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Abstract

Identifying similar diseases could potentially provide deeper understanding of their underlying causes, and may even hint at
possible treatments. For this purpose, it is necessary to have a similarity measure that reflects the underpinning molecular
interactions and biological pathways. We have thus devised a network-based measure that can partially fulfill this goal. Our
method assigns weights to all proteins (and consequently their encoding genes) by using information flow from a disease
to the protein interaction network and back. Similarity between two diseases is then defined as the cosine of the angle
between their corresponding weight vectors. The proposed method also provides a way to suggest disease-pathway
associations by using the weights assigned to the genes to perform enrichment analysis for each disease. By calculating
pairwise similarities between 2534 diseases, we show that our disease similarity measure is strongly correlated with the
probability of finding the diseases in the same disease family and, more importantly, sharing biological pathways. We have
also compared our results to those of MimMiner, a text-mining method that assigns pairwise similarity scores to diseases.
We find the results of the two methods to be complementary. It is also shown that clustering diseases based on their
similarities and performing enrichment analysis for the cluster centers significantly increases the term association rate,
suggesting that the cluster centers are better representatives for biological pathways than the diseases themselves. This
lends support to the view that our similarity measure is a good indicator of relatedness of biological processes involved in
causing the diseases. Although not needed for understanding this paper, the raw results are available for download for
further study at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbpmn/DiseaseRelations/.
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Introduction

Discovering disease-disease similarities could be helpful in better

understanding the underlying causes of diseases and may even be

useful for therapeutic purposes, as similar diseases might have

similar drug targets. Disease similarities, of course, can be

investigated at different levels and from different perspectives.

Phenotype similarity is perhaps the most obvious way to classify

diseases. This is usually the approach taken in many disease

databases including Medical Subject Headings (MESH) [1] and

Disease Ontology (DO) [2]. Although this method of classification

is very useful, other metrics of similarity could significantly

improve our understanding of the biological processes involved in

similar diseases. For diseases with genetic causes, disease-disease

associations could also be based on whether or not two diseases are

associated with the same genes. This would extend the concept of

similarity, because different phenotypes could be related to the

same set of genes. However, there are similar diseases that do not

share gene associations. A similarity metric that could suggest

deeper relationships between diseases is therefore desirable.

Network-based similarity measures have gained popularity over

the last few years. For example, Goh et al. [3] introduced a human

disease network by treating the diseases as nodes and by linking

the diseases if they had at least one shared gene association. They

showed that their network was clustered according to disease

classes, although they did not define a quantitative metric to find

the distance between diseases in a given pair. Using a similar

approach, Lee et al. [4] constructed a metabolic network, where

nodes (diseases) were connected if mutated enzymes associated

with them catalyzed adjacent metabolic reactions. They found that

connected diseases had higher comorbidity than those without any

link between them. Zhang et al. [5] constructed an extended

human disease network by adding new gene associations (and so

new disease links) inferred based on protein-protein interaction

data. Hidalgo et al. [6] created a phenotypic disease network with

phenotypes as nodes. The phenotypes were then linked if they had

significant comorbidity. They used two different (but related)

comorbidity measures based on the disease history data of a large

population of patients. On the other hand, Linghu et al. [7] used a

network in which the nodes represent genes. They integrated

different functional associations, including protein-protein inter-

actions, using a Bayes classifier whose output was then used to

weight the links between the genes based on their overall

functional associations. For 110 diseases, the disease genes were

then prioritized according to their associations with previously

known disease genes. They also calculated a measure of similarity
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between any two diseases based on the mutual predictability of

known gene associations of one disease from the known genes

related to the other disease. In another study, Suthram et al. [8]

used mRNA expression and protein-protein interaction networks

to find quantitative similarities between 54 human diseases.

Mehren et al. [9] developed a gene-disease association database

by integrating several sources and classified diseases using graph

clustering algorithms. They found common functional modules for

related diseases, a concept that has been reported in most network-

based studies of human diseases [10]. In a recent study, Zitnik

et al. [11] used a data mining approach to discover disease-disease

associations. They introduced relation matrices describing the

associations between different types of objects (genes and diseases,

for example) and minimized an objective function to factorize

these matrices to ones with lower dimensions, consequently

clustering the diseases. Zitnik and co-workers used several types

of data as constraints in their objective function including protein-

protein interactions, although they concluded that these interac-

tions were not as essential as other data in their analysis. Gulbahce

et al. [12] created a viral disease network and introduced a local

impact hypothesis stating that in this network genes associated

with virally implicated diseases are located near viral targets.

MimMiner, introduced by van Driel et al. [13], is another method

to relate diseases. Unlike previous approaches, MimMiner uses

text mining to assign pairwise similarity scores to more than 5000

diseases.

Although many disease-disease similarity models have been

proposed, a method that uses the entire protein interaction

network (not just the nearest neighbors) to define pairwise

similarity is not yet in use. In this paper a simple similarity

measure (called correlation) is defined between any two diseases

that have gene associations. In our model a disease-protein

network is created by combining disease-gene association and

protein-protein interaction databases. In this network the diseases

are boundary nodes; i.e. they are not connected to each other, but

they are linked to the proteins (products of genes) that are

associated with them. The proteins are connected based on their

curated binary interactions, and the information flow in the

network is modeled by a random walk starting from and ending at

each disease [14,15]. Each protein can then be assigned a weight;

i.e. the expected number of visits to it. In other words,

corresponding to each disease, there is a set of weights associated

with the proteins (genes) in the network. From the perspective of

using random walk to rank the nodes in the network, our approach

is somewhat similar to that of Li and Patra [16]. On the other

hand, from the viewpoint of outputting pairwise disease similar-

ities, our method is very similar to that of MimMiner. The method

of Li and Patra [16] uses a phenotype similarity network, created

using MimMiner similarity scores, in addition to the gene-

phenotype and protein interaction networks. Furthermore, their

method was developed primarily for gene-disease association

prediction. In comparison, the method presented here makes no

assumptions about disease-disease similarities. We define the

similarity or correlation between any two diseases based on their

corresponding gene weights.

We have used our method to calculate correlations between all

disease pairs present in the network. We show that higher

correlations imply higher probabilities for the diseases to be from

the same family of diseases and also higher likelihood of sharing

biological pathways. We have compared the results of our method

with those of MimMiner since both methods output pairwise

disease similarities. It is shown that the results of the two methods

complement each other.

We have also compared our method with those of Li and Patra

[16] as well as Goh et al. [3] in terms of finding ‘‘hidden’’ disease-

disease associations. Combining our method with enrichment

analysis, we suggest possible disease-pathway associations and find

biological pathways that might be shared between different

diseases. Finally, we show that clustering diseases based on their

correlations increases the number of hits found by the enrichment

analysis.

Methods

Disease and gene-disease association databases
Curated disease and disease-gene association data were

retrieved (in August 2013) from the Comparative Toxicogenomics

Database (CTD) [17], North Carolina State University, Raleigh,

NC and Mount Desert Island Biological Laboratory, Salisbury

Cove, Maine (URL: http://ctdbase.org/). The CTD disease

database merges the hierarchical MESH (Medical Subject

Headings) [1] and the flat OMIM (Online Mendelian Inheritance

in Man) [18] databases, where OMIM diseases are either merged

to the most appropriate MESH terms or are added as children of

MESH diseases [19]. The gene-disease associations reported in the

CTD database are either based on direct evidences or are inferred.

To reduce the uncertainty in the gene-disease associations, we

ignored the inferred associations in this study. Also, only the most

specific human diseases (the ones with no children) were included

in the network.

Protein-protein interaction database
To uncover how gene groups associated with different diseases

are related to one another in the context of protein-protein

interactions, a protein-protein interaction database is needed. We

used ppiTrim [20] to create such a database. By processing

iRefindex [21], which incorporates entries from all major protein

interaction databases, ppiTrim can produce a protein-protein

interaction database in a consistent way and without redundancies

[20]. All required input files for ppiTrim were downloaded on

June 6 2013, and the program was run on the same day to produce

the protein-protein interaction network used in this paper.

Disease-protein network
The disease-protein network was created by combining the

CTD gene-disease association database and the protein-protein

interaction network produced by ppiTrim. Naturally, only diseases

associated with proteins in the ppiTrim-produced database were

included in the network. An undirected graph, consisting of 16973

nodes (2548 diseases and 14425 proteins) and 214337 edges, was

created by connecting the included diseases to their associated

proteins, each of which is a node in the binary interaction network

produced by ppiTrim. It was found that for fourteen diseases the

associated proteins were disconnected from the rest of the network.

These diseases were excluded in the subsequent analysis of the

results (leaving 2534 diseases) because the network cannot provide

more information about them.

Information flow and disease-disease correlations
Modeling information flow by a random walk with damping,

ITMProbe [14,15] is useful in studying information flow in protein

networks. Under this method, the random walk starts from one or

more source nodes and either dissipates or ends at sink nodes.

Source and sink nodes are also called boundary nodes, while other

nodes that are neither sources nor sinks are called transient nodes.

The ITMProbe program outputs the expected number of visits to

each transient and sink node by random walkers originated from

Diseases, Information Flow and Protein Interactions

PLOS ONE | www.plosone.org 2 October 2014 | Volume 9 | Issue 10 | e110936

http://ctdbase.org/


every source node. In this study ITMProbe was applied to the

disease network described in the previous section with all diseases

specified as both sources and sinks, all proteins specified as

transient nodes, and with a damping factor of 0.85 (for a discussion

on the effects of changing the damping factor and also the rational

behind using the value 0.85 please see [15]). If we consider the

flow of information starting from and ending at a given disease, we

can assign a weight (proportional to the expected number of visits)

to each protein (transient) node. In other words, for each disease j,
there is a corresponding vector of weights wj whose dimension

equals the number of proteins in the network. Without loss of

generality, we always normalize wj to have unit length Dwj D~1 Vj.

The correlation between two diseases j and j’ is defined by

Cj, j’:wj
:wj’~ cos (wj ,wj’) : ð1Þ

The last equality results from Dwj D~Dwj’D~1. For two discon-

nected diseases this quantity would vanish, whereas for two

diseases with the same connections to the network (diseases

associated with the same set of proteins) the correlation would be

unity. Disconnected diseases were not included in the analyses and

so disease correlations would be positive.

For later convenience, let us also define the average correlation

Cj between disease j and the rest of the diseases

Cj:
1

nd{1

X
j’=j

Cj, j’ , ð2Þ

where nd is the number of diseases under consideration. We may

also define the average pairwise disease correlation SCT by

SCT:
1

nd

Xnd

j~1

Cj ð3Þ

In this study, we often sort pairwise correlations and bin them.

Within such a bin, the average of variable X is generally denoted

by Xbav, where the subscript bav stands for bin-averaged, with

Xbav:

P
j, j’ Xj, j’t(Cj, j’)P

j, j’ t(Cj, j’)
ð4Þ

where t(C) is an indicator function taking the value 1 if C is inside

the bin of interest and 0 otherwise. When there is only one bin,

t(Cj, j’)~1 for all Cj, j’ and Cbav~SCT as expected.

Enrichment analysis
In the previous section, the construction of the weight vector

associated with a given disease via ITMProbe was described.

Evidently, when two diseases have similar weight vectors, they are

related from the perspective of protein interaction network. To

provide a biological explanation of each weight vector obtained,

one would need an enrichment analysis: i.e. one should find the

biological terms that best describe the weight vector from an

annotated term database such as GO [22] or KEGG [23]. In this

study, the enrichment analysis was done using Fisher’s exact test,

because this is among the most used approaches.

Although there are different implementations of Fisher’s exact

test, we chose to use Saddlesum [24] because it is an in-house tool

and it has already integrated the two term databases (GO and

KEGG) of interest for the analyses. For each weight vector, the

cutoff (minimum weight included in the analysis) for Fisher’s exact

test was chosen to be 0.001 times the mean of the ten largest

weights. This variable cutoff was chosen to, in the case of more

uniform vectors, prevent including too many genes in the analysis

that could result in false term associations. Terms with E-values

less than 0.01 were considered significant. For each disease, we

used this approach to find the corresponding GO (only terms in

the ‘‘biological processes’’ family) and KEGG terms, providing yet

another way to compare different diseases.

Clustering
To elucidate the relationships among diseases, a two-stage

clustering procedure was employed. At the first stage, the diseases,

each associated with a weight vector, were clustered probabilis-

tically based on their vectors’ correlations with cluster centers’

vectors. An enrichment was then done for each of the final cluster

centers. After the first stage, however, many cluster centers were

found to be associated with similar, or even identical, sets of GO/

KEGG terms. In terms of biological inferences, it was therefore

necessary to do the second stage of clustering to group cluster

centers based on the similarity of biological terms associated with

them.

Although many algorithms are already available for clustering

vectors, they usually result in non-overlapping clusters. Many

diseases, however, belong to more than one family. Therefore, it is

important to have a clustering method that produces overlapping

disease classes. Thus, we introduced a probabilistic algorithm in

which each disease was iteratively assigned a probability for

belonging to a particular cluster. Each cluster was characterized by

its center, a vector containing a set of weights for all proteins in the

network. For a disease, the probability of being in a cluster was

defined to be proportional to the cosine similarity between the

weight vectors associated with the disease and the cluster center.

The center vectors were initially chosen to coincide with the

diseases’ weight vectors. In other words, at first the number of

clusters was the same as that of the diseases. The initial

probabilities were computed using these initial centers. In each

iteration the new positions (vectors) of the cluster centers were

calculated using

vi~
X

j

Pj?iwj=D
X

j

Pj?iwj D, ð5Þ

where Pj?i denotes the probability of disease j to be in cluster i, wj

is the vector associated to the disease j provided by ITMProbe,

and the vector vi representing cluster i is always normalized to

have unit length. The probabilities were then recomputed and

used in the next iteration. Since, in this approach, the cluster

centers are basically the average of the disease weights, after each

iteration they would move closer to each other. For this reason

before each iteration the cosine similarities between cluster centers

were calculated and the centers that were closer than a cutoff were

combined. Specifically, if two centers i1 and i2, containing k1 and

k2 diseases respectively, had the highest cosine similarity and if

their similarity was more than the cutoff, the two centers were

merged to arrive at a new center vector v! k1vi1
zk2vi2

h i
=

(k1zk2) that carries with it k1zk2 diseases. This procedure was

continued until there was no pair of centers with a similarity bigger

than the cutoff, which was set to 1{std(Cj, j’) where

std(Cj, j’)~0:02 is the standard deviation of the diseases’ pairwise

correlations (see the Result section). The rational behind this

choice is that our model cannot distinguish between two vectors if

they are closer than this cutoff. It is worth noting that this process

of elimination was performed even before the first iteration,
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because there were a number of diseases (initial cluster centers)

whose correlations was more than the cutoff.

If this iterative method were continued long enough all cluster

centers would be combined and there would be only one cluster.

The goal of clustering was to group only highly correlated diseases,

and so the iterations had to be stopped at an appropriate point.

Two observations help us to find this point. First, it is desirable to

express the diseases in terms of the lowest number of parameters

possible, meaning a lower number of clusters. Second, a disease

should be associated with fewest number of clusters possible. This

is especially true for diseases that have low correlations with all

other diseases (see the Results section). Such a disease should

mainly belong to only one cluster (consisting only of that disease).

Combining these competing observations, we stopped the

iterations when the following quantity was minimized:

R~
nc

SQ
C
T

ð6Þ

where ST denotes averaging over all diseases, nc is the number of

clusters, Qj~
1

nc

Pnc
i~1 P2

j?i, and Cj (see Eq. (2)) is the average

correlation between disease j and all other diseases. For disease j,
1=(ncQj) is the participation ratio [14] and Qj varies between 1=nc

(when the disease belongs to only one cluster) and 1=n2
c (when the

disease is associated with all clusters with the same probability).

Therefore, a large Q means the disease is mainly associated with

only a few clusters. In the denominator of eq. (6), the contribution

of diseases that are far from all others is larger due to the presence

of Cj . This would make it unlikely for these diseases to be in more

than one cluster when the iteration is stopped. The quantity R
went through a minimum after 10 steps (See Fig. S1 in the first

section of Supporting Information S1) at which point the iteration

was stopped and the final probabilities were calculated. This

procedure resulted in 1707 clusters.

Enrichment analysis was then performed for the cluster centers

with the same parameters as before, except that the maximum

number of genes involved was limited to SngTzstd(ng)^123

where SngT is the average number of genes included in the

enrichment analysis per disease and std denotes standard

deviation. This limit was imposed because averaging weight

vectors results in a vector of more uniformly distributed weights

and so the number of included genes could reach much higher

values than before. The E-values corresponding to the terms found

by the enrichment analysis could be used to create a new vector e
for each disease or cluster center with term association. For this

purpose the union of all significant terms associated with all

centers was determined. For cluster i the jth component of ei was

then defined as { log (Eij) if Eijv0:01 and zero otherwise. Here

Eij is the E-value corresponding to the jth term when querying

SaddleSum using vi. The feig vectors were then used for the

second stage clustering.

In the second stage, the clusters obtained in the first stage were

separated into two groups depending on whether or not they had

been associated with biological terms. The first (with term

associations) and second group had N1~1301 and N2~406
members respectively. For the first group, the set of vectors feig
were then defined and were clustered using a distance-based

hierarchical approach. The distance between ei and ej was defined

as dij~1{ cos (ei,ej), and the cutoff was chosen to be

SdTzstd(d). To avoid over-clustering, we used a more stringent

similarity measure here than the one used before for comparing

the terms assigned to different diseases. For disease j the

probability of being in the kth new cluster, containing mk clusters

from the first group, was defined as Pj?k~
Pmk

i~1 Pj?i where Pj?i

is the probability of disease j belonging to the ith cluster in the first

group after the first stage of clustering.

We also used Cfinder [25,26], a program for clustering nodes of

a graph, to create overlapping clusters of diseases. The advantage

of Cfinde over similar algorithms is that, like the clustering method

explained here, it produces overlapping clusters. To use Cfinder,

we first created a disease network by connecting each pair of

diseases with an edge weighted by their correlation. Using this

method, we obtained similar results to those from our clustering

algorithm described above. For a detailed description of the

procedure and the results please see Supporting Information S1.

Evaluating the accuracy of p-values
The accuracy of p-values reported (by Saddlesum) for the

original (not averaged) weight vectors has already been evaluated

by Stojmirovic and Yu [24]. The cluster centers, however, are

weighted averages of all weight vectors. To investigate whether or

not averaging affects the accuracy of the p-values (and conse-

quently the E-values) reported by the enrichment analysis, we took

a similar approach to that of Stojmirovic and Yu [24] to calculate

the ‘‘empirical’’ p-values and to compare them to the reported

ones. Briefly, the gene list was shuffled 672 times and, for each

gene list, enrichment analysis was performed for all cluster centers

and the reported p-values were recorded. This number (672) was

chosen to have approximately 1010 weight-term matches, i.e.

nm~ncntnl^1010, where nc~1707 is the number of clusters,

nt~8719 is the total number of GO/KEGG terms, and nl~672 is

the number of randomized gene lists. The empirical p-value

corresponding to the cutoff value p was then defined as pe~
np

nm
,

where np is the total number of reported p-values (for all cluster

centers and all gene lists) that are smaller than or equal to p. The

results, given in Fig. S2 and section 2 of Supporting Information

S1, showed that the reported p-values were indeed accurate.

Results

Statistics of disease-disease correlations
Based on the proteins that the two diseases were connected to,

disease pairs were classified into three categories. If both diseases

in a pair were connected to the same set of proteins, the pair was

assigned to category (1). Members of this category, by definition,

had the largest correlation possible (unity) and were equivalent in

our study. The number of ‘‘independent’’ (not equivalent to any

other) diseases was 1962. If, on the other hand, the two diseases

shared some (but not all) associated proteins, the pair was classified

in category (2). Category (3) consisted of the rest of the disease

pairs (the ones with no shared connections to the protein network).

Category (1), (2), and (3) had 978, 5243, and 3203090 pairs

respectively.

Using eq. (1), the 3209311 (total number of pairs from all three

categories) pairwise correlations fCj, j’g were calculated. The

median, mean and standard deviation of fCj, j’g were 2:8|10{8,

5:4|10{4, and 0.02 respectively. These statistics indicate that

although the correlations were generally very small, there was a

large number of outliers (disease pairs with high correlations

compared to the mean). Obviously, disease pairs in category (1)

had the largest correlation possible (C~1). The members of the

second category had overall larger correlations (with a mean value

of 0.13, a standard deviation of 0.23, and a median of 0.03).

However, some pairs in this class had low correlations (with a

minimum of 1:5|10{5). In fact 179 disease pairs in the third

category (pairs with no common gene associations) had higher
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correlations than the median correlation of pairs in category (2),

indicating that having some shared network connections does not

necessarily translate to high correlations, although 95.9% of

disease pairs in the second category had larger than average

correlations. The maximum correlation of the third category,

containing 99.8% of the disease pairs, was 0.237.

Interestingly, the average correlation between a disease and all

others varies dramatically. In fact the lowest average correlation

(1:4|10{8) was more than five orders of magnitude smaller than

the largest, suggesting that some diseases have relatively low

correlations with all other diseases. For example, 286 diseases have

correlations less than SCT with all other diseases.

Interpretations of correlations
To investigate what high correlation between two diseases could

imply, a number of quantities were calculated. First, we calculated,

for disease pairs with correlations in a certain interval, the

probability of being siblings (having the same parents in the CTD/

MESH database). To achieve this, the disease pairs were sorted

according their correlations and were divided into bins. The

probability Ibav (see eq. (4)) of finding a sibling pair in each bin was

then defined as the ratio of the number of sibling pairs to the total

number of disease pairs in that bin. The number of disease pairs in

each bin was 1000.

Second, for each disease pair, we calculated the similarity S
between the associated enriched terms, which was defined as the

ratio of the number of significant terms shared between the two

diseases to the total number of identified significant terms. In other

words, for two diseases associated with exactly the same GO and

KEGG terms S would be unity, whereas for diseases with no

common terms it would vanish. If one or both diseases in a pair

did not have any term associated with them, S was not defined. To

find the distribution of disease pairs with Sw0, the pairs were

partitioned into bins as described in the previous paragraph. In

each bin, the average probability for two diseases in a pair to hit

the same GO/KEGG terms was then defined as Sbav (see eq. (4)).

As expected, the enrichment analysis did not find any significant

biological terms associated with some of the diseases, implying

that, for some disease pairs, calculation of S was not possible. In

this study Saddlesum was able to find significant GO/KEGG

terms for about 60% of the diseases (1530 out of 2534). For

diseases with significant term hits, the average numbers of

identified GO and KEGG terms were 34.7 and 5.2, and the

standard deviations were 52.2 and 8.2. The large spread of the

number of hits was due to the fact that some diseases, with a large

number (w10) of connections to the network, had hundreds of

GO and tens of KEGG terms associated with them. Overall 3182/

203 unique GO/KEGG terms were hit by the enrichment

analysis.

Interestingly, there was a significant difference between the

percentage of pairs with undefined S when disease pairs with low

and high correlations are considered. For example, S was

undefined for 23% of disease pairs with correlations greater than

SCT, as opposed to 64% for pairs with correlations smaller than

SCT. This can be understood through the fact that the percentage

(p) of diseases that had been successfully assigned one or more

GO/KEGG terms by Saddlesum was smaller for diseases with

very low average correlations. This behavior is shown in Fig. 1.

After sorting fCjg into ascending order and placing them in bins

each containing 100 diseases, we computed the average Cj in a bin

and, in the same bin, the number of diseases N that had one or

more GO/KEGG term hits. In Fig. 1, p~N% is plotted versus

the average Cj per bin and the aforementioned behavior is clearly

displayed.

Since S was undefined for a large number of disease pairs, the

pairs were divided into two sets: with defined (first set) and

undefined (second set) term similarities. For the first set (with

defined S), Fig. 2 (A) illustrates the behavior of Ibav{(in green),

Ibavz(in blue), and Sbav (in red), where Ibavz (Ibav-) is Ibav for pairs

with Sw0 (S~0). The figure clearly shows, when Cbavw10{6, a

rise in the probability of a disease pair to have common biological

associations as correlation increases. The figure also indicates,

when Cbavw10{5, that disease pairs with higher correlations are

more likely to be siblings if they have Sw0. However, the siblings

without shared terms have almost a flat (correlation-independent)

distribution, although the percentage of such pairs is very small

(about 0.5%). One possible explanation for these results is that the

increase in the percentage of siblings in highly-correlated diseases

is in fact due to an increase in the percentage of the pairs with

Sw0. In other words, in high correlation regime, most of the

siblings are a subset of disease pairs with shared GO/KEGG

terms. Figure 2 (B) shows how Ibav varies with correlation for the

second set of disease pairs (the ones with undefined term

similarities).

Using only the terms from the manually curated disease-

pathway associations [23] in the KEGG DISEASE database

(downloaded on December, 12 2013) in place of the terms

retrieved from enrichment analyses, term similarities (S) and the

probabilities Sbav, Ibav, Ibavz, and Ibav{ were recalculated. In this

KEGG database, one or more OMIM diseases are associated with

one or more KEGG pathways. The CTD disease database [17]

was used to find the equivalent MESH diseases that were used in

our study. The results are shown in Figs. 2 (C) and (D). Overall,

the trends observed in these figures are very similar to those shown

in 2 (A) and (B): i.e. increase in Sbav/Ibavz with correlation (for

Cbavw10{6) and correlation-independence in Ibav{ for pairs with

defined S, and a uniform and then increasing Ibav for pairs with

undefined term similarities.

We have also computed the degree of overlap between the

enrichment analysis and KEGG DISEASE database. For each

disease j, out of the total number of annotated KEGG pathway

associations K(j) we calculated the number of associations KE(j)
that were also reported significant by enrichment analysis. The

ratio sj:KE(j)=K(j), for disease j, measures the agreement

between the curated pathway assignment and the enrichment

analysis. There were 490 diseases that had been annotated in the

KEGG DISEASE database and also had term hits using the

enrichment analysis. The average value of sj for these 490 diseases

was found to be 0:48, indicating on average 48% of the annotated

terms for each disease in the KEGG DISEASE database were also

found using our enrichment analysis.

Comparison with MimMiner and human disease network
MimMiner [13] uses a text mining approach to calculate a

pairwise disease similarity score that, like correlation defined here,

ranges from 0 to 1. However, since these two measures have very

different distributions and are defined based on different concepts,

they cannot be directly compared. For this reason we adopted the

procedure described in the third section and Fig. S3 of Supporting

Information S1 to find equivalent cutoff correlations and

MimMiner scores, 5:7|10{6 and 0:35 respectively, and to

compare the two methods.

In the absence of a true gold standard, we used disease-pathway

associations reported by KEEG DISEASE databse [23] to

compare the retrieval agreement with KEGG DISEASE from

MimMiner and that from our model. This was done by comparing

the effectiveness of the two methods to identify disease pairs that

Diseases, Information Flow and Protein Interactions
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are associated with the same biological pathways as annotated in

KEGG DISEASE. To make a fair comparison, only disease pairs

with defined term similarities S (see the ‘‘Interpretations of

correlations’’ section) and with available MimMiner scores were

included in this analysis (336610 pairs, about 10% of all pairs). By

ranking the disease pairs based on either their correlations or their

MimMiner scores, two lists of pairs were created. For each list, the

weighted number of disease pairs with common associated

biological terms that were among the first (highest ranking) m

pairs was calculated as M(m)~
Pm

i~1 S(i), where S(i) is the term

similarity between diseases of pair i using KEGG DISEASE as the

standard. The function M(m) provides a measure for comparing

the two methods: a faster rise in M(m) would mean a larger

number of pairs with high term similarity have been ranked higher

than the others, indicating a better agreement with KEGG

DISEASE.

Figure 1. The relation between the results of enrichment analysis and the average correlation Cj . The percentage of diseases for which
GO/KEGG terms were identified by Saddlesum as a function of average correlation Cj . To facilitate the calculation, we sorted all Cjs in ascending
order and placed them into bins each containing 100 diseases. The percentage is then measured by the number N of diseases with GO/KEGG term
hit(s) per bin. For very low average correlations N is significantly lower.
doi:10.1371/journal.pone.0110936.g001

Figure 2. The probabilities of having common term associations or being siblings. (A) The probabilities of finding a pair of diseases with
(1) common GO/KEGG terms (red), (2) the same parents and common associations (blue), and (3) the same parents without shared biological terms
(green) are shown. Here only pairs with a defined term similarity are considered. (B) For pairs with undefined S (pairs with at least one member not
associated with any biological terms), the distribution of siblings is plotted as a function of correlation. (C) and (D) show similar quantities to (A) and
(B) respectively, when the biological term associations are directly retrieved from the KEGG DISEASE database.
doi:10.1371/journal.pone.0110936.g002
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The results (MimMiner in red, our method in blue) are shown in

the inset of Fig. 3 (A). The green curve shows the weighted

number M(m) of disease pairs identified (ranked higher than m)

by our method, but missed (ranked lower) by MimMiner. Similar

trends are observed for both methods, but a better performance

(faster rise in M(m)) for MimMiner is indicated. This finding is

expected, because MimMiner is based on mining the literature,

which is also the source of the manually curated data in the

KEGG DISEASE database. However, an important observation is

that the two methods do not find the same pairs, especially in

terms of less apparent relationships. To see this feature, we first

excluded the disease pairs that were obvious candidates for being

related, i.e. sibling diseases and pairs with common gene

associations (3847 pairs were excluded leaving 332763). We then

recomputed the blue and the green curves, shown in Fig. 3 (A).

The closeness between these two curves indicates that for non-

apparent relationships, the disease pairs identified by our method

are largely missed by MimMiner. In Fig. 3 (A), about 87% of pairs

ranked higher than m~2500 (equivalent to a correlation of

2:2|10{5 and a MimMiner score of 0.41) by the method

presented here were missed by MimMiner.

Given the fact that our method and MimMiner effectively find

different pairs, one may wish to look at the quality of retrieval

using a different measure other than M(m). In Supporting

Information S1, we have described how to find the cutoff cosine

similarity and MimMiner score, above which there exists an

apparent positive correlation between the similarity/score and the

pair relatedness. Denote the number of disease pairs with

similarity/score above the cutoff by N c/N s. We defined the

normalized rank r as rank divided by N c or by N s depending on

whether cosine similarity or MimMiner score was in use. For a

given cutoff term similarity S, we first found among N c or N s

disease pairs with term similarity larger than S, and then

computed their average normalized rank SrT when all pairs were

ranked either by correlation (cosine similarity) or by MimMiner

score. Evidently, for large cutoff S, a larger 1=SrT indicates a

better retrieval fidelity. Using this measure, results shown in Fig. 3

(B), our methods seems to provide higher retrieval fidelity. One

should bear in mind, however, comparisons of such should always

be taken with a grain of salt due to the difficulty in constructing a

gold standard and totally impartial datasets.

It is also worth noting that for a very large subset (90%) of

disease pairs investigated in this study, KEGG term similarities or

MimMiner scores were not defined. However, many of these

disease pairs, or the ones with S~0 or with a MimMiner score of

zero, may in fact be related. For example, 5090 (97%) of disease

pairs in the second category and 838 (86%) of the members of the

first category of pairs, which have common gene associations and

are more likely to be related, were in this subset. Even diseases

with no gene associations or the ones that have been classified in

totally different families could share biological pathways or

phenotypic similarity. On the one hand, many pairs with

documented relationships may not have yet been annotated by

KEGG DISEASE or scored by MimMiner, or may have been

reported as being not related. Table 1 lists ten example pairs, with

correlations much larger than SCT&5:4|10{4, from all three

categories of disease pairs. On the other hand, it is likely that some

disease-disease relationships have not yet been discovered. One

should keep in mind that the members of the majority of pairs with

significant correlations in our study have no obvious relationships

(do not share genes and are not siblings), and also their possible

relationships have not yet been experimentally verified. From a

practical point of view, however, these pairs are more interesting,

because they suggest unknown and non-trivial relationships that, if

verified, could add to our knowledge about the causes and possibly

cures of certain diseases.

From the perspective of finding ‘‘related’’ disease pairs with zero

MimMiner score, Li and Patra [16] found 18 non-apparent

related pairs while combining a phenotype similarity network

(created using MimMiner similarity scores), a gene-phenotype

network and a protein interaction network. For 15 out of the 18
pairs, support information for relatedness was provided by Li and

Patra [16]. The relatedness evidence for 12 of the 15 pairs is

founded on that the member diseases are classified in the same

disease class. Using our method, we have found 330 disease pairs

with zero MimMiner scores, each of which has its member

diseases classified under the same disease family according to

MESH. We have also found 43 disease pairs with zero MimMiner

scores, each of which has its member diseases share at least one

biological pathway according to KEGG DISEASE database.

The proposed method was also compared to the Human

Disease Network (HDN), introduced in the pioneering work of

Goh et al. [3]. In this method the disease network is created by

linking diseases that have common gene associations. The method

proposed here, however, links the diseases based on their

correlations, i.e. the diseases are linked if they have significant

correlations (larger than the cutoff 5:7|10{6, as obtained in

Supporting Information S1). Interestingly, in our study the

Figure 3. Comparison with MimMiner. (A) The inset figure shows
the number (M) of weighted disease pairs with shared KEGG pathways
that were ranked higher than m by MimMiner (in red) and or by our
method (in blue). Also shown in the inset (in green) is the weighted
number of pairs with common term associations missed (ranked lower)
by MimMiner, but identified (ranked higher) by our model. In the main
panel, the same quantities corresponding to the proposed method are
plotted after exclusion of obvious candidates for being related. The
closeness between the blue and green curves indicates that the non-
apparent candidates found by our method are largely missed by
MimMiner. Displayed in panel (B) is the inverse of average normalized
rank versus the term similarity cutoff. At large similarity cutoff, the
higher the average normalized rank (the smaller SrT and thus the larger
1=SrT) the better the agreement between the quality scores (cosine
similarity or the MimMiner score) and the KEGG annotation.
doi:10.1371/journal.pone.0110936.g003
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minimum correlation between diseases with shared gene associ-

ations was 1:5|10{5. In other words, the links of a disease

network created by the method of Goh et al. would be a small

subset of those of our disease network. To find out if the additional

disease-disease relations suggested by the proposed method are

supported by the available experimental data, once again KEGG

DISEASE database was used. We considered only diseases

annotated by KEGG (1272 out of 2534 included diseases) and

created three disease networks by linking the diseases using three

different connectivity measures, i.e. having shared gene associa-

tions, high correlation, and having common pathway associations

as annotated by KEGG DISEASE. The total number of links

between the diseases in the three networks were 527, 14202, and

45577 respectively. The number of coinciding links between the

KEGG-based and the correlation-based networks was 2988, as

opposed to 389 when comparing KEGG and HDN networks. In

other words, 2599 pairwise disease relations predicted by our

method and missed by HDN are supported by the KEGG

DISEASE database. Both methods however failed to predict the

relationships between a large number of diseases that, according to

KEGG DISEASE, have shared biological pathways. On the other

hand there are many diseases that have high correlations, but are

not reported by KEGG as having common pathway associations.

As discussed before, these are not necessarily false positives. The

KEGG database does not yet contain many literature-supported

relationships (see Table 1 for some examples), but more impor-

tantly, there might be many disease relations that have not yet

been discovered. An important aspect of the proposed method is

that it suggests disease relationships that should be experimentally

verified.

Effect of clustering
Based on the hypothesis that highly correlated diseases are more

likely to have common pathways, one can use correlation-based

clustering to increase the number of hits when searching for

biological terms associated with the diseases. Assuming that all

diseases in a given cluster share some pathways/processes, one can

increase the chance of finding these pathways/processes by

weighted averaging of the weight vectors assigned by ITMProbe

to the diseases in the cluster. The rational behind this method is

that each vector may be contaminated with ‘‘noise’’ and that the

‘‘signal’’ could be amplified by averaging. To accommodate the

scenario that a disease might belong to several families, we used a

probabilistic clustering method (see Methods) that allowed

overlapping clusters and assigned a probability to each disease

for being in a particular cluster.

Our iterative approach resulted in 1707 clusters. Enrichment

analysis was run for all cluster centers obtained in this stage and

found significant hits for 1301 clusters with an average of 70.9/7.5

GO/KEGG terms per cluster, which was higher than the average

number of terms found for the diseases. The probabilities of

belonging to different clusters were calculated for each disease and

were used to determine the percentage of diseases with term hits,

defined by

1

nd

X
ij

Pj?i t(i), ð7Þ

with t(i) being an indicator function taking value 1 when cluster i
has a term hit and 0 otherwise. Interestingly, the number of such

diseases showed an increase from 60% (when enrichment was

directly performed for the diseases) to 85%. For the diseases that

had term hits using both methods (direct and through clustering)

the term similarity Y, was calculated using

Y~
1

nd?T

X
ij

Pj?i

DTc
i \Tj D
DTj D

, ð8Þ

with nd?T being the number of diseases that have significant term

hits, Tj being the set of terms associated with the jth disease, Tc
i

being the set of those assigned to the cluster i, and DT D denoting the

number of members in the set T . We found Y~0:41. This seems

to indicate that more than 50% of the terms associated with the

diseases were dropped upon merging to clusters and some

information might have been lost in the process. What is really

important, however, is whether terms of small number of

annotated genes are preserved, as these terms are most specific

and usually most informative. Upon examining the distribution of

minimum GO/KEGG term size (number of annotated genes for

that term) when running SaddleSum using diseases directly and

using cluster centers, we find that the most informative terms are

largely kept in the process. The distribution of the minimum term

size is shown in Fig. 4.

To illustrate how clustering through weight vectors may

increase the likelihood of associating a disease with terms, we

examine the late-onset Parkinson’s disease (OMIM:168600). This

disease was not associated with any terms when enrichment

analysis was directly performed for the disease. After clustering,

however, the top four clusters, ranked by their probabilities of

including the Parkinson’s disease, were associated with the

Parkinson’s disease pathway. Specifically, the term hits (with

Figure 4. The effect of clustering on the minimum term size.
The minimum term size distribution of (A) GO and (B) KEGG terms
reported by SaddleSum enrichment analyses when using disease
weight vectors directly (red curves) and when using cluster center
vectors (blue curves). Not only the most informative (smallest size)
terms are preserved during clustering, the clustering procedure seems
to shift the minimum term size distribution towards the small end,
indicating the likelihood of providing even more specific terms when
weight vectors are grouped under the proposed clustering procedure.
doi:10.1371/journal.pone.0110936.g004
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E-values smaller than 1e-4) for the cluster with the highest

probability (13%) are listed in Table 2, which include Parkinson’s

disease, Alzheimer’s disease and other neurological processes.

Retinitis Pigmentosa is an eye disease, with many different

types, which is characterized by progressive retinal degeneration.

As a second example, we examined the cluster and term

associations for type 7 of this disease (MESH:C564284), which

had no term hit before clustering. The disease was in multiple

clusters (with relatively high probabilities *10%) that were

associated with the phototransduction pathway. Given in Table 3

are the terms associated with the cluster with the highest

probability (10%), which are related to phototransduction,

detection of light and response to light. The phototransduction

pathway, along with the Retinal metabolism (KEGG:hsa00830)

and Spliceosome (hsa03040) pathways, has been indeed annotated

to be related to this disease by the KEGG DISEASE database.

Figure 5 visualizes the clusters that contain Parkinson’s disease

and Retinitis Pigmentosa 7.

As a third example, the associations of the Knobloch syndrome

(MESH:C537209) were also investigated. This is another eye

disease that is characterized by different abnormalities, including

cataracts, dislocated lenses, vitreoretinal degeneration, and retinal

detachment [27]. Unlike the other two examples, this disease is

primarily a member of one cluster with a probability of 62%, and

the second highest probability was much smaller (3%). According

to the KEGG DISEASE database, the pathways involved in this

disease are focal adhesion (KEGG:hsa04510), ECM-receptor

interaction (KEGG:hsa04512), and cell adhesion molecules

(KEGG:hsa04514). Focal adhesion, and ECM-receptor interac-

tion were in fact among the KEGG terms that were found to be

associated with the cluster. Due to the relatively large number of

associated terms with this cluster, the whole list is not given.

The first two examples indicate that there was a high degree of

overlap between the GO/KEGG terms associated with different

clusters. In other words, several clusters have phototransduction or

Parkinson’s disease pathways associated with them. For this reason

a second round of clustering was performed, which was based on

term similarity rather than disease correlations through weight

vectors, and the probabilities of belonging to each new cluster was

calculated. The second stage clustering reduced the number of

clusters with term associations to 217, which substantially reduced

the term overlap. For example, the highest new membership

probability (Pmax) for Parkinson’s disease became 31%, and the

new cluster, as expected, was associated with the Parkinson’s

disease pathway. Similarly, after the second stage clustering,

Retinitis Pigmentosa type 7 was primarily in one cluster with the

probability of 44% (which is associated with phototransduction)

and all other probabilities were less than 15%. On other hand,

Pmax for the Knobloch syndrome only increased modestly to 73%.

The large reduction of the number of clusters is consistent with the

view that many diseases share common modules or biological

pathways.

Discussion

Disease networks can provide valuable information when

investigating if and how two given diseases are related. In this

paper a simple network-based measure, referred to as correlation,

is introduced to explore possible relations between any two genetic

Table 2. Terms associated with the cluster with the highest probability to include the Parkinson’s disease.

Term ID Name E-value

GO:0007268 synaptic transmission 4.22e-12

GO:0019226 transmission of nerve impulse 4.58e-12

GO:0035637 multicellular organismal signaling 2.00e-11

GO:0007267 cell-cell signaling 1.13e-10

GO:0050877 neurological system process 4.54e-10

GO:0001963 synaptic transmission, dopaminergic 5.34e-08

GO:0007270 neuron-neuron synaptic transmission 4.47e-07

GO:0044708 single-organism behavior 8.73e-07

GO:0003008 system process 1.16e-06

GO:0030534 adult behavior 1.69e-06

GO:0001505 regulation of neurotransmitter levels 3.81e-06

GO:0006805 xenobiotic metabolic process 4.11e-06

GO:0071466 cellular response to xenobiotic stimulus 4.59e-06

GO:0009410 response to xenobiotic stimulus 4.59e-06

GO:0044281 small molecule metabolic process 1.62e-05

GO:0007610 behavior 5.39e-05

GO:1901615 organic hydroxy compound metabolic proce 6.38e-05

GO:0023052 signaling 6.72e-05

GO:0044700 single organism signaling 6.72e-05

GO:0065008 regulation of biological quality 7.75e-05

KEGG:hsa04080 Neuroactive ligand-receptor interaction 2.61e-19

KEGG:hsa05010 Alzheimer’s disease 2.73e-06

KEGG:hsa05012 Parkinson’s disease 8.69e-06

doi:10.1371/journal.pone.0110936.t002
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diseases. The correlation between two diseases is defined (eq. (1))

by the inner product of their corresponding weight vectors. The

weight vector associated with a disease is based on the flow of

information from that disease back to itself in a disease-protein

network created by integrating the available disease-gene associ-

ations and protein-protein interactions. The results obtained are

therefore reflective of the data available. Although specific cases

might be sensitive to the data employed, the general trend

obtained should remain robust.

Our results suggest that diseases with higher correlations are

more likely to be phenotypically related (be children of the same

parent), and to share biological pathways as determined by

enrichment analysis. Specifically, our result shows that most

siblings with high correlations share at least some GO/KEGG

terms. In fact, siblings with large mutual correlations are mostly a

subset of diseases that have been assigned common biological

terms. We also find that when enrichment analysis does not return

a shared pathway (when Sbav is very small), only less than 1% of

disease pairs are siblings. However, correlation between diseases

seems to be more an indicator of similarity of the involved

biological processes than an absolute measure of phenotypic

overlap. This is evidenced by a small but steady presence of sibling

disease pairs with extremely low correlations. This is consistent

with the view that high correlation indicates shared pathways and

thus likely shared pathophenotypes, while pathophenotypic

similarities might not require high correlations.

Different genes/processes may cause the same or closely related

phenotypes when they effectively influence the same pathway. The

clustering procedure used in this paper is aimed to find this type of

event and group them together. When diseases are caused by

different genes that are parts of the same pathway, the likelihood

for their weight vectors to resemble one another is apparently

higher than when they do not share the same pathway. Suitably

averaging those weight vectors (eq. (5)) leads to a cluster center that

may better represent the pathway. This procedure also has the

effect of reducing the ‘‘noise’’ and enhancing the ‘‘signal’’ of the

weight vectors, which is evidenced by the increase, from 60% to

85%, of the percentage of diseases having significant term hits

upon first stage clustering.

On the other hand, since our data sources only include the

disease-gene associations and the protein interactions, the regula-

tory effects were not included explicitly. This presents a limitation

as well as points the direction for future improvement. For

example, from a gene-centric point of view, being a part of one or

multiple pathways, a gene could result in multiple diseases either

through different states (overactive vs. underactive) in a single

pathway or through influencing multiple pathways. Largely absent

from the disease-protein network currently used, these subtle

effects do exist. Table 4 shows a set of five diseases with shared

connections to the network through low density lipoprtein

receptor-related protein 5 (LRP5, OMIM:603506). As far as the

disease-protein network is concerned these diseases are equivalent

and have perfect correlations. That is, these five diseases are

naturally grouped together under our method even though their

annotations do not suggest such a grouping. One of the diseases

(MESH:C566619) is a member of the family of eye diseases

characterized by incomplete development of the retinal vascula-

ture, and the others are musculoskeletal diseases associated with

high (MESH:C536527, MESH:C536748, and MESH:C536056)

and low (MESH:C536063) bone densities (MESH:C536056 and

MESH:C536748 are sibling diseases). Interestingly, osteoporosis-

pseudoglioma syndrome is a disease that is characterized by both

low bone density and eye abnormalities. The top (with lowest E-

value) GO/KEGG term assigned to these diseases by enrichment

analysis was ‘‘Wnt signaling pathway’’, i.e. GO:0016055/

KEGG:hsa04310 (obviously, all diseases in this set had the same

terms associated with them, because they share the same

connection to the network). This pathway, through mutations in

LRP5, has been indeed reported to be involved in development of

diseases related to both bone density and also some eye

abnormalities [28–30]. In these studies MESH:C536527,

MESH:C536748, and MESH:C536056 have been associated

with an increase in Wnt signaling, whereas underactive Wnt

signaling has been reported to cause MESH:C536063 and

MESH:C566619.

Although MimMiner [13] uses a totally different approach to

measure disease-disease similarity, like our method, it provides

pairwise scores for a large number of diseases. Therefore, it is

Table 3. Terms associated with the cluster with the highest probability to include the Retinitis Pigmentosa type 7.

Term ID Name E-value

GO:0007603 phototransduction, visible light 5.64e-09

GO:0009584 detection of visible light 9.95e-09

GO:0007602 phototransduction 1.69e-08

GO:0009583 detection of light stimulus 2.51e-08

GO:0009582 detection of abiotic stimulus 1.12e-07

GO:0009581 detection of external stimulus 2.98e-07

GO:0051606 detection of stimulus 3.66e-06

GO:0022400 regulation of rhodopsin mediated signali 1.07e-05

GO:0016056 rhodopsin mediated signaling pathway 1.31e-05

GO:0009416 response to light stimulus 1.47e-05

GO:0009314 response to radiation 1.45e-04

GO:0071482 cellular response to light stimulus 9.23e-04

GO:0008277 regulation of G-protein coupled receptor 5.23e-03

GO:0071478 cellular response to radiation 5.23e-03

KEGG:hsa04744 Phototransduction 8.51e-04

doi:10.1371/journal.pone.0110936.t003
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perhaps the most suitable method to be compared with the

approach presented in this paper. A comparison between the

performances of the two methods in identifying disease pairs with

shared associated KEGG pathways indicated that the results of the

two approaches are largely complementary. In other words, each

method can provide valuable information about relationships

between diseases that cannot be obtained from the other. It should

be noted, however, that the KEGG DISEASE database, which

Figure 5. Two example clusters. The clusters that include Parkinson’s disease (OMIM:168600) and Retinitis pigmentosa 7 (MESH:C564284) are
shown in panels (A) and (B) respectively. In each case, only diseases with membership probabilities larger than 5% are shown. The size of each node
(circle) is proportional to the probability of membership of that node in the cluster. For a disease pair, the thickness of the line linking the diseases is
proportional to 1z log10

C
Cm

, where C is the correlation between the two diseases and Cm is the minimum correlation between all diseases shown in
each cluster. The names and IDs of the members of each cluster are also given. Diseases whose names are written in the same color (other than black)
have exactly the same gene associations and so are equivalent in our study. Equivalent diseases are represented by one node in the figure. For
example, the node identified by C566637 in panel (B) represents the four diseases whose names are in green, i.e. C535804, C566637, C565827, and
C562479.
doi:10.1371/journal.pone.0110936.g005

Table 4. An example of a set of diseases that are associated with the same gene, but some have different phenotypes.

Disease ID Disease annotation Disease family

MESH:C566619 Exudative Vitreoretinopathy 4 Eye diseases

MESH:C536527 Van Buchem disease type 2 Musculoskeletal diseases

MESH:C536063 Osteoporosis-pseudoglioma syndrome Musculoskeletal diseases

MESH:C536748 Worth syndrome Musculoskeletal disease

MESH:C536056 Osteopetrosis autosomal dominant type 1 Musculoskeletal diseases

doi:10.1371/journal.pone.0110936.t004
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was assumed as a gold standard for making such comparison, is

underdeveloped and manually curated. A more complete database

that does not bias towards either text-mining or gene-disease

associations is needed for a sound comparison among methods

outputting pairwise disease similarities.

Although using protein interaction data in conjunction with

finding disease relations is not new, utilizing the information flow

to find for each disease its corresponding ITM (information

transduction modules) in the context of protein-protein interaction

is novel. There are a number of directions that we can potentially

look into but did not do so because of the lack of a comprehensive

gold standard to assess them. For example, the clustering

procedure proposed can be turned into a tool to classify diseases

based on the underlying protein interactions. Also, it would be

interesting to examine clusters without any term hits but

containing multiple diseases. This might help in finding the

common cause among seemingly unrelated diseases. In addition, it

can be valuable to examine clusters with significant term hits but

whose member diseases do not yet have annotated cause. The

term hits in this case may shed some light in searching for the

underlying cause of the disease. Even though we did not pursue

further analyses along those directions, we have, however,

compiled the clustering results and make them available for

download. If properly used, these compiled results form a database

for finding candidates of not-yet-solved problems in disease cause

and mutual relations.

Another interesting finding of the study was the higher rate of

failure of the enrichment analysis to find significant GO/KEGG

terms associated with diseases that had very low average

correlations with the others. This is perhaps due to the

incompleteness of the network, i.e. missing protein-protein

interactions or gene-disease associations. Such missing nodes

would prevent both ITMProbe from finding correlated diseases

and Saddlesum from assigning biological terms. Improvement in

the databases used in this study to create the disease network could

change the results for diseases with missing connections. However,

such improvements seem to be less likely to significantly change

the relations that are already embedded in the network. For this

reason high disease correlations seem to be more informative. In

other words, a high correlation between two diseases is suggestive

of a relationship between the two, but a low correlation may just

reflect that there is not enough information in the network. Even

for very highly correlated (Cw0:1) diseases, our approach still

could not find common pathways for all disease pairs. This could

still be due to incompleteness of the network or because of the fact

that our method uses a rather simple measure to investigate

possible disease relations.

In summary, we have proposed to use network-based correla-

tions between diseases as a measure of diseases similarity. Higher

correlations could be interpreted as a higher probability for the

disease pairs to have common biological pathways/processes.

Despite its simplicity and limitations, the simple approach

employed seems to be able to, in most cases, distinguish between

disease pairs with and without shared GO/KEGG biological

terms as well as properly group diseases sharing similar biological

processes/pathways.

Supporting Information

Supporting Information S1 All supporting information are

given in this file, including a description of how cutoffs were

calculated for MimMiner score and correlation, the results of the

evaluation of the accuracy of the p-values, and also the results of

clustering using Cfinder. Figure S1, Finding the optimum

number of clusters. Figure shows (A) the number of clusters, and

(B) R, as a function of number of iterations. R is minimized after

10 iterations. Figure S2, Empirical p-values vs p-value cutoffs.

The empirical values were calculated by shuffling the gene list 672

times. Figure S3, The probability of finding shared KEGG

pathways is plotted (in red) as a function of average MimMiner

score (a) or average correlation (b). The blue line shows the fitted

piecewise function. The separation points are considered the

cutoffs above which the scores or correlations are significant.
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