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CASTALDI C., FRENKEN K. and LOS B. Related variety, unrelated variety and technological breakthroughs: an analysis of US
state-level patenting, Regional Studies. This paper investigates how variety affects the innovation output of a region. Borrowing
arguments from theories of recombinant innovation, it is expected that related variety will enhance innovation as related
technologies are more easily recombined into a new technology. However, it is also expected that unrelated variety enhances
technological breakthroughs, since radical innovation often stems from connecting previously unrelated technologies opening
up whole new functionalities and applications. Using patent data for US states in the period 1977–99 and associated citation
data, evidence is found for both hypotheses. This study thus sheds a new and critical light on the related variety hypothesis in
economic geography.

Recombinant innovation Regional innovation Superstar patents Technological variety Evolutionary economic
geography

CASTALDI C., FRENKEN K. and LOS B. 相关多样性、非相关多样性与技术突破：美国州层级的专利授予分析，区域研
究。本文探讨多样性如何影响一个区域的创意产出。本文借用重组式创新理论的主张，预期相关多样性将会增进创

新，因为相关技术更容易重组成为新的技术。但本文同时预期，非相关多样性能够增进技术突破，因为突破性的创

新经常源自于连结过去不相关的技术，并开啓崭新的功能性与应用。本研究运用美国各州在1977年至1999年之间的
专利数据和相关的引用数据，同时发现支持上述两项假说的证据。本研究因此对经济地理学中的相关多样性假说,
提供了崭新且具批判性的洞见。

重组式创新 区域创新 明星专利 技术多样性 演化经济地理学

CASTALDI C., FRENKEN K. et LOS B. La variété reliée, la variété non reliée et les percées technologiques: une analyse de
l’obtention de brevets au niveau des états aux É-U, Regional Studies. Cet article examine comment la variété influe sur l’innovation
d’une région. S’appuyant sur les théories de l’innovation recombinante, on s’attend à ce que la variété reliée améliore l’innovation
parce que l’on peut recombiner plus facilement les technologies reliées en nouvelle technologie. Cependant, on s’attend aussi à
ce que la variété non reliée améliore les percées technologiques, étant donné que l’innovation radicale provient souvent du
raccordement des technologies jusqu’alors sans rapport, ce qui offre des fonctionnalités et des applications tout nouvelles. À
partir des données sur les brevets pour les états aux É-U pendant la période de 1977 à 1999 et des données de citation y associées,
on a trouvé des preuves qui corroborent les deux hypothèses. Cette étude jette une lumière nouvelle et critique sur l’hypothèse de
la variété reliée dans la géographie économique.

Innovation recombinante Innovation régionale Brevets vedettes Variété technologique Géographie économique
évolutionniste

CASTALDI C., FRENKEN K. und LOS B. Verwandte Varietät, nichtverwandte Varietät und technologische Durchbrüche: eine
Analyse der Patente auf US-Bundesstaatsebene, Regional Studies. In diesem Beitrag wird untersucht, wie sich Varietät auf die
Innovationsleistung einer Region auswirkt. Unter Anlehnung an die Argumente der Theorien der rekombinanten Innovation
gehen wir davon aus, dass verwandte Varietät die Innovation verbessert, da sich verwandte Technologien einfacher zu einer
neuen Technologie kombinieren lassen. Allerdings gehen wir auch davon aus, dass nichtverwandte Varietät technologische
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Durchbrüche verbessert, da radikale Innovation oft auf einer Kombination bisher nichtverwandter Technologien beruht, die völlig
neue Funktionalitäten und Anwendungen ermöglicht. Anhand von Patentdaten für US-Bundesstaaten im Zeitraum von 1977 bis
1999 sowie mithilfe der zugehörigen Zitatdaten werden Belege für beide Hypothesen gefunden. Diese Studie lässt somit die
Hypothese der verwandten Varietät in der Wirtschaftsgeografie in einem neuen und kritischen Licht erscheinen.

Rekombinante Innovation Regionale Innovation Superstar-Patente Technologische Varietät Evolutionäre
Wirtschaftsgeografie

CASTALDI C., FRENKEN K. y LOS B. Variedad relacionada, variedad no relacionada y avances tecnológicos: un análisis de las
patentes estatales en los Estados federales de EE.UU., Regional Studies. En este artículo investigamos qué efecto tiene la variedad
en la capacidad innovadora de una región. Tomando prestados argumentos de teorías de la innovación recombinante, se prevé
que la variedad relacionada aumente la innovación puesto que las tecnologías relacionadas se pueden volver a combinar más
fácilmente en una nueva tecnología. Sin embargo, también se supone que con la variedad no relacionada aumenten los avances
tecnológicos dado que la innovación radical muchas veces surge de combinar tecnologías no relacionadas previamente,
descubriendo toda una serie de nuevas funcionalidades y aplicaciones. A partir de datos de patentes estatales de Estados Unidos
durante el periodo de 1977 a 1999 y de datos de citación pertinentes, observamos evidencia de ambas hipótesis. Por consiguiente,
este estudio aporta un enfoque nuevo y crítico a la hipótesis de la variedad relacionada en la geografía económica.

Innovación recombinante Innovación regional Patentes superestrella Variedad tecnológica Geografía económica evo-
lutiva

JEL classifications: O31, R11

INTRODUCTION

Innovation is commonly held to be the key factor in
regional development, underlying short-run pro-
ductivity gains and long-run employment growth
through new industry creation. Since innovation pro-
cesses draw on knowledge that is often sourced locally
(ALMEIDA and KOGUT, 1999; STUART and SOREN-

SON, 2003; BRESCHI and LISSONI, 2009), regional
development is essentially an endogenous process with
strong path dependencies (IAMMARINO, 2005; RIGBY

and ESSLETZBICHLER, 2006) akin to an evolutionary
branching process (FRENKEN and BOSCHMA, 2007;
NEFFKE et al., 2011).

In so far as knowledge is drawn from a variety of
sectors, as in ‘recombinant innovation’ (WEITZMAN,
1998), the sectoral composition of a region will affect
the rate and direction of technical change in regions
(EJERMO, 2005). In this context, it has been argued
that the more sectors are related, the more easily knowl-
edge created in one sectoral context can be transferred
to other sectoral contexts. Both NIGHTINGALE (1998)
and NOOTEBOOM (2000) stress that decision-makers
in firms have limited cognitive capabilities, limiting
their abilities to identify potentially fruitful combi-
nations of pieces of knowledge that seem unrelated to
their existing knowledge bases and/or to each other.
Hence, variety per se may not support innovation;
rather it is ‘related variety’ (NOOTEBOOM, 2000;
FRENKEN et al., 2007) that provides the basis for knowl-
edge spillovers and recombinant innovation, spurring
productivity and employment growth. The related
variety hypothesis has motivated a large number of
other empirical studies on the effect of related variety
in sectoral composition on regional productivity and
employment growth (ESSLETZBICHLER, 2007;

FRENKEN et al., 2007; BOSCHMA and IAMMARINO,
2009; BISHOP and GRIPAIOS, 2010; QUATRARO,
2010, 2011; ANTONIETTI and CAINELLI, 2011;
BRACHERT et al., 2011; BOSCHMA et al., 2012;
HARTOG et al., 2012; MAMELI et al., 2012). Results
tend to show that related variety indeed supports pro-
ductivity and employment growth at the regional
level, though some studies suggest that the effects are
sector-specific (BISHOP and GRIPAIOS, 2010;
MAMELI et al., 2012).

In putting forward their hypothesis on related
variety, FRENKEN et al. (2007) associated related
variety as being supportive of knowledge spillovers
and recombinant innovation, which in turn would
support regional growth, particularly employment
growth. In their analysis of the impact of related
variety, however, they did not provide direct evidence
on the relationship between related variety and inno-
vation processes as such. Hence, the question remains
open whether related variety supports innovation
(TAVASSOLI and CARBONARA, 2014).1 The present
paper aims to develop further the notion of related
variety and its effect on innovation. It does so within a
theoretical framework that explicitly distinguishes
between related and unrelated variety and predicts
differential effects of the two types of variety on inno-
vation processes. The authors take issue with the
notion that related variety supports all kinds of inno-
vation. Instead, it is argued that related variety is suppor-
tive of the bulk of innovations that incrementally build
on established cognitive structures across ‘related’ tech-
nologies, while unrelated variety provides the building
blocks for technological ‘breakthroughs’ stemming
from combinations across unrelated knowledge
domains. Since such radical innovations often stem
from connecting previously unrelated technologies,
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these innovations lead to whole new functionalities and
applications, and span new technological trajectories for
their further improvement (DOSI 1982). As a result, the
unrelated technologies lying at the root of the break-
through innovations become more related over time.

This paper’s new framework is not incompatible
with the original related variety framework by
FRENKEN et al. (2007), since related variety is still
expected to support innovation in general. Hence, in
so far innovations lead to employment growth, the orig-
inal related variety hypothesis still holds. Additionally, it
is also expected that unrelated variety supports break-
through innovations. Potentially, breakthrough inno-
vations may have much more impact on employment
growth than innovations more generally, since whole
new industries can emerge out of breakthrough inno-
vations in the long run (SAVIOTTI and FRENKEN

2008). Nevertheless, the present additional hypothesis
does not necessarily contradict previous findings that
unrelated variety does not support employment
growth, since earlier studies only analysed the short-
term effect of variety on employment. What is more,
the employment effects of technological breakthroughs
need not be found in the region of origin, since the suc-
cessful commercialization of a breakthrough technology
may well take place in regions other than the region
from which it originated (BOSCHMA 1997;
MURMANN 2003).

Within this new theoretical framework, two hypoth-
eses are tested. The first contends that related variety of
the existing knowledge stock in a region enhances its
overall innovation rate, while a high degree of unrelated
variety does not have effects. The second states that
unrelated variety of the regional knowledge base sup-
ports the rare breakthrough innovations, while related
variety does not have such an effect.

A criterion based on the numbers of citations to a
patent is used as included in subsequent patent docu-
ments (so-called forward citations) to operationalize
the concepts of incremental innovation and break-
through innovations (SILVERBERG and VERSPAGEN,
2007; CASTALDI and LOS, 2012). The dataset contains
all utility patents granted by the US Patent and Trade-
mark Office (USPTO) between 1977 and 1999, for
which the first inventor resided in the United States.
Information on the locations of first inventors is used
to assign patents to US states. To construct variables
regarding various types of variety of the regional knowl-
edge base, technological classification schemes at differ-
ent levels of aggregation were used, as designed by the
USPTO. The actual construction of related- and unre-
lated variety variables is rooted in entropy statistics
(FRENKEN et al., 2007).

The results show a positive effect of related variety on
regional innovation in general, and a positive effect of
unrelated variety when looking at regions’ capability
to forge breakthrough innovations. This finding is
shown to be robust for the inclusion of a spatially

lagged research and development (R&D) variable, that
is, the sum of R&D investments in neighbouring states.

The paper is structured as follows. The second
section gives a brief overview of the theoretical concepts
on the interplay of existing pieces of knowledge in
recombinant innovation processes. The methods are
introduced in the third section, which includes a discus-
sion of the procedure adopted to distinguish between
incremental innovations and breakthrough innovations.
The fourth section shows how the numbers of produced
breakthrough innovations vary across states and provides
indications of differences in the variety of their knowl-
edge bases, before testing the hypotheses using econo-
metric estimation techniques. The fifth section
concludes.

VARIETY, RECOMBINATION AND
INNOVATION

Technological innovation is commonly understood to
be a cumulative process in which most new artefacts
are being invented by recombining existing technol-
ogies in a new manner (BASALLA, 1988; ARTHUR,
2007). The recombination is a novelty in itself, but
could only emerge given the pre-existence of the tech-
nologies being recombined. As a recent and telling
example, smart phones combine technologies related
to batteries, chips, antennas, audio, video, display and
the Internet. In this context, Schumpeter famously
spoke of innovation as the bringing about of new com-
binations (‘Neue Kombinationen’), an idea that continues
to inspire evolutionary theorizing in economics
(BECKER et al., 2012). A more recent and very similar
concept is that of ‘recombinant innovation’ defined as
‘the way that old ideas can be reconfigured in new
ways to make new ideas’ (WEITZMAN, 1998, p. 333).
This concept motivated new formal models of inno-
vation within the evolutionary economics literature,
including one on optimal variety in recombinant inno-
vation (VAN DEN BERGH, 2008) and another on the
role of recombinant innovation in technological tran-
sitions (FRENKEN et al., 2012).

In a regional context, it follows from the notion of
recombinant innovation that, to the extent that inno-
vation processes draw on geographically localized
knowledge, regions with a more diverse stock of knowl-
edge would have a greater potential for innovation. This
is in line with Jacobs’ argument that cities hosting many
different industries would experience more innovation
as the exchange of knowledge by people with different
backgrounds would lead to more new products and pro-
cesses. As JACOBS (1969, p. 59) observed:

the greater the sheer numbers and varieties of divisions of
labor already achieved in an economy, the greater the
economy’s inherent capacity for adding still more kinds
of goods and services. Also the possibilities increase for
combining the existing divisions of labor in new ways.

Related Variety, Unrelated Variety and Technological Breakthroughs 769
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This mechanism was later labelled as Jacobs externalities,
which refer to positive externalities arising from the co-
location of different sectors (GLAESER et al., 1992).

FRENKEN et al. (2007) added to Jacobs’ argument
that regions hosting related industries can more easily
engage in recombinant innovation. Such related indus-
tries draw from different but not completely discon-
nected knowledge bases. In the words of FRENKEN

et al. (2007, p. 687), related variety ‘improves the oppor-
tunities to interact, copy, modify, and recombine ideas,
practices and technologies across industries giving rise to
Jacobs externalities’. One expects the related variety
hypothesis to hold for innovation in general.
However, it should be recognized that unrelated var-
ieties can sometimes be combined successfully as well.
Such innovations render pieces of knowledge that
were previously unrelated to become related, in the
form of an artefact or service exemplar that paves the
way for future innovations to follow suit. Indeed,
while recombinant innovation among previously unre-
lated domains is more likely to fail, such innovations,
when successful, are also more likely to be of a radical
nature as recombination across unrelated technologies
can lead to complete new operational principles, func-
tionalities and applications (FLEMING, 2001; SAVIOTTI

and FRENKEN, 2008).
Turning to the regional level, one can expect regions

with high levels of related variety to outperform regions
with low levels of related variety in terms of the sheer
number of inventions they produce. However, when
it comes to breakthrough inventions, regions with
high levels of unrelated variety are expected to outper-
form regions with low levels of unrelated variety. The
following two hypotheses will guide the remainder of
this study:

Hypothesis 1: Regional related variety is positively associated with
regional inventive performance.

Hypothesis 2: Regional unrelated variety is positively associated
with the regional ability to produce breakthrough inventions.

RESEARCH DESIGN

The hypotheses are tested using patent data. Their use to
trace innovation is widespread and by now reasonably
accepted. Patents have a number of attractive features
with regard to the measurement and classification of
inventive output. These particularly include the facts
that formal novelty requirements have to be met to
have a patent granted and that all patents are assigned
to technological classes by independent and knowledge-
able experts (SMITH, 2005). In a well-known early con-
tribution to the literature, ACS et al. (1992) found
evidence that patent counts are a noisy but useful indi-
cator of innovative activity at the state level, by compar-
ing patent counts to numbers of innovations identified
in professional and trade journals.2 Given that money

was invested in advertising these innovations, it is
likely that these corresponded to patents with a per-
ceived high value. A more debated issue is how to quan-
tify success in producing breakthrough innovations in a
systematic way. Can this also be attained using patent
statistics? Recently, empirical research on innovation
has offered a number of alternatives, all basically aimed
at capturing the value of patents (VAN ZEEBROECK,
2011). Citations received by patents (forward citation
numbers) are a common indicator for patent value, as
suggested already by TRAJTENBERG (1990). Many
researchers have measured breakthrough inventions by
considering the top-cited patents in a given subpopu-
lation (e.g., AHUJA and LAMPERT, 2001; SINGH and
FLEMING, 2010). These subpopulations are often
chosen as cohorts of patents in a technological field or
subfield, to provide a fair comparison between patents
of different age (‘young’ patents did not have much
time to receive citations) and technological field (in
the period of analysis, many more patents were
granted in a category like Chemical than in Computers
and Communications, as a consequence of which
Chemical patents generally receive more citations than
Computers and Communications patents (HALL et al.,
2002). This study uses a refined methodology proposed
by CASTALDI and LOS (2012) to identify what they
term ‘superstar patents’. The basic idea behind this
methodology is to derive endogenously the share of
superstars in a subpopulation of patents by exploiting
statistical properties of the frequency distribution of
forward citation numbers, which are characterized by
a fat tail. This approach is original, as most studies use
exogenously fixed (identical across years and technol-
ogies) criteria to distinguish between breakthrough
and regular innovations instead, by defining break-
throughs as the patents belonging to the top 5% or
top 1% quantiles of the citations distributions.

The statistical properties that spurred the initial appli-
cation of the method were highlighted by SILVERBERG

and VERSPAGEN (2007). They showed that a log-
normal distribution fits most of the forward citations dis-
tribution for patents quite well, except for the tail: the
numbers of received citations of highly cited patents
rather follow a Pareto distribution. This implies that
there are a few patents for which the ‘citations-generat-
ing’ process is different. The technologies underlying
such patents act as focusing devices for technological
developments within new technological paradigms
(DOSI, 1982). By estimating the number of citations
needed by a patent to fall into the Pareto tail of the
forward citations distribution, CASTALDI and LOS

(2012) classify US patents registered at the USPTO as
either superstars or not.3 This estimation relies on a
modified version of the estimation routine in SILVER-

BERG and VERSPAGEN (2007), based upon the so-
called Hill estimator (for more details, see Appendix
A). Additionally, it was ensured that only patents with
the same application year and belonging to an identical
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technological subcategory were compared. USPTO
patents have been classified by HALL et al. (2002) in
six broad technological categories and 36 technological
subcategories, each corresponding to 417 even more
disaggregate patent classes (HALL et al., 2002, pp. 41–
42). The classification is part of the National Bureau
of Economic Research (NBER) Patent Citation data-
base and its updates and allows assigning each registered
patent to one single category, one single subcategory
and one single patent class.

For present purposes, the aim is to count patents and
superstar patents across regions. US patents included in
the NBER database can be assigned to the US state of
the first inventor. The state will be the definition of a
region in this study.4 For each state and each year
from 1976 to 1999, there are the number of total
granted patents applied for in that year at the USPTO
by inventors in that state and also estimates of how
many of the total patents are superstar patents.5 As the
hypotheses relate to explaining regional innovative
output, this paper works with two dependent variables
for each state i:

. The total number of granted patents with application
year t, as a proxy for the general innovation perform-
ance of a state (NUMPATENTSit).

. The share of superstar patents in all patents of the
state with application year t, as a proxy for the
ability to produce breakthrough innovations
(SHARESUPERit).

It was chosen to consider shares of superstars rather
than absolute numbers, since shares indicate something
about the type of innovative activity: shares indicate
revealed comparative (dis)advantages in breakthrough
innovation.

CASTALDI and LOS (2012) analyse the geographical
concentration of superstar patents across US states and
find that the regional clustering of superstar patents is
much higher than for non-superstar patents. Apparently,
companies locate their search for breakthrough inno-
vations in very specific places, while the production of
regular innovations happens in many more places.
Their descriptive results regarding this issue are in line
with similar ones by EJERMO (2009) and indicate
already that explaining regional performance in terms
of breakthrough innovation requires different hypoth-
eses than explaining regional innovative performance
in more general terms.

The paper now turns to the explanatory variables.
The key independent variables in the model will be
measures of regional variety in innovative activity.
Again, patent data are used, as patents indicate some-
thing about the technological fields in which states con-
tribute innovations. In line with previous work, variety
is measured with entropy indicators (GRUPP, 1990;
FRENKEN, 2007). Entropy captures variety by measur-
ing the ‘uncertainty’ of probability distributions. Let Ei

stand for the event that a region is patenting in a

given technological field i; and let pi be the probability
of event Ei occurring, with i= 1,… , n. The entropy
level H is given by:

H =
∑n
i=1

piln
1
pi

( )
(1)

with:

piln
1
pi

( )
= 0 if pi = 0

The value ofH is bounded from below by zero and has a
maximum of ln(n).H is zero if pi= 1 for a single value of
i; and pi= 0 for all other i. In the context of this study,
such a situation would occur if a state were to have all its
patents in a single patent class. If a patent were to be
drawn from this state’s patent portfolio, uncertainty
about the patent class to which it belongs would be
non-existent. The maximum value of ln(n) is attained
if all pi values are identical. In terms of the application,
such a situation emerges if the shares of all patent
classes in a state’s patent portfolio are the same. If a
patent were drawn at random from such a portfolio,
the uncertainty about the patent class to which it
belongs would be the largest.

Apart from its roots in information theory (THEIL,
1972), a very appealing feature of entropy statistics is
that overall entropy can be decomposed in entropy
measures at different levels of aggregation (FRENKEN,
2007). This allows one to construct variables that rep-
resent different levels of relatedness of variety in techno-
logical capabilities of states, as reflected in patent statistics.
Assume that all events Ei (i= 1,… , n) can be aggregated
into a smaller number of sets of events S1,… , SG in such
a way that each event exclusively falls in a single set Sg,
where g = 1,… , G. For the data, this corresponds to
the situation that all 417 patent classes can be grouped
into one of the 36 more aggregated technological subca-
tegories constructed by HALL et al. (2002), or at an even
higher level of aggregation to one of their six technologi-
cal categories. The probability that event Ei in Sg occurs
is obtained by summation:

Pg =
∑
i[Sg

pi (2)

The entropy at the level of sets of events is:

H0 =
∑G
g=1

Pgln
1
Pg

( )
(3)

H0 is called the ‘between-group entropy’. Within the
present context, it would give an indication of the
extent to which a state has patents that are evenly dis-
tributed over broadly defined technological categories.
The entropy decomposition theorem specifies the
relationship between the between-group entropy H0
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at the level of sets and the entropy H at the level of
events as defined in (1). As shown by THEIL (1972),
one obtains:

H = H0 +
∑G
g=1

PgHg (4)

The entropy at the level of events is thus equal to the
entropy at the level of sets plus a weighted average of
within-group entropy levels within the sets. For
present purposes, (4) implies that one can consider tech-
nological variety at the lowest level of aggregation as the
sum of technological variety within classes at a higher
level of aggregation and variety between these classes.6

As mentioned above, the technological classification
by HALL et al. (2002) is relied upon. Because CASTALDI

and LOS (2012) focused on 31 subcategories (leaving out
all patents in HALL et al.’s (2002) ‘Miscellaneous’ subca-
tegories) in identifying superstar patents, one can only
consider patents in six categories, 31 subcategories and
296 classes. Unrelated variety (UV) is measured as the
entropy of the distribution of patents over one-digit cat-
egories, which states how diversified each state is across
the six broad unrelated technological categories:

UVit =
∑6
k=1

sk,it ln
1
sk,it

( )
(5)

where sk,it represents the share of patents in technologi-
cal category k in all patents granted with the first inven-
tor in state i and applied for in year t.

Next, semi-related variety (SRV) is defined as the
weighted sum of two-digit entropies in each one-digit
category. The decomposition theorem (4) implies that
this is the difference between the entropy measure at
the level of two-digit technological subcategories and
UV itself:

SRVit =
∑31
l=1

sl,it ln
1
sl,it

( )
−

∑6
k=1

sk,it ln
1
sk,it

( )
(6)

in which l indexes the technological subcategories.
Finally, related variety (RV) is the diversity of a state’s

patent portfolio at the most fine-grained classification. It
is computed in a similar vein as SRV, but taking the
difference between total entropy at the level of narrowly
defined three-digit patent classes and two-digit techno-
logical subcategories:

RVit =
∑296
m=1

sm,it ln
1
sm,it

( )
−

∑31
l=1

sl,it ln
1
sl,it

( )
(7)

The related variety and semi-related variety indicators
measure the within-group variety components and

indicate how diversified a state is within the higher
level categories.

It should be stressed that (semi-)related and unrelated
variety are not opposites, but orthogonal in their
meaning (FRENKEN et al., 2007). In principle, a state
can be characterized by both high related and unrelated
variety. These would be states that are diversified into
unrelated technological categories while being diversi-
fied into many specific classes in each of these categories
as well. Any other combination of above- and below-
average levels of UV, SRV and RV is possible as well,
at least theoretically, even if empirically related and
unrelated variety tend to correlate positively
(FRENKEN et al., 2007; QUATRARO, 2010, 2011;
BOSCHMA et al., 2012; HARTOG et al., 2012).

Next to the entropy measures, one also takes into
account each state’s R&D expenditures (RD) as their
key innovation input variable. R&D expenses give a
measure of the scale of inventive efforts in each state.
Historical R&D data are collected at the state level
from NSF (2012). The figures cover total (company,
federal and other) funds for industrial R&D perform-
ance by US state for the years 1963–98. Until 1995,
data are available only for odd years since the R&D
survey was administered every other year. The values
for even years are estimated using linear interpolation.
Next, the figures are expressed in constant 2005 US
dollars using gross domestic product (GDP) deflators.

The observations are pooled across states and years
and each of the two dependent variables is modelled
as a function of one-year lag independent variables,
namely the three entropy measures and R&D. The lag
is there to account for the fact that inventive output is
related to prior efforts, rather than happening simul-
taneously. These considerations are reflected in the
two regression equations:

NUMPATENTSit = aN + bN
1 UVi,t−1

+ bN
2 SRVit−1 + bN

3 RVit−1

+ gNRDit−1 + dNd+ 1it (8)

SHARESUPERit = aS + bS
1UVi,t−1

+ bS
2SRVit−1 + bS

3RVit−1

+ gSRDit−1 + dSd+ yit (9)

The vector d contains dummies to capture time-
invariant state-specific effects and a variable to capture
trends over time. Given that R&D data are available
until 1998, the sample covers 51 US states for the
years 1977–99. Missing values of the R&D variable
(for a number of states these data are not available for
periods of varying length) imply that there is a total of
877 observations.

The method relies on generalized linear model
(GLM) regression methods to estimate (8) and (9). For
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(8), a negative binomial model is estimated, given that
NUMPATENTS is a count variable. For (9) a linear
model can be estimated. Tests based on the model
deviance (MCCULLAGH and NELDER, 1989) are used
to gauge the goodness of fit of the models and to
compare the performance of nested models. Standar-
dized coefficients are reported; for the case of the nega-
tive binomial model only the independent variables are
standardized since the dependent one is a count.

RESULTS

Before turning to the tests of the hypotheses, it is impor-
tant to give indications of the empirical importance of
the differences being explained, and to give some
ideas about statistical properties of the explanatory vari-
ables. Table 1 gives some descriptive statistics, computed
over all 877 observations.

The output of patents (NUMPATENTS) varies
strongly across states and years. In 1990, South Dakota
only produced 12 patents, whereas California churned
out as many as 15404 in 1997. The average number
of patents by state grew rather steadily from 567 in
1977 to 1169 in 1999. This modest growth in combi-
nation with the absence of wild swings implies that
most of the variation in NUMPATENTS is in the
‘across states’ dimension. In 1977, the top-five patent
producers in that year (California, New York, New
Hampshire, Indiana and Pennsylvania) produced as
much as 45% of all patents considered. In 1999, the
share of the top five was also 45%, but the composition
of the top five changed slightly (California, Texas,
New York, Michigan and New Hampshire).

A lot of variation is also found with respect to the
second dependent variable: the share of superstar
patents in all patents (SHARESUPER). A substantial
number of states almost never produce a superstar
patent. Alaska, South Dakota, Wyoming and Nevada
generated less than one superstar patent per year over
the period 1977–99. At the other end of the spectrum,
California managed to generate more than 11500
superstar patents over this period. On average,
California was not the state with the strongest
specialization in the production of superstar patents,

however. Idaho and Minnesota averaged shares of
7.1% and 6.9%, while there are shares of 6.7%, 6.7%
and 6.4% for California, New Mexico and Massachu-
setts, respectively.7 At the bottom end are mainly
found states that produced only a few patents in
general, such as South Dakota (1.9%), Nevada (2.1%)
and Arkansas (2.6%).

Unrelated variety (UV) remained relatively constant
over time, at around 1.60. The maximum entropy for
a situation with six technological categories is ln(6) =
1.79, so 1.60 implies that most states had a very diversi-
fied patent production at this level of aggregation. In a
few states, though, much less variety could be found.
Alaska, Nevada and Wyoming are examples of states
that did not generate many patents, and it could be
expected that their patents could not cover the entire
technological range to a substantial extent. The situation
is different for Delaware and Idaho, however. These
states produced as many as about 300 patents per year
on average, but have average UV values of 1.30 and
1.39, respectively. Patents in Chemicals as a fraction of
all patents over the period 1977–99 assigned to Dela-
ware amounted for as much as 57% (mainly due to
DuPont’s activities), while patents in Electrical and
Electronic accounted for almost 49% of all patents in
Idaho (as a consequence of Micron’s inventive capabili-
ties). New York, Connecticut and Minnesota are the
states with the highest average over years for UV, in
the 1.74–1.75 range.

For SRV and RV, the maximum attainable values
(given the numbers of technological subcategories and
classes) are ln(31) – ln(6) = 1.64, and ln(296) – ln(31)
= 2.16, respectively. As Table 1 reveals, the actual
averages over states and years for these variables are
1.38 and 1.37. These averages were again relatively
stable, with a slight decline in SRV over the last six to
seven years of the period under investigation. The top
three states in terms of average SRV were California
(1.53), Colorado (1.50) and New York (1.49). New
Hampshire is the prime example of a heavy producer
of patents with little semi-related variety. With an
average SRV of 1.29 it belongs to the bottom 15 of
states, besides states that do not produce many patents,
Delaware and Idaho. Turning to RV, a different top
three is found: Indiana (1.83), Ohio (1.79) and

Table 1. Variables and descriptive statistics (N= 877)

Variable Description Minimum Maximum Mean SD

NUMPATENTS Total number of US Patent and Trademark Office (USPTO) patents applied in
year t assigned to inventors located in the state

12 15404 887.66 1402.37

SHARESUPER Share (%) of superstar patents in total patents for year t and state i 0.00 12.21 4.34 1.95
UV Entropy at the one-digit-level technological categories 0.79 1.78 1.61 0.13
SRV Entropy at the two-digit-level subcategories minus entropy at the one-

digit-level categories
0.61 1.64 1.38 0.14

RV Entropy at the three-digit-level classes minus entropy at the two-digit-level
subcategories

0.09 1.93 1.37 0.35

RD Total research and development (R&D) expenditures (2005 US$, thousands) 2000 41561000 2886000 4821000
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Michigan (1.75). Idaho (0.90), Rhode Island (0.98) and
New Jersey (1.00) are examples of states that produce
sizable numbers of patents, but with little related
variety. These examples strengthen the impression con-
veyed by the last two columns of Table 1, which show
that the coefficient of variation (standard deviation
divided by mean) increases with the level of technologi-
cal detail at which variety is measured.

R&D budgets went up over time. In the data, the
average amount of R&D expenditures over states
grew from about US$1.75 billion in 1977 to about
US$3.75 billion in 1999 (all amounts converted to con-
stant prices in 2005). The top five states in terms of
average R&D funds were California (US$28.9 billion),
Michigan (US$11.0 billion), New York (US$10.0
billion), New Jersey (US$8.7 billion) and Massachusetts
(US$6.7 billion). States like Wyoming (US$0.014
billion), South Dakota (US$0.015 billion) and North
Dakota (US$0.032 billion) appear at the bottom.

The previous section argued that the entropy
decomposition theorem allows one to quantify UV,
SRV and RV in a way that allows for complete statistical
independence of these variety measures. Empirically,
however, the entropy measures may still be correlated.
Fig. 1 contains observations for all 51 states. The hori-
zontal axis indicates the average value of UV over the
entire period (including observations that had to be
removed from the regression analysis as a consequence
of missing data for RD), while the average values for
states for RV are reflected by the vertical axis. The scat-
terplot shows that there is a clear positive relation
between the two variables in line with previous findings
(FRENKEN et al., 2007; QUATRARO, 2010, 2011;
BOSCHMA et al., 2012; HARTOG et al., 2012). An
increase of 0.1 in UV implies (on average) an increase
of 0.22 in RV. This hardly changes if only the 30
states with the highest values of UV are taken into
account (0.21). The explanatory power of a simple
model of RV with UV and a constant intercept as
independent variables is not extremely high, though
(R2 = 0.58).

Fig. 1 reveals some examples of states with similar
average unrelated variety levels, but which had very
different levels of related variety. Wyoming and Dela-
ware are examples of such states with very low levels
of UV, while Washington, DC, and Michigan show
such differences in RV at higher levels of UV. An
example from 1999 is illustrative. In that year, Iowa
had an UV of 1.70 and Florida’s UV amounted to
1.71, which indicates that these states were diversified
to the same extent if the six technological categories
are considered. Since the maximum attainable UV is
1.79, both states can be considered as having a fairly
high degree of unrelated variety. Examining the 296
patent classes on which the RV variable is based, it is
found that Florida had 1,999 patents in as many as 217
classes, whereas Iowa’s patents were present in only
138 classes. Apparently, Iowa’s patents were much
more clustered in relatively few classes within the cat-
egories than Florida’s, which is clearly reflected in the
RVs for both states (Florida = 1.72, Iowa = 1.26).

The positive, but far from perfect, linear relationship
between UV and RV, as depicted in Fig. 1, also shows
up in Table 2, which gives the pairwise (Pearson) corre-
lations between the variables that enter the regression
equations (8) and (9). Table 2 indicates that positive
relationships of about equal strength are also found for
pairwise comparisons of UV and RV with SRV.
Overall, the results indicate that almost all variables are
weakly correlated with each other. The correlations
for R&D clearly show that R&D efforts explain a
large part of variation in total innovative output (NUM-
PATENTS), but have much less of an impact on the
share of breakthrough innovations (SHARESUPER).

Table 3 reports the results of maximum likelihood
estimates of the regression models (8) and (9). For
each equation, three nested models are actually esti-
mated. Model 1 is a baseline model including only the
R&D variable and basically capturing the relation
between R&D efforts as innovation inputs and patent
counts as proxies for innovation outputs. Model 2
refines Model 1 by inserting state dummies and a time
trend. Thereby one controls for state-specific fixed
effects and a possible positive trend in the intensity of
innovative activity. Finally, Model 3 is a complete
model in which the entropy-based measures of variety
are included. This last model allows one to test the
two main hypotheses of this study.

For both equations, the Chi-square tests based on the
difference of the models’ deviance indicate that Model 2
significantly improves upon the goodness of fit of Model
1 and Model 3 significantly improves upon Model 2.

State-level inventive output measured by the total
number of patents is positively related to R&D efforts
in Model 1, as expected. When state dummies and a
time trend are included, the significance of R&D
vanishes. This is most probably due to the fact that
R&D expenditures vary strongly in terms of levels
across states and have grown rather steadily over time,

Fig. 1. Related variety (RV) versus unrelated variety (UV)
Note: Squares denote state averages for UV and RV over

1977–99
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for virtually all states. As a result, the state dummies and
the time trend already explain the major differences in
R&D efforts and since state dummies and time trend
are also strongly significantly related to patent perform-
ance, the residual effect of R&D is not significant.8

Model 3 reveals a significant relation between total
patents production NUMPATENTS and related
variety RV, while the unrelated and semi-related
variety variables UV and SRV are not significant. This
evidence supports the first hypothesis that innovation
in general benefits from diversification in related
technologies.

If one looks at the estimates in the lower panel of
Table 3, it can be seen that R&D is also strongly
related to the shares of superstars in Model 1. The posi-
tive relation remains significant also in Models 2 and
3. Differences in the production of breakthroughs
across states cannot be simply reduced to state-specific
effects, such as size. The estimates for Model 3 indicate
that both RD and UV help in explaining those differ-
ences. On average, states that are more specialized in
breakthroughs are more diversified across unrelated
technologies. The second hypothesis that states with
higher unrelated variety would outperform states with

lower unrelated variety in terms of breakthrough inno-
vation is thus confirmed. Semi-related variety is also
found to be ‘detrimental’ for breakthroughs. If the
recombination theory is applied, this would suggest
that, conditional on a given level of unrelated variety,
the more specialized the knowledge in selected subcate-
gories within large technological categories, the more
likely is recombination across categories. A lot of
focused technological knowledge in diverse technology
appears to enhance the specialization of states in produ-
cing relatively many breakthrough innovations. On the
other hand, the semi-related variety measure is a
measure that was included because of the properties of
the data classification. Notice that the key results
about related and unrelated variety remain valid even
when leaving aside the semi-related variety measure in
the model estimations (Model 4).

Regressions on spatial units of analysis can be subject
to spatial dependence effects. To get an idea of the
robustness of the results reported in Table 3, it was
tested whether not only R&D efforts of the state itself
but also of neighbouring states have played a role. An
adjacency matrix was constructed where two states are
defined as neighbours if they share a border. The

Table 2. Correlation analysis (N= 877)

NUMPATENTS SHARESUPER RDt−1 UVt−1 SRVt−1

SHARESUPER 0.286**
RDt−1 0.847** 0.251**
UVt−1 0.258** 0.238** 0.238**
SRVt−1 0.205** –0.015 0.271** 0.429**
RVt−1 0.461** 0.144** 0.378** 0.571** 0.599**

Note: **Significant at 5%.

Table 3. Generalized linear model (GLM) regression results for the models explaining the total number
of patents and the share of breakthrough innovations per state (standardized estimates)

Model 1 Model 2 Model 3 Model 4

b p-value b p-value b p-value b p-value

Dependent variable: NUMPATENTS
RDt−1 0.910 0.000 0.068 0.540 0.087 0.457 0.093 0.425
State dummies Yes Yes Yes
Time trend 0.301 0.000 0.298 0.000 0.303 0.000
UVt−1 −0.084 0.330 −0.086 0.324
SRVt−1 −0.046 0.529
RVt−1 0.325 0.022 0.322 0.023
Deviance 791 44 37 37
d.f. 875 824 821 822

Dependent variable: SHARESUPER
RDt−1 0.216 0.000 0.167 0.004 0.197 0.001 0.210 0.000
State dummies Yes Yes
Time trend 0.378 0.000 0.334 0.000 0.345 0.000
UVt−1 0.118 0.006 0.117 0.007
SRVt−1 −0.103 0.005
RVt−1 0.085 0.233 0.078 0.275
Deviance 611 230 226 228
d.f. 875 824 821 822
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variable RDneighbors, which equals the R&D efforts of
all neighbouring states taken together, was then con-
structed. The results of the new estimates are reported
in Table 4. The number of observations gets reduced
to 693, since the missing values in the R&D variables
translate into even more missing values for RDneighbors.
The additional variable turns out to be not significant,
while the other estimates do not change qualitatively,
except for RV becoming marginally insignificant at
5% in the modified version of (8). All in all, the
additional estimations are reassuring that spatial depen-
dence effects are not relevant at the state level.

DISCUSSION

In many recent studies, empirical support has been
established for positive relationships between the
related variety present in a region and its economic per-
formance. Implicitly, these studies assume that the two
variables considered are linked to each other via inno-
vation. Not much work has been done, however, on
directly investigating the impact of technological
variety on innovation performance. The theory of
recombinant innovation provides a framework from
which testable hypotheses in this respect can be
derived. It was argued that breakthrough innovations
will most likely depend on technological variety in a
way that is different from innovation in general. To
produce a breakthrough innovation, recombination of
very different types of technological knowledge is
needed, while more incremental innovation (along
well-defined technological trajectories) would benefit

mainly from recombining knowledge about closely
related topics.

This paper used patent data from the USPTO regard-
ing inventions in US states and used statistical regularities
in the numbers of citations that patents receive to dis-
tinguish between breakthrough innovations and more
regular innovations. Having complete information on
the classifications of these patents at three levels of tech-
nological aggregation, entropy statistics were used to
construct variables reflecting unrelated variety, semi-
related variety and related variety. By including these as
independent variables in a regression framework, the
hypotheses could be tested. It was found that a high
degree of unrelated variety affects the share of break-
through innovation in a state’s total innovation output
positively, while semi-related variety has a negative
effect. As hypothesized, related variety does not influence
breakthrough innovation, but has a clear positive effect
on innovation output in general. The models include
control variables, time trends and dummies to capture
time-invariant state-specific effects. The results also
appeared robust against inclusion of spatial effects.

A key conclusion from this study holds that the
alleged opposition between related and unrelated
variety can be misleading, since both types of variety
can lead to innovation. Related variety would raise
the likelihood of innovations in general, while unrelated
variety would raise the likelihood of breakthrough
innovations, which in itself are rare. It is precisely in
this context that DESROCHERS and LEPPÄLÄ (2011,
p. 859) proposed ‘to consider the essence of innovation
to be about making connections between previously
unrelated things’. Following this reasoning, one can

Table 4. Generalized linear model (GLM) regression results for the models including a spatial variable
(R&D of neighbouring states). Coefficient estimates are standardized

Model 1 Model 2 Model 3 Model 4

b p-value b p-value b p-value b p-value

Dependent variable: NUMPATENTS
RDt−1 0.820 0.000 0.084 0.511 0.101 0.455 0.109 0.421
RDneighbourst−1 −0.014 0.904 0.005 0.964 0.013 0.914
State dummies Yes Yes Yes
Trend 0.281 0.000 0.272 0.000 0.273 0.000
UVt−1 −0.061 0.522 −0.059 0.537
SRVt−1 −0.046 0.576
RVt−1 0.309 0.065 0.311 0.063
Deviance 682 44 25 25
d.f. 692 640 637 638

Dependent variable: SHARESUPER
RDt−1 0.211 0.000 0.180 0.005 0.223 0.001 0.238 0.001
RDneighbourst−1 0.061 0.263 0.048 0.379 0.064 0.379
State dummies Yes Yes Yes
Trend 0.342 0.000 0.290 0.000 0.293 0.000
UVt−1 0.169 0.000 0.173 0.000
SRVt−1 −0.095 0.014
RVt−1 0.023 0.774 0.027 0.736
Deviance 482 164 159 161
d.f. 692 640 637 638
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understand that the relatedness structure among tech-
nologies is evolving, albeit slowly, in a way that is
driven by radical innovation that renders previously
unrelated technologies to become related (Fig. 2).

The famous example of the car can help to illustrate
the idea. In car technology various extant technologies
were being recombined, notably engine technology,
bicycle technology and carriage technology. These
technologies were largely unrelated at the time the car
technology was still in its infancy, but gradually
became related through the development of the car.
The reason why unrelated technologies can become
related is that the new, recombinant technology pro-
vides a new context for extant technologies to be
related, that is, to be recombined.

A dynamic view on related and unrelated variety
would suggest a further research agenda on the topic.
In particular, one would be interested to understand at
what pace technological relatedness is indeed changing.
Furthermore, one can investigate if recombinant inno-
vations across unrelated technologies are indeed
driving the fundamental changes in relatedness, and
whether firms and regions pioneering such recombinant
innovations also thrive economically in the long run.
Indeed, further investigations in the mechanisms under-
lying the evolving nature of technological relatedness
are considered to be among the most interesting and
challenging research avenues for the future.

The new framework also has potential implications for
regional policy initiatives. In particular, the role of variety
in regional development is linked to the smart specializ-
ation strategy framework pursued by regions supported
by the European Commission (FORAY et al., 2009;
MCCANN and ORTEGA-ARGILES, 2013). One impor-
tant part of the smart specialization concept holds that
regions should build on related variety to support regional
development in the long run (FORAY, 2014). By combin-
ing knowledge and competences from related sectors or
technologies, new activities can emerge in a continuous
process of related diversification. Clearly, this is in line
with past empirical research on the role of related sectoral
variety on employment growth as well as the present
study showing the role of related technological variety
on patenting. However, this study also suggests that
regions should also aim to exploit possible connections
between sectors and technologies that are (currently)

unrelated in attempt to find innovations that would
make themmore related. A full discussion of policy instru-
ments that can be helpful to exploit unrelated variety is,
however, beyond the scope of the current paper.

It goes without saying that further studies are
required to probe the validity of the findings regarding
the differential effects of related variety and unrelated
variety on the types of innovation processes they
support. This can be done in at least four ways. First,
future studies could replicate this study for regions in
different countries. Second, given the limitations of
patent data, one could attempt to test the theoretical fra-
mework by using other proxies for innovation, break-
through innovation, and related and unrelated variety.
Third, the links between variety and different types of
innovation could be analysed at a lower level of geo-
graphical aggregation. As long as R&D data at the
level of metropolitan statistical areas (MSAs) are not
available, one would have to resort to alternative
approaches that do not use knowledge production func-
tions. Fourth, this type of research could be done for
companies rather than for regions. If innovation is
mainly seen as a firm-specific process in which external-
ities among regional clusters play a smaller role, the dis-
tinction between unrelated variety and related variety
could be linked to TEECE’s (1996) notion that different
archetypes of companies are better at specific types of
innovation than others. His ‘multi-product integrated
hierarchies’, for example, will generally have firm-
specific knowledge bases with a higher degree of unre-
lated variety than his ‘high-flex Silicon Valley types’.
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APPENDIX A: USE OF HILL ESTIMATORS
TO IDENTIFY SUPERSTAR PATENTS

(BASED UPON CASTALDI AND LOS, 2012)

Empirical examination of patent data shows that Pareto
distributions are superior at matching the observed fre-
quency distributions in the right tail of the distribution
of the ‘value’ of innovations (SCHERER et al., 2000),
also when the value is measured with the numbers
of citations received by patents (SILVERBERG and
VERSPAGEN, 2007).

To illustrate this with two technologies from the
sample, Fig. A1 was generated by ordering all patents
with application year 1976 assigned to subcategory 12
(‘biotech’), according to the numbers of citations they
received in the period 1976–2006 and similarly for sub-
category 22 (‘optics’). The numbers of citations are
depicted along the horizontal axis. The numbers of

Fig. 2. Breakthrough innovation turning unrelated variety
(UV) into related variety (RV)
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patents with an equal or higher number of citations than
the value depicted on the horizontal axis are indicated
along the vertical axis. Since both axes have a logarithmic
scale, a Pareto distribution appears as a straight, down-
ward sloping line. Exponential distributions (such as the
lognormal) show curvature. For both technologies, a
mixed distribution depicts indeed the observed frequen-
cies in Fig. A1 more accurately than one type of distri-
bution over the whole range. For less-cited patents,
lognormal distributions fit the evermore steeply declin-
ing curves better. The rightmost parts of the curves are
approximately linear, reflecting Pareto distributions.

Results from extreme value statistics (COLES, 2001)
allow the numbers of citations that correspond to the
cut-off point to be estimated. Given a comparable set
of patents, i.e. applied in the same year and in the
same technological field, CASTALDI and LOS (2012)
call a patent a superstar patent if it received the cut-off
point number of citations or more.

Following SILVERBERG and VERSPAGEN (2007),
they estimate the cut-off point by using an estimator
for the essential parameter of the Pareto distribution. If
the tail follows this distribution F(x) = 1 − x − α, a
maximum likelihood estimator of the parameter α can
be obtained using the Hill estimator (HILL, 1975).
Given the rank-order statistics of the sample X(1) ≥
X(2) ≥… ≥X(n), the Hill estimator of the inverse of α
is obtained as:

�g = â−1 = 1
k

( )∑k
i=1

(lnX(i) − lnX(k+1))

Note that the parameter α reflects the magnitude of the
negative slope of the straight line characterizing the
Pareto distributions in Pareto-plots like Fig. A1.

The value of the Hill estimator is a function of k, the
number of observations included in the tail. The slope
parameter of the Pareto distribution is initially estimated
for an extremely small subsample, which contains the
most highly cited patents only. Next, the subsample is
extended with the most cited patent that did not
belong to the initial subsample and the Hill estimator
is again computed. This procedure is repeated for a suc-
cessively growing subsample of well-cited patents. As
long as these growing subsamples remain drawn from
a Pareto distribution indeed, the estimated slopes will
remain relatively stable. This changes, however, as
soon as patents are added that are well-cited, but
belong to the lognormally distributed part of the set of
patents. This can be easily visualized with the aid of a
so-called Hill plot: the sequence of estimated slopes
starts to show a saw-toothed pattern, and each added
patent causes a swing in the estimated slopes. The Hill
plot can be used to get an idea of the value at which
the Hill estimates stabilizes. If the underlying distri-
bution is Paretian, the Hill estimates will stabilize at a
certain value. But if the distribution is not overall Pare-
tian, including observations from the central part of the
distribution will decrease the validity of the estimator. A
method is then needed to estimate the ‘optimal’ value of
the parameter k.

In the computationally convenient procedure
adopted by DREES and KAUFMANN (1998), the length
of the right tail is first set to one observation. Next, the
most likely length is found by examining the fluctuations
in the value of the Hill estimator when adding more
observations to the tail. Such fluctuations emerge if Hill
estimators are applied to distributions that are not
Pareto. If a predetermined threshold value is exceeded
by the fluctuation, an estimate for k is found. CASTALDI

and LOS (2012) use a slightly modified version of this
Drees–Kaufmann estimator, proposed by LUX (2001):
in this version the stopping rule is modified with a
higher threshold so that the tail includes fewer obser-
vations from the central part of the distribution.

NOTES

1. Actually, invention is the focus here since issues of success-
ful commercialization are not addressed, but technological
attainments are the sole focus. Throughout, the paper uses
the terms ‘innovation’ and ‘invention’ interchangeably
since the theory of recombinant innovation has been
framed in terms of innovation rather than invention.

2. Subsequently, patent statistics have often served as a source
of indicators for regional inventive activity (e.g. BOTTAZZI

and PERI, 2003; FISCHER and VARGA, 2003; EJERMO,
2009). There are good arguments to study smaller geo-
graphical units than the state level. California, for
example, contains a number of metropolitan areas (the
Bay Area with San Francisco and Silicon Valley; the state
capital Sacramento; and the Los Angeles agglomeration,
among others). Most probably, these agglomerations are

Fig. A1. Fat tails in numbers of forward citations
Source: Authors’ computations on NBER Patent-
Citations Datafile, citations received in 1976-2006.

Estimated cutoff points between lognormal distributions
and Pareto distributions (vertical lines) obtained by

Drees-Kaufman-Lux procedure.
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geographically too distant from each other to allow for fre-
quent knowledge spillovers (e.g., THOMPSON, 2006).
Many other states, though, like Oregon, Illinois and
Massachusetts, are dominated by a single large agglomera-
tion. In such cases, the variety characteristics of the regional
knowledge bases at the state level will be very similar to
those of the dominant consolidated metropolitan statistical
area (CMSA). In view of the fact that this analysis entails
the estimation of augmented regional knowledge pro-
duction functions, analyses for smaller geographical units
cannot be done. Data on R&D expenditures, the most
important inputs into knowledge production processes,
are only available at the state and national levels.

3. An interesting alternative approach was chosen by DAHLIN

and BEHRENS (2005). In identifying radical inventions in
tennis racket technology, they focused not only on the
numbers of citations the associated patents received, but
also to what extent citations in these patents to prior art
were dissimilar from existing patents. The identified
patents were largely successfully confronted with expert
opinions afterwards.

4. With state-level data, one can control for state-specific
fixed effects such as institutions, including state regulations

concerning products and the labour market. Compared
with smaller spatial units of analysis, state-level analysis
also has the advantage of having a substantial number of
breakthrough innovations per state.

5. The original NBER Patent Citation database covers all
patents granted at the USPTO in 1975–99. Bronwyn
Hall updated the NBER database in 2002, and the
NBER itself has published a new version with data until
2006. Since the latest update does not contain information
about the location of inventors, the 2002 database is used.

6. As for the Herfindahl index, entropy values are biased for
small numbers of patent counts (HALL, 2005).

7. The maximum SHARESUPER of 12.1% in the sample
was recorded for NewMexico in 1992. Idaho (which pro-
duced a high number of superstar patents in semiconductor
technology; CASTALDI and LOS, 2012) had an even higher
SHARESUPER (16.4%) for 1992, but this observation
could not be included in the sample since R&D data for
this state were lacking for 1991–93.

8. Additional tests (available from the authors upon request)
were performed by excluding the state dummies from
the regressions. The two key hypotheses remain confirmed
and the overall results do not change dramatically.
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