 3000p0). Now, the MILP model that is constructed

by the above techniques utilizing Algorithm 1 can generate

the optimal solution corresponding to the characteristic with

the maximum probability.

Algorithm 1 Related-Key Differential Characteristic Search

Algorithm Based on MILP

Require: r cipher rounds, specific assignment to the

difference of the core key k0

Ensure: differential characteristic with maximal probability

1: Establish an empty MILP model M .

2: Set x, y and z as the input and output of the S-box and the

output of the linear layer, respectively.

3: Set k as the key and s as the probability of the DDT.

4: Update M according to the differential propagation rule

of the round function.

5: Extra constraint M .con ←
∑m−1

k=0 ki ≥ 1 for all i ∈

{0, . . . ,m− 1}.

6: Set the objective function M .obj ←
∑

min(1415p2 +

2000p1 + 3000p0).

7: Solve model M using an MILP optimizer.

8: A feasible solution is found in M , and save it to a file.

We implement Algorithm 1 to search for the related-key

differential characteristics. Here, we describe the 13-round

characteristic of GIFT-64 with a probability of 2−47.83

TABLE 4. The 13-round related-key differential characteristic of
GIFT-64 with a probability of 2−47.83.

in Table 4 in this section. Due to space limitations, the details

of the 12-round characteristic of GIFT-64 and the 7-round and

10-round characteristics of GIFT-128 are respectively shown

in Tables 7, 8 and 9 in Appendix A.

IV. RELATED-KEY DIFFERENTIAL ATTACKS ON GIFT

In this section, we first use the related-key differential char-

acteristic that was introduced in Table 4 to extend the analysis

3 rounds forward and 4 rounds backward to establish the

20-round GIFT-64 key recovery attack, as shown in Table 5.

Assume that the rounds in the 20-round reduced GIFT-64 are

numbered from round 1 to round 20. Accordingly, the distin-

guisher that is used in the attack is from round 4 to round 16.
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TABLE 5. The 20-round attack on GIFT-64.

TABLE 6. The round keys that are used in the 20-round attack on GIFT-64.

For the sake of clarity, the round key and the key bits that

need to be guessed in the 1st, 2nd, 3rd, 17th, 18th, 19th, and

20th rounds will be listed in Table 6 according to

the key schedule. The bit position that is marked with

‘‘∼’’ above is the key bit that needs to be guessed

in the key recovery attack procedure that is introduced

in Table 5.

Attack Procedure

1) Since there are no whitening keys at the beginning of

GIFT-64, we can choose 2n structures in the output of

the first round of the PermBit operation. Each structure

traverses 48 undetermined difference bits in the 1AK 1
in

of Table 5, that is, the position that is marked ‘‘?’’.

Therefore, we can get 2n+95 pairs.

2) After the key guess of the first round, we encrypt the

pairs by using two different keys, and then only choose

the pairs that satisfy the difference of 1LP2in. That is,

TABLE 7. The 7-round related-key differential characteristic of
GIFT-128 with a probability of 2−15.83.

the difference of position ‘‘1’’ is 1, the difference

of position ‘‘0’’ is 0, and the difference of position

‘‘?’’ is not limited. This step performs a filter with a
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TABLE 8. The 10-round related-key differential characteristic of
GIFT-128 with a probability of 2−72.66.

probability of 2−33, and then the number of expected

remaining pairs is 2n+62.

3) Encrypt the remaining pairs by using the key guess

of the second round and only choose the pairs that

satisfy the difference of1LP3in. This provides a filtering

probability of 2−20, and then there are approximately

2n+42 pairs left.

4) After encrypting the remaining pairs for 20 rounds,

guess the 20th and 19th rounds’ keys to decrypt the

corresponding ciphertexts and leave only the pair that

satisfies the difference of 1AK 18
out . This step produces

TABLE 9. The 12-round related-key differential characteristic of
GIFT-64 with a probability of 2−37.

a filter with a probability of 2−12, and then the number

of expected remaining pairs is 2n+30.

5) After the key guess of the 18th round, decrypt the

ciphertexts corresponding to the remaining pairs and

only choose the pairs that satisfy the difference

of1AK 17
out . This step provides a filter with a probability

of 2−41, and then the number of expected remaining

pairs is 2n−11.

6) Decrypt the ciphertexts corresponding to the remaining

pairs by using the key guess of the 17th round and only

TABLE 10. The 19-round attack on GIFT-64 that is constructed with the 12-round related-key differential characteristic.
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choose the pairs that satisfy the difference of 1AK 16
out .

This step provides a filter with a probability of 2−12.

Then, the number of expected remaining pairs is 2n−23.

Thus, there are 2n−23 pairs that satisfy the input and

output differential of the 13-round distinguisher and

will be left for the random key.

7) For a pair that obeys the difference of 1AK 1
in, the aver-

age probability of satisfying the input of the distin-

guisher that is shown in Table 4 is 2−53. A pair that

is encrypted with a wrong key will meet the output

differential of the 16th round with a probability of

2−64. Additionally, the pairs that are encrypted with

the right key will meet it with a probability of 2−47.83,

so 2n+95 × 2−53 × 2−47.83 = 2n−5.83 pairs should be

left for a right key. Here, we choose n = 8, and the data

complexity is 28+48 = 256.

The 19-round key recovery attack on GIFT-64 is similar to

that of the 20-round, therefore, here we skip the details and

just list the 19-round related-key differential characteristic

in Table 10 in Appendix A, which is constructed using the

differential characteristic in Table 9 as the distinguisher. Dur-

ing this analysis, each of the 2n structures traverses 44 non-

zero bits in 1AK 1
in of Table 10, resulting in a total of 2n+87

pairs. There are 2n+87 × 2−51 × 2−37 = 2n−1 pairs that will

fulfil the differential trail with the right key guess. We choose

n = 3, so about 4 pairs should be left for a right key. The data

complexity is 23+44 = 247.

V. CONCLUSION

In this paper, we perform related-key differential cryptanal-

ysis on the GIFT algorithm and give several differential

characteristics with higher probabilities. Then, the 19-round

and 20-round GIFT-64 key recovery attacks with respective

data complexities of 247 and 256 are carried out based on

those characteristics. Our research results are progressively

compared to the previous ones, and we hope that these results

can be used for better analysis in the future.

APPENDIX

See Tables 7–10.
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