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Recently a new quantum generalization of the Rényi divergence and the correspond-
ing conditional Rényi entropies was proposed. Here, we report on a surprising relation
between conditional Rényi entropies based on this new generalization and conditional
Rényi entropies based on the quantum relative Rényi entropy that was used in previous
literature. Our result generalizes the well-known duality relation H(A|B) + H(A|C) =
0 of the conditional von Neumann entropy for tripartite pure states to Rényi entropies
of two different kinds. As a direct application, we prove a collection of inequalities
that relate different conditional Rényi entropies and derive a new entropic uncertainty
relation. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4892761]

I. INTRODUCTION

Recently, there has been renewed interest in finding suitable quantum generalizations of
Rényi’s36 entropies and divergences. This is due to the fact that Rényi entropies and divergences
have a wide range of applications in classical information theory and cryptography, see, e.g.,
Ref. 13.

We will review some of the recent progress here, but refer the reader to Ref. 31 for a more
in-depth discussion. For our purposes, a quantum system is modeled by a finite dimensional Hilbert
space. We denote by P the set of positive semi-definite operators on that Hilbert space, and by S the
subset of density operators with unit trace.

The following natural quantum generalization of the Rényi divergence has been widely used
and has found operational significance, for example, as a cut-off rate in quantum hypothesis testing28

(see also Refs. 32 and 34). It is usually referred to as quantum Rényi relative entropy and for all
α ∈ (0, 1) ∪ (1, ∞) given as

Dα(ρ‖σ ) := 1

α − 1
log Tr

{
ρασ 1−α

}
(1)

for arbitrary ρ ∈ S, σ ∈ P that satisfy ρ � σ . (The notation ρ � σ means that σ dominates ρ, i.e.,
the kernel of σ lies inside the kernel of ρ.)

While this definition has proven useful in many applications, it has a major drawback in that
it does not satisfy the data-processing inequality (DPI) for α > 2. The DPI states that the quantum
Rényi relative entropy is contractive under application of a quantum channel, i.e., Dα

(
E[ρ]

∥∥E[σ ]
) ≤

Dα(ρ‖σ ) for any completely positive trace-preserving map E . Intuitively, this property is very
desirable since we want to think of the divergence as a measure of how well ρ can be distinguished
from σ , and this can only get more difficult after a channel is applied.

Recently, an alternative quantum generalization has been investigated30, 31, 42 (see also Ref. 38).
It is referred to as quantum Rényi divergence (or sandwiched Rényi relative entropy in Ref. 42) and
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defined as

D̃α(ρ‖σ ) := 1

α − 1
log Tr

{(
σ

1−α
2α ρσ

1−α
2α

)α}
(2)

for all α ∈ (0, 1) ∪ (1, ∞) and ρ ∈ S, σ ∈ P that satisfy ρ � σ . The quantum Rényi divergence
has found operational significance in the converse part of quantum hypothesis testing.29 As such, it
satisfies the DPI for all α ≥ 1

2 as was shown by Frank and Lieb15 and independently by Beigi6 for
α > 1. See also earlier work30, 31 where a different proof is given for α ∈ (1, 2]. Furthermore, the
quantum Rényi divergence has already proven an indispensable tool, for example, in the study of
strong converse capacities of quantum channels.17, 42

The definitions, (1) and (2), are in general different but coincide when ρ and σ commute. For
α ∈ {0, 1, ∞}, we define Dα(ρ‖σ ) and D̃α(ρ‖σ ) as the corresponding limit. For α → 0 it has been
shown that:4, 14

D0(ρ‖σ ) = − log Tr
{
�ρσ

}
(3)

D̃0(ρ‖σ ) = − log max
i1,...,is

⎧⎨
⎩

s∑
j=1

λi j :
{
�ρ |i j 〉

}
linearly independent

⎫⎬
⎭ (4)

with the eigenvalue decomposition σ = ∑
iλi|i〉〈i|, s = rank(�ρσ ), and �ρ the projector on the

support of ρ. In the limit α → 1 both expressions converge to the quantum relative entropy,30, 31, 42

namely

D1(ρ‖σ ) = D̃1(ρ‖σ ) = D(ρ‖σ ) := Tr
{
ρ(log ρ − log σ )

}
. (5)

For α → ∞ the limits have been evaluated in Refs. 31 and 39, respectively:

D̃∞(ρ‖σ ) = inf
{
λ ∈ R : ρ ≤ 2λσ

}
(6)

D∞(ρ‖σ ) = log max
i, j

{
νi

μ j
: 〈i | j̄〉 �= 0

}
(7)

with the eigenvalue decompositions ρ = ∑
iν i|i〉〈i| and σ = ∑

j μ j | j̄〉〈 j̄ |.
It has been observed14, 42 that the relation

Dα(ρ‖σ ) ≥ D̃α(ρ‖σ ) (8)

follows from the Araki-Lieb-Thirring trace inequality.1, 25 Furthermore, α → Dα(ρ‖σ ) and α →
D̃α(ρ‖σ ) are monotonically increasing functions. For the latter quantity, this was shown in Ref. 31
and independently in Ref. 6.

Finally, very recently Audenaert and Datta4 defined a more general two parameter family of
α-z-relative Rényi entropies of the form

Dα,z(ρ‖σ ) := 1

α − 1
log Tr

{(
ρ

α
z σ

1−α
z

)z}
, (9)

and explored some of its properties. We clearly have Dα ≡ Dα,1 and D̃α ≡ Dα,α .

II. QUANTUM CONDITIONAL RÉNYI ENTROPIES

We will in the following consider disjoint quantum systems, denoted by capital letters A, B and
C. The sets P(A) and S(A) take on the expected meaning.

The conditional von Neumann entropy can be conveniently defined in terms of the quantum
relative entropy as follows. For a bipartite state ρAB ∈ S(AB), we define

H (A|B)ρ := H (ρAB) − H (ρB) (10)

= −D(ρAB‖1A ⊗ ρB) (11)

= sup
σB∈S(B)

−D(ρAB‖1A ⊗ σB), (12)
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where H (ρ) := − Tr{ρ log ρ} is the usual von Neumann entropy. The last equality can be verified
using the relation D(ρAB‖1A⊗σ B) = D(ρAB‖1A⊗ρB) + D(ρB‖σ B) together with the fact that D( · ‖ · )
is positive definite.

In the case of Rényi entropies, it is not immediate which expression, (10) and (11), or (12), should
be used to define the conditional Rényi entropies. It has been found in the study of the classical
special case (see, e.g., Ref. 23 for an overview) that generalizations based on (10) have severe
limitations, for example, they cannot be expected to satisfy a DPI. On the other hand, definitions
based on the underlying divergence, as in (11) or (12), have proven to be very fruitful and lead to
quantities with operational significance. Together with the two proposed quantum generalizations of
the Rényi divergence in (1) and (2), this leads to a total of four different candidates for conditional
Rényi entropies. For α ≥ 0 and ρAB ∈ S(AB), we define

H↓
α (A|B)ρ := −Dα(ρAB‖1A ⊗ ρB), (13)

H↑
α (A|B)ρ := sup

σB∈S(B)
−Dα(ρAB‖1A ⊗ σB), (14)

H̃↓
α (A|B)ρ := −D̃α(ρAB‖1A ⊗ ρB), and, (15)

H̃↑
α (A|B)ρ := sup

σB∈S(B)
−D̃α(ρAB‖1A ⊗ σB). (16)

The fully quantum entropy H↓
α has first been studied in Ref. 39. For the classical and classical-

quantum special case this quantity gives a generalization of the leftover hashing lemma7 for the
modified mutual information to Rényi entropies with α �= 2.19, 20

The classical version of H↑
α was introduced by Arimoto for an evaluation of the guessing

probability.2 We note that he used another but equivalent expression for H↑
α that we later explain in

Lemma 1. Then, Gallager used H↑
α (again in the form of Lemma 1) to upper bound the decoding

error probability of a random coding scheme for data compression with side-information.16, 43

The classical and classical-quantum special cases of H↑
α were, for example, also investigated in

Refs. 20 and 22 and realize another type of a generalization of the leftover hashing lemma for the
L1-distinguishability in the study of randomness extraction to Rényi entropies with α �= 2.

It follows immediately from the definition and the corresponding property of Dα that these
two entropies satisfy a data-processing inequality. Namely, for any quantum operation EB→B ′ with
τAB ′ = EB→B ′[ρAB] and any α ∈ [0, 2], we have

H↓
α (A|B)ρ ≤ H↓

α (A|B ′)τ and H↑
α (A|B)ρ ≤ H↑

α (A|B ′)τ , (17)

while their classical-quantum versions have been obtained in Ref. 20.
The conditional entropy H̃↑

α was proposed in Ref. 38 and investigated in Ref. 31, whereas H̃↓
α

is first considered in this paper. (Since the relative entropies D̃α and Dα are identical for commuting
operators, we note that H̃↑

α = H↑
α as well as H̃↓

α = H↓
α for classical distributions.) Both definitions

satisfy the above data-processing inequality for α ≥ 1
2 .

Furthermore, it is easy to verify that all entropies considered are invariant under applications of
local isometries on either the A or B systems. Finally, note that the optimization over σ B can always
be restricted to σ B � ρB for α > 1.

We use up and down arrows to express the trivial observation that H↑
α (A|B)ρ ≥ H↓

α (A|B)ρ and
H̃↑

α (A|B)ρ ≥ H̃↓
α (A|B)ρ by definition. Finally, (8) gives us the additional relations H̃↑

α (A|B)ρ ≥
H↑

α (A|B)ρ and H̃↓
α (A|B)ρ ≥ H↓

α (A|B)ρ . These relations are summarized in Figure 1. Moreover,
inheriting these properties from the corresponding divergences, all entropies are monotonically
decreasing functions of α

For α = 1, all definitions coincide with the usual von Neumann conditional entropy (11). For α

= ∞, two quantum generalizations of the conditional min-entropy emerge, which both have been
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FIG. 1. Overview of the different conditional entropies used in this paper. Arrows indicate that one entropy is larger or equal
to the other for all states ρAB ∈ S(AB) and all α ≥ 0.

studied by Renner.35 Namely,

H̃↓
∞(A|B)ρ = sup

{
λ ∈ R : ρAB ≤ 2−λ1A ⊗ ρB

}
and (18)

H̃↑
∞(A|B)ρ = sup

{
λ ∈ R : ρAB ≤ 2−λ1A ⊗ σB, σB ∈ S(B)

}
. (19)

(The notation Hmin(A|B)ρ|ρ ≡ H̃↓
∞(A|B)ρ and Hmin(A|B)ρ ≡ H̃↑

∞(A|B)ρ is widely used. However,
we prefer our notation as it makes our exposition in this manuscript clearer.) For α = 2, we find a
quantum generalization of the conditional collision entropy as introduced by Renner:35

H̃↓
2 (A|B)ρ = − log Tr

{(
ρAB

(
1A ⊗ ρ

− 1
2

B

))2
}

. (20)

For α = 1
2 , we find the quantum conditional max-entropy first studied by König et al.,24

H̃↑
1
2
(A|B)ρ = sup

σB∈S(B)
2 log F(ρAB, 1A ⊗ σB) , (21)

where F( · , · ) denotes the fidelity. (The alternative notation Hmax(A|B)ρ ≡ H̃↑
1
2
(A|B)ρ is often used.)

For α = 0, we find a quantum conditional generalization of the Hartley entropy18 that was initially
considered by Renner,35

H↑
0 (A|B)ρ = sup

σB∈S(B)
log Tr{�ρAB 1A ⊗ σB} , (22)

where �ρ denotes the projector onto the support of ρ.

III. DUALITY RELATIONS

It is well known that, for any tripartite pure state ρABC, the relation

H (A|B)ρ + H (A|C)ρ = 0 (23)

holds. We call this a duality relation for the conditional entropy. To see this, simply write H(A|B)ρ
= H(ρAB) − H(ρB) and H(A|C)ρ = H(ρAC) − H(ρC) and note that the spectra of ρAB and ρC as
well as the spectra of ρB and ρAC agree. The significance of this relation is manifold — for example,
it turns out to be useful in cryptography where the entropy of an adversarial party, let us say C, can
be estimated using local state tomography by two honest parties, A and B. In the following, we are
interested to see if such relations hold more generally for conditional Rényi entropies.

It was shown in Lemma 6 of Ref. 39 that H↓
α indeed satisfies a duality relation, namely

H↓
α (A|B)ρ + H↓

β (A|C)ρ = 0 when α + β = 2, α, β ≥ 0 . (24)

Note that the map α → β = 2 − α maps the interval [0, 2], where data-processing holds, onto
itself. This is not surprising. Indeed, consider the Stinespring dilation UB→B ′ B ′′ of a quantum channel
EB→B ′ . Then, for ρABC pure, τAB ′ B ′′C = UB→B ′ B ′′[ρABC ] is also pure and the above duality relation
implies that

H↓
α (A|B)ρ ≤ H↓

α (A|B ′)τ ⇐⇒ H↓
β (A|C)ρ ≥ H↓

β (A|B ′′C)τ . (25)

Hence, data-processing for α holds if and only if data-processing for β holds.
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A similar relation has recently been discovered for H̃↑
α in Ref. 31 and independently in Ref. 6.

There, it is shown that

H̃↑
α (A|B)ρ + H̃↑

β (A|C)ρ = 0 when
1

α
+ 1

β
= 2, α, β ≥ 1

2
. (26)

As expected, the map α → β = α
2α−1 maps the interval [ 1

2 ,∞], where data-processing holds, onto
itself.

The purpose of the following is thus to show if a similar relation holds for the remaining two
candidates, H↑

α and H̃↓
α . First, we find the following alternative expression for H↑

α by determining
the optimal σ B in the definition (14).

Lemma 1. Let α ∈ (0, 1) ∪ (1, ∞) and ρAB ∈ S(AB). Then,

H↑
α (A|B)ρ = α

1 − α
log Tr

{(
TrA{ρα

AB}) 1
α

}
. (27)

This generalizes a result by one of the current authors20 (Lemma 7).

Proof. Recall the definition

H↑
α (A|B)ρ = sup

σB∈S(B)

1

1 − α
log Tr

{
ρα

AB 1A ⊗ σ 1−α
B

}
(28)

= sup
σB∈S(B)

1

1 − α
log Tr

{
TrA{ρα

AB}σ 1−α
B

}
. (29)

This can immediately be lower bounded by the expression in (27) by substituting

σ ∗
B =

(
TrA{ρα

AB}) 1
α

Tr
{(

TrA{ρα
AB}) 1

α

} (30)

for σ B. It remains to show that this choice is optimal. We employ the following Hölder and reverse
Hölder inequalities (cf. Lemma 6 in the Appendix). For any A, B ≥ 0, the Hölder inequality states
that

Tr{AB} ≤ (
Tr{Ap}) 1

p
(

Tr{Bq}) 1
q for all p, q > 1 s.t.

1

p
+ 1

q
= 1. (31)

Furthermore, if B � A, we also have a reverse Hölder inequality which states that

Tr{AB} ≥ (
Tr{Ap}) 1

p
(

Tr{Bq}) 1
q for all q < 0 < p < 1 s.t.

1

p
+ 1

q
= 1. (32)

For α < 1, we employ (31) for p = 1
α

, q = 1
1−α

, A = TrA{ρα
AB} and B = σ 1−α

B to find

Tr
{

TrA{ρα
AB}σ 1−α

B

} ≤
(

Tr
{(

TrA{ρα
AB}) 1

α

})α(
Tr{σB})1−α

, (33)

which yields the desired upper bound since Tr{σB} = 1. For α > 1, we instead use (32). This leads
us to (27) upon the same substitutions, concluding the proof. �

An alternative proof also follows rather directly from a quantum generalization of Sibson’s
identity, which was introduced by Sharma and Warsi37 (Lemma 3 in the supplementary material).

This allows us to show our main result.

Theorem 2. Let α, β ∈ (0, 1) ∪ (1, ∞) with α · β = 1 and let ρABC ∈ S(ABC) be pure. Then,
H↑

α (A|B)ρ + H̃↓
β (A|C)ρ = 0.
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Proof. Substituting β = 1
α

and employing Lemma 1, it remains to show that

H↑
α (A|B)ρ = α

1 − α
log Tr

{(
TrA{ρα

AB}) 1
α

}
(34)

is equal to

−H̃↓
β (A|C)ρ = − 1

1 − β
log Tr

{((
1A ⊗ ρ

1−β

2β

C

)
ρAC

(
1A ⊗ ρ

1−β

2β

C

))β}
(35)

= α

1 − α
log Tr

{((
1A ⊗ ρ

α−1
2

C

)
ρAC

(
1A ⊗ ρ

α−1
2

C

)) 1
α
}
. (36)

In the following we show something stronger, namely, that the operators

TrA{ρα
AB} and

(
1A ⊗ ρ

α−1
2

C

)
ρAC

(
1A ⊗ ρ

α−1
2

C

)
(37)

are unitarily equivalent. This is true since both of these operators are marginals — on B and AC — of
the same tripartite rank-1 operator,(

1AB ⊗ ρ
α−1

2
C

)
ρABC

(
1AB ⊗ ρ

α−1
2

C

)
. (38)

To see that this is indeed true, note the first operator in (37) can be rewritten as

TrA{ρα
AB} = TrA

{
ρ

α−1
2

AB ρAB ρ
α−1

2
AB

}
(39)

= TrAC

{(
ρ

α−1
2

AB ⊗ 1C

)
ρABC

(
ρ

α−1
2

AB ⊗ 1C

)}
(40)

= TrAC

{(
1AB ⊗ ρ

α−1
2

C

)
ρABC

(
1AB ⊗ ρ

α−1
2

C

)}
. (41)

The last equality can be verified using the Schmidt decomposition of ρABC with regards to the
partition AB:C. This concludes the proof. �

The relation can readily be extended for all α ≥ 0 and β ≥ 0. The limiting case α = 1 is simply
the duality of the conditional von Neumann entropy (23), whereas the case α = 0, β = ∞ was also
shown in Proposition 3.11 of Ref. 8. (See Lemma 25 of Ref. 41 for a concise proof.) Again, note
that the transformation α → β = 1

α
maps the interval [0, 2] where data-processing holds for H↑

α to

[ 1
2 ,∞] where data-processing holds for H̃↓

β .
We summarize these duality relations in the following theorem, where we take note that the first

and second statements have been shown in Refs. 39, 6, and 31, respectively.

Theorem 3. For any pure ρABC ∈ S(ABC), the following holds:33

H↓
α (A|B)ρ + H↓

β (A|C)ρ = 0 for α, β ∈ [0, 2], α + β = 2, (42)

H̃↑
α (A|B)ρ + H̃↑

β (A|C)ρ = 0 for α, β ∈
[1

2
,∞

]
,

1

α
+ 1

β
= 2, (43)

H↑
α (A|B)ρ + H̃↓

β (A|C)ρ = 0 for α, β ∈ [0,∞], α · β = 1. (44)

IV. SOME INEQUALITIES RELATING CONDITIONAL ENTROPIES

Our first application yields relations between different conditional Rényi entropies for arbitrary
mixed states. Recently, Mosonyi27 (Lemma 2.1) used a converse of the Araki-Lieb-Thirring trace
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inequality due to Audenaert3 to find a converse to the ordering relation Dα(ρ‖σ ) ≥ D̃α(ρ‖σ ),
namely,

D̃α(ρ‖σ ) ≥ α · Dα(ρ‖σ ) + log Tr
{
ρα

} + (α − 1) log ‖σ‖ . (45)

Here, we follow a different approach and show that inequalities of a similar type for the conditional
entropies are a direct corollary of the duality relations in Theorem 3.

Corollary 4. Let ρAB ∈ S(AB). Then, the following inequalities hold for α ∈ [
1
2 ,∞]

:

H↑
α (A|B)ρ ≤ H̃↑

α (A|B)ρ ≤ H↑
2− 1

α

(A|B)ρ , (46)

H↓
α (A|B)ρ ≤ H↑

α (A|B)ρ ≤ H↓
2− 1

α

(A|B)ρ , (47)

H̃↓
α (A|B)ρ ≤ H̃↑

α (A|B)ρ ≤ H̃↓
2− 1

α

(A|B)ρ , (48)

H↓
α (A|B)ρ ≤ H̃↓

α (A|B)ρ ≤ H↓
2− 1

α

(A|B)ρ . (49)

Proof. Note that the first inequality on each line follows directly from the relations depicted
in Figure 1. Next, consider an arbitrary purification ρABC ∈ S(ABC) of ρAB. The relations of
Figure 1, for any γ ≥ 0, applied to the marginal ρAC are given as

H̃↑
γ (A|C)ρ ≥ H̃↓

γ (A|C)ρ ≥ H↓
γ (A|C)ρ , and (50)

H̃↑
γ (A|C)ρ ≥ H↑

γ (A|C)ρ ≥ H↓
γ (A|C)ρ . (51)

We then substitute the corresponding dual entropies according to Theorem 3, which yields the
desired inequalities upon appropriate new parametrization. �

We note that the fully classical (commutative) case of all these inequalities is trivial except for
the second inequalities in (47) and (48), which were proven before by one of the authors21 (Lemma
6). Other special cases of these inequalities are also well known and have operational significance.
For example, (48) for α = ∞ states that H̃↑

∞(A|B)ρ ≤ H̃↓
2 (A|B)ρ , which relates the conditional

min-entropy in (19) to the conditional collision entropy in (20). To understand this inequality more
operationally we rewrite the conditional min-entropy as its dual semi-definite program,24

H̃↑
∞(A|B)ρ = inf

�B→A′
− log

(|A| · F(�AA′,�B→A′ [ρAB]
)
, (52)

where A′ is a copy of A, the infimum is over all quantum channels �B→A′ , |A| denotes the dimension
of A, and �AA′ is the maximally entangled state on AA′. Now, the above inequality becomes apparent
since the conditional collision entropy can be written as10

H̃↓
2 (A|B)ρ = − log

(|A| · F(�AA′,�
pg
B→A′ [ρAB]

)
, (53)

where �
pg
B→A′ denotes the pretty good recovery map of Barnum and Knill.5 Also, (46) for α = 1

2

yields H̃↑
1
2
(A|B)ρ ≤ H↑

0 (A|B)ρ , which relates the quantum conditional max-entropy in (21) to the

quantum conditional generalization of the Hartley entropy in (22).
We believe that the sandwich relations (46)–(49) for α close to 1 will prove useful in applications

in quantum information theory as they allow to switch between different definitions of the conditional
Rényi entropy.
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V. ENTROPIC UNCERTAINTY RELATIONS

A series of papers9, 40 culminating in Ref. 12 established a general technique to derive uncertainty
relations for quantum conditional entropies based on two main ingredients: (1) a duality relation, and
(2) a data-processing inequality for the underlying divergence. It is evident that all our definitions
of conditional Rényi entropies fit the framework of Ref. 12, which then immediately yields the
following entropic uncertainty relations:

Corollary 5. Let ρABC ∈ S(ABC) and let {Mx}x and {Ny}y be two positive operator-valued
measures. We define the overlap c := maxx,y

∥∥√
Mx

√
Ny

∥∥ and consider the post-measurement states

ρX B :=
⊕

x

TrAC
{

MxρABC
}

and ρY C :=
⊕

y

TrAB
{

NyρABC
}
. (54)

Then, the following relations hold:

H↓
α (X |B)ρ + H↓

β (Y |C)ρ ≥ log
1

c
, for α, β ∈ [0, 2], α + β = 2, (55)

H̃↑
α (X |B)ρ + H̃↑

β (Y |C)ρ ≥ log
1

c
, for α, β ∈

[1

2
,∞

]
,

1

α
+ 1

β
= 2, (56)

H↑
α (X |B)ρ + H̃↓

β (Y |C)ρ ≥ log
1

c
, for α ∈ [0, 2], β ∈

[1

2
,∞

]
, α · β = 1. (57)

We want to point out that the first and second inequalities were first shown in Refs. 12 and 31,
respectively; the third inequality is novel. To verify it, we apply Theorem 1 of Ref. 12 to H↑

α (X |B)ρ
and note that H↑

α (X |B)ρ has the required form. Furthermore, it is already pointed out in Ref. 12
that the underlying divergence, Dα(ρ‖σ ) for α ∈ [0, 2], satisfies the required properties for the
application of their theorem. As such, comparing (57) to the corresponding duality relation (44), we
see that in order to derive the uncertainty relation we need to restrict to α ∈ [0, 2] to be in the regime
where data-processing holds.

It is noteworthy that even for the case of classical side information (if the systems B and C
are classical), the three relations are genuinely different. The first inequality bounds the sum of two
↓-entropies, the second the sum of two ↑-entropies, and the third inequality the sum of a ↓- and an
↑-entropy. Let us further specialize these inequalities for the case where both B and C are trivial. It
was already noted in Ref. 31 that (56) specializes to the well-known Maassen-Uffink relation.26 We
have

Hα(X )ρ + Hβ(Z )ρ ≥ log
1

c
for α, β ∈

[1

2
,∞

]
,

1

α
+ 1

β
= 2, (58)

evaluated for the marginals of the states in (54). It is also easy to verify that (55) and (57) specialize
to strictly weaker uncertainty relations when B and C are trivial.
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APPENDIX: HÖLDER INEQUALITIES

We prove the following Hölder and reverse Hölder inequalities for traces of operators.

Lemma 6. Let A, B ≥ 0 and let p > 0, q ∈ R such that 1
p + 1

q = 1. Then, the following Hölder
and reverse Hölder inequalities hold:

Tr{AB} ≤ (
Tr{Ap}) 1

p
(

Tr{Bq}) 1
q if p > 1 , (A1)

Tr{AB} ≥ (
Tr{Ap}) 1

p
(

Tr{Bq}) 1
q if p < 1 and B � A . (A2)

Here, Bq is evaluated on the support of B by convention.

The first statement also immediately follows from a Hölder inequality for unitarily invariant
norms (the trace norm in this case), e.g., in Corollary IV.2.6 of Ref. 11. However, we believe that
the following reduction of the proof to the commutative case is noteworthy.

Proof. For commuting A and B, the above result immediately follows from the corresponding
classical Hölder and reverse Hölder inequalities. Now, let M be a pinching in the eigenbasis of B.
Since M[A] commutes with B, we have

Tr{AB} = Tr{M[A]B} ≤ (
Tr

{(
M[A]

)p}) 1
p
(

Tr{Bq}) 1
q if p > 1, (A3)

Tr{AB} = Tr{M[A]B} ≥ (
Tr

{(
M[A]

)p}) 1
p
(

Tr{Bq}) 1
q if p < 1 . (A4)

under the respective constraints. Now, note that for p > 1, we have ‖M[A]‖p ≤ ‖A‖p by the
pinching inequality for the Schatten p-norm (Eq. (IV.52) of Ref. 11) and (A1) follows. On the other
hand, for p < 1, we use Theorem V.2.1 of Ref. 11, which implies that

(
M[A]

)p ≥ M[Ap]. This
yields (A2) and concludes the proof. �
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27 M. Mosonyi, “Rényi divergences and the classical capacity of finite compound channels,” preprint arXiv:1310.7525

(2013).
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