
Submitted to:
ICE 2015

c© K. Dokter, S.-S. T. Q. Jongmans, F. Arbab & S. Bliudze
This work is licensed under the
Creative Commons Attribution License.

Relating BIP and Reo

Kasper Dokter, Sung-Shik Jongmans, Farhad Arbab

Centrum Wiskunde & Informatica,
Amsterdam, Netherlands

Simon Bliudze

École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

Coordination languages simplify design and development of concurrent systems. Particularly, exoge-
nous coordination languages, like BIP and Reo, enable system designers to express the interactions
among components in a system explicitly. In this paper we establish a formal relation between BI(P)
(i.e., BIP without the priority layer) and Reo, by defining transformations between their semantic
models. We show that these transformations preserve all properties expressible in a common se-
mantics. This formal relation comprises the basis for a solid comparison and consolidation of the
fundamental coordination concepts behind these two languages. Moreover, this basis offers transla-
tions that enable users of either language to benefit from the toolchains of the other.

1 Introduction

Context. Over the past decades, architecture description languages (ADL) and coordination languages
have emerged as fundamental tools for tackling complexity in the design of correct-by-construction com-
ponentised software systems [14]. However, no language has yet emerged as a de facto standard, and
no consensus exists on how to properly design such languages, either. BIP [9, 10] and Reo [3] each
addresses this complexity and provides a formal semantic framework, which allows reasoning about and
proving correctness of coordination as a first-class entity.

BIP is a language for the construction of concurrent systems by superposing three layers: behaviour,
interaction and priorities. The layered approach of BIP separates concerns between interaction and com-
putation. This is essential for component-based design of concurrent systems, because it allows global
analysis of the coordination layer and reusability of written code.

Reo is a language for compositional specification of coordination protocols, i.e., protocols modeling
the synchronization and dataflow among multiple components. These protocols consist of graph-like
structures, called connectors. Reo connectors may compose together to form more complex connectors,
allowing reusability and compositional construction of coordination protocols.

We provide a more detailed introduction to BIP and Reo in Section 2.

Motivation. Both BIP and Reo advocate the necessity of separating coordination mechanisms from the
coordinated components. In BIP one refers to this separation as the architecture-based design approach
[11]. Reo literature uses the term exogenous coordination to describe the same fundamental principle
[3, 4, 19]. Despite this fundamental agreement, the design choices underlying BIP and Reo differ. For
example, BIP uses stateless interactions, while Reo allows stateful connectors. Establishing a formal
relation between BIP and Reo is necessary to discover fundamental principles that drive the design of
coordination languages.

Translations exist between numerous other coordination models and BIP and Reo, individually [12,
13, 20, 21]. Hence, a formal relationship between BIP and Reo yields insight, albeit indirect, into the
relation of each with a wider range of related work.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Relating BIP and Reo

Furthermore, establishing a formal relationship between BIP and Reo enables encodings that allow
each of the two frameworks to benefit from tools and theoretical results obtained for the other. These
toolchains include tools for editing, code generation, and model checking. We refer to [1] and [2, 4] for
details.

Contributions. We relate the most important semantic models of BI(P)1 (i.e., BIP without the pri-
ority layer) and Reo. For Reo we consider port automata and constraint automata, which model Reo
connectors at different levels of abstraction [15]. For BI(P) we consider BIP architectures [6] and BIP
interaction models, i.e., sets of simple interaction expressions [11].

First, we provide a short summary of BIP and Reo in Section 2. Then, in Section 3, we define
mappings between port automata and BIP architectures, and show that these distribute over composition
modulo semantic equivalence. Hence, it is possible to compute these translations incrementally, in order
to speed them up. In Section 4, we define mappings between stateless constraint automata and BIP
interaction models. We show that all transformations preserve all properties of observable dataflow,
which, for example, enables one to transfer safety properties established for some generated code, or the
results of model checking from one model to the other. These mappings in the data-sensitive domain do
not distribute over composition, but in Section 5 we briefly discuss a different translation scheme that
still allows incremental translation. There, we discuss also the differences and similarities between BI(P)
and Reo and other coordination languages, and point out future work.

Related Work. Other authors have related and compared both BIP and Reo to other coordination
languages. Bruni et al. encode BIP models into Petri nets [12], and Chkouri et al. present a translation
of AADL into BIP [13]. Proença and Clarke provide a detailed comparison between Orc and Reo [20].
Arbab et al. provide a translation of Reo connectors into the Tile Model [5]. Krause compared Reo to
Petri nets [17]. Talcott, Sirjani and Ren connect both ARC and PBRD to Reo by providing mappings
between their semantic models [21].

Although an indirect comparison of BIP and Reo through their respective comparisons with other
models, e.g., Petri nets, is certainly possible, the direct and formal translations we present in this paper
allows direct translation tools between BIP and Reo, that are otherwise difficult, if not impossible, to
construct based on such indirect comparisons.

2 Overview of BIP and Reo

2.1 BIP

A BIP system consist of a superposition of three layers: Behaviour, Interaction, and Priority. The be-
haviour layer encapsulates all computation, consisting of atomic components processing sequential code.
Ports form the interface of a component through which it interacts with other components. BIP repre-
sents these atomic components as Labeled Transition Systems (LTS) having transitions labeled with ports
and extended with data stored in local variables. The second layer defines component coordination by
means of BIP interaction models [11]. For each interaction among components in a BIP system, the
interaction model of that system specifies the set of ports synchronized by that interaction and the way

1Although BIP’s notion of priority is equally applicable to the constraint automata semantics of Reo, Reo provides no syntax
to specify such global priority preferences. Reo does have a weaker priority mechanism to specify local preferences by means
of context sensitive channel LossySync, that prefers locally maximal dataflow.

K. Dokter, S.-S. T. Q. Jongmans, F. Arbab & S. Bliudze 3

sleep

work

b1 f1

b1 f1

B1

sleep

work

b2 f2

b2 f2

B2

(a)

f ree

taken

b12 f12

b12 f12

C12

(b)

Figure 1: BIP components (a); coordinator (b).

data is retrieved, filtered and updated in each of the participating components. In the third layer, priorities
impose scheduling constraints to resolve conflicts in case alternative interactions are possible. In the rest
of this paper, we disregard priorities and focus mainly on interaction models (cf., footnote 1).

Data-agnostic semantics. We first introduce a data-agnostic semantics for BIP.

Definition 1 (BIP component [6]). A BIP component C over a set of ports PC is a labeled transition
system (Q,q0,PC,→) over the alphabet 2PC . If C is a set of components, we say that C is disconnected
iff PC ∩PC′ = /0 for all distinct C,C′ ∈ C . Furthermore, we define PC =

⋃
C∈C PC.

Then, BIP defines an interaction model over a set of ports P to be a set of subsets of P. Interaction
models are used to define synchronisations among components, which can be intuitively described as
follows. Given a disconnected set of BIP components C and an interaction model γ over PC , the state
space of the corresponding composite component γ(C) is the cross product of the state spaces of the
components in C ; γ(C) can make a transition labelled by an interaction N ∈ γ iff all the involved com-
ponents (those that have ports in N) can make the corresponding transitions. A straightforward formal
presentation can be found in [10] (cf., Definition 3 below). Thus, BIP interaction models are stateless:
every interaction in γ is always allowed; it is enabled if all ports in the interaction are ready. However, [6]
shows the need for statefull interaction, which motivates BIP architectures

Definition 2 (BIP architecture [6]). A BIP architecture is a tuple A = (C ,PA,γ), where C is a finite
disconnected set of coordinating BIP components, PA is a set of ports, such that PC =

⋃
C∈C PC ⊆ PA, and

γ ⊆ 2PA is a data-agnostic interaction model. We call ports in PA \PC dangling ports of A.

Essentially, a BIP architecture is a structured way of combining an interaction model γ with a set
of distinguished components, whose only purpose is to control which interactions in γ are applicable at
which point in time (which depends on the states of the coordinating components).

Definition 3 (BIP architecture application [6]). Let A = (C ,PA,γ) be a BIP architecture, and B a set
of components, such that B ∪C is finite and disconnected, and that PA ⊆ PB ∪PC . Write B ∪C =
{Bi | i ∈ I}, with Bi = (Qi,q0

i ,Pi,→i). Then, the application A(B) of A to B is the BIP component

(∏i∈I Qi,(qi)i∈I,PB ∪PC ,→), where→ is the smallest relation satisfying: (qi)i∈I
N−→ (q′i)i∈I whenever

1. N = /0, and there exists an i ∈ I such that qi
/0−→i q′i and q′j = q j for all j ∈ I \{i}; or

2. N∩PA ∈ γ , and for all i ∈ I we have N∩Pi 6= /0 implies qi
N∩Pi−−−→i q′i, and N∩Pi = /0 implies q′i = qi.

The application A(B), of a BIP architecture A to a set of BIP components B, enforces coordination
constraints specified by that architecture on those components [6]. The interface PA of A contains all ports
PC of the coordinating components C and some additional ports, which must belong to the components

4 Relating BIP and Reo

in B. In the application A(B), the ports belonging to PA can participate only in interactions defined by
the interaction model γ of A. Ports that do not belong to PA are not restricted and can participate in any
interaction.

Intuitively, an architecture can also be viewed as an incomplete system: the application of an archi-
tecture consists in “attaching” its dangling ports to the operand components. The operational semantics
is that of composing all components (operands and coordinators) with the interaction model as described
in the previous paragraph. The intuition behind transitions labelled by /0 is that they represent observable
idling (as opposed to internal transitions). This allows us to “desynchronise” combined architectures (see
Definition 4) in a simple manner, since coordinators of one architecture can idle, while those of another
performs a transition. Note that, if N = /0, in item 2 of Definition 3, N ∩Pi = /0, hence also, q′i = qi, for
all i. Thus, intuitively, one can say that none of the components moves. Item 1, however, does allow one
component to make a real move labelled by /0, if such a move exists. Thus, the transitions labelled by /0
interleave, reflecting the idea that in BIP synchronisation can happen only through ports.

Example 1 (Mutual exclusion [6]). Consider the components B1 and B2 in Figure 1(a). In order to ensure
mutual exclusion of their work states, we apply the BIP architecture A12 = ({C12},P12,γ12), where C12 is
shown in Figure 1(b), P12 = {b1,b2,b12, f1, f2, f12} and γ12 =

{
/0,{b1,b12},{b2,b12},{ f1, f12},{ f2, f12}

}
.

The interface P12 of A12 covers all ports of B1, B2 and C12. Hence, the only possible interactions are those
that explicitly belong to γ12. Assuming that the initial states of B1 and B2 are sleep, and that of C12 is
free, neither of the two states (free,work,work) and (taken,work,work) is reachable, i.e. the mu-
tual exclusion property (q1 6= work)∨ (q2 6= work)—where q1 and q2 are state variables of B1 and B2
respectively—holds in A12(B1,B2). 4
Definition 4 (Composition of BIP architectures [6]). Let A1 = (C1,P1,γ1) and A2 = (C2,P2,γ2) be two
BIP architectures. Recall that PCi =

⋃
C∈Ci

PC, for i = 1,2. If PC1 ∩PC2 = /0, then A1⊕A2 is given by
(C1 ∪C2,P1 ∪P2,γ12), where γ12 = {N ⊆ P1 ∪P2 | N ∩Pi ∈ γi, for i = 1,2}. In other words, γ12 is the
interaction model defined by the conjunction of the characteristic predicates of γ1 and γ2.

Data-aware semantics. Recently, the data-agnostic formalization of BIP interaction models was ex-
tended with data transfer, using the notion of interaction expressions [11]. Let P be a global set of ports.
For each port p ∈P , let xp :Dp be a typed variable used for the data exchange at that port. For a set
of ports P ⊆P , let XP = (xp)p∈P. An interaction expression models the effect of an interaction among
ports in terms of the data exchanged through their corresponding variables.

Definition 5 (Interaction expression [11]). An interaction expression is an expression of the form

(P← Q).[g(XQ,XL) : (XP,XL) := up(XQ,XL)//(XQ,XL) := dn(XP,XL)] ,

where P,Q ⊆P are top and bottom sets of ports; L ⊆P is a set of local variables; g(XQ,XL) is the
boolean guard; up(XQ,XL) and dn(XP,XL) are respectively the up- and downward data transfer expres-
sions.

For an interaction expression α as above, we define by top(α)
∆
=P, bot(α)

∆
=Q and supp(α)

∆
=P∪Q

the sets of top, bottom and all ports in α , respectively. We denote gα , upα and dnα the guard, upward
and downward transfer corresponding expressions in α .

The first part of an interaction expression, (P← Q), describes the control flow as a dependency
relation between the bottom and the top ports. The expression in the brackets describes the data flow,
first “upward”—from bottom to top ports—and then “downward”. The guard g(XQ,XL) relates these two
parts: interaction is enabled only when the values of the local variables together with those of variables

K. Dokter, S.-S. T. Q. Jongmans, F. Arbab & S. Bliudze 5

associated to the bottom ports satisfy a boolean condition. As a side effect, an interaction expression
may also modify local variables in XL. Intuitively, such an interaction expression can fire only if its guard
is true. When it fires, its upstream transfer is computed first using the values offered by its participating
BIP components. Then, the downstream transfer modifies all the port variables with updated values.

Definition 6 (BIP interaction models [11]). A (data-aware) BIP interaction model is a set Γ of simple
BIP connectors α , which are BIP interaction expressions of the form

({w}← A).[g(XA) : (xw,XL) := up(XA)//XA := dn(xw,XL)],

where w ∈ P is a single top port, A ⊆ P is a set of ports, such that w 6∈ A, and neither up nor g involves
local variables.

Example 2 (Maximum). Let P = {a,b,w, l} be a set of ports of type integer, i.e., xp :Dp = Z, for all
p ∈P , and consider the interaction expression (simple BIP connector)

αmax = ({w}← {a,b}).[tt : xl := max(xa,xb)//xa,xb := xl],

where tt is true. First, the connector takes the values presented at ports a and b. Then, the simple BIP
connector αmax computes atomically the maximum of xa and xb and assigns it to its local variable xl .
Finally, αmax assigns atomically the value of xl to both xa and xb. 4

BIP interaction expressions capture complete information about all aspects of component interaction—
i.e. synchronisation and data transfer possibilities—in a structured and concise manner. Thus, by exam-
ining interaction expressions, one can easily understand, on the one hand, the interaction model used to
compose components and, on the other hand, how the valuations of data variables affect the enabledness
of the interactions and how these valuations are modified. Furthermore, a formal definition of a compo-
sition operator on interaction expressions is provided in [11], which allows combining such expressions
hierarchically to manage the complexity of systems under design. Since any BIP system can be flattened,
this hierarchical composition of interaction expressions is not relevant for the semantic comparison of
BIP and Reo in this paper. Nevertheless, the possibility of concisely capturing all aspects of component
interaction in one place is rather convenient.

2.2 Reo

Reo is a coordination language wherein graph like structures express concurrency constraints (e.g., syn-
chronization, exclusion, ordering, etc.) among multiple components. These structures consist of a com-
position of channels and nodes, collectively called connectors or circuits. A channel in Reo has exactly
two ends, and each end either accepts data items, if it is a source end, or offers data items, if it is a sink
end. Moreover, a channel has a type for its behaviour in terms of a formal constraint on the dataflow
through its two ends. Its abstract definition of channels and its notion of channel types make Reo an
extensible programming language. Beside the established channel types (Table 1 contains some of them)
Reo allows arbitrary user-defined channel types.

Multiple ends may glue together into nodes with a fixed merge-replicate behaviour: a data item out
of a single sink end coincident on a node, atomically propagates to all source ends coincident on that
node. This propagation happens only if all their respective channels allow the data exchange. A node is
called a source node if it consists of source ends, a sink node if it consists of sink ends, and a mixed node
otherwise. Together, the source and sink nodes of a connector constitute its set of boundary nodes/ports.

6 Relating BIP and Reo

f1 f2

b1 b2

B1 B2
•

(a) BIP-like mutex

fi

bi

•

(b)

f1 f2

b1 b2

B1 B2

• • •

(c) Fool-proof mutex

b1 b2

f1 f2

• •

• •

••

••

•
•

•
•

•••

•
•

•
•

(d) Generated mutex

Figure 2: Fool-proof (c) mutual exclusion protocol in Reo, composed from a BIP-like (a) mutual exclu-
sion connector and an altenator connector (b), and the generated Reo circuit (d) from Example 5.

Example 3. Figure 2(a) shows a Reo connector that achieves mutual exclusion of components B1 and
B2, exactly as the BIP system shown in Figure 1 does. This connector consists of a composition of
channels and nodes in Table 1. The Reo connector atomically accepts data from either b1 or b2 and puts
it into the FIFO1 channel, a buffer of size one. A full FIFO1 channel means that B1 or B2 holds the
lock. If one of the components writes to f1 or f2, the SyncDrain channel flushes the buffer, and the lock
is released, returning the connector to its initial configuration, where B1 and B2 can again compete for
exclusive access by attempting to write to b1 or b2.

Note that this connector is not fool-proof. Even if B1 takes the lock, B2 may release it, and vice
versa. Hence, exactly as the BIP architecture in Figure 1, the Reo connector in Figure 2(a) relies on the
conformance of the coordinated components B1 and B2. The expected behaviour of Bi, i = 1,2, is that
it alternates writes on the bi and fi, and that every write on fi comes after a write on bi. Depending on
such assumptions may not be ideal. The connector, shown in Figure 2(b), makes this expected behaviour
explicit. By composing two such connectors with the connector in Figure 2(a), we obtain a fool-proof
mutual exclusion protocol, as shown in Figure 2(c). Figure 4(c) shows the constraint automaton seman-
tics of the connector in Figure 2(c). Unlike the case of the connector in Figure 2(a) or the BIP architecture
in Figure 1, non-compliant writes to bi or fi ports of the connector in Figure 2(c) will block component
Bi, but cannot break the mutual exclusion protocol that this connector implements. 4

Formal semantics of Reo. Reo has a variety of formal semantics [4, 15]. In this paper we use its
operational constraint automaton (CA) semantics [8].

Definition 7 (Constraint automata [8]). Let N be a set of nodes and D a set of data items. A data
constraint is a formula in the language of the grammar

g→> | ¬g | g∧g | ∃dp(g) | dp = v, with p ∈N ,v ∈D ,

where variable dp represents the data assigned to (i.e., exchanged through) port p. Let |= denote the
obvious satisfaction relation between data constraints and data assignments δ : N → D , with N ⊆N ,
and write DC(N ,D) for the set of all data constraints. A constraint automaton (over data domain D)
is a tuple A = (Q,N ,→,q0) where Q is a set of states, N is a finite set of nodes, → ⊆ Q× 2N ×
DC(N ,D)×Q is a transition relation, and q0 ∈ Q is the initial state.

In this paper, we consider only finite data domains, although most of our results generalize to infinite
data domains. Over a finite data domain, the data constraint language DC(N ,D) is expressive enough

K. Dokter, S.-S. T. Q. Jongmans, F. Arbab & S. Bliudze 7

Sync LossySync SyncDrain FIFO1 Node

A B A B A A′ A B
•

BA

B′ A′

q

{A,B},>
q

{A,B},>

{A},>
q

{A,A′},>
q0 q1

{A},>

{B},>

q

{B,A,A′},>

{B′,A,A′},>

Table 1: Some primitives in the Reo language with CA semantics over a singleton data domain D .

to define any data assignment. For notational convenience, we relax, in this paper, the definition of data
constraints and allow the use of set-membership and functions in the data constraints. However, we
preserve the intention that a data constraint describes a set of data assignments.

Table 1 shows the CA semantics for some typical Reo primitives. The CA semantics of every Reo
connector can be derived as a composition of the constraint automata of its primitives, using the CA
product operation in Definition 8. On the other hand, every constraint automaton (over a finite data
domain) translates back into a Reo connector [7]. Because of this correspondence, we may consider Reo
and CA as equivalent, and focus on constraint automata only.

If a constraint automaton A has only one state, A is called stateless. If the data domain D of A
is a singleton, A is called a port automaton [16]. In that case, we omit data constraints, because all
satisfiable constraints reduce to >.

Definition 8 (Product of CA [8]). Let Ai = (Qi,Ni,→i,q0,i) be a constraint automaton, for i = 1,2.
Then the product A1 onA2 of these automata is the automaton (Q1×Q2,N1∪N2,→,(q0,1,q0,2)), whose

transition relation is the smallest relation obtained by the rule: (q1,q2)
N1∪N2,g1∧g2−−−−−−−→ (q′1,q

′
2) whenever

1. q1
N1,g1−−−→1 q′1, q2

N2,g2−−−→2 q′2, and N1∩N2 = N2∩N1, or

2. qi
Ni,gi−−→i q′i, N j = /0, g j =>, q′j = q j, and Ni∩N j = /0 with j ∈ {1,2}\{i}.

It is not hard to see that constraint automata product operator is associative and commutative modulo
equivalence of state names and data constraints.

Definition 9 (Hiding in CA [8]). Let A =(Q,N ,→,q0) be a constraint automaton, and P= {p1, . . . , pn}
a set of nodes. Then hiding nodes P of A yields an automaton ∃P(A) = (Q,N \P,→∃,q0), where→∃
is given by {(q,N \P,∃dp1 · · ·∃dpn(g),q

′) | (q,N,g,q′) ∈→}.
The hiding operator affects only transition labels, and preserves the structure of the automaton. Hence

the hiding operator offers a technique to alter the interface of a component or connector without mod-
ifying its behaviour. As hiding of non-shared nodes distributes over the product, hiding of non-shared
nodes commutes with constraint automata product.

Example 4 (Product and hide). Consider the Reo connectors in Figure 2. Using Definition 8, and the
primitive constraint automata from Table 1, we find their CA semantics as shown in Figures 4(a), 4(b),
and 4(c), respectively. If we compute the product of the automaton A0 in Figure 4(a) with the automata
Ai, i = 1,2, in Figure 4(b), then we obtain an automaton A , whose part reachable from the initial state
(0,0,0) is shown in Figure 4(c). 4

8 Relating BIP and Reo

Reo BIP

PA Arch

LTS
f1

bip1

g1

reo1

[8][7] [6]

(a) data-agnostic domain

Reo BIP

CA± IM

LTS
f2

bip2

g2

reo2

[8][7] [11]

(b) data-sensitive domain

Figure 3: Translations and interpretations in data-agnostic and data-sensitive domain.

3 Port automata and BIP architectures

To study the relation between BIP and Reo with respect to synchronization, we start by defining a cor-
respondence between them in the data-agnostic domain. This correspondence consists of a pair of map-
pings between the sets containing semantic models of BIP and Reo connectors. For the data independent
semantic model of Reo connectors we choose port automata: a restriction of constraint automata over
a singleton set as data domain. We model BIP connectors by BIP architectures introduced in [6]. In
order to compare the behaviour of BIP and Reo connectors we interpret them as labeled transition sys-
tems. We define a mapping reo1 that transforms BIP architectures into port automata, and a mapping
bip1 that transforms port automata into BIP architectures. We then show that these mappings preserve
(1) properties closed under bisimulation, and (2) composition structure modulo semantic equivalence.

3.1 Interpretation of BIP and Reo

To compare the behaviour of BIP and Reo connectors, we interpret all connectors as labeled transitions
systems with one initial state and an alphabet 2P, for a set of ports P. We write LTS for the class of all
such labeled transition systems.

Figure 3(a) shows our translations and interpretations. The objects PA, Arch and LTS are, respec-
tively, the classes of port automata, BIP architectures, and labeled transition systems. The mappings
bip1, reo1, f1 and g1, respectively, translate Reo to BIP, BIP to Reo, Reo to LTS, and BIP to LTS.

We first consider the semantics of connectors. Since BIP connectors differ internally from Reo
connectors, we restrict our interpretation to their observable behaviour. This means that we hide the
ports of the coordinating components in BIP architectures. For port automata this means that for our
comparison, we implicitly assume that all names represent boundary nodes.

The interpretation of a port automaton in LTS is defined by

f1((Q,N ,→,q0)) = (Q,2N ,→,q0). (1)

Hence f1 acts essentially as an identity function, justifying our choice of interpretation. Next, we define
the interpretation of BIP architectures using their operational semantics obtained by applying them on
dummy components and hiding all internal ports. Let A = (C ,P,γ) be a BIP architecture with coordi-
nating components C = {C1, . . . ,Cn}, n ≥ 0, and Ci = (Qi,q0

i ,Pi,→i). Recall that PC =
⋃

i Pi is the set
of internal ports in A. Define D = ({qD},qD,P,{(qD,N,qD) | /0 6= N ⊆ P \PC }) as a dummy compo-
nent relative to the BIP architecture A. Using Definition 3, we compute the BIP architecture application
A({D}) = ((∏n

i=1 Qi)×{qD},(q0,qD),P,→s) of A to its dummy component D. Then,

g1(A) = (∏n
i=1 Qi×{qD},2P\PC ,{((q,qD),N \PC ,(q′,qD)) | (q,qD)

N−→s (q′,qD)},(q0,qD)) (2)

K. Dokter, S.-S. T. Q. Jongmans, F. Arbab & S. Bliudze 9

0 1
{b1}

{b2}

{ f1}

{ f2}

(a) BIP-like mutex

0

1

{bi}{ fi}

(b)

0,0,0

1,1,0

0,1,1

{b1}

{b2}

{ f1}

{ f2}

(c) Fool-proof mutex

q

/0
{b1,b12}

{b2,b12}

{ f1, f12} { f2, f12}

(d) Aγ12

f ree,q

taken,q

/0

/0

{b1} {b2}{ f1}{ f2}

(e) reo1(A12)

Figure 4: CA representations (a), (b), and (c) of Reo connectors Figures 2(a), 2(b), and 2(c), respec-
tively; translation of the interaction model (d) and BIP architecture (e) of Figure 1.

In other words, g1(A) equals A({D}) after hiding all internal ports PC . Note that we based our interpreta-
tion g1 on the operational semantics of BIP architectures, i.e., BIP architecture application. This justifies
the definition of interpretation of architectures.

Because of hiding, g1 is not injective. Hence, our interpretation of BIP architectures induces a non-
trivial equivalence given by equality of interpretations. In the sequel, we use a slightly stronger version
of equivalence based on bisimulation [18].

Definition 10 (Bisimulation [18]). If Li = (Qi,2Pi ,→i,q0
i) ∈ LTS, i = 1,2, then L1 and L2 are bisimilar

(L1 ∼= L2) iff P1 = P2 and there exists R⊆Q1×Q2 such that (q0
1,q

0
2) ∈ R, and (q1,q2) ∈ R implies, for all

N ∈ 2Pi , i, j ∈ {1,2} with i 6= j, if qi
N−→i q′i, then, for some q′j, q j

N−→ j q′j and (q′1,q
′
2) ∈ R.

Definition 11 (Semantic equivalence). Let A ,B ∈ PA be port automata and A,B ∈ Arch be BIP archi-
tectures. Then, A and B are semantically equivalent (A ∼B) iff f1(A) ∼= f1(B), and A and B are
semantically equivalent (A∼ B) iff g1(A)∼= g1(B).

With a common semantics for BIP and Reo, we can define the notion of preservation of properties
expressible in this common semantics. Recall that a property of labeled transition systems corresponds
to the subset of labeled transition systems satisfying that property.

Definition 12. Let P⊆ LTS be a property. Then, bip1 preserves P iff f1(A) ∈ P⇔ g1(bip1(A)) ∈ P for
all A ∈ PA. Similarly, reo1 preserves P iff g1(A) ∈ P⇔ f1(reo1(A)) ∈ P for all A ∈ Arch.

3.2 BIP to Reo

To translate BIP connectors to Reo connectors, we first determine what elements of BIP architectures
correspond to Reo connectors. Our interpretations of port automata and BIP architectures show that
dangling ports in BIP architectures correspond to boundary port names in port automata. Furthermore,
the mutual exclusion of the interactions in an interaction model in a BIP architecture simulates mutually
exclusive firing of transitions in port automata. The definition of a coordinating component in a BIP
architecture is almost identical to that of a port automaton, yielding an obvious translation.

Let A = (C ,P,γ) be a BIP architecture, with C = {C1, . . . ,Cn}. Each Ci corresponds trivially to a
port automaton C̃i. Let Aγ = ({q},P,→,q) be the stateless port automaton over P with transition relation
→ defined by {(q,N,q) | N ∈ γ}. Then Aγ can be seen as the port automata encoding of the interaction
model γ . Recall that PC =

⋃
C∈C PC. The corresponding port automaton of A is given by

reo1(A) = ∃PC (C̃1 on · · ·C̃n on Aγ). (3)

10 Relating BIP and Reo

Example 5. We translate the BIP architecture in Example 1 using (3). First, we transform γ12 into a
port automaton Aγ12 , shown in Figure 4(d). Then, we compute the product of Aγ12 with the coordinating
component C12 to obtain the port automaton corresponding to the BIP architecture A12, shown in Fig-
ure 4(e). As mentioned in section Section 2.2, we can transform the port automaton in Figure 4(e) into a
Reo connector, using the method described in [7]. This mechanical translation yields the Reo connector
in Figure 2(d). Here, the dot in the FIFO1 buffer indicates that its initial state is the full state. The
crossed node represents an exclusive router, which atomically takes data from a coincident sink end, and
provides it to a single coincident source end. Note that the port automaton semantics of the connector in
Figure 2(a) (see Figure 4(a)) is similar to the automaton in Figure 4(e), up to empty transitions. 4

3.3 Reo to BIP

In BIP, interaction is memoryless. This means that a stateful channel in Reo must translate to a coordi-
nating component. In fact, we may encode the whole Reo connector as one such component.

Let Ai, i = 1,2, be two port automata, and let p ∈N1∩N2 be a shared port of A1 and A2. Suppose
that we know how to translate Ai into a BIP architecture Ai. If p is not a dangling port of A1, then,
by symmetry, p is not a dangling port of A2. But now, A1 and A2 are not composable, because there
components are not disconnected. Hence, since we want the translation to preserve composition, p
should be a dangling port.

Let A = (Q,N ,→,q0) be a port automaton. We construct a corresponding BIP architecture. Du-
plicate all ports in N by defining N′ = {n′ | n ∈ N} for all N ⊆N . We do not use a port n′, for n ∈N ,
for composition. Their exact name is therefore not important, but merely their relation to its dangling
brother n. Trivially, A = (Q,q0,N ′,→c), with→c = {(q,N′,q′) | (q,N,q′) ∈ →}, is a BIP component
(cf., Definition 1). Essentially, A and A are the same labeled transition system. Now we define:

bip1(A) = ({A },N ∪N ′,{N∪N′ | N ⊆N }). (4)

Thus, bip1 uses the port automaton as the coordinating component of the generated BIP architecture.

Example 6. Let A be the port automaton in Figure 4(b) over the name set N = {bi, fi}. We determine
bip1(A). Obtain A by adding adding a prime to each port in A . The interaction model of bip1(A)
consist of {N ∪N′ | N ⊆N } =

{
/0,{bi,b′i},{ fi, f ′i },{bi,b′i, fi, f ′i }

}
. Hence, bip1(A) is given by th BIP

architecture ({A },{bi, fi,b′i, f ′i },
{

/0,{bi,b′i},{ fi, f ′i },{bi,b′i, fi, f ′i }
}
).

3.4 Preservation of properties

To confirm that translations reo1 and bip1 preserve properties, we first investigate whether Figure 3(a)
commutes, i.e., f1(reo1(A)) = g1(A) and g1(bip1(A)) = f1(A), for A ∈ Arch and A ∈ PA.

First, note that the equations f1(reo1(A)) = g1(A) and g1(bip1(A)) = f1(A) cannot hold, because
their state spaces differ. For example, g1 alters the state space by adding the state of a dummy component,
and reo1 adds the state of the port automaton encoding of the interaction model. Therefore we view these
equations modulo bisimulation of labeled transition systems from Definition 10.

Next, consider the equation f1(reo1(A))∼= g1(A), for some BIP architecture A = ({C1, . . . ,Cn},P,γ).
Suppose that two distinct coordination components Ci and C j, 1 ≤ i < j ≤ n, each contains an empty-
labeled transition, i.e., there exist transistions (qi, /0,q′i) ∈ →i and (q j, /0,q′j) ∈ → j. When we translate A
to a port automaton using reo1, the second rule in Definition 8 yields a single transition in f1(reo1(A))
from a global state where component Ci is in state qi and C j is in state q j, to a global state where Ci is

K. Dokter, S.-S. T. Q. Jongmans, F. Arbab & S. Bliudze 11

in state q′i and C j is in state q′j. However, BIP semantics does not allow independent progress of state-
changing empty-labeled transitions, which means that this single transition exists only when q′i = qi and
q′j = q j. Indeed, the first rule of Definition 3 allows either Ci or C j to change state, and the second
rule implies q′i = qi and q′j = q j for N = /0. Because of this, we need to exclude BIP architectures
where two coordinating components can make a state-changing empty-labeled transition. Moreover, as
we consider composition of BIP architectures in Section 3.5, we exclude BIP architectures containing a
single coordinating component that can make a state-changing empty-labeled transition, and restrict Arch
to Arch′ = {A ∈ Arch | ∀Ci ∈ C : qi

/0−→i q′i ⇒ q′i = qi}. Finally, consider the equation g1(bip1(A)) ∼=
f1(A), for some port automaton A . Note that the interaction model of bip1(A) contains the empty
set. Hence, the second rule in Definition 3 yields empty-labeled self-transitions in g1(bip1(A)). Since
f1 acts like the identity, we conclude that A should have empty-labeled self-transitions, i.e., q′ = q
implies (q, /0,q′) ∈→. On the other hand, suppose that (q, /0,q′) ∈→. Then the coordinating component
of bip1(A) should not contain a state-changing empty-labeled transition, hence q′ = q. Therefore, we
restrict PA to PA′ = {A ∈ PA | q /0−→ q′⇔ q′ = q}.
Theorem 1. For all A ∈ PA′ and A ∈ Arch′ we have g1(bip1(A))∼= f1(A) and f1(reo1(A))∼= g1(A).

Proof. Using Definition 3, Definition 8, A ∈ Arch′, A ∈ PA′, and the fact that (qD, /0,qD) /∈ →D, it
follows that (1) ∼ given by (q,qD)∼ q for all q ∈ Q is a bisimulation between g1(bip1(A)) and f1(A),
where Q is the state space of A , and (2) ≈ given by (q,qI) ≈ (q,qD) for all q = (qi)i∈I ∈∏i∈I Qi, is a
bisimulation, where Qi, i ∈ I, are the state spaces of the coordinating components of A. See Appendix A
for a detailed proof.

Corollary 1. bip1 and reo1 preserve all properties closed under bisimulation, i.e., for all P ⊆ LTS,
A ∈ PA′ and A ∈ Arch′ we have f1(A) ∈ P⇔ g1(bip1(A)) ∈ P and g1(A) ∈ P⇔ f1(reo1(A)) ∈ P.

Example 7. Consider the following safety property ϕ satisfied by the Reo connector in Figure 2(c):
“if b1 fires, then b2 fires only after f1 fires”. Clearly, the automaton A ′, obtained from Figure 4(c) by
adding empty self-transitions, satisfies this property as well. Using Corollary 1, we conclude that the
BIP architecture bip1(A) = bip1(A

′) satisfies ϕ . More generally, Corollary 1 allows model checking of
BIP architectures with Reo model checkers. 4

3.5 Compatibility with composition

BIP architectures and port automata have their own notions of composition. This raises the question of
whether our translations preserve composition structures. We show that, under specific conditions, our
translations preserve composition modulo semantic equivalence. Recall the port automaton representa-
tion of the interaction model (Section 3.2).

Lemma 1. Let Ai = (Ci,Pi,γi) ∈ Arch, i = 1,2, with PC1 ∩PC2 = /0 and /0 ∈ γ1∩ γ2. Then, we have that
Aγ12 ∼Aγ1 on Aγ2 , where γ12 be the interaction model of A1⊕A2.

Proof. Follows easily from Definition 8 and Definition 4. See Appendix A for a detailed proof.

Suppose that reo1(A1⊕A2) ∼ reo1(A1) on reo1(A2), for any two BIP architectures A1,A2 ∈ Arch′.
Definition 8 implies Nreo1(A1⊕A2) = Nreo1(A1)onreo1(A2) = Nreo1(A1)∪Nreo1(A2). In other words, the name set
of port automaton reo1(A1⊕A2) is the union of the name set of the port automata reo1(Ai), i = 1,2.
Hence, Nreo1(Ai) ⊆ Nreo1(A1⊕A2), for i = 1,2. This means that the dangling ports of reo1(A1⊕A2) contain
all dangling ports of reo1(Ai). Therefore, we need to assume that PC1 ∩P2 = PC2 ∩P1 = /0.

12 Relating BIP and Reo

Note that this is only a mild assumption. Indeed, if p ∈ PC1 ∩P2 is a dangling port of P2, connected
directly to a component in A1. Then, we first add a (dangling) port x to A1 and synchronize p with p′

by considering the BIP interaction model γ ′1 = {N ∪{x} | p ∈ N ∈ γ1}∪{N | p /∈ N ∈ γ}. Finally, we
rename p to x in A2. The resulting architectures satisfy the assumption.

Theorem 2. reo1(A1⊕A2)∼ reo1(A1)on reo1(A2) for all Ai = (Ci,Pi,γi) ∈ Arch′, with PC1 ∩P2 = PC2 ∩
P1 = /0 and /0 ∈ γ1∩ γ2.

Proof. Let C1 ∪C2 = {C1, . . . ,Cn, . . . ,Cm}, with Ci ∈ C1 iff i ≤ n. By definition, we have reo1(A1⊕
A2) = ∃PC1∪C2(C̃1 on · · ·C̃n on C̃n+1 on · · ·C̃m on Aγ12). Next, we use the bisimulation of port automata
(i.e., constraint automata with data contraint >) as defined in [8]. Composition (on) of port automata is
commutative and associative up to bisimulation [8]. Using Lemma 1, it follows that reo1(A1⊕A2) ∼=
∃PC1∃PC2(C̃1 on · · ·C̃n on Aγ1 on C̃n+1 on · · ·C̃m on Aγ2). Indeed, since f1 is like the identity, it follows that
semantic equivalence ∼ coincides with bisimulation ' of port automata as defined in [8]. Now, we use
our assumption that PC1 ∩P2 = PC2 ∩P1 = /0, and the fact that C̃1, . . . ,C̃n, and Aγ1 do not use ports from
PC2 . Then, reo1(A1⊕A2) ∼= ∃PC1(C̃1 on · · ·C̃n on Aγ1) on ∃PC2(C̃n+1 on · · ·C̃m on Aγ2)). We conclude that
reo1(A1⊕A2) ∼= reo1(A1) on reo1(A2). Since, f1 is like the identity, it is not hard to see that f1 takes
bisimilar port automata to bisimilar labeled transition systems. Therefore, reo1 is a homomorphism up
to semantic equivalence, i.e., reo1(A1⊕A2)∼ reo1(A1)on reo1(A2).

Theorem 3. bip1(A1 on A2)∼ bip1(A1)⊕bip1(A2) for all Ai ∈ PA′.

Proof. Note that, since f1 is like the identity, semantic equivalence ∼ coincides with bisimulation ' of
port automata [8]. As' is a congruence with respect to the composition on of port automata, we conclude
that ∼ is a congruence too (i.e., f1(Ai)∼= f1(A ′

i), for i = 1,2, implies f1(A1 on A2)∼= f1(A ′
1 on A ′

2)).
Let Ai ∈ PA′, i = 1,2, be two port automata. From Theorem 2, we conclude that f1(reo1(A1 ⊕

A2)) ∼= f1(reo1(A1) on reo1(A2)), for any A1,A2 ∈ Arch′. Substitute Ai = bip1(Ai), for i = 1,2. Then,
f1(reo1(bip1(A1)⊕ bip1(A2))) ∼= f1(reo1(bip1(A1)) on reo1(bip1(A2))). Thus, f1(reo1(bip1(Ai))) ∼=
g1(bip1(Ai)) ∼= f1(Ai), for i = 1,2, by Theorem 1. Hence, using that ∼ is a congruence, we ob-
tain g1(bip1(A1)⊕ bip1(A2)) ∼= f1(A1 on A2). Therefore, g1(bip1(A1)⊕ bip1(A2)) ∼= g1(bip1(A1 on
A2)).

Example 8. For any two ports x and y, let A{x,y} be the port automaton of a synchronous channel (cf., Ta-
ble 1), and let C{x,y} be its corresponding BIP component. Suppose we need to translate A{a,b} on A{b,c}
to a BIP architecture. Then we first compute bip1(A{a,b}) = ({C{a′,b′}},{a,a′,b,b′},γ{a,b}), with γ{a,b} =
{ /0,{a,a′},{b,b′},{a,a′,b,b′}}. Next, we compute bip1(A{b,c}) = ({C{b′′,c′′}},{b,b′′,c,c′′},γ{b,c}), with
γ{b,c} = { /0,{b,b′′},{c,c′′},{b,b′′,c,c′′}}. Note that we need to use a double prime now, because oth-
erwise b′ would be a shared port of C{a′,b′} and C{b′′,c′′}. Using Theorem 3, we find that bip1(A{a,b} on
A{b,c} = bip1(A{a,b})⊕ bip1(A{b,c}) = ({C{a′,b′},C{b′′,c′′}},{a,a′,b,b′,b′′,c,c′′},γ{a,b,c}), where γ{a,b,c}
is the composition of γ{a,b} and γ{b,c}.

Example 9. Consider the port automaton A ′, obtained from Figure 4(c) by adding empty self-transitions.
If we translate A ′ to BIP, we obtain a BIP architecture B1 = bip1(A

′), which has only a single coordi-
nating component. From Example 4 we conclude A ′ ∼=A ′

0 onA ′
1 onA ′

2 , where A0 is the port automaton
in Figure 4(a), Ai, i = 1,2, is the port automaton in Figure 4(b), and A ′

i is obtained from Ai by adding
empty self-transitions. Now consider B3 = bip1(A

′
0)⊕ bip1(A

′
1)⊕ bip1(A

′
2). Using Definition 4, we

see that B3 has three coordinating components. Nevertheless, Theorem 3 shows that B3 is semantically
equivalent to B. Therefore, Theorem 3 allows to compute translations compositionally. 4

K. Dokter, S.-S. T. Q. Jongmans, F. Arbab & S. Bliudze 13

4 Stateless CA’s and interaction models

In Section 3 we established a correspondence between port automata and BIP architectures. Here, we
offer translations between data-aware connector models in BIP and Reo.

First we determine the semantic model of the connectors. For BIP connectors we use BIP interac-
tion models, i.e., sets of interaction expressions α , with a single top port that is not a bottom port, and
whose guard and up functions are independent of local variables (Definition 5). We assume that every
top port occurs only in one interaction expression per BIP interaction model. We denote the class of BIP
interaction models by IM. For the semantics of Reo connectors we take a pair consisting of a constraint
automaton together with a partition of its node set into source nodes Nsrc, mixed nodes Nmix, and sink
nodes Nsnk. We call such pairs constraint automata with polarity. Due to the absence of coordinating
components in the data sensitive model for BIP, we restrict ourselves here to stateless constraint au-
tomata, since BIP interaction expressions are stateless [6,11]. We write CA± for the class of all stateless
constraint automata with polarity, with Nsrc = P∗ = {p∗ | p ∈ P} and Nsnk = P∗ = {p∗ | p ∈ P} for
some set of ports P. This assumption is necessary to enable simulation of bidirectional ports in BIP. The
reason we explicitly distinguish node types in this semantics is to give direction to dataflow, similar to
BIP connectors. Usually such node type distinctions are implicit, but for preciseness we encode them as
a partition within the semantics of Reo connectors.

As in Section 3, we interpret all connectors as labeled transition systems. Then we define translations
between Reo connectors (CA±) and BIP connectors (IM), and show that they preserve properties.

4.1 Interpretation of BIP and Reo

An important difference between BIP and Reo involves how they handle data. BIP uses bidirectional
ports, while Reo treats input and output ports separately. Since the common semantics should support
both approaches, we duplicate every bidirectional port of BIP to obtain two unidirectional ports, compat-
ible with Reo. The sense of every reference to a bidirectional port in a BIP interaction expression maps
that bidirectional port to its intended corresponding unidirectional port.

Let LTS be the class of all labeled transition systems over an alphabet (D+ 1)2P, where D is a set
of data items; 1 = {0} contains void or null, modeling the absence of data; and 2P is the duplicated
(unidirectional) port set of a set of (bidirectional) ports P, that is, 2P = {p∗, p∗ | p ∈ P}. If data appears
at p∗ (i.e., δ (p∗) 6= 0 for δ ∈ (D+1)2P), then we interpret this as input to the connector. If data appears
at p∗, then we interpret this at output from the connector.

Consider Figure 3(b). Classes CA± and IM consist of constraint automata with polarity and interac-
tion models. Morphisms bip2 and reo2 are translations of those classes and f2 and g2 are interpretations in
a common LTS semantics. We do not intend to redefine the semantics of constraint automata with polar-
ity and of interaction models in this section. Hence, we interpret them using their definitions from [8,11].

We begin by defining the interpretation of stateless constraint automata with polarity. Given a state-
less constraint automaton with polarity A , we first determine the smallest set of bidirectional ports P
such that N used

src ⊆ P∗ and N used
snk ⊆ P∗, where N used

src and N used
snk are all source and sink nodes that

occur on a transition of A . Then, we take 2P as the port names of f2(A). Finally, we obtain the
transitions of f2(A) by replacing every transition labeled with N,g in A with a set of transitions la-
beled with δ ∈ ∆(N,g), where ∆(N,g) contains all data assignments δ : 2P→ D + 1 that satisfy the
data constraint N,g. We formalize this as follows. Let A = ({q},Nsrc,Nmix,Nsnk,→,q) be a stateless

constraint automaton with polarity over a data domain D . Define N used
src =

⋃
{N ∩Nsrc | q

N,g−−→ q}, and

14 Relating BIP and Reo

N used
snk =

⋃
{N∩Nsnk | q

N,g−−→ q}. Let P be the smallest set, with N used
src ⊆ P∗ and N used

snk ⊆ P∗. Define

f2(A) = ({q},(D +1)2P,{(q,δ ,q) | q N,g−−→ q,δ ∈ ∆(N,g)}), (5)

where ∆(N,g) = {δ : 2P→ D + 1 | δ (2P \N) = {0},δ |= g}. Note that ports in Nsrc \N used
src and

Nsnk \N used
snk are important only for composition, which we do not consider in this paper.

Next, we interpret interaction models Γ by a single-state labeled transition system with labels de-
scribing all possible dataflows allowed by the guard, and up and down functions of some interaction
expression in Γ. Before we provide a formal definition, we first introduce some notation. For every BIP
interaction expression α , we write Pα for its bottom ports, gα for its guard, upα

w and upα
L for the restric-

tion of the up function to its top port and its local variables, respectively, and dnα
bot for the restriction of

the down function to its bottom ports. For every BIP interaction model Γ, we write PΓ =
⋃

α∈Γ Pα , and
DΓ =

⋃
p∈PΓ

Dp, where Dp is the data type of port p. For every data assignment δ : 2PΓ → DΓ + 1 we
define δup(p) = δ (p∗) and δdn(p) = δ (p∗), for all p ∈ Pα . Then, we define

g2(Γ) = ({q},(DΓ +1)2PΓ ,{(q,δ ,q) | α ∈ Γ,δ ∈ ∆(α)⊆ (DΓ +1)2PΓ}), (6)

where ∆(α) = {δ | δ (2PΓ \2Pα) = {0},gα(δup) = tt,δdn = dnα
bot(upα

w(δup),upα
L (δup))}. Note that we

use the value of upα
w(δup) as a local variable, since we consider only non-hierarchical interaction models.

In [11], Bliudze et al. encode BIP interaction models in Top/Bottom components, i.e., an automaton
over interaction expressions together with local variables. Furthermore, they define a semantics for T/B
components, which indirectly defines an interpretation of interaction models. Equation (6) imitates this
interpretation without using Top/Bottom components explicitly.

Now that we defined the interpretation of our objects in LTS, we explore how these translations
preserve properties that are expressible in LTS, as we did for their counterparts in Section 3.1.

4.2 Reo to BIP

Since BIP interaction models are stateless, we cannot translate an arbitrary constraint automaton (i.e.,
Reo connector) into BIP. Interaction models in BIP preclude keeping track of the state of a Reo connector.
Hence, the translation of the interaction model of a BIP architecture into a port automaton in Section 3.2
inspires us for our translation bip2.

Let A be a stateless constraint automaton over a data domain D . Since we care only about external
behaviour, we first hide all mixed nodes. Then, we transform every transition in A with label N,g into a
simple BIP connector with N as its bottom ports, together with a guard, an up and a down function that
mimic the data constraint g. We define the corresponding set bip2(A) of simple BIP connectors by the
set of all transformed transitions from A .

We first define the transformation of transitions into interaction expressions. For every label N,g in
automaton A , we define the simple BIP connector

α(N,g) = ({wN,g}← PN).[gsrc(Xsrc) : Ysnk := solve(g,Xsrc)//Xsnk := Ysnk],

where PN is the smallest set satisfying N ∩Nbnd ⊆ 2PN , gsrc is any quantifier free formula equivalent to
∃N \Nsrc : g, the variables Ysnk = {yp | p ∈ N ∩Nsnk} are some fresh local variables, and Xsrc = {xp |
p ∈ N ∩Nsrc} and Xsnk = {xp | p ∈ N ∩Nsnk} model the input and output values assigned to the bottom
ports, and solve(g,Xsrc) returns a vector Ysnk satisfying ∃Xmix : g(Xsrc,Xmix,Ysnk). All variables have data
type D (the data domain of A), i.e., xp :D for all p ∈N . Note that the solve function in α(N,g) is not

K. Dokter, S.-S. T. Q. Jongmans, F. Arbab & S. Bliudze 15

deterministic. However, comparing the solve function to the random function in Figure 4 in [11], we see
that this generality is justified. Now, we define bip2 as follows:

bip2(A) = {α(N,g) | (q,N,g,q) ∈→}, (7)

4.3 BIP to Reo

The correspondence between BIP interaction expressions and automata transitions from Section 4.2,
provides the main idea for the translation of interaction models into stateless constraint automata. If Γ is
a set of simple BIP connectors, we assign to every α ∈ Γ a transition τα labeled with N(α),g(α), and
subsequently construct the stateless constraint automaton consisting of all such τα transitions.

Let α be a simple BIP interaction expression. Recall our relaxation on the data constraint language
in Section 2, and our notations regarding α in Section 4.1. Then, define N(α)⊆ 2Pα = {p∗, p∗ | p ∈ Pα}
where p∗ ∈ N(α) iff α assignes data to p in the upward data transfer, and p∗ ∈ N(α) iff α assigns data
to p in the downward data transfer. Furthermore, let D∗ = (dp∗)p∈P, D∗ = (dp∗)p∈P, and define

g(α) =
∧

p∈P dp∗ ,dp∗ ∈ Dp ∧ gα(D∗) ∧ D∗ = dnα
bot(upα

w(D
∗),upα

L (D
∗)),

Note that g(α) is independent of the top port w, as we consider only non-hierarchical connectors.
Let Γ be a set of simple BIP connectors. Recall that PΓ =

⋃
α Pα and DΓ =

⋃
p∈PΓ

Dp. Then, define
the constraint automaton reo2(Γ) over DΓ by

reo2(Γ) = ({q},(PΓ)
∗, /0,(PΓ)∗,{(q,N(α),g(α),q) | α ∈ Γ},q). (8)

Example 10. Consider the interaction expression αmax from Example 2, with the data domains restricted
to D = {0, . . . ,232− 1}. We translate the interaction model Γ = {αmax} using (8), i.e., we compute
A = reo2(Γ). Trivially, A is stateless. Its set of input ports equals (PΓ)

∗ = {a∗,b∗}, and its set of output
ports equals (PΓ)∗ = {a∗,b∗}. It has a unique transitions (q,N,g,q), with synchronization contraint
N = {a∗,b∗,a∗,b∗} and guard g ≡

∨
x,y,z∈D : z=max(x,y)(da∗ = x∧db∗ = y∧da∗ = z∧db∗ = z). 4

4.4 Preservation of properties

To show the faithfulness of translations bip2 and reo2, we show that interpretations f2 and g2 commute
with the translations bip2 and reo2 in Figure 3(b).
Theorem 4. For all A ∈ CA± and all Γ ∈ IM we have g2(bip2(A)) = f2(A) and f2(reo2(Γ)) = g2(Γ).

Proof. (Sketch). Let Γ ∈ IM and A ∈ CA±. Then, ∆(α(N,g)) = ∆(N,g), and ∆(N(α),g(α)) = ∆(α),
for all α ∈ Γ, and all transition labels N,g in A . From this and the definitions of f2 and g2, we see that
g2(bip2(A))) = f2(A), and f2(reo2(Γ)) = g2(Γ), respectively.

Corollary 2. The translations bip2 and reo2 preserve all properties expressible in LTS, i.e., f2(A) ∈
P⇔ g2(bip2(A)) ∈ P and g2(Γ) ∈ P⇔ f2(reo2(Γ)) ∈ P for all P⊆ LTS, A ∈ CA± and Γ ∈ IM.
Example 11. Consider the following safety property ϕ for the interaction expression αmax from Exam-
ple 2: “the value retrieved from port a equals zero”. Clearly, this safety property does not hold, whenever
a or b offers a non-zero integer. Note that ϕ depends solely on the interpretation of the interaction model
Γ= {αmax} in LTS, and hence ϕ is expressible in LTS. Using Corollary 2 we conclude that ϕ is false also
for Amax = reo2({αmax}). Thus, we know any executable code generated from the constraint automaton
Amax does not satisfy ϕ . More generally, Corollary 2 allows us to use the Reo compiler to generate
correct code for a BIP interaction model. 4

16 Relating BIP and Reo

5 Conclusions and Future Work

BIP and Reo find common ground in their stimulation of exogenous system design. This means that
they force the explicit modeling of coordination constraints. A clear and formal separation between
coordination (connectors) and computation (components) allows the software architect to analyze the
interaction of the components using automated tools. The exogenous approach of BIP and Reo contrasts
with the endogenous approach supported in process algebra and other languages where coordination is
woven into the code of the components. For example, process algebra does not supply constructs to
enforce the separation of concerns necessary in exogenous coordination [19].

Multiparty synchronization constitutes a fundamental coordination concept in BIP (represented by
interactions in a BIP interaction model) and Reo (represented by synchronization constraints in constraint
automata). Our translations show that these representations of multiparty synchronization coincide.

The BIP framework concretely defines what separates computation (BIP behaviour) and coordination
(BIP interaction), while Reo merely separates computation (Reo components) and coordination (Reo
connector) structurally. Indeed, Reo does not force a fixed universal definition for computation and
coordination in all applications. Without giving a fixed definition of separation criterion, Reo’s structural
separation of computation from coordination (i.e., component versus connector) simply means that, while
this separation is always important, the distinction between the two is in the eye of the beholder: in
different applications, different, or even the same people, may find it convenient to draw the line that
separates computation and coordination at different places to suit their needs. For example, the stateful
behavior of a FIFO with capacity of 1 strictly places what this entity does in the behaviour layer of BIP,
as a (computation) component. In Reo, such stateful components can, of course, be regarded and used
as computation as well. However, when deemed appropriate, one can use the same component (i.e., a
FIFO1 channel) in the construction of a Reo connector as well, e.g., to express the stateful, turn-taking
interaction between two components, as in Figure 2.

Our data-agnostic translations allow compositional translation, because their operators distribute over
composition modulo semantic equivalence. On the other hand, our data-sensitive translation scheme does
not support incremental translation. It seems intuitive to translate synchronous Reo channels into BIP
interaction expressions. However, the directionality inherent in the dataflows of BIP interaction expres-
sions implies that they can compose only hierarchically, whereas the relational specification of dataflow
constraints in Reo (which manifests itself as data constraints in constraint automata transition labels) al-
lows more expressive composition of dataflows as relational composition of constraints. This difference
restricts the set of the Reo connectors that this scheme can incrementally translate into BIP, as well as the
granularity of the sub-connectors that it can translate in one increment: the data constraints on the bound-
ary nodes of every such sub-connector must be locally resolvable into a directional dataflow expression
at the level of the sub-connector, in isolation. In practice, synchronous cycles in a Reo connector must
translate as a whole, which scuttles the computational benefit of translating incrementally.

In contrast with the BIP architecture model, the data-sensitive model for BIP does not include coordi-
nating components within the connector [6, 11]. Nevertheless, it seems possible to use the formalization
in [11] to extend BIP architectures of [6] with data. However, extending the current composition operator
⊕ to compose data-sensitive BIP architectures does not seem trivial, and we do not know what properties
such an extended composition operator can preserve.

Using the ideas from Section 3, extending our reo2 translation (Figure 3(b)) to the domain of pos-
tulated data-sensitive BIP architectures seems straight-forward. Moreover, it may be possible to extend
our translations to mappings that preserve internal ports. Such extensions, together with the results from
Section 4, effectively promise a property-preserving composition operator for data-sensitive BIP archi-

K. Dokter, S.-S. T. Q. Jongmans, F. Arbab & S. Bliudze 17

tectures that may also share internal ports.

References
[1] (2015): BIP toolset. Available at http://www-verimag.imag.fr/BIP-Tools,93.html.
[2] (2015): Reo toolset. Available at http://reo.project.cwi.nl/reo/wiki/Tools.
[3] Farhad Arbab (2004): Reo: a channel-based coordination model for component composition. Math. Struc-

tures Comput. Sci. 14(3), pp. 329–366, doi:10.1017/S0960129504004153. Available at http://dx.doi.
org/10.1017/S0960129504004153.

[4] Farhad Arbab (2011): Puff, The Magic Protocol. In: Talcott Festschrift, Lecture Notes in Comput. Sci. 7000,
Springer, pp. 169–206, doi:10.1007/978-3-642-24933-4 9. Available at http://dx.doi.org/10.1007/
978-3-642-24933-4_9.

[5] Farhad Arbab, Roberto Bruni, Dave Clarke, Ivan Lanese & Ugo Montanari (2009): Tiles for Reo. In: Proc.
of WADT, Lecture Notes in Comput. Sci. 5486, Springer Berlin Heidelberg, pp. 37–55, doi:10.1007/978-3-
642-03429-9 4. Available at http://dx.doi.org/10.1007/978-3-642-03429-9_4.

[6] Paul Attie, Eduard Baranov, Simon Bliudze, Mohamad Jaber & Joseph Sifakis (2014): A General Framework
for Architecture Composability 8702, pp. 128–143. doi:10.1007/978-3-319-10431-7 10. Available at http:
//dx.doi.org/10.1007/978-3-319-10431-7_10.

[7] Christel Baier, Joachim Klein & Sascha Klüppelholz (2014): Synthesis of Reo Connectors for Strategies and
Controllers. Fundam. Inform. 130(1), pp. 1–20, doi:10.3233/FI-2014-980. Available at http://dx.doi.
org/10.3233/FI-2014-980.

[8] Christel Baier, Marjan Sirjani, Farhad Arbab & Jan Rutten (2006): Modeling component connectors in Reo
by constraint automata. Sci. Comput. Programming 61(2), pp. 75–113, doi:10.1016/j.scico.2005.10.008.
Available at http://dx.doi.org/10.1016/j.scico.2005.10.008.

[9] Ananda Basu, Marius Bozga & Joseph Sifakis (2006): Modeling Heterogeneous Real-time Components in
BIP. In: Proc. of SEFM, ACM, pp. 3–12, doi:10.1109/SEFM.2006.27. Available at http://dx.doi.org/
10.1109/SEFM.2006.27.

[10] Simon Bliudze & Joseph Sifakis (2007): The algebra of connectors: structuring interaction in BIP. In: Proc.
of EMSOFT, ACM SigBED, ACM, Salzburg, Austria, pp. 11–20, doi:10.1145/1289927.1289935. Available
at http://doi.acm.org/10.1145/1289927.1289935.

[11] Simon Bliudze, Joseph Sifakis, Marius Bozga & Mohamad Jaber (2014): Architecture Internalisation in
BIP. In: Proc. of CBSE, ACM, pp. 169–178, doi:10.1145/2602458.2602477. Available at http://doi.
acm.org/10.1145/2602458.2602477.

[12] Roberto Bruni, Hernán Melgratti & Ugo Montanari (2011): Connector Algebras, Petri Nets, and BIP. In:
Proc. of PSI, LNCS 7162, Springer, pp. 19–38, doi:10.1007/978-3-642-29709-0 2. Available at http://
dx.doi.org/10.1007/978-3-642-29709-0_2.

[13] M. Y. Chkouri, A. Robert, M. Bozga & J. Sifakis (2009): Translating AADL into BIP - Application to the
Verification of Real-Time Systems. In: Proc. of MODELS, LNCS 5421, Springer, pp. 5–19, doi:10.1007/978-
3-642-01648-6 2. Available at http://dx.doi.org/10.1007/978-3-642-01648-6_2.

[14] David Garlan (2014): Software Architecture: A Travelogue. In: Proc. of FOSE, ACM, pp. 29–39,
doi:10.1145/2593882.2593886. Available at http://doi.acm.org/10.1145/2593882.2593886.

[15] Sung-Shik T. Q. Jongmans & Farhad Arbab (2012): Overview of Thirty Semantic Formalisms for Reo. Sci.
Ann. Comp. Sci. 22(1), pp. 201–251, doi:10.7561/SACS.2012.1.201. Available at http://dx.doi.org/
10.7561/SACS.2012.1.201.

[16] C. Koehler & D. Clarke (2009): Decomposing port automata. In: Proc. of SAC, ACM, pp. 1369–1373,
doi:10.1145/1529282.1529587. Available at http://doi.acm.org/10.1145/1529282.1529587.

http://www-verimag.imag.fr/BIP-Tools,93.html
http://reo.project.cwi.nl/reo/wiki/Tools
http://dx.doi.org/10.1017/S0960129504004153
http://dx.doi.org/10.1017/S0960129504004153
http://dx.doi.org/10.1017/S0960129504004153
http://dx.doi.org/10.1007/978-3-642-24933-4_9
http://dx.doi.org/10.1007/978-3-642-24933-4_9
http://dx.doi.org/10.1007/978-3-642-24933-4_9
http://dx.doi.org/10.1007/978-3-642-03429-9_4
http://dx.doi.org/10.1007/978-3-642-03429-9_4
http://dx.doi.org/10.1007/978-3-642-03429-9_4
http://dx.doi.org/10.1007/978-3-319-10431-7_10
http://dx.doi.org/10.1007/978-3-319-10431-7_10
http://dx.doi.org/10.1007/978-3-319-10431-7_10
http://dx.doi.org/10.3233/FI-2014-980
http://dx.doi.org/10.3233/FI-2014-980
http://dx.doi.org/10.3233/FI-2014-980
http://dx.doi.org/10.1016/j.scico.2005.10.008
http://dx.doi.org/10.1016/j.scico.2005.10.008
http://dx.doi.org/10.1109/SEFM.2006.27
http://dx.doi.org/10.1109/SEFM.2006.27
http://dx.doi.org/10.1109/SEFM.2006.27
http://dx.doi.org/10.1145/1289927.1289935
http://doi.acm.org/10.1145/1289927.1289935
http://dx.doi.org/10.1145/2602458.2602477
http://doi.acm.org/10.1145/2602458.2602477
http://doi.acm.org/10.1145/2602458.2602477
http://dx.doi.org/10.1007/978-3-642-29709-0_2
http://dx.doi.org/10.1007/978-3-642-29709-0_2
http://dx.doi.org/10.1007/978-3-642-29709-0_2
http://dx.doi.org/10.1007/978-3-642-01648-6_2
http://dx.doi.org/10.1007/978-3-642-01648-6_2
http://dx.doi.org/10.1007/978-3-642-01648-6_2
http://dx.doi.org/10.1145/2593882.2593886
http://doi.acm.org/10.1145/2593882.2593886
http://dx.doi.org/10.7561/SACS.2012.1.201
http://dx.doi.org/10.7561/SACS.2012.1.201
http://dx.doi.org/10.7561/SACS.2012.1.201
http://dx.doi.org/10.1145/1529282.1529587
http://doi.acm.org/10.1145/1529282.1529587

18 Relating BIP and Reo

[17] C. Krause (2009): Integrated Structure and Semantics for Reo Connectors and Petri Nets. In: Proc. of ICE,
pp. 57–69, doi:10.4204/EPTCS.12.4. Available at http://dx.doi.org/10.4204/EPTCS.12.4.

[18] R. Milner (1989): Communication and Concurrency. Prentice-Hall, Inc.
[19] G. A. Papadopoulos & F. Arbab (2001): Configuration And Dynamic Reconfiguration Of Components

Using The Coordination Paradigm. Future Generation Computer Systems 17(8), pp. 1023 – 1038,
doi:10.1016/S0167-739X(01)00043-7. Available at http://dx.doi.org/10.1016/S0167-739X(01)

00043-7.
[20] José Proença & Dave Clarke (2008): Coordination Models Orc and Reo Compared. Electron. Notes Theor.

Comput. Sci. 194(4), pp. 57–76, doi:10.1016/j.entcs.2008.03.099. Available at http://dx.doi.org/10.
1016/j.entcs.2008.03.099.

[21] Carolyn Talcott, Marjan Sirjani & Shangping Ren (2011): Comparing three coordination models: Reo, ARC,
and PBRD. Sci. Comput. Programming 76(1), pp. 3–22, doi:10.1016/j.scico.2009.11.006. Available at
http://dx.doi.org/10.1016/j.scico.2009.11.006.

http://dx.doi.org/10.4204/EPTCS.12.4
http://dx.doi.org/10.4204/EPTCS.12.4
http://dx.doi.org/10.1016/S0167-739X(01)00043-7
http://dx.doi.org/10.1016/S0167-739X(01)00043-7
http://dx.doi.org/10.1016/S0167-739X(01)00043-7
http://dx.doi.org/10.1016/j.entcs.2008.03.099
http://dx.doi.org/10.1016/j.entcs.2008.03.099
http://dx.doi.org/10.1016/j.entcs.2008.03.099
http://dx.doi.org/10.1016/j.scico.2009.11.006
http://dx.doi.org/10.1016/j.scico.2009.11.006

K. Dokter, S.-S. T. Q. Jongmans, F. Arbab & S. Bliudze 19

A Proofs

Proof of Theorem 1. We first show that g1(bip1(A))∼= f1(A) for all port automata A ∈ PA′. Let A =
(Q,N ,→,q0) ∈ PA′ be a port automaton. The state space of g1(bip1(A)) is Q×{qD}, where qD is the
state of the dummy component, and the state space of f1(A) is Q. We show that ∼ given by (q,qD)∼ q
for all q ∈ Q is a bisimulation.

Trivially, (q0,qD) ∼ q0. Let ((q,qD),N,(q′,qD)) be a transition in g1(bip1(A)). Then using the
shape of the interaction model γ , we obtain a transition ((q,qD),N∪N′,(q′,qD)) in bip1(A)({D}), with
N′ = {n′ | n ∈ N}. Now, Definition 3, with C = {A } and B = {D}, implies that either

1a) N∪N′ = /0, (q, /0,q′) is a transition in A , and qD = qD; or

1b) N∪N′ = /0, (qD, /0,qD) is a transition in D, and q′ = q; or

2) N ∪N′ ∈ γbip1(A), and if N′ 6= /0 then (q,N′,q′) is a transition in A , and if N′ = /0 then q′ = q, and
if N 6= /0 then (qD,N,qD) is a transition in D, and if N = /0 then qD = qD.

If (1a), then since A ∈ PA′ and N = /0 we have that (q,N,q′) is a transition in A . Thus, equation 1
implies (q,N,q′) in f1(A) and (q′,qD) ∼ q′. Case (1b) is impossible, since dummy component D does
not have an empty transition. Suppose (2). If N 6= /0, then by equation 1 we have (q,N,q′) in f1(A) and
(q′,qD)∼ q′. If N = /0, then since A ∈ PA′ and N = /0 we have (q,N,q′) in f1(A) and (q′,qD)∼ q′.

On the other hand, let (q,N,q′) be a transition in f1(A). Then we find that (q,N,q′) is a transition
in A . Hence (q,N′,q′) is a transition in A , with N′ = {n′ | n ∈ N}. If N = /0, then the first rule of
Definition 3 implies that ((q,qD),N ∪N′,(q′,qD)) is a transition in bip1(A)({D}). If N 6= /0, then we
have that (qD,N,qD) is a transition in the dummy component D of the BIP architecture application
bip1(A)({D}). The second rule of Definition 3 implies that ((q,qD),N ∪N′,(q′,qD)) is a transition
in bip1(A)({D}). In either case, we find that ((q,qD),N,(q′,qD)) is a transition in g1(bip1(A)), and
trivially (q′,qD)∼ q′. We conclude that ∼ is a bisimulation.

We now show that f1(reo1(A)) ∼= g1(A) for all BIP architectures A. Let A = ({Ci}i∈I,P,γ) be a BIP
architecture with components given by Ci = (Qi,q0

i ,Pi,→i), i ∈ I. The state space of f1(reo1(A)) is
(∏i∈I Qi)×{qI}, where qI is the state of the port automaton of the interaction model of A, and the state
space of g1(A) is (∏i∈I Qi)×{qD}, where qD is the state of the dummy component. We show that ∼
given by (q,qI)∼ (q,qD) for all q = (qi)i∈I ∈∏i∈I Qi, is a bisimulation.

Trivially, (q0,qI) ∼ (q0,qD). Let N ⊆ P \PC , and let ((q,qD),N,(q′,qD)) be a transition in g1(A).
Then there exists some M⊆P, with M\PC =N, such that ((q,qD),M,(q′,qD)) be a transition in A({D}),
where D is the dummy component of A. Then, Definition 3 implies that either

1a) M = /0, there exists some i ∈ I such that (qi, /0,q′i) ∈→i and q′j = q j for all j ∈ I \{i}; or

1b) M = /0, (qD, /0,qD) is a transition in D, and q′j = q j for all j ∈ I; or

2) M ∈ γ , and if M∩Pi 6= /0 then (qi,M∩Pi,q′i) ∈→i, and if M∩Pi = /0 then q′i = qi, for all i ∈ I.

If (1a), then (qi, /0,q′i) is a transition in C̃i. Hence, the second item in Definition 8 gives a transition
((q,qI),N,(q′,qI)) in f1(reo1(A)), with N ⊆M = /0. Case (1b) is impossible, since dummy component
D does not have an empty transition. If (2), then M ∈ γ implies (qI,M,qI) ∈Aγ . Therefore, Definition 8
gives a transition ((q,qI),M \PC ,(q′,qI)) in f1(reo1(A)). Thus, we conclude that ((q,qI),N,(q′,qI)) is
a transition in f1(reo1(A)), and trivially (q′,qI)∼ (q′,qD).

Let N ⊆ P \PC , and let ((q,qI),N,(q′,qI)) be a transition in f1(reo1(A)). Then there exists some
M ⊆ P such that M \ PC = N, and that ((q,qI),M,(q′,qI)) is a transition in C̃1 on · · ·C̃n on Aγ . We
distiguish two cases:

20 Relating BIP and Reo

Case M = /0: Then the second item in Definition 8 implies that there exists an index i ∈ I, such that
(qi, /0,q′i) in C̃i. Thus, we find a transition (qi, /0,q′i) in Ci, and finally, using the first rule in Definition 3,
a transition ((q,qD), /0,(q′,qD)) in A({D}). Since N ⊆ M = /0, it follows that ((q,qD),N,(q′,qD)) is a
transition in g1(A), and trivially (q′,qI)∼ (q′,qD).

Case M 6= /0: Recall that the name set of Aγ equals P. Hence, using Definition 8 and M∩P 6= /0, we
see that Aγ has a transition (qI,M∩P,qI) and that M = M∩P∈ γ . Let Ja = {i∈ I | q′i 6= qi or M∩Pi 6= /0}
be the set of indices of active components. Then, Definition 8 implies that (qi,M∩Pi,q′i) ∈ →i if i ∈ Ja,
and q′i = qi if i /∈ Ja. Using that A ∈ Arch′, we conclude that q′i 6= qi implies M ∩Pi 6= /0, for all i ∈ I.
Hence Ja = {i ∈ I | M ∩Pi 6= /0}, which implies that (qi,M ∩Pi,q′i) ∈ →i if M ∩Pi 6= /0 and q′i = qi if
M ∩Pi = /0. From M ∈ γ and the second rule in Definition 3, it follows that ((q,qD),M,(q′,qD)) is a
transition in A({D}). Using N = M \P, we have that ((q,qD),N,(q′,qD)) is a transition in g1(A), and
trivially (q′,qI)∼ (q′,qD). We conclude that ∼ is a bisimulation.

Proof of Lemma 1. Let (q,N,q) be a transition of Aγ12 . Then, by definition, N ∈ γ12, and from Defini-
tion 4 we deduce N ∩Pi ∈ γi, i = 1,2. Therefore (q,N ∩Pi,q) is a transition in Aγi . Then, Definition 8,
implies that ((q,q),N,(q,q)) in Aγ1 on Aγ2 . On the other hand, suppose that ((q,q),N,(q,q)) is a tran-
sition in Aγ1 on Aγ2 . Then, Definition 8 gives either that (1) for i = 1,2, (q,N ∩Pi,q) is a transition in
Aγi , or (2) for i, j ∈ {1,2}, i 6= j, (q,N ∩Pi,q) is a transition in Aγi and N ∩Pj = /0. In the first case, we
conclude that N ∩Pi ∈ γi, for i = 1,2. Hence, Definition 4 implies N ∈ γ12. In the second case, we see
that N ∩Pi ∈ γi and N ∩Pj = /0 ∈ γ j, since /0 ∈ γ1∩ γ2. Thus, Definition 4 implies N ∈ γ12. In both cases
we find N ∈ γ12, and we conclude that (q,N,q) is a transition of Aγ12 .

	Introduction
	Overview of BIP and Reo
	BIP
	Reo

	Port automata and BIP architectures
	Interpretation of BIP and Reo
	BIP to Reo
	Reo to BIP
	Preservation of properties
	Compatibility with composition

	Stateless CA's and interaction models
	Interpretation of BIP and Reo
	Reo to BIP
	BIP to Reo
	Preservation of properties

	Conclusions and Future Work
	Proofs

