
Relating Architectural Views with Architectural Concerns

Nelis Boucké
∗

and Tom Holvoet
DistriNet, Department of Computer Sience, K.U.Leuven

Celestijnenlaan 200A, 3001, Leuven, Belgium

{nelis.boucke,tom.holvoet}@cs.kuleuven.be

ABSTRACT
Architectural views are at the foundation of software architecture
and are used to describe the system from different perspectives.
However, some architectural concerns crosscut the decomposition
of the architecture in views. The drawbacks of crosscutting with
respect to architectural views is similar to the drawbacks with re-
spect to code, i.e. hampering reuse, maintenance and evolution
of the architecture. This paper investigates the relations between
architectural concerns, architectural drivers and views to identify
why crosscutting manifests itself. We propose to extend the ar-
chitectural description with slices and composition mechanisms to
prevent this crosscutting and perform an initial exploration of these
concepts in an Online Auction system. Within this limited setting
the first results look promising to better separate concerns that oth-
erwise would crosscut the views.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Miscellaneous

General Terms
Design, Documentation

Keywords
architectural concerns, architectural drivers, views, slices

1. INTRODUCTION
Architectural design is generally considered as a crucial step to

cope with the inherent difficulties of developing large-scale soft-
ware systems. Software architecture is a key artifact since it em-
bodies the gross-level structures and earliest design decisions that
directly impact the expected quality attributes and subsequent de-
sign or implementation phases [8]. Aspect-Oriented Software De-
velopment (AOSD) enables modularization of crosscutting con-
cerns [1]. Though originally related to the implementation stage,
recently the support is extended to cover the whole development
cycle (known as Early Aspects (EA) [2]). Dealing with concerns—
having a high impact on the gross-level structures and quality attributes—
must be done during architectural design, leading to an architecture-
centric approach [9]. Such concerns are typically coarse grained

∗Supported by Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EA’06, May 21, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

and must be tackled on the architectural level, as recognized by the
EA report [28].
Our position is that separating concerns —that otherwise would
crosscut the decomposition— must also be applied on design mod-
els. Architectural views are at the foundation of architectural de-
scription and decompose this description in several design models.
Each of these design models elucidates the system from a different
viewpoints to emphasize certain facets. Unfortunately, some archi-
tectural concerns crosscut these views. The drawbacks of cross-
cutting with respect to architectural views is similar to the draw-
backs with respect to code, i.e. hampering reuse, maintenance and
evolution of the architecture. However, the relation between archi-
tectural views and separating concerns in AOSD remains largely
unexplored. This paper starts with investigation of the relation-
ships between concerns and views to identify why some concerns
tend to crosscut. We propose to extend the architectural description
with slices and composition mechanisms to prevent this crosscut-
ting and perform an initial exploration of these concepts in an On-
line Auction system. We believe that the main challenge for AOSD
with respect to software architecture lies in advanced composition
mechanisms, similar to extending UML with model composition
semantics [12] or extending java with pointcuts as done by AspectJ.

Overview Section 2 introduces architecture, architectural drivers
and the Online Auction system. Section 3 investigates the relation
between concerns, drivers and views and identifies crosscutting.
Section 4 proposes an extension. Section 5 discusses related work.
Conclusions are drawn in Section 6.

2. ARCHITECTURAL CONCERNS
2.1 Software architecture

Software architectures covers the first design decisions to meet
the essential quality requirements of the system. Often, the de-
scription is more abstract than UML class diagrams or sequence
diagrams and will not necessarily have a one-to-one correspon-
dence with code. A common definition for software architecture
is [8]: ‘the software architecture of a program or computing system
is the structure or structures of the system, which comprise soft-
ware components, the externally visible properties of those com-
ponents, and the relationships among them’. It is generally ac-
cepted that architectures are too complex to be described in a sim-
ple one-dimensional fashion and must be described using several
views [14]. Each architectural view shows particular types of ele-
ments and the corresponding relationships between them. A view-
point is a template from which to instantiate individual views [20].
Architectural views allow to separate concerns, since each view
emphasizes certain facets of the solution as clear and concise as
possible while deemphasizing and ignoring other facets. Many dif-
ferent viewpoints and sets of viewpoints exist, amongst them [24,
14, 18]. Views can be categorized according to three dimensions

11

(also called viewtypes) [14]: (1) views about the structure of imple-
mentation units (module); (2) views about the runtime units or run-
time behavior and interaction (component and connector, C&C);
and finally (3) views about how the software relates to its deploy-
ment and execution environment (allocation). No fixed set of views
is appropriate for every system, but broad guidelines advise to in-
clude at least one view from each of these dimensions.

2.2 Architectural drivers
A concern is an area of interest or focus in a system. As stated

in the AOSD Glossary [3], concerns are the primary criteria for
decomposing software into smaller, more manageable and compre-
hensible parts that have meaning to a software engineer. From this,
architectural concerns are defined as those concerns that signifi-
cantly influence the architecture [9].

Because the set of architectural concerns is still rather ample
and covers a lot, the architect will use a limit set (the headlines
amongst the architectural concerns) to structure the architectural
models and documentation. This set of high priority architectural
concerns, called architectural drivers, will have a broad influence
on the architecture, drive the architect while defining its architec-
ture and make up large chunks of the architectural documentation.
Architectural concerns are not considered to be a drivers if they
have no broad influence, if they have no high priority or if they
do not form a significant part of the architecture and architectural
documentation (influencing several views and several architectural
elements).

For example, in an Online Auction system the main architectural
drivers could be the auction functionality (Auction), the security
constrains that users must be logged on before they can take part
in an auction (UserAccount) and the distributed nature of the sys-
tem (Distribution). These architectural drivers are the ’headlines’
amongst the architecture-related requirements1 of the Online Auc-
tion system. Each of these drivers makes up a significant part of the
architectural documentation and is described in more detail in the
next section.

We avoid using the term architectural aspect [27]. It is with no
doubt intuitive by exploiting the analogy with implementation-level
concepts of Aspect Oriented Programming (AOP). Still, the anal-
ogy might turn out to be problematic [15], it could be assumed as
straightforward translation of the concepts of the AOP model. Such
direct translation is difficult since software architectures use com-
pletely different concepts.

2.3 Example: Online Auction system
An Online auction system is a client-server system to supports

auctions on the internet. The users of the system are sellers and
buyers Sellers can get a list of current auctions, create new auctions
and cancel running auctions. Buyers can get a list of the current
auctions, join or leave an auction and may place bids. The auction
elapses as a simple Dutch Auction. Once the auction is started,
buyers can place bids on the product. Each bid must be higher
then the previous bid. At the end of the auction, the current best
bid for the item is accepted. Both buyer and seller are notified
that the auction has completed and the necessary bank transactions
are forwarded to the bank (buyer is charged his last bid, seller is
charged for the transaction costs). The system must be distributed
(constraint) and be secure (quality attribute). The simple form of
security tackled here is that users must be signed in before being
able to participate in auctions. When creating an account, users
must specify credit card information, username and password.

1Architecture-related requirements are those requirements with a
significant impact on the architecture of the system [17]

From this requirements, several architectural drivers are iden-
tified. Firstly, the architect must identify the main modules and
processes needed to list, create and run auctions (Auctions driver).
This architectural driver involves the ’basic’ functionality (auction
procedure, interaction with users resulting from the auction) of the
system and significantly influences the coarse grained structure of
the program. Secondly, the architect must ensure that appropriate
security measures are taken. Here, a simple mechanism to ensure
that a user is signed in is used as an example (UserAccounts driver).
UserAccounts influences the security guarantees of the system and
has an influence on several other views of the system, which moti-
vates considering it as driver. Finally, the architect must explicitly
tackle the distribution of the system (Distribution driver), since it
will have a far reaching effect on the structure of the architecture
and on the existing views and architectural elements. For distri-
bution, a client-server architectural pattern with a single server is
used. Other examples of possible drivers, not further elaborated
here, are Graphical User Interface (GUI) and Maintenance (the
functionality provided by the software for the maintainer). How
exactly the drivers are identified is considered outside the scope of
this paper.
The Online Auction system is a relatively easy system, selected as
example because the basic concepts of such type of system are well
known and its (limited) complexity allows within limited space.
Yet, such example provides first insights and paves the way to more
complex examples.

3. RELATING DRIVERS AND VIEWS
Dealing with concerns must be done during architectural design,

leading to an architecture-centric approach [9]. The key questions
yet to be solved are how concerns and crosscutting relate to archi-
tectural views [2]. However, this relation is largely unexplored.
An important observation for design is that not only crosscutting
with respect to code can be problematic, but also crosscutting with
respect to design models, in the case of architectural design the de-
sign models are architectural views. This section tries to character-
ize the relation between architectural drivers (as headlines amongst
the concerns), architectural views and crosscutting with respect to
architectural views. Section 3.1 elaborate on the problem of cross-
cutting, section 3.2 discusses the drawbacks of crosscutting with
respect to architectural views.

3.1 Misalignment between drivers and views
Views are at the foundation of architectural documentation and

are a mechanism introduced to handle complexity in the architec-
ture by improving separation of concerns (SoC). However, there
is a misalignment between the architectural drivers and the archi-
tectural views. Architectural drivers are the headlines amongst the
concerns that drive the architect to describe the architecture. Ar-
chitectural views are contain the architectural models and structure
them according to several dimensions (as explained in the previous
section. The problem is that architectural drivers tend to crosscut
(are scattered and tangled over) the architectural views.

For scattering, two causes can be identified. Firstly, views are
structured according to the module, C&C and allocation dimen-
sions (as outlined in section 2.1) and a view typically uses a few
types of elements and relations. Yet, architectural drivers do not
necessarily align with the dimensions but will typically influence
architectural elements in several architectural views and architec-
tural dimensions. This leads to scattering of the elements con-
tributing to an architectural driver over several views. For example,
UserAccounts will manifest itself in several dimension by defining
both the structure (module dimension) and behavior (C&C dimen-

12

sion). Secondly, elements of a single concern can be scattered over
several views (even if they are from the same dimension) as a con-
sequence of inherent complexity of large-scale systems. For exam-
ple, if process view (an example of a process view can be found
in Figure 1) contains to many processes the whole system becomes
cluttered and the natural result is to make several views describing
coherent subsets of the processes.

Figure 1: Process views illustrating background processes of
the system.

Tangling occurs in architectural views if a single view contains
parts of descriptions of several architectural concerns. Which ele-
ments and relations to record in a single view is the software ar-
chitects decision. Also, an architectural representation is rather
flexible since it allows to create hierarchical designs (part of the
design at a higher level is refined in a lower level). At first glance
this seems to imply that tangling of concerns in views can be easily
prevented by limiting architectural elements in a view to a single
architectural concern. A closer look reveals that much remains to
be done before architectural views are really untangled.

There is an incentive to structure the description according to the
dimensions of views. However, there is no incentive to structure the
elements in the views to better align with the architectural drivers
(since drivers are not made explicit and not directly related with the
views describing them), leading to bad traceability.
Even with such incentive, there remain problems to be tackled. The
problem lays mainly in the relationships between views or how the
system can be composed from the separated views. One problem
appears when a connector is needed between to elements of two
separate architectural drivers (connector problem). The only way
to connect the elements is by including them in the same view, i.e.
in one of the original views or a in new view view containing the
elements and the connector between them. This obviously leads to
tangling. For example, Figure 1 contains the process of both Auc-
tion and UserAccounts that can not be described without tangling
because all processes are linked together with connectors2. A sec-
ond problem is that relations between architectural views are often
implicit, e.g. elements having the same name in different views are
often assumed to be the same element. Other relations are infor-
mal, e.g. textual and informal descriptions of related view packets.
Additionally, the architectural documentation can contain informa-
tion beyond views [14], including a mapping between elements of
several views and an element directory recording which element
appears in which view. The type of relations described until now
suffice when considering classical use of architectural views. But
when deepening the separation between views to better align with
2Graphical elements of figures are only defined once in some key.
Also consult keys of previous figures and the text explaining the
figure.

the architectural drivers, more powerful mechanisms are needed to
describe the relationships. Additionally, we would like more ex-
plicit and formal relations between views so that tools can be used
for on demand composition of models. Without such mechanisms,
software architects are not encouraged and are not able to make
untangled views.

3.2 Drawbacks of crosscutting
The drawbacks of crosscutting with respect to the architectural

descriptions are similar to the drawbacks on the level of code. Firstly,
since no single architectural view or set of views is identifiable as
description of the architectural driver, advantages of distinct de-
sign and development are lost. Before being able to update the
design for a particular architectural driver, an architect must review
all views because there are few guidelines where to search. This
clearly prevents traceability from architectural drivers to architec-
tural elements and hampers maintenance and evolution. Secondly,
the standard notion of views does not allow explicit definitions of
’open spots’ (like abstract classes or parameters) that should be
filled in later. Together with the traceability problem this hampers
reuse of architectural designs in other applications.

4. EXTENDING THE ARCHITECTURAL DE-
SCRIPTION

Starting from the current notion of views and the problems iden-
tified in the previous section, we propose to extend the architectural
description with slices and composition mechanisms. The proposal
is initial in the sense that the concepts are only initially explored in
a limited setting.

4.1 Extensions
Our first proposition is to extend the architectural description

with the concept of an architectural slice (similar to hyperslices in
HyperJ for implementation [26] or Themes for detailed design [6]).
There are two types of slices: primitive and compound slices. Prim-
itive slices are single views. Compound slices group several other
slices (primitive or compound) together to cover a specific archi-
tectural driver. The advantages of architectural slices are twofold.
Firstly, since the architectural elements in a slice are meant to cover
a specific driver, there is a direct traceability between drivers and
the views describing them (and thus no tangling). For compound
slices, the still exists scattering over several subslices, but they are
clearly grouped together and directly traceable from the drivers.
Secondly, hierarchical composition allows to gradually buildup the
design of a large scale system. Such hierarchical composition can
be very beneficial for the scalability of the approach.

Our second proposition is to allow architectural slices to have
’open spots’ under the form of abstract elements (like UML or
in [19]) or parameters (like in Theme/UML). These parameters
can be bound to concrete values of other slices when describing
the composition. Note that a single parameter can be bound to sev-
eral concrete values, which is central to AOSD, i.e. to apply one
concept at different places simultaneously. Introducing such ’open
spots’ is needed to cope with the reusability issues outlined in the
previous section. Some of these parameterized slices could be seen
as architectural patterns [10]. Parameterization will also help to
tackle the connector problem of section 3.1 by defining a connector
on a parameterized element and later on bind this element to the
concrete element of another slice.

Finally, our third proposition is to make composition and rela-
tions more explicit in the slice composition diagram. In this di-
agram, slices are handled as first class elements and a connector

13

Figure 2: The Auction slice.

encapsulates the composition specification. Extending the archi-
tectural description with explicit slice connectors is needed to allow
the two previous extensions (powerful composition mechanism and
parameterization) and to make relations more explicit.

4.2 Illustration in Online Auction system
The concepts of slice, parameterization and composition specifi-

cation are illustrated using a partial architectural description of the
Online Auction system. Each architectural driver are tackled by a
separate architectural slice.

4.2.1 Slices and parameterization
Consider Figure 2 describing the Auction slice, containing three

primitive slices (views) and a composition diagram. The Auc-
tion slice could be considered as the ’base’ slice because it cov-
ers the primary functionality of Online Auction system. The slice
describes listing and creations of auctions, the auction procedure
and interaction. The subslices are: (1) Auction, a module decom-
position view identifying the static modules for the auction and
their responsibilities. (2) RunningAuction, a process view describ-
ing the auction procedure and interaction between those processes
involved in a running auction. The numbers before the calls or
messages indicate the sequence followed (these numbers could be
omitted). If several calls or messages have the same sequence num-
ber, the order between them does not matter. (3) AuctionManager,
a process view describing the process involved when creating and
listing auctions. The composition diagram is explained further in
this section.

The UserAccounts slice contains three views and is described in
Figure 3. Especially the view CheckSignIn is of interest because
it introduces two new concepts: parameterization and interaction
refinement. Parameterization is indicated by underlining the names
of processes, calls or messages. The forked arrow indicates inter-
action refinement (inspired by [5], see related work). Above the
arrow is the description of the original interaction, below the arrow
is the refinement of this interaction. The part above the arrow (a sit-
uation description) together the binding rules roughly corresponds
to a pointcut. The part below the arrow (the refined interaction)
can roughly be seen as the advice. Thus, the CheckSignIn view de-
scribes that before allowing any message from the user process to
process X, process X will check that the user is properly logged in.

4.2.2 Slice composition diagram
A slice composition diagram contains a description on how the

slices must be combined. Slices are represented by parallelograms,
relations between slices by lines leading to a diamond. Each re-
lation is annotated with additional composition information in the
form of composition rules. The composition rules specify how the
slices should be connected with each other. When reifying the com-
position, rules are applied from top to bottom.

During the composition specifications of the Online Auction sys-
tem several composition rules have been used. But first some syn-
tax: expr indicates an expression build up with text and wildcards
(indicated by an asterisk). Brackets indicate that several expres-
sions are listed. E.g. ‘auction*’ will match elements starting or
ending with ‘auction’, ‘{auction*, *auction}’ will match both ele-
ments starting or ending with ‘auction’. element indicates that
only a single element can be filled in.

• match(expr,element) : used to resolve naming differences
between elements in different slices. Matching elements is only
possible between elements of the same type (e.g. match process
with process or module with module). An example can be found
in Figure 4 where Seller and Buyer are matched with User3

• map(expr,element) : maps (multiple) element(s) on a single
element. This composition rule can describe the same type of rela-
tions as the ’Mapping between views’ tables of [14]. For example
in Figure 2 this rule is used to map the Auction and Auction-
Manager process (who both match Auction*) onto the Auctions
module. map-by-name will do a standard mapping between
the elements based on names. As second example, consider Fig-
ure 5 where modules are mapped on other modules (thus forming
sub modules).

• generalization(expr,element) : generalization rela-
tions between the elements who match the expression and the el-
ement in the right hand side of the relation. In our example, the
composition rule is used to specify that user is a generalization of
seller and buyer. In Figure 4, a visual notation is used to describe
that user is a generalization of seller and buyer.

3The generalization rules does not imply anything about the
processes, thus the match expression is not redundant. Buyer and
Seller can be submodules from User without implying that Seller,
Buyer and User are the same process.

14

Figure 3: The UserAccount slice.

Figure 4: The AuctionAccount slice, merging the slices Auction
and UserAccount together.

• bind(expr,parameter) : binds elements to the specific pa-
rameter. For example, in Figure 4 this relation is used to bind
’Auction’ and ’AuctionManager’ to X. Process X is a process for
which the user must be logged in before it can be accessed.

• merge(expr,expr) : merges elements of the first expression
with elements of the second expression if they are from the same
type, similar to the merge operation defined for Theme in [12].
merge-by-name will merge elements on their names.

If no composition rules are specified, map-by-name together
with merge-by-name are assumed. match-by-name is al-
ways automatically used, manual matching will only add additional
matches. If some parameters are left unbound, they are just taken
to be parameters of the the new composed slice (not used here).
No difference is made between the reconciliation (resolve compat-
ibility problems between different slices) and composition of the
concerns, reconciliation can easily be defined as composition rules
(e.g. match).

4.2.3 Distribution influences both Auction and User-
Accounts

As an additional example, consider Figure 6. We elaborate on
distribution because it provides a good example of a compound
slice (distribution) that influences two other compound slices (Auc-
tion and UserAccounts, merged in the AuctionAccount slice).

The Distribution slice has four subviews. The Subsystems view
decomposes the system in a client, server and communication sub-
systems. Both the client and server can use the communication sub-
system, described in the usage view Communication. The ClientServer
view shows how client, server and communication are deployed on
several computers connected by a TCP/IP network.

Figure 5: Composition of AuctionAccount slice and Distribu-
tion slice.

Finally, the combined view RemoteMessages shows that the con-
nector between process A and process B (sending messages) must
be refined and that messages must be sent through the communi-
cation subsystem. This communication subsystem ensures that the
messages are sent through the TCP/IP network (e.g. taking care of
appropriate message format, appropriate host addresses, compres-
sion, etc.). Putting the process in the module in a combined view is
equivalent to mapping processes on modules.

Figure 5 shows how the distribution slice is combined with the
AuctionAccount slice. Care should be taken when interpreting the
composition specification. The two first rules do map the appro-
priate modules onto client and server (forming submodules). This
also implies that all processes that previously have been mapped
on these submodules, now also belong to this module. Thus the
processes of client are Seller and Buyer (and the generalization in
User); the processes of server are Auction, AuctionManager, Bank
and AccountManager. The next two rules might suggest to map any
process on A and B and any message on c and d, but the constraint
that A belongs to the Client subsystem and B belongs to the Server
subsystem from the RemoteMessages view should also be taken
into account. Constraints imposed by the view are applied before
the composition rules. Thus Seller and Buyer (and their generaliza-
tion in User) are bound to A and Auction, AuctionManager, Bank
and AccountManager are bound to B. Bindings for c and d follow
a similar approach.

4.3 Discussion
Quantification, an essential property of AOSD [16], over archi-

tectural elements is found in the expressions used in the composi-
tion rules. In the example, the expressions are rather limited (text
and wildcards), but they can easily be extended. An important ob-
servation during the exploration is that rules tend to have differ-
ent influences on different types of elements. For example, the
mapping rule can be used to map process on modules, modules

15

on computer systems and modules on modules (defining them as
being submodules). Notice interaction refinement is currently used
within the slice and not in the composition specification, although
we think it is possible. We decided to include it in the view be-
cause this visual notation is very intuitive. Also, only a limited set
of rules have been applied. Interesting possibilities to consider in
the future are override composition operator (used in Theme/UML)
and considering interaction refinement (used in Architectural Strat-
ification, see related work) as a composition rule. A final remark
on composition rules is that they strongly depend on the constraints
imposed by the views (as illustrated with the composition rules of
Figure 5) and that they may interfere with each other. Currently,
rules are only informally defined and it is clear that further research
is needed to fully understand the possibilities and implications of
using such rules to compose slices together. E.g. apply richer sets
of composition rules; studying richer expressions in the rule para-
meters; formalizing the composition rules, their implications on the
architectural elements and the process of applying the rules on the
description language.

One of the main innovations is to make the composition dia-
grams part of the architectural description. Each composition di-
agram specifies a new compound slice, which could be reified by
employing the composition specification. The architect could de-
cide to reify a compound view to understand it better, or to incor-
porate it in the documentation for clarity reasons. Appropriate tool
support can make such reification easier.

Until now, a single connector per connection diagram is used.
For example, Auctions and UserAccounts are composed in a slice
called AuctionsAccounts. Afterwards this compound slice is com-
posed with the Distribution slice. An alternative is is to compose
the system with to connectors in a single slice composition dia-
gram. Notice that the scope of a composition rule is limited to
the slices linked with the connector in which the rule is specified.
Composing all three slices in one diagram would keep the both con-
nectors and composition rules of Figure 4 and Figure 5, the only
change is that the latter must be reconnected to Auction and User-
Account instead of AuctionAccount. Further research is needed to
understand the full implications of using multiple connectors in a
composition diagram.

Mapping to previous and following development phases is not
explicitly considered in this paper. Investigating the exact relations
with concerns identified in requirements and concerns tackled dur-
ing detailed design remains to be done.

5. RELATED WORK
A good survey on design approaches (both architectural and de-

tailed design) can be found in [11]. Here, we only focus on ap-
proaches that are closely related to our work.

Rozanski and Woods [25, 29] identify that quality properties (for
example security) appear in several architectural views. This is
clearly related with the identification of crosscutting in the pre-
vious section. The authors introduce architectural perspectives as
complementary to architectural views in the sense that they define
a set of activities, tactics and guidelines to ensure that the system
exhibits a particular quality property. Architectural perspectives is
not a technique for modular description but rather a framework to
guide and formalize the process of ensuring that a particular archi-
tectural property is met, perspectives are applied onto views.

Atkinson and Kühne [5] propose architectural stratification to
combine the strengths of component-based frameworks and model-
driven architectures (MDA [4]) to support AOSD. The approach
starts from the observation that you can define several structural
architectures - depending on the level of abstraction at which you

would like to see the system - each with different sets of connectors
and components. The goal is to identify, elaborate and relate the
architecture on these different levels. The architectural description
is structured according to architectural strata, which is a full de-
scription of the system on a specific level of abstraction (strongly
related to architectural views). Architectural strata represent dif-
ferent levels of architectural decomposition and lower strata refine
the connectors of higher strata. The authors suggest that every stra-
tum can be used to tackle a specific concern. Current limitations of
the approach are that it supports only one type of relation (interac-
tion refinement), the rigid structure of architectural strata allowing
only relations with the stratum above and below and limiting the
description on a stratum to a single view. Our proposal, on the con-
trary, supports multiple types of relations, supports multiple views
and has a less rigid structure.

In [22] Kande et al. study the need for multidimensional SoC in
architecture descriptions. [21] proposes a concern-oriented frame-
work called Perspectival Concern-Spaces (PCS). The goal is to de-
velop architecture with as primary dimension the concerns, using
an extension to UML as modeling language. But the PCS uses a
very specific interpretation of IEEE-Std-1471 [20] (in which view-
points are concern spaces) that differs substantially from the gener-
ally accepted interpretation of viewpoints in software architecture
(e.g. described in [18, 25]). The interesting point raised by this
work is the relation between MDSOC [26] and architectural views.

Theme [6, 12, 13] is an analysis and design approach proposed
to cope with the structural mismatch between requirements and de-
sign using UML. For aspect oriented design, the approach defines
a UML based aspect oriented design language called Theme/UML,
extending the UML meta-model with model composition seman-
tics. Concerns, crosscutting or not, can be separated in Themes
(forming a symmetric approach). Every Theme contains several
partial UML-models which are closely related to each other and can
be parameterized. The most important contribution of Theme/UML
is the explicit composition of Themes (UML-models) with compo-
sition operators like bind (binding concrete constructs to the para-
meters), merge and override. The differences with our approach is
that Theme acts on detailed design level, e.g. on class diagrams and
interaction diagrams and relying on all details of them. Secondly,
Theme uses an explicit reconciliation phase while for our approach
reconciliation is part of the composition rules. Finally, Theme uses
only one composition rule to combine Themes while our approach
allows specifying multiple rules.

Katara and Katz [23] observe that incremental design of aspects
has been neglected and that cooperation or interference between as-
pects should be made clear at the design level. The authors propose
an extension to UML and a new architectural viewspoint (called
concern diagram) describing how aspects can be combined to tread
different concerns of a system. The concern contains dependency
relations between aspects and shows which aspects contribute to
which concerns. The work is related to our approach in the sense
that relations between several aspects and concerns are made ex-
plicitly on the design level. Where Katara et al. mainly focusses on
overlapping and interference between aspect in UML models, we
focus on adding several types of non-trivial relations in the archi-
tectural description.

A recent paper of Baniassad et al. [7] also considers views as pri-
mary decomposition on the architectural level and identifies con-
cerns crosscutting several views. The authors introduce the con-
cept of an aspect view to capture concerns that otherwise would
crosscut the decomposition in views. The difference with classical
views is that aspects can contain abstract elements which is similar
to the parameterization used in our approach. The difference is in

16

Figure 6: The Distribution slice.

the concept of a slice as hierarchical composeable design building
block and the explicit composition diagrams with connectors and
composition rules used in our approach.

6. CONCLUSION
This paper investigates the relations between architectural con-

cerns, architectural drivers and views and identified that concerns
tend to crosscut due to structural mismatch between concerns and
views and limited support for composition between views. We pro-
pose to extend the architectural description with slices and com-
position mechanisms to prevent this crosscutting and perform an
initial exploration of these concepts in an Online Auction system.

Within this limited setting the first results look promising to bet-
ter separate architectural drivers that otherwise would crosscut the
views and to prevent the typical drawbacks of crosscutting. One
of the first steps for future research is to more exactly define the
composition process, the composition rules and their implications
on architectural elements. Especially the composition rules ask for
further research, e.g. apply richer sets of composition rules and
study richer expressions. Additionally the implications of applying
the extended architectural description to more complex case studies
is an important challenge for future research.

7. REFERENCES
[1] Aspect Oriented Software Development (AOSD) website.

www.aosd.net.
[2] Early aspects: Aspect-oriented requirements engineering and

architecture design. www.early-aspects.net/.
[3] Glossary from AOSD wiki.

www.aosd.net/wiki/index.php?title=Glossary.
[4] Model driven architecture (mda) website. www.omg.org/mda/.
[5] C. Atkinson and T. Kühne. Aspect-oriented development with

stratified frameworks. IEEE Software, 20(1):81–89, 2003.
[6] E. Baniassad and S. Clarke. Theme: An approach for aspect-oriented

analysis and design. In Proceedings of the International Conference
on Software Engineering, 2004.

[7] E. Baniassad, P. C. Clements, J. Araujo, A. Moreira, A. Rashid, and
B. Tekinerdogan. Discovering early aspects. IEEE Software,
January/February, 2006.

[8] L. Bass, P. Clements, and R. Kazman. Software Architectures in
Practice (Second Edition). Addison-Wesley, 2003.

[9] N. Boucké and T. Holvoet. Dealing with concerns ask for an
architecture-centric approach. In European Interactive Workshop,
2005.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,
P. Sommerlad, and M. Stal. Pattern-Oriented Software Architecture,
Volume 1: A System of Patterns. John Wiley & Sons, 1996.

[11] R. Chitchyan, A. Rashid, P. Sawyer, J. Bakker, M. P. Alarcon,
A. Garcia, B. Tekinerdogan, S. Clarke, and A. Jackson. Survey of
aspect-oriented analysis and design, 2005. AOSD-Europe
Deliverable No: AOSD-Europe-ULANC-9.

[12] S. Clarke. Extending standard uml with model composition
semantics. Science of Computer Programming, 44(1):71–100, 2002.

[13] S. Clarke and R. J. Walker. Composition patterns: an approach to
designing reusable aspects. In Proceedings of the International
Conference on Software Engineering, pages 5–14, 2001.

[14] P. Clements, F. Bachman, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford. Documenting Software Architectures, Views
and Beyond. Addison Wesley, 2003.

[15] C. E. Cuesta, M. del Pilar Romay, P. de la Fuente, and
M. Barrio-Solorzano. Architectural aspects of architectural aspects.
In 2nd European Workshop on Software Architecture (EWSA),
volume LNCS 3527, pages 247–262, 2005.

[16] R. Filman and D. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Proceedings of the workshop on
Advanced Separation of Concerns, OOPSLA, 2000.

[17] D. G. Firesmith and P. Capell. Architecture-related requirements.
Journal of Object Technology,, 5(2):61–73, March-April 2006.

[18] J. Garland and R. Anthony. Large-Scale Software Architecture, A
practical guide using UML. Wiley, 2003.

[19] S. Herrmann. Composable designs with UFA. In Workshop on
Aspect-Oriented Modeling with UML, 2002.

[20] IEEE. Recommended practice for architectural description of
software-intensive systems (ansi/ieee-std-1471), September 2000.

[21] M. Kandé. A Concern-Oriented Approach to Software Architecture.
PhD thesis, École Polytechnique Fédérale de Lausanne, 2003.

[22] M. M. Kande and A. Stroheier. On the role of multi-dimensional
separation of concerns in software architecture. In Prooceedings
OOPSLA workshop on Advanced Separation of Concerns, 2000.

[23] M. Katara and S. Katz. Architectural views of aspects. In
Proceedings International conference on Aspect-oriented software
development, pages 1–10, 2003.

[24] P. Kruchten. The 4+1 view model of architecture. IEEE Software,
12(6):42–50, November 1995.

[25] N. Rozanski and E. Woods. Software Systems Architecture. Addison
Wesley, 2005.

[26] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr. N degrees of
separation: Multi-dimensional separation of concerns. In Int. Conf.
on Software Engineering, pages 107–119, 1999.

[27] B. Tekinerdogan. ASAAM: Aspectual software architecture analysis
method. In Early Aspects, 2002.

[28] B. Tekinerdogan, A. Moreira, J. Araujo, and P. Clements. Workshop
report of Early Aspects at AOSD, 2004.

[29] E. Woods and N. Rozanski. Using architectural perspectives. In
Proceedings of the WICSA conference, 2005.

17

