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RESEARCH

The revolution in sequencing technologies has enabled 

fast and relatively inexpensive genome information (Metz-

ker, 2010). The increase in DNA-marker information available 

is considerable, leading to the development of a new approach 
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ABSTRACT

Before implementation of genomic selection, 

evaluation of the potential accuracy of prediction 

can be obtained by cross-validation. In this 

procedure, a population with both phenotypes 

and genotypes is split into training and validation 

sets. The prediction model is �tted using the 

training set, and its accuracy is calculated on the 

validation set. The degree of genetic relatedness 

between the training and validation sets may 

in�uence the expected accuracy as may the 

genotype × environment (G×E) interaction 

in those sets. We developed a method to 

assess these effects and tested it in cassava 

(Manihot esculenta Crantz). We used historical 

phenotypic data available from the International 

Institute of Tropical Agriculture Genetic Gain 

trial and performed genotyping by sequencing 

for these clones. We tested cross-validation 

sampling schemes preventing the training and 

validation sets from sharing (i) genetically close 

clones or (ii) similar evaluation locations. For 19 

traits, plot-basis heritabilities ranged from 0.04 

to 0.66. The correlation between predicted and 

observed phenotypes ranged from 0.15 to 0.47. 

Across traits, predicting for less related clones 

decreased accuracy from 0 to 0.07, a small but 

consistent effect. For 17 traits, predicting for 

different locations decreased accuracy between 

0.01 and 0.18. Genomic selection has potential 

to accelerate gains in cassava and the existing 

training population should give a reasonable 

estimate of future prediction accuracies.
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to marker-assisted selection (MAS) called genomic selec-

tion (GS) (Meuwissen et al., 2001; Goddard and Hayes, 

2007; He�ner et al., 2009; Hayes et al., 2009a; Lorenz 

et al., 2011). The GS approach has been developed to use 

all markers across the genome, instead of only those with 

larger e�ects as in traditional MAS, to predict the per-

formance of individuals (Meuwissen et al., 2001; Jannink 

et al., 2010). With a su�cient accuracy, selection can be 

done based on the predictions only, for any trait. There-

fore, GS o�ers the possibility to accelerate breeding cycles. 

Because prediction requires from the selection candidates 

only genotypic data, the selection of the seedling happens 

at an early stage (He�ner et al., 2009). In addition, select-

ing on the basis of predicted breeding values of individuals 

rather than their phenotypic records may also make the 

choice of the parents more accurate.

Our study focused on cassava, which, unlike other crops 

for which GS has been evaluated, is a strongly outcrossing 

species, characterized by monoecism and protogyny. This 

outcrossing characteristic is shared with cattle (Bos taurus), 

a species for which GS has been shown to work e�ectively 

(VanRaden et al., 2009; Hayes et al., 2009a). Indeed, a 

cassava GS study using a relatively small training population 

and relatively low-density markers has reported reasonable 

prediction accuracies (Oliveira et al., 2012). Nevertheless, 

GS accuracies in cassava need further empirical testing.

The realized gains of a genomic selection program will 

depend on the quality of the predictions, which can be 

assessed by estimating the prediction accuracies. Genomic 

selection studies on empirical data generally use cross-

validation to estimate prediction accuracies (Kohavi, 1995; 

Goddard and Hayes, 2007; Lorenz et al., 2011). In plants, 

the use of cross-validation studies on inbred cultivars has 

been useful (Melchinger et al., 2004; Schön et al., 2004; 

Crossa et al., 2010; Riedelsheimer et al., 2012; Massman 

et al., 2012; Windhausen et al., 2012). Cross-validation is 

meant to estimate the accuracy with which predictions 

can be made for selection candidates based on models 

developed in the training population, by treating a portion 

of the training population as selection candidates. There are 

some important di�erences between cross-validation and 

the prediction of breeding values in selection candidates, 

particularly with respect to two factors: the relatedness 

between individuals and genotype × environment (G×E) 

interaction. In particular, a random cross-validation 

(CV-Random) might split data into the training and the 

validation sets so that the information for close relatives or 

for locations is unrealistically similar in the two sets.

It has been shown that the additive genetic 

relationship of the training data in�uences the breeding-

value accuracies of the selection candidates (Habier et al., 

2007, 2010; Clark et al., 2012). Animals that shared close 

relationship to the training dataset had highest prediction 

accuracies (Habier et al., 2007, 2010; Clark et al., 2012; 

Pszczola et al., 2012; Pérez-Cabal et al., 2012; Cleveland 

et al., 2012). In a study on U.S. dairy cattle, Pérez-Cabal et 

al. (2012) emphasized that the type of relatedness between 

the training and validation sets also in�uenced the 

prediction accuracies. Cleveland et al. (2012) have pointed 

out that using validation approaches that take into account 

relatedness between populations can correct for potential 

overestimation of genomic breeding-value accuracies. In 

the case of cassava, there are a number of factors that may 

a�ect the relatedness of clones in the training population.

Because cassava in Africa originated from South America 

(Jones, 1959), African cassava germplasm experienced a 

genetic bottleneck (Kawuki et al., 2011). Furthermore, 

selection, by frequently using speci�c elite parents in breeding 

programs, could make cassava clones in Africa relatively 

genetically similar. In addition, because of the way landrace 

germplasm has been collected, there are situations when 

virtually identical clones may be given di�erent names. This 

relatedness between clones may have a strong impact on the 

assessment of the e�ciency of GS in cassava. With a random 

k-fold cross-validation, the genetic relatedness of individuals 

between the training and validation sets might be higher 

than that between this whole population, that is, the training 

population, and the individuals of the next generation of the 

breeding cycle, that is, the selection candidates.

A second factor that may in�uence prediction 

accuracies is G×E interaction. Genotype and environment 

e�ects are not independent: a phenotypic response to a 

change in environments depends on genotype and vice 

versa (Comstock and Moll, 1963). With a random k-fold 

cross-validation, the data in training and validation sets 

are likely to have been evaluated in the same locations. 

In that case, G×E interaction would generate a common 

error component between the predictions and the clone 

estimates based on the observations (Lorenz et al., 

2011, 2012; Burgueño et al., 2012). Consequently, G×E 

interaction may be a confounding factor that upwardly 

biases the prediction accuracy.

The objectives of our study were to assess the impact 

of random k-fold cross-validation on the overestimation of 

prediction accuracies attributable (i) to the relatedness of the 

individuals between the training and the validation sets and 

(ii) to the G×E interaction. The data for the study came from 

the International Institute for Tropical Agriculture (IITA) 

Genetic Gain population, a large collection of historically 

important clones, maintained at Ibadan, Nigeria.

MATERIALS AND METHODS

Phenotypic Trials
Historical phenotypic evaluation data from several types of tri-

als have been used in the training population. All of these tri-

als were conducted by the cassava breeding program at IITA, 

Ibadan, Nigeria.
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Two other types of trial, preliminary yield trial (PYT) 

and advanced yield trial (AYT), represented less than 10% of 

the observations. Those trials were conducted earlier than the 

UYTs in the breeding process, so their design was intermediate 

between the Genetic Gain and the UYT designs. In the PYT, 

there are usually 10-plant plots grown in a single 10-m-long 

row, in one location with two replications. In recent years, the 

AYT plot design has been the same as for the PYT, but there are 

usually four replications and one location. The design of both 

PYT and AYT was an RCBD with two checks.

The data were collected from 2000 to 2011 in 13 locations 

in Nigeria: Abuja (8.99° N, 7.51° E), Ibadan (7.40° N, 3.90° E), 

Ilorin (8.50° N, 4.53° E), Ikenne (6.7° N, 3.5° E), Jos (9.94° N, 

8.85° E), Kano (12° N, 8.5° E), Mallam Madori (12.3° N, 9.7° 

E), Mokwa (9.3° N, 5.0° E), Ubiaja (6.66° N, 6.38° E), Onne 

(4.74° N, 7.15° E), Shonga (9.14° N, 5.1° E), Warri (5.52° N, 

5.75° E), and Zaria (10.98° N, 7.76° E).

Eleven agronomic traits and two morphological traits were 

measured (Table 1). The agronomic trait “plant stands har-

vested” was used only as a covariate in the statistical models 

for other traits with which it was correlated (see below). Seven 

of the traits are related to four biotic stresses: cassava mosaic 

disease (CMD), caused by a virus from the Begomovirus genus 

that belongs to the Geminiviridae, vectored by the white�y; 

cassava bacterial blight, caused by Xanthomonas axonopodis pv. 

Manihotis; cassava anthracnose disease, caused by Colletotrichum 

gloeosporioides; and cassava green mite, Mononychellus tanajoa.

The Genetic Gain is a collection of historically important 

clones that were selected across four decades, from the 1970s to 

2007 (Maziya-Dixon et al., 2007; Okechukwu and Dixon, 2008). 

A small fraction of the clones are landraces and clones from East 

Africa with uncertain cloning dates. Most additions to the Genetic 

Gain population came from clones advanced to multi-environ-

ment uniform yield trials. The design of the Genetic Gain trial, the 

major trial type, usually consists of �ve-plant plots, with no bor-

ders, in a single row. Most but not all of the Genetic Gain nurseries 

are replicated twice. Sometimes the plants are grown at a di�er-

ent density, for example, 0.5 m apart within rows, if the land area 

available is limited. The plots are always planted in an incomplete 

block design with two checks per block.

The second most common trial type, called the uniform yield 

trial (UYT), contains clones that are at an advanced stage in the 

breeding process. Compared to the Genetic Gain trial, only 15 to 30 

genotypes are evaluated in a single trial because UYTs are formed 

after several stages of selection. Often genotypes are grouped by par-

ticular types of traits, such as multiple pest resistance, high dry mat-

ter content, or poundability. This type of trial has larger, bordered 

plots: generally six rows of six plants spaced 1 m apart, in four rep-

lications, planted in a randomized complete-block design (RCBD) 

with two checks. Because of the borders, only 16 plants per plot are 

harvested. Some variation in plot size for these trials occurred as they 

were conducted across a period of 12 yr. Uniform yield trials are 

almost always multilocation and multiyear trials, most commonly 

conducted across 2 yr and �ve locations.

Table 1. Description of the traits of interest.

Type of trait Abbreviation Name of trait Description

Agronomic SPROUT Sprouting Proportion of stakes germinated scored 1 mo after planting

VIGOR Initial vigor Degree of initial vigor of the establishment scored 1 mo after planting. It is scored 

from 3, which corresponds to a low vigor, to 7, which is high.

HI Harvest index Ratio of fresh root weight divided by total biomass

DM Root dry matter content Percentage dry matter storage root. It measures root dry weight as the 

percentage of 100 g of the root tubers

RTWT Fresh weight of storage 

root

Total fresh weight of storage roots harvested per plot measured in kilograms

FYLD Fresh root yield Fresh weight of harvested roots expressed in tonnes per hectares per plant at harvest

DYLD Dry yield Dry weight of harvested roots derived by multiplying fresh storage root yield by 

dry matter content expressed in tonnes per hectares

SHTWT Fresh shoot weight Total fresh weight of harvested foliage and stems in kilograms per plot

TYLD The top yield The total fresh weight of harvested foliage and stems expressed in tonnes per hectare

RTNO Root number Number of storage roots per plot at harvest

NOHAV Plant stands harvested Counts the number of plant stand at harvest

Morphological measured 

by visual rating
NKLGT Root neck length Usually scored on a scale of 0 (absent or sessile), 3 (short), 5 (medium), and 7 (long)

ROTNO Rotted storage roots Counts the number of the rotted root per plot at the time of harvest

Biotic stresses CMDS Cassava mosaic disease 

severity

Cassava mosaic disease (CMD) severity rated on a scale from 1 (no symptoms) to 

5 (extremely severe)

CMDI Cassava mosaic disease 

incidence

Cassava mosaic disease incidence is the proportion of plants showing CMD symptoms

CBBS Cassava bacterial blight 

severity

Cassava bacterial blight (CBB) severity rated on a scale from 1 (no symptoms) to 

5 (extremely severe)

CBBI Cassava bacterial blight 

incidence

Cassava bacterial blight incidence is the proportion of plants showing CBB symptoms

CADS Cassava anthracnose 

disease severity

Cassava anthracnose disease (CAD) severity rated on a scale from 1 (no 

symptoms) to 5 (extremely severe)

CADI Cassava anthracnose 

disease incidence

Cassava anthracnose disease incidence is the proportion of plants showing CAD 

symptoms

CGM Cassava green mite Cassava green mite measures the severity rated on a scale from 1 (no symptoms) 

to 5 (extremely severe)
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Genotyping
Using DNeasy Plant Mini Kits (Qiagen), DNA was extracted 

from 645 clones from the 2011 Genetic Gain trial at IITA and 

was quanti�ed using PicoGreen. The genotype data were gen-

erated using genotyping by sequencing (GBS) (Elshire et al., 

2011). Six 95-plex and one 75-plex PstI libraries were con-

structed and sequenced on Illumina HiSeq, one lane per library.

Single nucleotide polymorphisms (SNPs) were extracted 

from the raw data by using the TASSEL pipeline version 3.0 

(Glaubitz et al., 2012) installed in the Computational Biology 

Application Suite for High Performance Computing at Cor-

nell University, with alignment to the Manihot esculenta refer-

ence genome (http://www.phytozome.net; accessed 30 Sept. 

2011). Single nucleotide polymorphisms were �ltered by the 

following criteria: no more than 80% missing data by clone, no 

more than 50% missing data by SNP, amount of missing data 

consistent with read depth, and genotype frequencies consis-

tent with allele frequencies. The �nal data set consisted of 2069 

SNPs scored in 626 clones, with a mean heterozygosity of 0.28 

and mean missingness of 17.6%. Because the cassava reference 

genome is not assembled into chromosomes, it is not possible 

to show the distribution of SNPs across the genome. However, 

an overlapping set of GBS SNPs from a PstI library have been 

genetically mapped and are well distributed across the 18 link-

age groups of the cassava genome (I.Y. Rabbi, M.T. Hamblin, 

M. Gedil, P. Kulakow, A.S. Ikpan, D. Ly, and J.L. Jannink, 

personal communication, 2012). The missing genotypic data 

were imputed using a classi�cation method called random for-

est (Breiman, 2001; Poland et al., 2012).

Statistical Models for Phenotypic Data
Several statistical models were used. The �rst group of models 

was used to calculate broad-sense heritabilities on a single plot 

basis and generate best linear unbiased predictors (BLUPs) for 

data curation. The second group of models was used to generate 

best linear unbiased estimators (BLUEs) as an intermediate step 

to make predictions. The di�erence between these groups of 

models was whether they considered the clone e�ect as random 

or �xed. For the �rst group of models, to calculate heritabilities 

and generate BLUPs, we used mixed models that considered 

the available clones as a random sample. Mixed models were 

performed using the lme4 package in R (R Development Core 

Team, 2008).

Data were available for 12 yr and 13 locations, but not all 

locations were evaluated every year. Each combination of a par-

ticular year and a particular location was considered as an envi-

ronment. Within each environment, several types of trials were 

conducted. Within each trial, clones were usually replicated in 

blocks. Clones measured in only one environment or only one 

trial were excluded. For most traits, the model was
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    [1]

in which y
i,j,k,l

 was the phenotype, μ was the overall mean, b
i
 

was the �xed e�ect of the combination of year and location, 

with i varying from 1 to 100 for 100 combinations of year and 

location, t
j(i)

 was the random e�ect of the trial within an envi-

ronment with a normal distribution N(0,s2
T
), r

k(i,j)
 was the ran-

dom e�ect of the replication (or block) within a trial within an 

environment with a normal distribution N(0,s2
R
), c

l
 was the 

e�ect of a clone considered random with a normal distribution 

N(0,s2
C
), without considering the additive relationship matrix 

as the variance–covariance matrix, and with l varying from 1 to 

603 for 603 clones, and e
i,j,k,l

 was the residual considered as ran-

dom and following a normal distribution N(0,s2). The assump-

tion of homogeneity of clonal variance derives from assuming 

all clones were sampled from the same conceptual population of 

the IITA breeding program. Therefore, even though di�erent 

trials sampled di�erent sets of clones, the variance was assumed 

consistent across trials. The assumption of homogeneity of 

error variance is no doubt incorrect (e.g., Edwards and Jannink, 

2006), but it is assumed for expediency, as in many studies.

Some traits, such as the number of storage roots, the total 

fresh weight of harvested foliage and stems, and the total fresh 

weight of storage roots harvested, depended on the number of 

harvested plants: the correlation between those traits and the 

number of plants harvested was higher than 0.6. Because of 

this dependency, the number of harvested plants was taken 

into account in the model as a �xed e�ect. For these traits, the 

model was
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       [2]

with the same notations as above and in which y
i,j,k,l,m

 represents 

the phenotype and x
m(i,j,k,l)

 the number of plants harvested in plot 

m, d is a regression coe�cient, and e
i,j,k,l,m

 is the residual con-

sidered as random and following a normal distribution N(0,s2). 

We estimated the heritability as the ratio of the clonal variance 

to the sum of the clonal variance and the residuals variance.

Statistical Models for Genomic Predictions
This study used a two-step approach to make the genomic pre-

dictions. The �rst step consisted in generating BLUEs from all 

the phenotypic observations, so that each clone had a single 

phenotypic value for each trait. This reduced the computation 

time in the subsequent prediction step. By using BLUEs instead 

of BLUPs, there was no shrinkage attributable to the treatment 

of clones as random e�ects (Garrick et al., 2009).

The two models described below were used to gener-

ate BLUEs from the curated data. As in the models generat-

ing BLUPs, the statistical models to make BLUEs depended 

on whether a given trait was correlated with the number of 

harvested plants. For traits not correlated to the number of har-

vested plants, the model was
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For traits correlated to the number of harvested plants, the 

model was
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In both cases, c
l
 is the e�ect of the clones (which is here 

�xed, unlike in models [1] and [2]); l varies from 1 to 580 because 
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uses the matrix multiplication WW′/c, in which W
ik
 = G

ik
 + 

1 – 2p
k
, in which G

ik
 is the genotype for the ith individual at 

the kth marker (coded as –1, 0, and 1 for one homozygote, the 

heterozygote, and the other homozygote, respectively), p
k
 is the 

frequency of one of the alleles, and the normalization constant 

is c = 2∑
k
 p

k
(1 – p

k
). For each pair of clones, we also calculated 

the di�erence between their BLUPs. A linear regression of the 

BLUP di�erence on the genetic relationship was performed for 

each pair of clones, for each trait.

The third curation method evaluated the residuals of pre-

dictions of clone e�ects calculated using reproducing kernel 

Hilbert spaces (RKHS) regression estimates (de los Campos et 

al., 2009) with a Gaussian kernel function (Endelman, 2011). 

We chose RKHS for this purpose because it �ts the training 

set phenotypes with a high coe�cient of determination (Heslot 

et al., 2012). We reasoned, therefore, that large residuals from 

RKHS predictions within the training set could be indicative 

of problems in the correspondence of phenotypes to genotypes.

Cross-Validation Schemes

Accounting for Relatedness between Training 

and Validation Sets
Clones were assigned to clusters based on genotypic data using 

the k-means clustering algorithm, a method that attempts to 

minimize the distance between points in a cluster and the cen-

ter of that cluster. We performed the k-means method using the 

Hartigan and Wong (1979) algorithm on marker data and gen-

erated for each trait N = (number of nonmissing individuals for 

a given trait/5) clusters from 10 random initial cluster centers.

Two cross-validation schemes were designed to evaluate 

the in�uence of relatedness on prediction accuracy. The �rst 

scheme (cross-validation no close relatives [CV-noCR]) avoided 

closely related clones; that is, clones from the same cluster were 

not allowed in both the training and the validation sets. There-

fore, CV-noCR (Fig. 1b) assigned to the validation popula-

tion a sample of clusters, such that they represented 20% of 

the whole population. In contrast, the second cross-validation 

scheme (cross-validation close relatives [CV-CR]) forced close 

relatives between the training and validation sets (Fig. 1). That 

is, CV-CR (Fig. 1c) always distributed individuals in clusters 

to both training and validation sets. Note that in the CV-CR 

scheme, clusters of only one individual were never in the vali-

dation population and were not predicted. This procedure was 

repeated �ve times and we considered for each clone the mean 

of the �ve predictions.

The relationship between the training set and the valida-

tion set was measured by identifying for each individual of the 

validation set the 10 most closely related individuals (“top10”) 

in the training set (Clark et al., 2012). Each validation set was 

then characterized by the mean relatedness of the top10 indi-

viduals. Di�erent training-validation sets were considered until 

all individuals had been predicted. For a given cross-validation 

scheme, we considered the a
top10

 statistic, which is the mean 

relatedness of the top10 individuals in the validation set to those 

in the training set, averaged across the di�erent training-valida-

tion sets, and �nally across the �ve repetitions.

these models are applied to curated clones and i varies from 1 to 

93 because these models are applied to curated environments.

The BLUEs and their genotypic data in the training popu-

lation were used to make genomic predictions of the validation 

population, using the R package rrBLUP (Endelman, 2011), 

which considers marker-based relationships as random e�ect 

covariates (Endelman, 2011). The statistical model to generate 

those genomic predictions is a mixed model, described below 

in matrix notation:

y = μ + Zu + e          [5]

in which y is the vector of phenotypes, μ is the population 

mean, u is a vector of the genotypic values considered a random 

e�ect and following a normal distribution N(0,Ks2
u   
) in which 

K is the realized additive relationship matrix (Endelman, 2011), 

Z is an incidence matrix for u, and e refers to the vector of 

random residuals following a normal distribution N(0,Is2). We 

measured the prediction accuracy ( )ˆ,r a y  as the correlation 

between the estimated breeding value, accounting only for 

additive e�ects ( â ), and the BLUE (y).

Data Curation
In a �rst analysis, we sought to identify if any of the 13 locations 

was particularly di�erent from the others in relative clonal per-

formance. We removed such outlier locations to avoid excessive 

G×E interaction that would reduce accuracies. The software 

MATMODEL 3.0 (Gauch and Furnas, 1991) was used to per-

form the additive main e�ect and multiplicative interaction 

(AMMI) analysis. The AMMI analysis integrates additive com-

ponents to explain main e�ects and multiplicative components 

to account for interactions (Zobel et al., 1988). This analysis 

was done on the UYT datasets, year by year, from 2006 to 

2008, years for which the data were the most balanced. In addi-

tion, we developed three curation methods to identify potential 

clone labeling errors, that is, cases where the genotypic data did 

not correspond to phenotypic data from the same clone. Espe-

cially in a trial such as Genetic Gain that conserves historical 

data, one labeling error in the past could propagate across time 

and reduce the accuracy of genomic predictions.

The three curation methods all used a similar ad hoc 

approach: (i) regress phenotypic observations on predictors 

derived from independent phenotypes or from genotypes, (ii) 

weight the residuals of this regression inversely to trait herita-

bilities or accuracies and sum their absolute values across traits, 

and (iii) identify clones whose total residual scores are extreme 

relative to the global distribution. Clones that appeared to be 

outliers in at least two of the methods were removed from sub-

sequent analyses.

In the �rst curation method, BLUPs for the Genetic Gain 

dataset were regressed on the BLUPs for the other datasets (UYT, 

PYT, and AYT). The assumption here was that BLUPs of the 

two types of data should be similar, unless labeling errors had 

occurred. This method examined phenotypic data only whereas 

the following methods also considered the genotypic data.

The second curation method was based on the expectation 

that genetically similar clones should also be phenotypically 

similar. For each pair of clones, we examined their related-

ness in the relationship matrix A. The A matrix was computed 

by using the rrBLUP function Amat (Endelman, 2011), which 
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Accounting for the Genotype ×  

Environment Interaction
In the cross-validation genotype × environment (CV-GE) scheme, 

the observations were split, by location, into two disjoint sets of six 

locations. Best linear unbiased estimators were calculated separately 

in each set and according to the models presented above. Five folds 

of 20% of the BLUEs of one set of locations were used for the vali-

dation set so that all clones in this set were predicted. Clones of the 

training set that also appeared in the validation set were removed 

from the training set, so that there were no common clones and no 

common locations represented between the training and the vali-

dation sets. This scheme of cross-validation was repeated 15 times 

with di�erent random sets of locations. Because prediction accura-

cies of CV-GE used smaller training populations built on only half 

of the observations, we compared their results to cross-validation 

schemes in which observations were split randomly into two sets 

(CV-Random_Half ), repeated �ve times.

Estimation of Genotype × Environment 

Interaction effects
To calculate the relative magnitude of G×E e�ects, variance 

components were estimated using ASReml (Gilmour et al., 

2002) on data from Genetic Gain trials. The linear model was 

y
i,j,k,l

 = μ + b
i
 + r

k(i)
 + c

l
 + g

i,l
 + e

i,j,k,l
 with terms de�ned simi-

larly as for model [1], all �tted as random, with the additional 

term g
i,l
 accounting for clone × environment interaction. The 

covariance matrix for the additive clone e�ects (c
l
) was pro-

portional to the realized relationship matrix (A) calculated 

in rrBLUP (Endelman, 2011), 
2(0, )l gc N sA . The covariance 

matrix for the additive clone × environment interaction e�ects 

(g
i,l
) was block diagonal, 2

, (0, )i l geN Bg s , for e�ects estimated 

in the same environment B = A while for e�ects estimated in 

di�erent environments B = 0. The ratio 2 2 2/ ( )ge g ges s +s  reveals 

the magnitude of G×E interaction e�ects.

RESULTS

Heritabilities of the Different Traits  

in the Different Trials
Heritabilities for each trait, calculated using all the 

phenotypic data from all the trials, are shown in Table 

2 (see Methods). For the two traits related to CMD, the 

heritabilities were high (0.66 and 0.63). Cassava mosaic 

disease is a trait controlled primarily by a few major genes 

(Lokko et al., 2005). Agronomic traits such as those related 

to yield and growth had much lower heritabilities, between 

0.11 and 0.28. Traits related to diseases other than CMD 

had heritabilities lower than the ones for CMD; in the 

case of bacterial blight severity and incidence, heritabilities 

were below 0.10. Disease traits were sometimes di�cult 

to score accurately because of the uneven spreading of 

inoculum or the presence or absence of the disease in 

a particular season or location. The heritabilities of the 

morphological traits were quite low (0.07 and 0.12). For 

root number, in particular, this could be partly explained 

by the high in�uence of the age of the plant at harvest.

In this study, the heritabilities for root dry matter content 

(DM), shoot weight, and fresh yield were considerably 

lower (between 0.11 and 0.28) than those reported by 

Oliveira et al. (2012), which were, respectively, 0.67, 0.83 

and 0.76. Furthermore, the heritability values that we 

obtained were lower than expected for many other traits. 

Calculation of heritabilities by trial type (UYT, AYT, 

PYT, and Genetic Gain) showed that the heritabilities in 

the Genetic Gain dataset were generally lower than those 

in the other datasets, decreasing the overall heritability 

(Fig. 2). The Genetic Gain trials used smaller plots and 

Figure 1. Cross-validation schemes taking into account the effects of relatedness. (a) The big square represents a sample of 25 individuals, 

where each individual is represented by a little square. Cluster membership is indicated by color. (b and c) A red “v” in a square indicates 

that the corresponding individual is in the validation set, and the remaining individuals are in the training set. CV-CR, cross-validation 

close relatives; CV-noCR, cross-validation no close relatives.
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were expected to have a larger environmental variance 

than the other trial types.

In addition to the trial type, we hypothesized that two 

other factors might contribute to the low heritabilities. 

First, there might be some outlier locations that produced 

G×E interactions. Because we aimed to have a training 

population whose predictions would be generally useful 

across locations, we identi�ed and removed locations where 

clones behaved very di�erently. The AMMI results for 

UYT data showed that clone e�ects for Onne location had a 

strong negative correlation with clone e�ects from the other 

locations in 2006 (Fig. 3) and 2007 (not shown), 2 out of the 

3 yr that were examined. Indeed, the score for Onne on the 

�rst principal component axis of the principal component 

analysis of the G×E interaction e�ects was strongly negative 

relative to the scores of the other locations. Consequently, 

the Onne location, which is one of the highest rainfall areas 

of Nigeria, was removed from subsequent analyses.

Finally, because of the long-term historical nature of 

the Genetic Gain collection, some labeling errors might 

have occurred, so that genotype and phenotypic data 

were incorrectly associated with the same clone name. We 

looked for possible labeling errors using three approaches: 

(i) comparing types of trial (Fig. 4A), (ii) regressing BLUP 

di�erences of all pairs of clones on their genetic relationship 

(Fig. 4B), and (iii) regressing the predicted genotypic values 

on the calculated BLUPs (Fig. 4C). For each approach, 

we plotted the distribution of the residuals and arbitrarily 

identi�ed outliers in the distribution tail (Fig. 4A, 4B, and 

4C). The three curation methods identi�ed, respectively, 

22, 23, and 4 outliers. In total, 23 clones were identi�ed as 

outliers in at least two out of three curation methods.

The curation method comparing types of trial 

could only be used if clones had data in the Genetic 

Gain population and in at least one of the other datasets. 

Consequently, some potential outlier clones may not 

have been identi�ed. We removed the clones identi�ed as 

outliers for the following analyses.

Cross-Validation Schemes to Account  

for Relatedness
Principal components analysis of the SNP data provided 

no evidence of genetic structure in the Genetic Gain 

population (data not shown). However, many pairs of 

clones were genetically very close, possibly because clones 

had been renamed by farmers and collected as distinct 

accessions (Fig. 5). To assess the e�ect of relatedness 

on prediction accuracies, we tried di�erent methods 

to identify individuals that were closely related (while 

the dendrogram provides a visual representation of 

the problem, it does not provide a basis for assignment 

of clones to groups). The k-means algorithm created 

di�erent clusters where many of those clusters contained 

two clones. These clusters of genetically close individuals 

were then used to design the training and validation sets 

in the cross-validation schemes.

Table 2. Heritabilities of cassava traits of interest, accuracies of prediction, and mean relatedness of the top10 individuals in 

the validation set to those in the training set (a
top10

) of different cross-validation (CV) schemes.

Trait† Heritability

CV without close relatives CV-Random‡ fivefold CV with close relatives

Accuracy a
top10

Accuracy a
top10

Accuracy a
top10

MCMDI 0.66 0.417 0.231 0.487 0.260 0.474 0.267

MCMDS 0.63 0.462 0.23 0.503 0.261 0.513 0.266

MCADI 0.38 0.177 0.267 0.184 0.201 0.202 0.285

DM 0.28 0.459 0.229 0.482 0.258 0.477 0.268

SPROUT 0.28 0.259 0.23 0.304 0.260 0.306 0.268

HI 0.27 0.431 0.23 0.483 0.259 0.479 0.268

FYLD 0.26 0.358 0.231 0.407 0.261 0.395 0.267

DYLD 0.21 0.231 0.23 0.304 0.259 0.296 0.268

TYLD 0.2 0.195 0.229 0.251 0.260 0.232 0.267

MCGM 0.18 0.47 0.231 0.308 0.259 0.501 0.267

MCADS 0.17 0.145 0.266 0.177 0.201 0.207 0.284

VIGOR 0.17 0.277 0.23 0.494 0.259 0.299 0.268

RTNO 0.14 0.342 0.228 0.399 0.260 0.384 0.267

RTWT 0.14 0.308 0.23 0.352 0.260 0.349 0.267

NKLGT 0.12 0.202 0.233 0.190 0.258 0.195 0.267

SHTWT 0.11 0.228 0.231 0.299 0.260 0.297 0.266

MCBBS 0.09 0.266 0.229 0.303 0.260 0.316 0.267

ROTNO 0.07 0.188 0.241 0.211 0.252 0.229 0.276

MCBBI 0.04 0.238 0.229 0.255 0.260 0.26 0.266

†MCMDI, mean cassava mosaic disease incidence; MCMDS, mean cassava mosaic disease severity; MCADI, mean cassava anthracnose disease incidence; DM, root 

dry matter content; SPROUT, sprouting; HI, harvest index; FYLD, fresh root yield; DYLD, dry yield; TYLD, the top yield; MCGM, mean cassava green mite; MCADS, mean 

cassava anthracnose disease severity; VIGOR, initial vigor; RTNO, root number; RTWT, fresh weight of storage root; NKLGT, root neck length; SHTWT, fresh shoot weight; 

MCBBS, mean cassava bacterial blight severity; ROTNO, rotted storage roots; MCBBI, mean cassava bacterial blight incidence.

‡CV-Random, random cross-validation.
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As explained in the Methods, we generated cross-

validation sets according to two di�erent schemes: 

CV-noCR, avoiding close relatives between training 

and validation sets, and CV-CR forcing close relatives 

between those sets. We calculated a statistic, a
top10

, 

to measure the relatedness between the training and 

validation sets. As expected, this statistic was lowest 

in CV-noCR and highest in CV-CR (Table 2). The 

variance of the a
top10

 across individuals within the top10 

(see Methods) for each cross-validation scheme and for 

each trait was about 10-3. The a
top10

 of CV-Random, 

while intermediate, was most often closer to the a
top10

 of 

CV-CR than to that of CV-noCR. In several cases, the 

relatedness statistics for the CV-Random and the CV-CR 

Figure 2. Broad-sense heritabilities of the different traits in the different trial types. MCBBI, mean cassava bacterial blight incidence; 

ROTNO, rotted storage roots; MCBBS, mean cassava bacterial blight severity; SHTWT, fresh shoot weight; NKLGT, root neck length; 

RTWT, fresh weight of storage root; RTNO, root number; MCGM, mean cassava green mite; MCADS, mean cassava anthracnose 

disease severity; VIGOR, initial vigor; TYLD, the top yield; DYLD, dry yield; FYLD, fresh root yield; HI, harvest index; SPROUT, sprouting; 

DM, root dry matter content; MCADI, mean cassava anthracnose disease incidence; MCMDS, mean cassava mosaic disease severity; 

MCMDI, mean cassava mosaic disease incidence; UYT, uniform yield trial; AYT, advanced yield trial; PYT, preliminary yield trial.

Figure 3. Identification of outlier locations. Additive main effect and multiplicative interaction (AMMI) graph of the main effects and the first 

axis of the principal component analysis (IPCA1) obtained by AMMI analysis on uniform yield trial data in 2006.
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were equal. This con�rmed that the CV-Random scheme 

created validation sets whose members had close relatives 

in the training population.

When we compared the prediction accuracies for 

the di�erent cross-validation schemes, we found that 

higher accuracies were associated with higher relatedness 

measurements. The prediction accuracies between the 

validation schemes CV-Random and CV-CR were very 

close. Across traits, the CV-noCR scheme showed lower 

accuracies compared with the other two.

Cross-Validation Scheme to Account  

for Genotype × Environment Interaction
We tested another cross-validation scheme, CV-GE, to assess 

the impact of G×E interaction as a confounding factor. We 

were speci�cally interested in the G×E interaction explained 

by locations, because the variability across years cannot 

be experimentally controlled. Because splitting locations 

between training and validation sets resulted in a training 

set containing only about half of the total observations, 

we compared the CV-GE scheme with a random k-fold 

scheme that used only a random half of the observations 

in the training set (CV-Random_Half ). As expected, the 

prediction accuracies decreased for CV-Random_Half 

relative to CV-Random (Fig. 6). In the CV-GE scheme, 

the training population used the G×E interaction e�ects 

of 6 out of 12 locations (across all 12 yr) to predict the six 

other locations. In 17 of 19 traits evaluated, accuracies for 

CV-GE (red crosses in Fig. 6) were lower than accuracies 

for CV-Random_Half (blue triangles in Fig. 6). The loss of 

the G×E interaction e�ects of the six remaining locations 

reduced the prediction accuracies, indicating that for most 

traits there were shared genotype × location residuals across 

training and validation sets, biasing estimated prediction 

accuracies upward in CV-Random. Furthermore, the a
top10

 

values were close to what was obtained using CV-Random 

or CV-CR. Therefore, the cross-validation avoiding G×E 

interaction did not avoid close relatives between the training 

and the validation set and only evaluated the impact of 

G×E interaction.

DISCUSSION
The curation work presented here was motivated by the low 

heritabilities observed when using all datasets. The curation 

work eliminated some clones but did not have much impact 

on the heritabilities. It appeared that these heritabilities 

were low because of the low heritabilities in the Genetic 

Gain data, which might be explained by the �eld-plot 

design and by the long-term maintenance of the Genetic 

Gain collection. Some noise was possibly introduced by 

phenotyping-protocol variation across time. It is also possible 

that epigenetic variation between generations of vegetative 

propagation and/or some somatic mutations might have 

occurred across time, causing variation in clones’ phenotypes 

(McKey et al., 2010). Indeed, IITA established the Genetic 

Gain population not for direct breeding purposes but to 

maintain clones. Rigorous phenotyping of the Genetic Gain 

population was therefore not a priority although having this 

data has been critical to start a genomic selection program. 

The next steps for implementation of GS will have data from 

larger and more replicated plot designs than are currently 

Figure 4. Distribution of the sum of the absolute value of the 

residuals, across traits. A. Comparing the best linear unbiased 

predictors between the Genetic Gain and the other trial types, 

weighted by heritabilities. B. Comparing the phenotypic data to 

the genotypic data, weighted by heritabilities. C. For predictions 

using the Gaussian kernel, weighted by accuracies.
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available. As the quality of the phenotype data improves, so 

should heritabilities and prediction accuracies (Pszczola et 

al., 2012).

While traits with higher heritabilities tended to show 

higher prediction accuracies (Table 2), this trend was fairly 

weak (r2 = 0.26) and there were some striking exceptions. 

For example, prediction accuracies for harvest index and 

cassava mosaic disease incidence (CMDI) were similar 

although heritability for CMDI was much higher. Some 

discrepancies were presumably caused by di�erences in 

genetic architecture and the proximity of SNP markers to 

quantitative trait loci. In the case of CMD traits, selection 

history might have reduced accuracy; CMD has been a 

target of very strong and directed selection. Because it is 

a�ected primarily by major genes, e�orts at resistance-

allele introgression could cause two clones with divergent 

genetic backgrounds to have similar disease resistance 

(or, conversely, clones with similar background could be 

divergent in their resistance). These cases would make 

CMD resistance di�cult for GS models to predict.

Prediction accuracies are a correlation between 

BLUEs, which include both additive and nonadditive 

components, and the estimated breeding values, which only 

consider the additive component; this causes a systematic 

underestimation of prediction accuracies. That said, 

accuracies for most of the traits studied are not currently 

high enough for GS to be e�ective in cassava breeding. If 

the breeding cycle is reduced from 5 to 2 yr, prediction 

accuracies must be at least 0.4 to match or exceed gain from 

phenotypic selection. However, as noted above, anticipated 

improvement in heritabilities will increase accuracy, as will 

larger training population size and higher marker density.

Testing the CV-noCR and CV-CR cross-validation 

schemes showed that the more closely the training and 

the validation sets were related, the higher the prediction 

accuracies (Table 2). The mean accuracy of CV-Random 

was quite close to that of CV-CR, showing that the 

presence of close relatives in the population would bias 

CV-Random accuracy estimates upward relative to a 

realistic expectation in a selection program. Accounting 

for relatedness between the populations might then be a 

way to correct this potential overestimation (Cleveland 

et al., 2012). Nevertheless, our study showed that the 

di�erences in prediction accuracies between CV-noCR 

and CV-CR were low. The very closely related pairs of 

clones did not a�ect strongly the prediction accuracies, 

possibly because the number of those pairs was relatively 

small. We note also that the a
top10

 values did not di�er 

greatly between CV-CR and CV-noCR, suggesting an 

overall high level of relatedness among clones in the IITA 

population. Caution should therefore be exercised in 

using this population for prediction in other populations 

that might well not be within its domain of inference.

The di�erences in prediction accuracies that we 

observed were much lower than those reported in the 

Pérez-Cabal et al. (2012) and Cleveland et al. (2012) 

animal studies. This might be because those studies 

evaluated relatedness based on pedigree whereas our study 

evaluated relatedness based on genotypic information. 

Studies showed that prediction accuracies increased when 

using marker information instead of pedigree if the marker 

density was high enough (Villanueva et al., 2005; Hayes et 

al., 2009b). Similarly, high-density markers should be able 

to generate more distinct training and validation sets than 

Figure 5. Dendrogram of the genotypic data. A hierarchical clustering using the Euclidean distance between the genotypes was used 

to represent a dendrogram of the clones, and allowed capturing visually the strongest pattern to represent in our clustering methods.
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use of pedigree information. However, our study used 

marker data at a relatively low density, compared with 

other studies, for example, in dairy cattle or maize (Zea 

mays L.). Therefore, the use of a relatively small number of 

markers to assess relatedness in the training and validation 

sets might explain the lower di�erence in prediction 

accuracies between CV-noCR and CV-CR compared 

with the di�erence assessed in animal studies.

Moreover, the size of the population and its diversity 

in�uence the impact of close relatives in the training set. 

Indeed Pérez-Cabal et al. (2012) and Cleveland et al. 

(2012) selected the individuals for their studies so that their 

populations were not only quite large but also quite diverse. 

Because cassava is propagated vegetatively, farmers do not 

propagate all clones at the same rate, and in the long term 

some clones are likely to be lost (McKey et al., 2010). It is 

not clear whether the genetic bottleneck of African cassava, 

because of its introduction from the Amazonian region 

(Jones, 1959), has been more severe than that experienced 

by domesticated cattle. These factors might cause a lower 

diversity compared with animals and thus reduce the impact 

of close relatives in the training set on prediction accuracies.

Even if, for cassava breeding programs, the relatedness 

between the training and the validation sets does not 

have as much impact as for some animal cases, it may 

still be worth taking into account that it could a�ect 

prediction accuracy. This analysis should consider the 

level of relatedness expected between training population 

and selection candidates in the initial generations of 

the breeding cycle. This contrasts with the relatedness 

between training and validation sets in the CV-noCR 

scheme, both of which included individuals from the 

same generations, that is, all the years of the Genetic Gain 

program. A high level of relatedness within the training 

population might depend on the germplasm used at the 

beginning and the selection history of the population. The 

results of our study suggest that it would be interesting 

in a genomic selection breeding program to compare the 

a
top10

 assessed by a k-fold random cross-validation within 

the training population and the actual a
top10

 between the 

training population to the selection candidates, when the 

training population contains parents of the validation 

population. We measured the mean relatedness between 

parent and o�spring for nine clones for which pedigree 

data were available and obtained a value of 0.30 ± 0.01. If 

the relatedness assessed in a k-folds cross-validation were 

higher than the mean relatedness expected between parent 

and o�spring, we might overestimate the prediction 

accuracy. In our study, the a
top10

 using the CV-noCR 

scheme (Table 2) was lower than this value estimated for 

parents and o�spring, so the CV-noCR scheme probably 

did not overestimate prediction accuracy. Note that 0.30 

is not the parent–o�spring relatedness expected from 

methods of calculation using pedigree (which would be 

0.5). Coe�cients calculated from marker data are not 

comparable to those calculated from pedigree (e.g., they 

can be negative; Endelman and Jannink, 2012).

When we analyzed the e�ect of G×E interaction, 

we found that the prediction accuracies of CV-GE were 

generally lower than those obtained by CV-Random_

Half (Fig. 6). When clones were evaluated in the same 

locations for both the training and validation sets, G×E 

Figure 6. Comparison of the prediction accuracies of different cross-validation schemes. Traits are ranked according to their heritabilities, 

from lower (on the left) to higher. MCBBI, mean cassava bacterial blight incidence; ROTNO, rotted storage roots; MCBBS, mean cassava 

bacterial blight severity; SHTWT, fresh shoot weight; NKLGT, root neck length; RTWT, fresh weight of storage root; RTNO, root number; 

MCADS, mean cassava anthracnose disease severity; VIGOR, initial vigor; MCGM, mean cassava green mite; TYLD, the top yield; DYLD, 

dry yield; FYLD, fresh root yield; HI, harvest index; SPROUT, sprouting; DM, root dry matter content; MCADI, mean cassava anthracnose 

disease incidence; MCMDS, mean cassava mosaic disease severity; MCMDI, mean cassava mosaic disease incidence; CV, cross-

validation; CV-GE, cross-validation genotype × environment.
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interaction, which has been shown to have a signi�cant 

e�ect on traits related to yield in Nigerian cassava (Aina et 

al., 2009), seemed to be a strong confounding factor that 

leads to overestimation of prediction accuracies. There 

was considerable variation in the magnitude of this e�ect 

for di�erent traits; for example, accuracy for mean cassava 

bacterial blight incidence (MCBBI) dropped almost to zero 

while accuracy for DM was una�ected. To test whether 

the loss of accuracy correlated to the magnitude of G×E 

interaction e�ects, we estimated an additive × environment 

interaction e�ect for each trait (see Methods). The ratio of 

additive × environment variance compared with additive-

genetic plus additive × environment variance varied from 

0.84 for MCBBI to 0.10 for DM, consistent with the 

hypothesis that traits with a smaller ratio should show 

a smaller reduction in accuracy in the G×E interaction 

cross-validation scheme. Across all the traits, the linear 

correlation between accuracy reduction and magnitude of 

G×E interaction was signi�cantly positive (P = 0.04).

The presence of G×E interaction e�ects reduces our 

ability to make predictions when selecting for locations 

where no evaluations have been done previously. In 

those cases, the phenotypic observations are likely not to 

be as correlated to the predictions as the random cross-

validation prediction accuracies. When expanding a 

genomic selection breeding program to new locations, 

to have a better estimation of our prediction ability, 

cross-validations schemes should aim at reducing the 

overestimation caused by G×E interaction by using training 

and validation sets that do not share common locations. 

Furthermore, given the impact of the G×E interaction on 

the prediction accuracies, instead of removing the G×E 

interaction e�ect, exploiting it would be a worthwhile 

goal. It may be worth delineating mega-environments to 

make predictions within them, thus exploiting the narrow 

adaptations of genotypes in those mega-environments 

(Gauch, 1997; Annicchiarico, 2002).

CONCLUSIONS
Prediction accuracies obtained by random cross-validations, 

used to evaluate the prospects for success of genomic 

selection, will be overestimated if there are close relatives 

in the training population. Relatedness should therefore be 

examined in a genomic selection breeding process to better 

evaluate prediction accuracies and should be considered 

in designing the training population. Genotype × 

environment interactions also contribute to overestimation 

of prediction accuracies and should be considered when 

expanding a breeding program to new experimental 

sites. Prediction accuracies need improvement if GS is to 

outperform phenotypic selection on a per-year basis; these 

improvements are expected as training populations increase 

in size and are less dependent on historical phenotype data.
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