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Abstract. We aim to learn across several subjects a mapping from
brain anatomical connectivity to functional connectivity. Following [1],
we formulate this problem as estimating a multivariate autoregressive
(MAR) model with sparse linear regression. We introduce a model se-
lection framework based on cross-validation. We select the appropriate
sparsity of the connectivity matrices and demonstrate that choosing an
ordering for the MAR that lends to sparser models is more appropriate
than a random. Finally, we suggest randomized Least Absolute Shrinkage
and Selective Operator (LASSO) in order to identify relevant anatomo-
functional links with better recovery of ground truth.

1 Introduction

Disruption of brain connectivity have been implicated in a number of diseases
[2] including schizophrenia [3], autism [4] and brain trauma [5]. This has spurred
interest in network organization and dynamics, studied with diffusion weighted
MRI (DWI) or resting-state functional MRI (rs-fMRI) [6]. Multi-modal imaging,
integrating both functional and anatomical descriptions can yield a more de-
tailed picture of brain architecture and dramatically improve our understanding
of brain function and malfunction [7]. Model-based studies have shown links be-
tween anatomical and functional whole-brain connectivity [8, 9]. However, there
has been limited work on a systematic framework to investigate whole-brain
interactions between structure and function. Most of current studies limit their
analysis within specific networks and thus they are based on a-priori hypotheses,
which ignore influences from other areas [10, 11]. Here we investigate data-driven
predictive modeling from anatomical to functional networks to uncover mecha-
nisms ignored in studies with a-priori defined interactions.

We set the problem as the prediction of whole-brain resting-state functional
connectivity from anatomical brain connectivity. In a population of S subjects,
we consider the connectivity between a set of N regions of interest (ROIs). Our
supervised learning task is to link across subjects the anatomical connections



between these brain regions, as estimated by tractography, to functional con-
nections, i.e. the observed synchronization in the brain activity observed via
rs-fMRI. We represent the set of anatomical connections for a subject s as a
symmetric connectivity matrix As ∈ SymN . The corresponding brain activity
in the ROIs is summarized by N time series of length t, Xs ∈ R

N×t. We want
to explain the correlation structure of the observed fMRI time-series Xs from
the subject’s anatomical connectivity matrix As.

In [1] we introduced a learning framework using multiple penalized regres-
sion to link As and the covariance matrix of the fMRI data Σs ∈ R

N×N . The
generative model of the functional signal relies on autoregressive Gaussian pro-
cesses spanning a graphical model, the Markov structure of which is restricted
by the anatomical connectivity. Estimating the fMRI model is then a covariance
selection problem, computing the maximum likelihood estimate of the precision
–inverse covariance– matrix, K parameterize a multivariate Gaussian model,
subject to the conditional independence constraints. The output space of the re-
gression from anatomical to functional connectivity, is then the set of symmetric
positive definite (SPD) matrices. We take an unconstrained parametrization of
SPD matrices using a matrix square-root of the precision matrix K to be pre-
dicted. To do that we use a Cholesky decomposition of K, which is not invariant
by a permutation of the rows and columns of K.

Firstly, we address the selection of the optimal ordering in this framework.
Using cross-validation we show that a permutation of K that favors a sparser
Cholesky decomposition results in higher prediction performance than a random
ordering. Subsequently, we select the optimal sparsity of the joint anatomical
and functional graphs. Finally, we introduce the randomized Least Absolute
Shrinkage and Selective Operator (Lasso) for model identification. This results
in the recovery of the underlying anatomo-functional links with a conservative
control of false positives in a multiple testing framework. Moreover, it is less
sensitive to the regularization parameters and it assigns a probability to each
connection, with an intuitive and straightforward interpretation.

2 Generative model and learning strategy

In this section, a Gaussian graphical model describes the generative rs-fMRI
process and the Markov network independencies are introduced based on the
structural connectivity. The prediction framework is based on sparse penalised
linear regression and an intuitive way to derive SPD matrices based on Cholesky
decomposition of the precision matrix.

2.1 Generative model.

We use graphical models of autoregressive Gaussian models to describe the gen-
erative process of fMRI time series. A graphical model of the fMRI time series
is an undirected graph with nodes equal to the number of ROIs. Each pair of
nodes is connected with an edge if the underline time series are conditionally



dependent, given the other time series. This is equivalent to multivariate au-
toregressive models (MAR) of zero lag. If x ∈ R

N is the multivariate vector of
observations at a given time t,

x(t+ 1) = Fx(t) + e(t+ 1) (1)

with F ∈ R
N×N a matrix of the connection between variables and e additive

Gaussian noise between variables with zero mean and identity covariance.
We consider the ongoing brain activity in resting-state as a stationary pro-

cess. If X ∈ R
N×t is the matrix of the observed time series and E ∈ R

N×t

then
X = FX +E ⇔ X = (I − F )−1E (2)

where I is the N ×N identity matrix. Thus, the covariance of the observed time
series, Σ, is given by:

Σ =
1

r
XXT = (I − F )−1covE(I − F )T = ((I − F )T (I − F ))−1 (3)

Note that covE = I and B = I − F is a matrix square root of the inverse
covariance, which we call the interaction matrix.

Σ−1 = BTB. (4)

The problem to solve is known as covariance selection problem, which is the
problem of computing the maximum likelihood estimate of the inverse covariance
matrix of a multivariate Gaussian variable, subject to conditional independence
constrains.

2.2 Markov structure.

Conditional independence between variables is given by the zeros in the precision
matrix. Estimating from the fMRI data a sparse precision matrix reduces the
small-sample estimation error present in the empirical covariance matrix [12]. In
fact, the number of functional connectivity parameters is much greater than the
number of samples: t < 1

2
N (N + 1). This results in a large estimation error of

the sample covariance matrix [13, 12]. We use anatomical connections that fail
to be significantly positive across subjects to impose the Markov structure of the
fMRI model [1]. The maximal likelihood estimate of K is then computed using
the iterative proportional scaling algorithm [13].

2.3 Imposing definite positive predictions.

To parameterize a valid Gaussian model, the predicted precision matrix must be
positive definite. This condition on the output space corresponds to constraints
on the coefficients of K. However, we cannot predict independently these coeffi-
cients and ensure that the resulting matrix will be in Sym+

N . Thus, rather than
predicting K, we predict a square root, the interaction matrix, B, that is not



constrained. Here, we use the Cholesky decomposition of the precision matrix K

to estimate B. The Cholesky decomposition is not invariant to a permutation
of the rows and columns of the input matrix K. We use the approximate mini-
mum degree (AMD) ordering [14], which provides a permutation of K favoring a
sparser Cholesky decomposition. This permutation depends only on the support
of the matrix K, and thus it is identical across subjects. Note that we are inter-
ested in predicting correlation and not covariance, thus, we rescale the diagonal
of B to ones: B̃ = B diag(B)−1. This amounts to setting the innovation terms
of the MAR to one.

2.4 Statistical learning.

We use a multivariate linear model between all the anatomical connections a =
{Ai,j} and the coefficients of the matrix B̃, b = {B̃i,j}. The learning problem
takes the form of multiple regressions: for the kth functional connection, bk,

bk = βk,0 +

M
∑

m=1

βk,m am, (5)

whereM is the number of non zero connections, β0 is the intercept, and βk are the
coefficients relating the functional connection bk to the whole-brain anatomical
connectivity, a. There are many more candidate anatomical connections than
subjects: we are in high-dimensional setting. Therefore we resort to Lasso, which
is sparse ℓ1 penalized regression.

β̂k = argmin
β

( S
∑

s=1

(

bsk −
M
∑

m

βm asm
)2

+ λ
M
∑

m=1

|βm|

)

(6)

To simplify the formulation, we omit the intercept β0. Lasso performs both
variable selection and prediction [15]. Over classical least square regression it
offers two major advantages that are very useful in modeling brain connectivity:
Firstly, it improves prediction by setting some coefficients to zero. This results
in removing noisy and irrelevant variables and thus reducing the total variance.
Secondly, it allows the selection of the most relevant variables and thus it links
each functional connection with a subset of structural connection in a data driven
way. The correct predictors are identified with high probability even when the
number of variables is higher than the number of observation under the assump-
tion that the true model is sparse [16]. We use the LARS algorithm, implemented
in the scikit-learn toolbox [17].

3 Model selection and identification

In this section, model selection guarantees that the optimum Markov support
is selected based on cross-validation and an intrinsic metric suitable to quantify
distance between symmetric positive definite matrices Sym+

N . Finally, model



identification based on randomised Lasso extract the most robust associations
between function and structure and provides a sound method to quantify confi-
dence for these measurements.

3.1 Model selection metric.

We work on the space of sparse Gaussian models, parametrized by correlation or
precision matrices, symmetric definite positive matrices. This space, Sym+

N , is
not a vector space. The standard Euclidean distance on matrices, the Frobenius
norm, does not account for the geometry of this space. Thus, it is ill suited to
quantify prediction errors. However, Sym+

N can be parametrized as a Rieman-
nian manifold using an intrinsic metric [1, 18]:

dAI(C,D)2 = tr
(

logC−
1

2DC−
1

2

)2
(7)

This metric is invariant under affine scaling and inversion of the matrices, and
is thus independent of the parameterization of the Gaussian models. In other
words, it gives the same prediction error on the correlation matrices and on the
precision matrices.

3.2 Randomized Lasso.

We use the randomized Lasso [19] to identify non-zero coefficients βk. It is a
generalization of Lasso with better recovery properties. The randomized Lasso
estimate is computed by solving the Lasso problem with weights Wj random
within specified bounds:

β̂k = argmin
β

( S
∑

s=1

(

bsk −
M
∑

m

βm asm
)2

+ λ
M
∑

m=1

|βm|

Wm

)

(8)

This randomized penalization regression is solved many times. The probability
that a functional connection is related to a anatomical connection is then given
by the fraction of times the coefficient is selected during the repetitions.

Randomised Lasso introduces proper regularisation so that a certain family-
wise type I error rate (false discoveries) in multiple testing can be conservatively
controlled for finite sample size. We do not simply select a set of connections
that corresponds to the initial set of regularisation parameters, λ. Instead λ
perturbed many times and the connections that occur in a large fraction of the
results are selected. Therefore, the initial set of regularisation parameters, λ,
have not a very strong influence on the results.

Randomised Lasso has been also proven to be variable selection consistent
even if the conditions needed for consistency of the original Lasso method are
violated [19]. Consistency refers to how well the sparse model retrieved by Lasso
relates to the true model. The condition that it is necessary and sufficient to
guarantees Lasso consistency can be easily violated in practical problems. For
example, if an irrelevant predictor is highly correlated with the predictors in



Markov model sparsity 80% 70% 60% 50% 40% 30% 20% 10%

Random order dAI 25.0 26.0 27.8 29.5 34.1 39.2 50.6 67.2
std 32.4 8.0 8.2 8.4 8.2 8.1 8.1 8.0

AMD order dAI 31.3 24.5 24.0 25.3 26.1 27.3 42.5 63.2
std 49.3 8.2 8.4 8.4 9.0 9.5 9.6 9.8

Table 1: Prediction performance, measured with the dAI metric, for different
sparsity of the Markov structure and under different ordering of K.

the true model, Lasso cannot distinguish it from the true predictors given any
amount of data and any regularisation [19]. Randomised Lasso needs a much
weaker assumption to be consistent. It requires that the full model in Eq. 5 can
be approximated by a much lower-dimensional submodel of coefficients so that
model selection makes sense [20].

4 Experimental results

Brain connectivity analysis was performed in 26 normal adults. rs-fMRI: T2*-
weighted gradient EPI sequence, TR/TE=2000/30, 31 ascending slices with
thickness 3.25mm, gap 0.75mm, voxel size 2.5x2.5x4mm, flip angle 90, FOV
280x220x123mm, matrix 112x87. DWI: 64 non-collinear directions, in 72 slices,
slice thickness 2mm, FOV 224mm, matrix 128x128, voxel size 1.75x1.75x2mm3,
b-value 1000 s/mm2. High resolution T1-weighted whole-brain structural images
were also obtained in all subjects.

FSL was used for image pre-processing of both diffusion weighted (DWI)
and fMRI images [21]. BOLD fluctuations are profound in gray matter, while
DTI is more reliable in delineating white matter fibers. Hence, we are interested
in defining cortical ROIs that are located in gray matter and they are defined
according to widely used anatomical atlas [22]. Cortical parcellation is obtained
with the fusion of atlas-based [22] and tissue based segmentation [23].

To construct corresponding functional networks the fMRI signal was averaged
across voxels within each area. The signal in CSF and white matter has been
also averaged and the six motion correction parameters were estimated with
FEAT, FSL [21]. All these eight parameters were accounted in the estimation
of the covariance matrix. Tracts between regions are identified using a standard
probabilistic algorithm available as part of FSL [21, 24]. We estimate the local
diffusion anisotropy by determining the diffusive transfer between voxels using
the orientation distribution function (ODF) [25].

To set the level of support that gives the optimum prediction performance,
we vary the threshold on the t-test so that the percentage of connections se-
lected ranges from 10% to 80%. We also compare two choices of ordering for the
Cholesky decomposition of the precision matrix K: random ordering and model
averaging, or AMD ordering for sparser Cholesky factors. Cross-validation results
(Table 1) show that the optimum sparsity for the Markov structure corresponds
to selecting 60% of the connections, and that AMD ordering is to be preferred
to averaging on random orderings.



Fig. 1: Structural connections associated with the default mode network: left
random order; right AMD.

Once a percentage of 60% structural connections included has been identified
as the optimum Markov structure, we run model identification across all the
26 subjects with this support. Fig. 1 shows structural connections associated
with the default mode network. With yellow is represented the lateral parietal
cortex, green areas represent the posterior cingulate gyrus (PCC), blue and light
blue represent the medial prefrontal and orbito-frontal areas, respectively. The
diameter of the tubes is associated with the probability of the connection to be
selected.

5 Conclusions

We use the probabilistic framework introduced in [1] to learn a predictive model
from anatomical to functional brain connectivity. Here, we use cross-validation
to set the properties of the Markov model of fMRI: filling factor, and order-
ing of the nodes in the MAR. As we are interested in recovering the relevant
anatomo-functional links, we also introduce randomized Lasso that can identify
better non-zero coefficients in linear models with correlated designs. Randomised
Lasso assign a probability for each structural selected connection that depicts
the probability each connection to be selected. With sensible choices, in a range
of the cutoff, results vary very little. This is a significant step towards interpret-
ing the results compared with the original Lasso. Original Lasso has a coefficient
assigned to each selected connection which can be either positive or negative and
it is difficult to intuitively interpret their significance.

References

1. F. Deligianni, et al. : A probabilistic framework to infer brain functional connec-
tivity from anatomical connections. IPMI (2011) 296–307



2. O. Sporns: The non-random brain: efficiency, economy, and complex dynamics.
Front Comput Neurosc 5 (2011) 5

3. J. Burns: An evolutionary theory of schizophrenia: Cortical connectivity, metarep-
resentation, and the social brain. Behavioral and Brain Sciences 27(6) (2004) 831

4. R. Muller: The study of autism as a distributed disorder. Mental retardation and
developmental Disability Research 13(1) (2007) 85–95

5. L. Pollonini, et al. : Information communication networks in severe traumatic brain
injury. Brain Topogr 23(2) (2010) 221–226

6. E. Bullmore and O. Sporns: Complex brain networks: graph theoretical analysis
of structural and functional systems. Nat Rev Neurosci 10 (2009) 186–198

7. D. Zhang and M. E. Raichle: Disease and the brain’s dark energy. Nat Rev Neurol
6(1) (2010) 15–28

8. C. Honey, et al. : Predicting human resting-state functional connectivity from
structural connectivity. P Natl Acad Sci Usa 106(6) (2009) 2035–2040

9. P. Hagmann, et al. : Mapping the structural core of human cerebral cortex. PLoS
Biol 6(7) (2008) 1479–1493

10. M. D. Greicius, et al. : Resting-state functional connectivity reflects structural
connectivity in the default mode network. Cerebral Cortex 19(1) (2009) 72–78

11. M. van den Heuvel, et al. : Microstructural organization of the cingulum tract
and the level of default mode functional connectivity. J Neurosci 28(43) (2008)
10844–10851

12. G. Varoquaux, et al. : Brain covariance selection: better individual functional
connectivity models using population prior. NIPS (2010)

13. S. Lauritzen: Graphical models. Oxford University Press, USA (1996)
14. P. Amestoy, et al. : An approximate minimum degree ordering algorithm. SIAM

Journal on Matrix Analysis and Applications 17(4) (1996) 886–905
15. R. Tibshirani: Regression shrinkage and selection via the lasso. J Royal Statist

Soc B 58(1) (1996) 267–288
16. D. Donoho: For most large underdetermined systems of linear equations the mini-

mal l1-norm solution is also the sparsest solution. Comm. Pure Appl. Math. 59(6)
(2006) 797–829

17. F. Pedregosa, et al. : Scikit-learn: Machine learning in Python. The Journal of
Machine Learning Research to appear (2011) pub ahead of print

18. G. Varoquaux, et al. : Detection of brain functional-connectivity difference in
post-stroke patients using group-level covariance modeling. In: MICCAI. (2010)

19. N. Meinshausen and P. Buhlmann: Stability selection. Journal of the Royal Sta-
tistical Society: Series B 27 (2010) 417–473

20. C.-H. Zhang and J. Huang: The sparsity and bias of the lasso selection in high-
dimensional linear regression. Annals of statistics 36 (2008) 1567–1594

21. S. Smith, et al. : Advances in functional and structural MR image analysis and
implementation as fsl. NeuroImage 23 (2004) 208–219

22. P. Aljabar, et al. : Multi-atlas based segmentation of brain images: atlas selection
and its effect on accuracy. NeuroImage 46(3) (2009) 726–38

23. K. Friston: Statistical parametric mapping: the analysis of functional brain images.
Academic Press (2007)

24. T. Behrens, et al. : Characterization and propagation of uncertainty in diffusion-
weighted MR imaging. Magnet Reson Med 50(5) (2003) 1077–1088

25. E. Robinson, et al. : Identifying population differences in whole-brain structural
networks: a machine learning approach. NeuroImage 50(3) (2010) 910–919


