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Abstract. SHACAL-1 is a 160-bit block cipher with variable key length
of up to 512-bit key based on the hash function SHA-1. It was submitted
to the NESSIE project and was accepted as a finalist for the 2nd phase
of the evaluation.

In this paper we devise the first known attack on the full 80-round
SHACAL-1 faster than exhaustive key search. The related-key differ-
entials used in the attack are based on transformation of the collision-
producing differentials of SHA-1 presented by Wang et al.

1 Introduction

In 1993, NIST has issued a standard hash function called Secure Hash Algorithm
(FIPS-180) [25]. Later this version was named SHA-0, as NIST published a small
tweak to this standard called SHA-1 in 1995. Both SHA-0 and SHA-1 are based
on padding the message and dividing it to blocks of 512 bits, and then iteratively
compressing those blocks into a 160-bit digest. Recently, NIST has published
three more standard hash functions as part of FIPS-180: SHA-256, SHA-384
and SHA-512. Each of the new hash functions has a digest size corresponding
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to its number, i.e., SHA-256 has a 256-bit digest, etc. After the publication of
these hash functions, NIST has issued another hash function SHA-224 that has
a digest size of 224 bits.

Both SHA-0 and SHA-1 were subjected to a great deal of analysis [11]. In the
last two years there was a major progress in the attacks on both of the hash
functions. This progress included finding a collision in SHA-0, and devising an
algorithm that can find a collision in SHA-1 in less than 263 SHA-1 applica-
tions [3,4,30,32,28]. The new techniques are based on finding good differentials
of the compressing function of SHA-1 and combining them with some novel
plaintext modification techniques.

It was suggested to use the compression function of SHA-1 as a block cipher
[13]. Later this suggestion was named SHACAL-1 and submitted to the NESSIE
project [14]. SHACAL-1 is a 160-bit block cipher with variable key length (0–512
bits) and 80 rounds based on the compression function of SHA-1. The cipher, was
selected as a NESSIE finalist, but was not selected for the NESSIE portfolio [22].

Due to the structure of SHACAL-1, differentials of SHA-1 correspond to
related-key differentials of SHACAL-1. Hence, it seems natural that some of the
techniques used in the new attacks on SHA-1 can be converted into a related-
key attack on SHACAL-1. We show that this is indeed the case. The differen-
tials found in the attacks devised in [30] can be converted into high probability
related-key differentials of SHACAL-1.

After transforming the collision producing differentials into related-key dif-
ferentials, we use them in a related-key rectangle attack [8,15,18]. The resulting
attack succeeds to attack the full 80-round SHACAL-1 using four related-keys
faster than exhaustive key search.

The related-key rectangle technique was used in previously published attacks
on SHACAL-1 [15,18] and was by far the most successful technique to attack the
cipher. The best previously known attack on the cipher based on this technique
was applicable up to 70 rounds of SHACAL-1. Our results extend these previously
known results by using improved differentials and improved attack techniques.

We note that the best known attack on SHACAL-1 that does not use related-
keys is a rectangle attack on 49-round SHACAL-1 [7]. A comparison of the known
attacks along with our new results on SHACAL-1 is presented in Table 1.

This paper is organized as follows: In Section 2 we describe the block cipher
SHACAL-1. In Section 3 we describe the previously known results on SHACAL-
1 and the relevant results on SHA-1. In Section 4 we give a short description
of the related-key rectangle attack. In Section 5 we present the new attacks on
the full SHACAL-1. Section 6 explores the differences between our attacks on
SHACAL-1 and other works on SHA-1. The appendix contains the differentials
used in the attack. Finally, Section 7 summarizes the paper.

2 Description of SHACAL-1

SHACAL-1 [14] is a 160-bit block cipher supporting variable key lengths (0–512
bits). It is based on the compression function of the hash function SHA-1 [25].
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Table 1. Summary of Our Results and Previously Known Results on SHACAL-1

Attack & Source Number of Rounds Complexity
Keys Rounds Data Time

Differential [20] 1 41 0–40 2141 CP 2491

Amplified Boomerang [20] 1 47 0–46 2158.5 CP 2508.4

Rectangle [7] 1 47 0–46 2151.9 CP 2482.6

Rectangle [7] 1 49 29–77 2151.9 CC 2508.5

Related-Key Rectangle [18] 2 59 0–58 2149.7 RK-CP 2498.3

Related-Key Rectangle [15] 4 70 0–69 2151.8 RK-CP 2500.1

Related-Key Rectangle (Section 5.2) 4 80 0–79 2159.8 RK-CP 2420.0

Related-Key Rectangle (Section 5.2) 4 80 0–79 2153.8 RK-CP 2501.2

Complexity is measured in encryption units.
CP — Chosen Plaintexts, CC — Chosen Ciphertexts, RK — Related-Key.

The cipher has 80 rounds (also referred as steps) grouped into four types of 20
rounds each.1

The 160-bit plaintext is divided into five 32-bit words – A, B, C, D and E.
We denote by Xi the value of word X before the ith round, i.e., the plaintext
P is divided into A0, B0, C0, D0 and E0, and the ciphertext is composed of
A80, B80, C80, D80 and E80.

In each round the words are updated according to the following rule:

Ai+1 = Wi + ROTL5(Ai) + fi(Bi, Ci, Di) + Ei + Ki

Bi+1 = Ai

Ci+1 = ROTL30(Bi)
Di+1 = Ci

Ei+1 = Di

where + denotes addition modulo 232, ROTLj(X) represents rotation to the
left by j bits, Wi is the round subkey, and Ki is the round constant.2 There are
three different functions fi, selected according to the round number:

fi(X, Y, Z) = fif = (X&Y )|(¬X&Z) 0 ≤ i ≤ 19
fi(X, Y, Z) = fxor = (X ⊕ Y ⊕ Z) 20 ≤ i ≤ 39, 60 ≤ i ≤ 79
fi(X, Y, Z) = fmaj = ((X&Y )|(X&Z)|(Y &Z)) 40 ≤ i ≤ 59

In [14] it is strongly advised to use keys of at least 128 bits, even though
shorter keys are supported. The first step in the key schedule algorithm is to
pad the supplied key into a 512-bit key. Then, the 512-bit key is expanded
into eighty 32-bit subkeys (or a total of 2560 bits of subkey material). The

1 To avoid confusion, we adopt the common notations for rounds. In [14] the notation
step stands for round, where round is used for a group of 20 steps.

2 This time we adopt the notations of [14], and alert the reader of the somewhat
confusing notations.
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expansion is done in a linear manner using a linear feedback shift register (over
GF (232)).

The key schedule is as follows: Let M0, . . . , M15 be the 16 key words (32
bits each). Then the round subkeys W0, . . . , W79 are computed by the following
algorithm:

Wi =
{

Mi 0 ≤ i ≤ 15
(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) � 1 16 ≤ i ≤ 79.

3 Previous Results

A preliminary differential and linear analysis of the properties of the compression
function of SHA-1 as a block cipher is presented in [13]. The found differentials
are relatively short (10 rounds) and have probabilities varying between 2−13 and
2−26 (depending on the round functions).

In [26] these differentials are improved, and 20-round differentials with prob-
ability 2−41 are presented. In [20] another set of differentials of SHACAL-1 is
presented, including a 30-round differential with probability 2−130.

In [24] an algorithm for identifying whether two SHACAL-1 encryptions use a
pair of related keys is presented. The attack is based on finding slid pairs. Once a
slid pair is encountered, the attacker can determine whether the two encryptions
have related keys. The attack requires about 296 encryptions under each of the
two keys to find a slid pair.

In [20] a 21-round differential for rounds 0–20 and a 15-round differential for
rounds 21–35 are combined to devise an amplified boomerang distinguisher [16]
for 36-roundSHACAL-1. This distinguisher is used to attack 39-roundSHACAL-1
using 2158.5 chosen plaintexts and about 2250.8 39-round SHACAL-1 encryptions.
The attack is based on guessing (or trying) the subkeys of the three additional
rounds, and then checking whether the distinguisher succeeds. This approach is
further extended to attack 47-round SHACAL-1 before exhaustive key search be-
comes faster than this attack. Another attack presented in [20] is a differential
attack on 41-round SHACAL-1. The success of these attacks was questioned and
resolved in [7].

Besides resolving the problems with previous attacks, in [7] a rectangle at-
tack on 49-round SHACAL-1 is presented. The attack requires 2151.9 chosen
plaintexts, and has a running time equivalent to 2508.5 49-round SHACAL-1
encryptions.

In [18] a related-key rectangle attack with two keys is presented against 59-
round SHACAL-1. This attack has a data complexity of 2149.7 related-key chosen
plaintexts and has a time complexity of 2498.3 59-round SHACAL-1 encryp-
tions. This attack is improved in [15] to a related-key rectangle attack with four
keys on 70-round SHACAL-1. The improved attack has a data complexity of
2151.8 related-key chosen plaintexts, and a time complexity of 2500.1 70-round
SHACAL-1 encryptions.
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4 Related-Key Boomerang and Related-Key Rectangle
Attacks

In this section we briefly describe the related-key rectangle attack. First, we
outline the boomerang and the rectangle attacks and describe related-key dif-
ferentials. Then, we describe the combination that forms into the related-key
rectangle attack.

4.1 The Rectangle Attack

The rectangle attack [5] is an improved variant of the amplified boomerang
attack [16] that has evolved from the boomerang attack presented in [27]. We
first describe the boomerang attack, and then show the transformation into
amplified boomerang/rectangle attacks.

The main idea behind the boomerang attack is to use two short differentials
with high probabilities instead of one long differential with a low probability.
We assume that a block cipher E :{0, 1}n×{0, 1}k →{0, 1}n can be described as
a cascade E = E1 ◦ E0, such that for E0 there exists a differential α → β with
probability p, and for E1 there exists a differential γ → δ with probability q.

The distinguisher is based on the following boomerang process:

– Ask for the encryption of a pair of plaintexts (P1, P2) such that P1 ⊕P2 = α
and denote the corresponding ciphertexts by (C1, C2).

– Calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask for the decryption of the
pair (C3, C4). Denote the corresponding plaintexts by (P3, P4).

– Check whether P3 ⊕ P4 = α.

The boomerang attack uses the first characteristic (α → β) for E0 with respect
to the pairs (P1, P2) and (P3, P4), and uses the second characteristic (γ → δ) for
E1 with respect to the pairs (C1, C3) and (C2, C4).

For a random permutation the probability that the last condition is satisfied
is 2−n. For E, the probability that the pair (P1, P2) is a right pair with respect to
the first differential (α → β) is p. The probability that both pairs (C1, C3) and
(C2, C4) are right pairs with respect to the second differential is q2. If all these
are right pairs, then E−1

1 (C3) ⊕ E−1
1 (C4) = β = E0(P3) ⊕ E0(P4). Thus, with

probability p, P3 ⊕ P4 = α. The total probability of this quartet of plaintexts
and ciphertexts to satisfy the boomerang conditions is (pq)2.

The attack can be mounted for all possible β’s and γ’s simultaneously (as
long as β �= γ). Therefore, a right quartet for E is encountered with probability
no less than (p̂q̂)2, where:

p̂ =
√∑

β

Pr 2[α → β], and q̂ =
√∑

γ

Pr 2[γ → δ].

The complete analysis is given in [27,5,6].
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As the boomerang attack requires adaptive chosen plaintexts and ciphertexts,
many of the techniques that were developed for using distinguishers in key re-
covery attacks can not be combined with the boomerang attack. This led to
the introduction of chosen plaintext variants of the boomerang attack called the
amplified boomerang attack [16] and the rectangle attack [5]. The transformation
of the boomerang attack into a chosen plaintext attack is quite standard, and is
achieved by birthday-paradox arguments. The key idea behind the transforma-
tion is to encrypt many plaintext pairs with input difference α, and to look for
quartets that conform to the requirements of the boomerang process.

The rectangle (or the amplified boomerang) process is as follows:

– Ask for the encryption of many pairs of plaintexts (P, P ⊕ α).
– Search two pairs of plaintexts (P1, P2), (P3, P4), and their corresponding ci-

phertexts (C1, C2) and (C3, C4), respectively, satisfying:
• P1 ⊕ P2 = P3 ⊕ P4 = α
• C1 ⊕ C3 = C2 ⊕ C4 = δ

Given the same decomposition of E as before, and the same basic differentials,
the analysis in [5] shows that out of N plaintext pairs, the number of right
quartets is expected to be N22−np̂2q̂2. We note, that the main reduction in
the probability follows from the fact that unlike the boomerang attack, in the
rectangle attack the event E0(P1) ⊕ E0(P3) = γ occurs with probability 2−n

even when all the differentials hold.

4.2 Related-Key Differentials

Related-key differentials [17] were used for cryptanalysis several times in the
past. Recall, that a regular differential deals with some plaintext difference ΔP
and a ciphertext difference ΔC such that

Pr P,K [EK(P ) ⊕ EK(P ⊕ ΔP ) = ΔC]

is high enough (or zero [2]).
A related-key differential is a triplet of a plaintext difference ΔP , a ciphertext

difference ΔC, and a key difference ΔK, such that

Pr P,K [EK(P ) ⊕ EK⊕ΔK(P ⊕ ΔP ) = ΔC]

is useful (high enough or zero).

4.3 Related-Key Rectangle Attack

The related-key rectangle attack was introduced in [18,15], and independently
in [8].

Let us assume that we have a related-key differential α → β of E0 under a key
difference ΔKab with probability p. Assume also that we have another related-
key differential γ → δ for E1 under a key difference ΔKac with probability q.

The related-key rectangle process involves four different unknown (but re-
lated) keys — Ka, Kb = Ka ⊕ΔKab, Kc = Ka ⊕ΔKac, and Kd = Ka ⊕ΔKab ⊕
ΔKac. The attack is performed by the following algorithm:
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Fig. 1. A Related-Key Rectangle Quartet

– Choose N plaintext pairs (Pa, Pb = Pa ⊕ α) at random and ask for the
encryption of Pa under Ka and of Pb under Kb. Denote the set of these pairs
by S.

– Choose N plaintext pairs (Pc, Pd = Pc ⊕ α) at random and ask for the
encryption of Pc under Kc and Pd under Kd. Denote the set of these pairs
by T .

– Search a pair of plaintexts (Pa, Pb) ∈ S and a pair of plaintexts (Pc, Pd) ∈
T , and their corresponding ciphertexts (Ca, Cb) and (Cc, Cd), respectively,
satisfying:

• Pa ⊕ Pb = Pc ⊕ Pd = α
• Ca ⊕ Cc = Cb ⊕ Cd = δ

See Figure 1 for an outline of such a quartet.
The attack can use many differentials for E0 and E1 simultaneously (just like

in a regular rectangle attack) as long as all related-key differentials used in E0
have the same key difference ΔKab and the same input difference α and as long
as all related-key differentials used in E1 have the same key difference ΔKac and
the same output difference δ.

The analysis of the related-key rectangle attack is similar to the one of the
rectangle attack. Starting with N plaintext pairs in S and N plaintext pairs
in T , we expect to find N22−n(p̂q̂)2 right quartets in S × T . For a random
permutation the number of “right quartets” is about N22−2n, so as long as
p̂q̂ > 2−n/2 we can use the related-key rectangle attack to distinguish between
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a random permutation and the attacked cipher. This distinguisher can be later
used for a key recovery attack.

We note that a related-key boomerang attack can be constructed similarly
to the related-key rectangle attack. The full analysis can be found in [8]. The
related-key boomerang and rectangle techniques were used to attack reduced
round variants of AES, IDEA, SHACAL-1, and SHACAL-2 and the full KASUMI
and COCONUT98 [8,9,15,19,18].

In the case of SHACAL-1, the key schedule algorithm is linear. Therefore,
given a key difference, all subkey differences are known, and can be easily used
in the related-key model.

5 Related-Key Rectangle Attack on the Full SHACAL-1

Our attack on SHACAL-1 is based on a 69-round related-key distinguisher. In
the attack on the full SHACAL-1, we try all the possible subkeys of the remaining
11 rounds, and decrypt all the ciphertexts. Then, the 69-round distinguisher is
applied. We improve the time complexity of the attack by partially decrypting
only 8 rounds, and then use the early abort approach to reduce the number of
values that are decrypted through the remaining three more rounds, before the
attack is applied. It is expected that for the right guess of the subkey of the last
11 rounds, the distinguisher would be more successful than for a wrong guess.
Thus, we can use this distinguisher to identify (to some extent) the right subkey.

5.1 69-Round Related-Key Distinguisher

We decompose 69-round SHACAL-1 into two sub-ciphers: E0 that contains the
first 34 rounds of SHACAL-1 (rounds 0–33), and E1 that contains the remaining
35 rounds (rounds 34–68).

We have transformed the collision producing differentials of SHA-1 presented
in [30] into related-key differentials for each of the two sub-ciphers. The first
related-key differential (for E0) has probability 2−41, and by fixing two bits of
the plaintexts and using several differentials simultaneously for E0 we obtain
p̂ = 2−38.5. The second related-key differential (for E1) has probability 2−39,
and by using several differentials simultaneously for E1 we obtain q̂ = 2−38.3.
The differentials are presented in Appendix A.

Combining these two differentials together leads to a 69-round related-key
rectangle distinguisher with probability 2−80 · p̂q̂ = 2−156.8, i.e., given N related-
key chosen plaintext pairs, we expect N2 · 2−160 · (p̂q̂)2 right quartets. Hence,
given 2157.8 related-key chosen plaintext pairs, we expect four right rectangle
quartets, while for a random cipher only 2−4.4 are expected.

5.2 The Key Recovery Attack

The basic approach for a key recovery attack is to guess the subkey of the last
11 rounds, partially decrypt all ciphertexts, and apply the distinguisher for the
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remaining 69 rounds. Such an approach can be improved using the fact that in
every round, only a small part of the intermediate value is substantially changed,
while most of the value is only shifted. The attack is based on the early abort
technique which is widely used [11,12]. In this technique, once a pair/quartet
does not satisfy the required differences/properties it is excluded from further
analysis.

In the description of the attack algorithm we use the following notations: XA

denotes the value of word A in X . Similarly, YD,E denotes words D and E of
Y , etc. Let ΔXi denote the difference in word X before round i, i.e., ΔA70 is
the difference in word A before round 70, and after round 69. Also, let ei be the
32-bit word composed of 31 0’s and 1 in the ith place. We use ei,j to denote
ei ⊕ ej and ei,j,k = ei,j ⊕ ek, etc. We also denote the set of possible values of
ΔA70 given that the second differential is satisfied by S′.

We observe that even if we partially decrypt only 8 rounds, we still have a
filtering condition on the quartets: Since ΔD72 = ROTL30(ΔA69) and ΔE72 =
ROTL30(ΔB69), we can check whether the difference in these words corresponds
to the output difference in words A and B of the second differential. In addition,
we observe that we can extend the second differential by a truncated differential
of one additional round. There are only 324 = 28.3 possible ΔA70 values in S′,
hence, there are only 324 possible values for ΔC72 in case the second differential
holds.

Using these observations, we can get a filtering of 64 + 23.7 = 87.7 bits for
every pair in the end of round 71, or a filtering of 175.4 bits in total. Since the
attack starts with 2315.6 quartets, we expect that 2140.3 quartets pass the filtering
for any given subkey guess of rounds 72–79. We then guess the subkey of round
71 and compute ΔE71 that is equal to ΔC69 if the differential holds to obtain
an additional 64-bit filtering on the remaining quartets. After this filtering only
276.3 quartets remain for each subkey guess. Then we continue by guessing the
subkeys of rounds 70 and 69. As a result, the time complexity of the attack drops
rapidly, while the data complexity remains unchanged.

The algorithm of the attack is as follows:

1. Data Collection Phase
(a) Ask for the encryption of 2157.8 pairs of plaintexts (Pa, Pb), where Pb =

Pa⊕α, where Pa and Pb satisfy the restrictions described in Appendix A,
and where Pa is encrypted under Ka and Pb is encrypted under Kb.

(b) Ask for the encryption of 2157.8 pairs of plaintexts (Pc, Pd), where Pc =
Pd⊕α, where Pc and Pd satisfy the restrictions described in Appendix A,
and where Pc is encrypted under Kc and Pd is encrypted under Kd.

2. Partial Decryption
(a) For each guess of the subkey of rounds 72–79:

i. Partially decrypt all ciphertexts (under the corresponding keys).
ii. Find all pairs of partially decrypted ciphertexts (Ca, Cc), such that

CaC,D,E ⊕ CcC,D,E ∈ S, where Ca is encrypted under Ka, Cc
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is encrypted under Kc and S = {(x, y, z) : ROTL30(x) ∈ S′,
ROTL30(y) = δA = 0, ROTL30(z) = δB = e2}.

iii. For each such pair (Ca, Cc), let Pa and Pc be the corresponding
plaintexts. Let Pb = Pa ⊕ α and Pd = Pc ⊕ α, and let Cb and Cd be
the corresponding ciphertexts, respectively.

iv. If CbC,D,E ⊕CdC,D,E ∈ S pass the quartet (Pa, Pb, Pc, Pd) for a further
analysis.

(b) Partial Decryption of Round 71: For each guess of the subkey of
round 71:
i. Partially decrypt all the remaining quartets (under the correspond-

ing keys) and denote the resulting intermediate values by (C′
a, C′

b,
C′

c, C
′
d).

ii. For each of the remaining quartets, check whether C′
aE

⊕C′
cE

= δC =
0 and discard all the quartets that do not satisfy the equation.

iii. For each of the remaining quartets, check whether C′
bE

⊕C′
dE

= δC =
0 and discard all the quartets that do not satisfy the equation.

(c) Partial Decryption of Round 70: For each guess of the subkey of
round 70:
i. Partially decrypt all the remaining quartets (under the correspond-

ing keys) and denote the resulting intermediate values by (C′′
a , C′′

b ,
C′′

c , C′′
d ).

ii. For each of the remaining quartets, check whether C′′
aE

⊕C′′
cE

= δD =
0 and discard all the quartets that do not satisfy the equation.

iii. For each of the remaining quartets, check whether C′
bE

⊕C′
dE

= δD =
0 and discard all the quartets that do not satisfy the equation.

(d) Partial Decryption of Round 69: For each guess of the subkey of
round 69:
i. Partially decrypt all the remaining quartets (under the correspond-

ing keys) and denote the resulting intermediate values by (C′′′
a , C′′′

b ,
C′′′

c , C′′′
d ).

ii. For each of the remaining quartets, check whether C′′′
aE

⊕C′′′
cE

= δE =
e1 and discard all the quartets that do not satisfy the equation.

iii. For each of the remaining quartets, check whether C′′′
bE

⊕C′′′
dE

= δE =
e1 and discard all the quartets that do not satisfy the equation.

iv. Pass all the remaining quartets to further analysis.
(e) Further Analysis: If for this subkey guess only one quartet is suggested

(or no quartets are suggested) discard the subkey guess. If the subkey is
not discarded, exhaustively search all possible values for the remaining
160 subkey bits for the correct key.

5.3 Analysis of the Key Recovery Attack

The time complexity of Step 1 is 2159.8 encryptions. The time complexity of
Step 2(a) is 8

80 · 2256 · 2159.8 = 2412.5 SHACAL-1 encryptions. Steps 2(b)–2(e)
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are repeated for each subkey guess, i.e., 2256 times. For a given subkey guess,
Step 2(b) consists of 2141.3 · 232 partial decryptions of one SHACAL-1 round.
This is equivalent to 2141.3 · 232 · 1

80 = 2167.0 full SHACAL-1 encryptions. Thus,
the total time complexity of Step 2(b) is about 2256 · 2167.0 = 2423.0 SHACAL-1
encryptions.

There is an improvement of the time complexity by a factor of 8 based on the
observation that the difference in the most significant bit is not affected by the
actual key value. Thus, it is possible to guess in Step 2(a) the entire subkey of
rounds 74–79, and all but most significant bits of the subkeys of rounds 72–73.
This does not affect the ability to compute the difference in the most significant
bits of the words D72 and E72. Similarly, in Step 2(b) is is sufficient to guess the
31 least significant bits of K71 in order to find the difference in the three words:
C71, D71, and E71.

In Step 2(c) there is again no need to guess the entire subkey to deduce the
difference in the most significant bit. However, in order for the partial decryption
to be done correctly, the real value of the B70 has to be computed. Thus, in this
step we guess the most significant bit of K73 along with the 31 least significant
bits of K70. The same is done also in Step 2(d), where the most significant bit of
K72 is guessed along with the 31 least significant bits of K69. We note that the
improved variant guess 11 · 32 − 3 = 349 subkey bits during the entire attack.

The time complexities of the other steps are relatively smaller. Hence, the total
data complexity of the attack is 2159.8 related-key chosen plaintexts encrypted
under four keys, and the time complexity is 2420.0 SHACAL-1 encryptions. The
memory requirement of the attack is about 2159.8 memory blocks of 320 bits,
required for storing the large amount of data.

We note that a different approach may be used in our attack. We can re-
move the last three rounds of the second differential to increase its probability
by a factor of 26, resulting in a 66-round related-key rectangle distinguisher
with probability 2−80 · p̂ · q̂ = 2−150.8. The resultant distinguisher requires 2151.8

related-key chosen plaintext pairs (Pa, Pb) and (Pc, Pd) each to produce four
right plaintext quartets (while for a random cipher about 2−16.4 quartets that
satisfy the rectangle conditions are expected). Then, we apply partial decryp-
tions of rounds 69-79, 68, 67 and 66 in Steps 2(a), 2(b), 2(c) and 2(d), respec-
tively, and then run the final exhaustive search for the remaining 64-bit keys in
Step 2(e).

The time complexity of Step 2(a) in this case is 2152.8+352 · (11/80) = 2501.9

SHACAL-1 encryptions. In this attack we can derive the set S in Step 2-(a)
for the filtering of quartets, which has 270.8 elements, and thus the number of
remaining quartets after this step is about (2151.9 · 2−160+70.8)2 = 2125.2. It fol-
lows that Step 2(b) takes about 2126.2 · 2352+32 · (1/80) = 2503.9 SHACAL-1
encryptions. Compared to Steps 2(a) and 2(b), the followed steps have quite
small time complexities. Hence, this full-round attack on SHACAL-1 works with
a data complexity of 2153.8 related-key chosen plaintexts encrypted under four
related keys and with a time complexity of 2501.9 + 2503.9 = 2504.2 SHACAL-1
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encryptions. Again, a factor 8 in the time complexity can be improved using the
observation about the most significant bits, i.e., the attack’s time complexity is
2501.2 SHACAL-1 encryptions.

6 Differences Between Attacking SHA-1 and SHACAL-1

While it may seem that any attack on SHA-1 can be easily transformed into an
attack on SHACAL-1, and vice versa, this is not exactly the case. Investigating
the recent attacks on SHA-1 in [3,4,30], it seems that these attacks heavily
rely on the fact that the attacker can control some of the bits that enter the
nonlinear operations. This way, the collision-producing differentials have much
higher probability than the respective related-key differentials we use. We can
impose conditions on the keys (increasing the probabilities of the related-key
differentials), but then our attack would be applicable only for such keys, i.e., a
weak key class.

Another difference between the attacks on SHA-1 and our attack is the fact
that the collision attacks can iteratively fix the values they use, i.e., using message
modification techniques or neutral bits. This enables the collision producing
attacks to use shorter differential than ours (as these attacks actually start the
probabilistic process in a much later step).

There is another difference between the two cases. While in the case of encryp-
tion (SHACAL-1), we have to deal with each block of message independently,
collision attacks on the hash function can use multiple blocks. For example, the
attacker can treat messages that detoured the differential in a very late step,
by respective changes to the second block of the message. This fact allows the
collision search to use shorter differentials (this time from the end point), thus,
increasing the success probability.

Another problem our attack faces is the dual representation of XOR and
additive differentials. As we have less control on the encryption process than
the collision attacks have on the compression process, it is less useful for us to
consider the differentials using the dual representation. Again, for exploiting the
advantage of the additive differentials in the related-key differentials, we must
fix some of the key bits, resulting again in a weak key class.

7 Summary and Conclusions

In this paper we converted the differentials of the compression function of SHA-1
presented by Wang et al. to related-key differentials of the block cipher SHACAL-
1. Then we used the related-key rectangle technique to devise the first known
attack on the full 80-round SHACAL-1.

We also discussed the possibility of converting other techniques used in the
attacks on SHA-1 to attack SHACAL-1, and concluded that such conversion will
result in an attack applicable only to a weak key class of SHACAL-1.
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Our attack improves by far the previously known results, that were able to at-
tack up to 70 rounds of the cipher, and demonstrates the power of the related-key
rectangle technique. However, the result is still highly theoretical and a practi-
cal attack on the full SHACAL-1 seems out of reach at this stage. We note that
keys shorter than 420 bits can still be considered secure, as for these keys the time
complexity of our attack is greater than exhaustive key search.
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Table 2. Related-Key Differential for Rounds 0–33 of SHACAL-1

Round (i) ΔK ΔAi ΔBi ΔCi ΔDi ΔEi Probability
Input 0 e1 0 0 e31 e31 e31 2−1

1† e6 e1 0 0 e31 e31 2−2

2† e1,31 0 e1 0 0 e31 2−2

3 e31 0 0 e31 0 0 2−1

4 e1,31 0 0 0 e31 0 2−2

5 e6,31 e1 0 0 0 e31 2−1

6 0 0 e1 0 0 0 2−2

7 e6,31 e1 0 e31 0 0 2−2

8 e31 0 e1 0 e31 0 2−3

9 e6 e1 0 e31 0 e31 2−2

10 e31 0 e1 0 e31 0 2−3

11 e6 e1 0 e31 0 e31 2−2

12 e1,31 0 e1 0 e31 0 2−3

13 0 0 0 e31 0 e31 2−1

14 e31 0 0 0 e31 0 2−1

15 e31 0 0 0 0 e31 1
16 0 0 0 0 0 0 1
17 0 0 0 0 0 0 1
18 0 0 0 0 0 0 1
19 0 0 0 0 0 0 1
20 0 0 0 0 0 0 1
21 0 0 0 0 0 0 1
22 0 0 0 0 0 0 1
23 0 0 0 0 0 0 1
24 0 0 0 0 0 0 1
25 0 0 0 0 0 0 1
26 e2 0 0 0 0 0 2−1

27 e7 e2 0 0 0 0 2−1

28 e2 0 e2 0 0 0 2−1

29 e0,3 0 0 e0 0 0 2−2

30 e0,8 e3 0 0 e0 0 2−2

31 e0,3 0 e3 0 0 e0 2−2

32 e1,4 0 0 e1 0 0 2−2

33 e1,9 e4 0 0 e1 0 2−2

Output (34) 0 e4 0 0 e1
† — The probability of this round can be improved by a factor of 2.
Differences are presented before the round, i.e., ΔA0 is the input difference.

The first related-key differential is for rounds 0–33 and is presented in Table 2.
The probability of the differential is 2−41. This probability can be increased by
a factor of 4 by fixing the equivalent to two bits in each of the plaintexts of the
pair. If we set the most significant bit of A to be zero, the probability of the
second round of the differential is increased by a factor of 2. By setting bit 3 of
A to differ from bit 3 of B, the probability of the third round of the differential
is also increased by a factor of 2.



Related-Key Rectangle Attack on the Full SHACAL-1 43

Table 3. Related-Key Differential for Rounds 34–68 of SHACAL-1

Round (i) ΔK ΔAi ΔBi ΔCi ΔDi ΔEi Probability
Input 34 e1,30 0 e1 e31 0 e30,31 2−2

35 e1 0 0 e31 e31 0 2−1

36 e6 e1 0 0 e31 e31 2−1

37 e1,31 0 e1 0 0 e31 2−1

38 e31 0 0 e31 0 0 1
39 e1,31 0 0 0 e31 0 2−1

40 e6,31 e1 0 0 0 e31 2−1

41 0 0 e1 0 0 0 2−2

42 e6,31 e1 0 e31 0 0 2−2

43 e31 0 e1 0 e31 0 2−3

44 e6 e1 0 e31 0 e31 2−2

45 e31 0 e1 0 e31 0 2−3

46 e6 e1 0 e31 0 e31 2−2

47 e1,31 0 e1 0 e31 0 2−3

48 0 0 0 e31 0 e31 2−1

49 e31 0 0 0 e31 0 2−1

50 e31 0 0 0 0 e31 1
51 0 0 0 0 0 0 1
52 0 0 0 0 0 0 1
53 0 0 0 0 0 0 1
54 0 0 0 0 0 0 1
55 0 0 0 0 0 0 1
56 0 0 0 0 0 0 1
57 0 0 0 0 0 0 1
58 0 0 0 0 0 0 1
59 0 0 0 0 0 0 1
60 0 0 0 0 0 0 1
61 e2 0 0 0 0 0 2−1

62 e7 e2 0 0 0 0 2−1

63 e2 0 e2 0 0 0 2−1

64 e0,3 0 0 e0 0 0 2−2

65 e0,8 e3 0 0 e0 0 2−2

66 e0,3 0 e3 0 0 e0 2−2

67 e1,4 0 0 e1 0 0 2−2

68 e1,9 e4 0 0 e1 0 2−2

Output 69 0 e4 0 0 e1

Differences are presented before the round, i.e., ΔA34 is the input difference.

We use the notation ei to represent the 32-bit word composed of 31 0’s and 1
in the ith place. We use ei,j to denote ei ⊕ ej and ei,j,k = ei,j ⊕ ek, etc.

Due to the nature of the rectangle attack, we can improve the probability by
counting over several differentials. We have counted over differentials which have
the same first 33 rounds as the differential presented in Table 2. The resulting
probability is p̂ = 2−38.5 (when fixing the respective bits of the plaintext).
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The second related-key differential for rounds 34–68 is presented in Table 3.
This differential is also based on the collision producing differentials of [30]. The
probability of this differential is 2−39.

Again, due to the nature of the rectangle attack, we can improve the probabil-
ity by counting over several differentials. We count over various similar charac-
teristics, by changing the first round of this differential. The resulting probability
is q̂ = 2−38.3.
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