PUBLISHED FOR SISSA BY €} SPRINGER

RECEIVED: August 26, 2015
ACCEPTED: November 23, 2015
PUBLISHED: December 18, 2015

Relating double field theory to the scalar potential of
N = 2 gauged supergravity

Ralph Blumenhagen,” Anamaria Font®"! and Erik Plauschinn®

@ Maz-Planck-Institut fir Physik (Werner-Heisenberg-Institut),
Fohringer Ring 6, Minchen, 80805 Germany

b Arnold Sommerfeld Center for Theoretical Physics, LMU,
Theresienstr. 37, Minchen, 80333 Germany
E-mail: blumenha@mppmu.mpg.de, afont@fisica.ciens.ucv.ve,
erik.plauschinn@lmu.de

ABSTRACT: The double field theory action in the flux formulation is dimensionally re-
duced on a Calabi-Yau three-fold equipped with non-vanishing type IIB geometric and
non-geometric fluxes. First, we rewrite the metric-dependent reduced DFT action in terms
of quantities that can be evaluated without explicitly knowing the metric on the Calabi-
Yau manifold. Second, using properties of special geometry we obtain the scalar potential
of N = 2 gauged supergravity. After an orientifold projection, this potential is consistent
with the scalar potential arising from the flux-induced superpotential, plus an additional
D-term contribution.

KEYwORDS: Flux compactifications, String Duality

ARX1v EPRINT: 1507.08059

1On leave from Departamento de Fisica, Facultad de Ciencias, Universidad Central de Venezuela.

OPEN AccCESs, (© The Authors.

Article funded by SCOAP®. doi:10.1007/JHEP12(2015)122


mailto:blumenha@mppmu.mpg.de
mailto:afont@fisica.ciens.ucv.ve
mailto:erik.plauschinn@lmu.de
http://arxiv.org/abs/1507.08059
http://dx.doi.org/10.1007/JHEP12(2015)122

Contents

1 Introduction 1
2 Review of double field theory 4
2.1 Basics of DFT 4
2.2 The flux formulation of DFT )
2.3 Compactification 6
3 DFT action on a Calabi-Yau manifold 8
3.1 Fluxes as operators 8
3.2 Lessons from one type of flux 10
3.3 General result 13
3.4 Including the B-field 13
3.5 The Ramond-Ramond sector 14
4 Relation to N = 2 gauged supergravity 15
4.1 Generalities 15
4.2  FEvaluating the action 17
5 Relation to type IIB orientifolds 20
5.1 Generalities 20
5.2 F-term potential 22
5.3 D-term potential 25
6 Conclusions 28
A Useful relations on a Calabi-Yau three-fold 29
A.1 Normalization and primitivity 29
A.2 Relations regarding complex-structure moduli 29
A.3 Relations regarding D 30
A.4 Kahler metric and inverse 31
B Proof of general results 32
1 Introduction

One of the main issues in relating string theory to observable physics is the problem of

moduli stabilization. For instance supersymmetric compactifications of string theory on

Calabi-Yau (CY) manifolds come with a plethora of massless scalars, so-called moduli. At

string tree-level these moduli can be stabilized by turning on fluxes on the Calabi-Yau



manifold (for reviews see e.g. [1-3]). This procedure is mostly discussed in an effective
four-dimensional framework, i.e. one starts with the initial CY geometry and considers the
fluxes as off-shell deformations of the theory. In the effective description this leads to the
generation of a scalar potential that depends on the moduli fields. The hope is that new
classical field theory vacua of this scalar potential reflect new solutions to the true ten-
dimensional equations of motion. Finding these solutions concretely is a highly non-trivial
step, as it involves going away from the initial CY geometry.

The prime example of the application of flux-induced potentials are type IIB mod-
els with non-trivial Neveu-Schwarz-Neveu-Schwarz (NS-NS) and Ramond-Ramond (R-R)
three-form fluxes [4, 5]. In this case a no-scale potential involving only the complex struc-
ture moduli and the axio-dilaton is obtained. The K&hler moduli remain massless, but can
be lifted by subleading perturbative and non-perturbative effects. This is the idea behind
the KKLT [6] and LARGE volume scenario [7].

It is known that in order to stabilize also the Kahler moduli at tree-level, one needs
to consider additional non-geometric fluxes [8, 9]. For the toroidal case this has been
investigated in [10-15] and for generic Calabi-Yau manifolds in [16-22], among others. In
particular, it has been shown that the generalized flux-induced scalar potential can be
related to the scalar potential of N = 2 gauged supergravity [23]. Lately, this kind of flux
vacua have been investigated from a string phenomenological point of view, with special
emphasis on realizing F-term axion monodromy inflation [24].

From the higher dimensional point of view, it has been argued that non-geometric
aspects of string theory can be captured by double field theory (DFT) [25-29]; for reviews
see [30-32]. DFT provides a self-consistent framework that features new symmetries such
as generalized diffeomorphisms and a manifest global O(D, D) symmetry that close upon
invoking the so-called strong constraint. In particular, though derived from string field
theory on a torus, DFT is claimed to be background independent. See also [33, 34] for the
derivation of a DFT action resulting from string field theory on WZW models.

There exist two formulations of the DFT action, which differ by terms that are either
total derivatives or vanish due to the strong constraint. For our purposes it is convenient
to use the so-called flux formulation of the DFT action in the form presented in [35]. This
is motivated by the scalar potential in gauged supergravity which, as shown in [36], is also
related to the early work of W. Siegel [25, 26].

It has been shown that compactifying or Scherk-Schwarz reducing DFT on a toroidal
background equipped with constant geometric and non-geometric fluxes gives the scalar
potential of half-maximal gauged supergravity in four dimensions [37-39]. The relation
of DF'T to the scalar potential of N = 2 gauged supergravity has however not explicitly
been clarified. Clearly, the expectation is that dimensionally reducing DFT on a genuine
Calabi-Yau manifold carrying constant geometric and non-geometric fluxes should give
the scalar potential of N = 2 gauged supergravity. It is the purpose of this paper to
fill this gap and explicitly show how the dimensional reduction of DFT can be performed
in order to match N = 2 gauged supergravity results. This can be considered as the
generalization of the computation first performed in [4], where the dimensional reduction
of the kinetic terms of the NS-NS and R-R type IIB three-form on a (non-toroidal) CY



three-fold gives the no-scale scalar potential described in supergravity language by the
tree-level Kéhler potential for the complex structure/axio-dilaton moduli and the Gukov-
Vafa-Witten (GVW) superpotential [40].

The main technical problem is that the action of DFT contains the metric on the CY
three-fold, which is not explicitly known. Therefore, one first has to appropriately rewrite
the DF'T action so that only quantities appear that can be treated without knowing the
metric explicitly. For instance, for the simple H-flux case we can write
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but DFT contains many more terms that are not of this simple type. To perform the
dimensional reduction, it is most appropriate to start with the DFT action in the flux
formulation. This action essentially contains the kinetic terms of the various geometric
and non-geometric fluxes. We will treat the background fluxes as constant parameters that
are only subject to their Bianchi identities, which are quadratic constraints for the constant
fluxes. The indices for these fluxes are contracted using the constant O(D, D) metric or
the generalized metric. The latter contains the background CY metric, hence depending
on the complex structure and complexified Kahler moduli. The CY metric is assumed to
only depend on the usual coordinates.!

This paper is organized as follows: in section 2 we provide a brief review of the main
aspects of DFT that are relevant for this paper. As mentioned, we focus on the DFT action
in the flux formulation. In section 3, following a step by step procedure, we rewrite the
action compactified on a CY in terms of quantities that only contain operations like wedge
products, the Hodge-star map and actions of fluxes on p-forms. The main result is the
generalization of (1.1). We find that all NS-NS terms appearing in the DFT action can be
rewritten as
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where Y = De’/ and U = ©Q. Here ® denotes a twisted differential that involves all
geometric and non-geometric fluxes, and J and () are the Kahler and holomorphic three-
form of the CY. In section 4, this action is evaluated after introducing the fluxes on the
internal CY manifold as in [16, 18]. We show that the resulting scalar potential takes the
same form as the one in [23], which was shown there to be equivalent to the N = 2 gauged
supergravity result. In section 5, we perform an orientifold projection of type IIB with
O7-/03-planes and show that the scalar potential derived from (1.2) in general is a sum
of three terms

V=V +Vp+ VNS-tad (1.3)

The same procedure to carry out the dimensional reduction/oxidation of DFT compactified on a torus
(orbifold) background was employed in [41, 42].



where Vr is the F-term scalar potential derived from the tree-level Kahler potential and
the generalized flux-induced GVW superpotential. Vp is a D-term potential related to
the abelian gauge fields arising from the dimensional reduction of the R-R four-form on
orientifold even three-cycles of the Calabi-Yau. The last term is the flux induced NS-NS
tadpole contribution that will be cancelled by localized sources upon invoking R-R tadpole
cancellation. We remark that Vy is the scalar potential used in the string phenomenological
studies of [19, 20, 24].

2 Review of double field theory

In this section, we briefly review the salient features of DFT important for our subsequent
discussion. For a more detailed introduction we would like to refer to the reviews [30-32].

2.1 Basics of DFT

Double Field Theory is defined on a space with a doubled number of dimensions, where in
addition to the standard coordinates z’ one introduces winding coordinates #;. The two
types of coordinates can be arranged into a doubled vector of the form X7 = (&;, 2%), with
i=1,...,D. One also introduces an O(D, D)-invariant metric as

0 &
= . 2.1
nrJ <5z] 0 ) ) ( )

and combines the dynamical metric and Kalb-Ramond field G;; and B;; into the generalized

metric
G ~G* By,
Hrg = i Igl . (2.2)
BZ]CG J Gij — szG Blj
For these matrices a coordinates basis with indices I, J, ... has been chosen, however, one

can also employ a non-holonomic frame
Hry = E 1 Sap EP;, (2.3)

distinguished by indices A, B, ... from the beginning of the alphabet. The diagonal matrix

s 0
S = 2.4
AB < 0 Sab> ) ( )

and s, denotes the flat D-dimensional Minkowski metric, which is related to the curved

Sap is given by

metric as G;; = %54 eb ;. For the parametrization of the generalized metric shown in (2.2),
one can then find that

a
0 e’

EA = (e“i _e“kB’“') : (2.5)



An action for DFT is determined by invoking symmetries: first, one requires the
action to be invariant under local diffeomorphisms of the doubled coordinates X!, that is
(Zi, ') = (2 4+&(X), 21 4+£1(X)). Second, the action should be invariant under a global (or
rigid) O(D, D) symmetry. It has been realized that for manifest O(D, D) invariance and
for closure of the algebra of infinitesimal diffeomorphisms, one has to impose the so-called
strong constraint

DAIB+IARB=0, (2.6)

where & denotes the derivative with respect to the winding coordinate z;. There exist two
formulations of a DFT action, which differ by terms that are either total derivatives or are
vanishing due to the strong constraint (2.6). For our purposes it is convenient to use the
so-called flux formulation of DFT, which we review in the following.

2.2 The flux formulation of DFT

The flux formulation of DFT has been developed in [37-39] and is, as has been shown
in [36], related to earlier work of Siegel [25, 26]. In a frame with flat indices, the action in
the NS-NS sector is given by

1 _
SNSNS = W /dDXe 2d |:
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where we used d°X = dPz A dP%. The definition of e=2¢ contains the dilaton ¢ and the
determinant of the metric G;;, and reads exp(—2d) = v/—G exp(—2¢). Throughout most
parts of the upcoming computation we set 2/{%0 = 1 and only introduce mass scales Mg or
Mp; when necessary. The F4 are expressed as

Fa=084+2E410:d, (2.8)
with the generalized Weitzenbock connection
Qapc = EA (01Es”)Ecy . (2.9)
The three-index object Fapc is the anti-symmetrization of Q4pc, that is?
Fapc =3Qapa) - (2.10)

The Ramond-Ramond sector of DFT has been analyzed in [43-47]. We note that the
fields transform in the spinor representation of O(10,10) so that one can expand

1 . )
G=3 G e ea, T 0}, (2.11)
n

2Qur convention is that the anti-symmetrization of n indices contains a factor of 1/n!.



where ['*-% defines the totally anti-symmetrized product of n I-matrices. Similarly, we
combine the R-R gauge potentials C'®") into a spinor C. Then, as shown in [38], one can
define the R-R field strengths as

G=x¢C, (2.12)

with the generalized fluxed Dirac operator given by

1 1
¥ =T4Da— T4 Fa— T Fapc. (2.13)
For type 1IB on a CY, the only relevant R-R form is the three-form field strength, whose
action is
]. ]. / ! !
SRR = = dPX | — — SAYSBB SCC G e Gaper | - (2.14)
2K%, 12

2.3 Compactification

Taking the point of view that DFT is not only defined on a toroidal background, our
alm in this paper is to study compactifications of the DFT action on Calabi-Yau three-
folds. In particular, we are interested in the resulting scalar potential for the moduli of the
Calabi-Yau that is generated by background fluxes. The fluxes Fapc and F4 are treated
as small deviations from the Calabi-Yau background. In terms of the vielbeins (2.5), this
requirement can be expressed as follows

EAI:EAI+EAI+O<E2) . E'«a, (2.15)

where EA 1 describes the Calabi-Yau background and EA 7 encodes the fluxes. Using this
expansion in (2.9), for (2.8) and (2.10) we obtain up to first order in £

Fapc = Fapc + Fapc + O (E2) : Fa=Fa+Fa+0O (FQ) : (2.16)

Note that F Apc and F 4 are computed using only the Calabi-Yau generalized vielbein EA I
Since EA4 7 satisfies the DFT equations of motion, these fluxes do not generate a scalar
potential for the moduli of the CY and will be neglected. We consider the action (2.7)
up to second order in the deviations EA;. Since Fapc and Fy4 start at linear order in
E, it follows that all other quantities appearing in the action are those of the Calabi-Yau
background.

In order to define the starting point of our investigation, let us specify the setting
considered in this paper:

e We limit our discussion to the internal Calabi-Yau part, and ignore the remaining
directions. The exterior derivative d is understood to only contain derivatives with
respect to the internal coordinates, and similarly for the Hodge-star operator *.

e For the underlying Calabi-Yau background we impose the strong constraint. In par-
ticular, the metric of the Calabi-Yau three-fold is denoted by g;; and only depends



on the usual coordinates z*. It appears in (2.5) via the vielbeins e,’ and is in gen-
eral not known for the Calabi-Yau manifold. However, its complex-structure and
Kahler deformations are well understood. Similarly, the B-field of the background
only depends on coordinates ¢, and furthermore satisfies dB = 0 on the Calabi-Yau
manifold.

e For a Calabi-Yau three-fold there are no non-trivial homological one-cycles, and hence
non-trivial fluxes with one index cannot be supported on the CY. For the internal
part of the action (2.7) we can therefore set

Fa=0. (2.17)
e The term FapcFar B/c/nAAlnBB/nCC/ vanishes via Bianchi identities. This will be
discussed in section 3.1 below.

e Analogously to Scherk-Schwarz reductions, we consider constant expectation values
for the fluxes Frjx = EATEB JEC kF spc along the Calabi-Yau three-fold. These
are related to the geometric H- and F-flux, and to the non-geometric Q- and R-flux as

' —ijk

Fih=Hir,  Fap=Fgu, Flr=Q,  F"=R", (2.18)
Again, in analogy to Scherk-Schwarz reductions, for these background fluxes we do
not impose the strong constraint, but only the quadratic constraints given by the
Bianchi identities, which can be found in equation (3.4).

In the setting explained above, the relevant part of the DFT Lagrangian (2.7) in the NS-NS
sector (restricted to a Calabi-Yau three-fold) reduces to [41]

— ot — 1 ’ / ! 1 ! ! !
Lasns = € 20 Frog Fryk (4%” n? T — 1—27-[” HTT HKK) +... (2.19)

Note that the generalized metric H and the dilaton ¢ are that of the Calabi-Yau back-
ground, which only depends on the usual coordinates z’. As it will be shown in the
remainder of this paper, upon dimensional reduction, it is precisely this part of the DFT
action that can be identified with the scalar potential of a gauged supergravity theory. We
emphasize that the computations to be performed go through once the quadratic Bianchi
identities for the fluxes are imposed. Requiring stronger conditions, such as the strong
constraint, only eliminates some of these fluxes.

As explicitly shown in [41], the action (2.19) can be further expanded, for which it
turns out to be convenient to introduce the following combinations of fluxes

Hijk = Hiji +3F" (i By + 3 Q™" Bmj Bug) + R™ By Bnj Bpp) »

§' ik = Fjp +2Qp™ By + B Byyjj By
Q7 = Q" + R™ By, ,

(2.20)



Let us emphasize that for these fluxes Bianchi identities similar to (3.4) have to be satisfied,
which can be checked by explicit computation. We come back to this question below. For
the term in (2.19) containing three factors of the metric, we then find

,2(]5

El = - 12 <ﬁzgk~61 ]’k’g g” gkk + 33Z]k%4 ]’k”gu’g gkk + 3Qiiji’j i gii 9355’ 9kk!

+ kR ,klgii’gjj’gkk’> )
(2.21)
whereas for the term in (2.19) with a single factor of the metric we have

e 20

Lo = 5

(Smnignmi’gii/ + Qmmgnmi/gii’ - 57)mm53 mn “ Sl %mmlgii/) ' (222)

For the R-R sector of type IIB DFT we can perform a similar analysis. We introduce a
three-form in the following way

®ijk = sz]kC - 3Sm |m)|k] +5 Q[zmnc(4)

1 (6)
— gpmnp
Jimn + g R C

mnpiik> (2.23)

zgk
where F(®) denotes the background three-form flux in the R-R sector. Up to second order
in the fluxes, the Lagrangian (2.14) can then be expressed as

1 ,
Lrr = — - Bijr Gy g g7 g** (2.24)

Note that again the metric appearing in (2.24) is that of the Calabi-Yau background.

3 DFT action on a Calabi-Yau manifold

As we discussed above, in the DFT actions (2.7) and (2.14) the metric g;; appears explicitly.
Since the metric of a Calabi-Yau three-fold is in general not known, a dimensional reduction
is not straightforward. However, by rewriting the various terms and expressing them via
known objects, the problem becomes tractable. In the following, we explain this approach
in simple cases with only one type of flux turned on, and later give the general result.

3.1 Fluxes as operators

For our subsequent discussion, it will turn out to be convenient to interpret the geometric
H- and F-flux, as well as the non-geometric Q- and R-flux, as operators acting on p-forms.
In particular, we have [10-12]

HA: p-form — (p + 3)-form,

Fo: -form — (p + 1)-form,
p (p+1)- (3.1)

Qe: p-form — (p — 1)-form

R.: p-form — (p — 3)-form.



Employing a local basis {dz’} and the contraction ¢; satisfying ¢;dz/ = 55 , this mapping
can be implemented by

1 . .
HA= ng-jkd:v’ Adzd A dx®

1 . .
Fo= EFkijde Adx? Ay,
Q.—lQ-j’“diA A

= 5@ dz A g Ak,
R. = > Ritk

I_—g Li N L N L.

Note that our convention for a p-form 7 is such that n = Z%ml__ipda;"l A ...NAdz. Fur-
thermore, the above fluxes can be combined with the exterior derivative d into a so-called
twisted differential D

D=d-HA -Fo —Qe —R._. (3.3)

Requiring this operator to be nilpotent, in particular that D? = 0, leads to a set of con-
straints on the fluxes (2.18). These constraints correspond to Bianchi identities, and take
the form

0= HypfapF™ ca)

0= F"pe Fgpm + Hnfap Qg™

0= F™gp) Q™ — 4 F1,1 Q™ + Hipap ™,

0= Qul Q™ + Rt Fd, 4,

0 = Rmlab QmC*d} ’ )
0=pRmrlept

0= R Hpn — Fmn@Qp™",

0= Q""" Hjmn ;

0=R™ H,n.

We will further impose
Fiij =0, Q7 =0, (3.5)

which are standard in the literature [8, 9]. Moreover, on a CY three-fold there are no
homologically non-trivial one- and five-cycles, so that it is justified to require that all
combinations leaving effectively one free-index are trivial. The five first identities in the
upper block were originally obtained both by T-duality and from Jacobi identities of a
flux algebra [8, 9]. By virtue of (3.5) the three identities in the second block follow by
taking appropriate index contractions in the middle identities of the upper block. We



are then left with the last identity R™" H,,,; = 0, which in turn implies F,,,Q;"™ = 0.
Similar results have been reported in [22]. Let us emphasize that these two identities imply
that FapoFar B/c/T]AA/nBB/nCC, = 0. Furthermore, we note that in orientifold theories
R™ i =0 is automatically satisfied, as H and R are of opposite parity with respect

to the Zs orientifold projection Qp(—1)fL. This will be discussed below.

3.2 Lessons from one type of flux

Let us now consider situations with vanishing B-field, and only one type of non-trivial flux
on the Calabi-Yau manifold. More involved cases are discussed in the subsequent sections.

Pure H-flux. We begin by turning on only H-flux in the Lagrangians (2.21) and (2.22).
For the NS-NS sector Lnsng = £1 + Lo we obtain

—2¢ i il Kk e 20 (3.6)
?Hz‘iji'j'k’Q 979" x1=———HN*H, :

* L = —
NSNS 2

where x1 = /g dSz is a convenient way to write the six-dimensional volume form of the
Calabi-Yau manifold. Let us note that the Hodge-star operator for a three-form on a
Calabi-Yau three-fold can be evaluated using special geometry, for which the explicit form
of the metric is not needed. For the next case we follow a similar strategy.

Pure F-flux. We now turn to a more complicated situation and consider pure F-flux in

the case of vanishing B-field. The Lagrangians in the NS-NS sector (2.21) and (2.22) then

take the form

e 20
4

Part 1. For the first term, we define a three-form =3 = —DJ = F o J, where J denotes

the Kéhler form of the Calabi-Yau three-fold. Using our conventions (3.2), we determine

ﬁNSNS = - (Fljk Fi,j/k/ g”/g]]/gkk/ + 2anz ani’ g“,> . (37)

the components of =3 as
Eijk: = le'j Jmi + cyclic. (38)
We then consider the analogue of the kinetic term for the H-flux and compute

1 ]. / sl s ! 1 / -/ ; sl
5 Zs A *Eg = [4 F™ s F™ i1 G 97 977 = 5 ™ F™ s 1 U g ] x1, (3.9)

where I;7 = J;,g™ is the complex structure of the Calabi-Yau three-fold, which satisfies
I™I,,7 = —§;7. Note that the first term in (3.9) agrees with the first term in (3.7). For
the second term in (3.9) we switch to a complex coordinate basis and compute

1 ' . . - _ — -~ _ _
_i Fmij P i I mpm/ gu — (Fcab Fbac + FcangR - Fcab Fbﬁ - FcaE Fbﬁc) gaa )
(3.10)

Next, we note that using the second Bianchi identity in (3.4) (for vanishing H- and Q-flux)
as Fkag Fb21. + cyclic = 0, we can show that

gaaFcaE FEEC = gaEFEab Fb% . (311)

,10,



We use this relation in (3.10) and obtain
1 / s/ : il — 7 —_ —
S F i P iy U Do g = (e Fle + F Pl = 2o Pl ) 9. (3.12)

Part 2. Equation (3.9) together with (3.12) only partially reproduce the Lagrangian (3.7).
Let us therefore consider a second term given by Z¢ = Q A 23 = —Q A (DJ), where € is
the holomorphic three-form of a Calabi-Yau three-fold. In components, Z¢ reads

Eijkimn = 20 Qi Zpmn) - (3.13)

and the corresponding kinetic term can be evaluated using the relations shown in ap-
pendix A.1. After a somewhat tedious but straightforward computation, we find

1 _ _ _ _ _
—5 B AxEp = =2 | Fap Fo g™ W 9FC g™ + 1. (3.14)

Part 3. One of the terms in (3.14) has the required form to complete the matching with
the Lagrangian (3.7). However, also an additional term was generated. In order to cancel
this new term, we consider Z4 = —DQ = F o ). Note that Z4 is a (2, 2)-form, since there
are no cohomological (3, 1)-forms on a Calabi-Yau three-fold. In components, we find

ikt = 6 Qijm F™ 1) (3.15)

and the kinetic term can again be evaluated using the identities given in appendix A.1. In
particular, we have

1 _ _ -
5 B4 AREL = 2F 0 Fgp gec 9 g% % 1. (3.16)
Combining the individual terms. We can now combine equation (3.9) and (3.12),

together with (3.14) and (3.16). Since the prefactors have been chosen in an appropriate
way, with the help of the Bianchi identity (3.11) we obtain

1 1 — 1 —
*LNSNS = —e7 20 |: 5 =3 A xZg + 5 =4 N xEy — B =6 N\ *EG:| . (317)
Substituting the definitions for =3, =4 and Zg given above, we arrive at

*LNsns = —e 2 B (Fold)A*(Fol)+ % (FoQ)Ax(FoQ)
(3.18)

—;(Q/\FOJ)/\*(Q/\FOJ)].

Let us emphasize that this expression does not contain the metric of the Calabi-Yau man-
ifold explicitly but depends only on J and €). It can therefore be evaluated using special
geometry. We will come back to this point in section 4.

— 11 —



Pure Q-flux. The case of pure Q-flux is similar to the situation with pure F-flux. We do
not present a detailed derivation here, but only want to mention one important technical
step in the computation. In particular, since there are no one-forms on a Calabi-Yau
manifold, we have ) ¢ J = 0 (in cohomology). This implies that

1
(Q o 2J2> = Q""" Jjm Jgn + cyclic. (3.19)
ijk

With all other fluxes set to zero the only Bianchi identity in (3.4) that survives is Qm@
QY™ = 0. In a complex basis it implies in particular

9aa Q3" Qc ™ = gua Q™ Q= . (3.20)

Using this identity, the relation (3.19), as well as properties shown in appendix A.1, we
then obtain

*LNsNs = —e 2 [; <Q° ;ﬁ) Ax (Q . ;J2> +% (QeQ)Ax(QeQ)

1 1, — 1,
—3 (Q/\Q.2J>/\*<Q/\Q.2J )] .

Note that this expression is completely analogous to the pure F-flux result (3.18).

(3.21)

Pure R-flux. Finally, we analyze the case of pure R-flux. To do so, we first note that
the volume form of a Calabi-Yau three-fold can be expressed using the Kahler form J as

1 : 1
Vg diz = G Cinds AT AL A da'o = §J3, (3.22)

where €;, ;4 is the totally anti-symmetric tensor with €123456 = /9. Recalling the definition
of R. shown in (3.2), we can compute

1 1 ..
RL <3' J3) =33 R € ipprda? A dad A dz” (3.23)

. . i i1 cin i3] . .
Next, with the relation e™™m2msm2%e,, 0 Gy, = 3131670565 (valid for a manifold

with Euclidean signature), we compute

1 1 T
R|_<3' J3) /\*RI_<3‘ J3) =3 R RUTK g g g + 1. (3.24)

For the Lagrangians (2.21) and (2.22) we therefore obtain

—2¢ 1 1
*LNSNS = —— 5 RL<3' J3> /\*RL<3' J3> . (3.25)

For future use we also note the following relation, which can be verified using for instance
equation (A.1):

_ 1 — 1
(RLQ)/\*(RLQ)— <Q/\R\_3‘J3>/\*<Q/\R\_3‘J3> =0. (3.26)

— 12 —



3.3 General result

In the last section we have shown how the DFT Lagrangians (2.21) and (2.22) can be
rewritten, such that only the Kéahler form J and the holomorphic three-form {2 appear
explicitly. We assumed a vanishing B-field, and have considered only one type of flux
being present. In this section, we now allow for all types of fluxes H, F, ) and R being
present simultaneously (subject to Bianchi identities).

Motivated by our previous results, summarized in equations (3.6), (3.18), (3.21), (3.25)
and (3.26), we define the three-form

X:—H—Fo(iJ)—Qo<(i2J!>2>—RL((i;):s). (3.27)

Noting then that the Kahler form J is closed under d, we can write
x="D (). (3.28)

Similarly, recalling that the holomorphic three-form is d-closed, we define a multi-form of
even degree as

U=-HAQ-FoQ—-QeQ—R.Q=DAQ. (3.29)

We now propose the following form of the DFT Lagrangian in the NS-NS sector on a
Calabi-Yau three-fold with vanishing B-field

*LngNg = —e 2? %X/\*Y + %\I//\*@
, , (3.30)
—E(QAx)/\*(ﬁ/\y)—Z(Q/\X)/\*(ﬁ/\x) .

In appendix B, we show that this Lagrangian indeed corresponds to the full La-
grangian (2.19) (for vanishing B-field).

3.4 Including the B-field

Let us now include a non-vanishing B-field, which however satisfies dB = 0 on the Calabi-
Yau manifold. The computations are completely analogous to section 3.2, provided we
substitute

H— 9, F -5, Q—Q, R — R, (3.31)
where the flux orbits have been defined in (2.20). This implies that the Lagrangian (3.30)
is the correct expression even with B-field, but with the twisted differential D in (3.28)

and (3.29) replaced by

DoD=d-—HA —Fo e —RL. (3.32)
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Next, we note that using the (local) form of the flux operators (3.2), we can check that ©
can be expressed in terms of D as

1 -
D= D2 (Qim”an dz' + R B, LZ») . (3.33)

On a Calabi-Yau manifold, the last two terms may be locally defined, but not globally. This
is due to the absence of non-trivial one-forms (in cohomology), and therefore we can discard
them in the following. However, in general these terms combine with the fluxes (2.8) into
new flux orbits, analogous to (2.20).

Employing then the relation (3.33) on a Calabi-Yau manifold, we can conclude that
the rewritten Lagrangian for non-vanishing B-field is also given by (3.30), that is

1 1 —
*LnsNs = —e2? [2 XNA*X + 5\1/ A *xU
(3.34)

(Q/\X)/\*(QA)C)],

1 =~ 5 1
_Z(QAX)/\*<Q/\X)_Z

together with

X=-H—-Fo(iJ)—Qe (W) _%<(U)A (iéf)/\(iJ)>

— Dt (3.35)
— ¢ Bp (eB—‘riJ) ’
and
U=-HANQ-FoQ—-QeQ RO
=90 (3.36)
—eBD (eB Q) .
3.5 The Ramond-Ramond sector
The R-R sector (2.24) of the DFT action is much simpler to rewrite. Let us first introduce
an even multi-form of R-R potentials C(?") as

C=CO 4+ c® 4 0W 100 B o, (3.37)

The individual components are not all independent, but are subject to duality relations.
Furthermore, our convention is that the forms C'2") are closed on the Calabi-Yau three-
fold, and the only non-vanishing flux is F®), corresponding to the R-R two-form. With
the help of the operators (3.2), we can express the flux shown in (2.23) as

&=FO _gACO _FoC® _Qec®W_nr_CO
=F® 12¢C (3.38)
=F® +e 8D (P0).
The DFT action in the Ramond-Ramond sector (2.24) can then be written as

1
*ERR = —5 A NAKB. (339)
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4 Relation to N = 2 gauged supergravity

In this section, we evaluate the DFT actions (3.34) and (3.39) on a Calabi-Yau three-
fold. We show that the resulting scalar potential in four dimensions is that of N = 2
gauged supergravity. As we have emphasized before, the rewritten DFT actions (3.34)
and (3.39) no longer depend on the metric explicitly, but only on the Kéhler form J and
the holomorphic three-form 2. We can therefore employ special geometry to carry out the
dimensional reduction.

4.1 Generalities

Let us first introduce some notation, and recall relations in special geometry. For more
details and derivations, we would like to refer the reader for instance to [48].

Odd cohomology. In the following, we consider a Calabi-Yau three-fold X, and denote
a symplectic basis for the third cohomology by

{an, Ay e H3(X), A=0,... A%, (4.1)
This basis can be chosen such that the only non-vanishing pairings satisfy
/ OzA/\ﬁE :5/\2. (4.2)
x
The holomorphic three-form € can be expanded in the basis (4.1) as
Q= X"ap — Fa B2, (4.3)

where the periods X and F) are functions of the complex-structure moduli 4™, with
i =m,...,h%'. The periods F) can be determined from a holomorphic prepotential F as
Fy = 0F/0X A and using Fiy, = OF) /0X > we define the so-called period matrix as

— Im(Far) X' Im(Fsp ) X2
Nas = Fx + 2i m{ )?lr“)lm(FrpnA())E(i) (4.4)
This matrix can be used to determine
/ apy Axay = — (ImN) 5 — [(Re./\/) (ImN)_l(ReN)] ,
X AY
)
/ an AxfBE = — [(Re]\/') (Im/\/’)fl} ) (4.5)
X A
/ BAARBE = — [(Im/\/')fl}/\E
X
For later convenience, we also define
My = 1 ReN\ [—ImN 0 1 0
"o 1 0 —ImN 1) \ReN 1
(4.6)

/ oz,\/\vkozgoz,\/\*ﬁE
Jx BAAxas;, BA A %S '
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Even cohomology. For the (1,1)- and (2,2)-cohomology of X we introduce bases of

the form

w 1,1
i 21652222 A=1,... Kb, (4.7)
o € ’ s

For later convenience, we can group these two- and four-forms together with the zero- and
six-form of the Calabi-Yau three-fold. In particular, we write

on) = {4}
{o"}={1, 0%},

where V = [, \/g d%z is the volume of the Calabi-Yau three-fold X'. These two bases can
be chosen such that

A=0,...,ht, (4.8)

/wAAGB:5AB. (4.9)
x
The triple intersection numbers corresponding to the bases (4.7) are given by

KABC = / wa N\ wp A wc - (4.10)
X

The Kahler form J of the Calabi-Yau three-fold X and the Kalb-Ramond field B are
expanded in the basis {wa} in the following way

J=trwa, B=btwa, (4.11)
which can be combined into a complex field J as
T=B+iJ = (V' +it) wa = T wn. (4.12)

B-twisted Hodge-star operator and Mukai pairings. For later convenience, let us
define the so-called Mukai pairing between forms p and v. It is given by

{p,v) = [pAAV)] 4y (4.13)

where the projection operator A acts on 2n-forms as A(p™) = (=1)"p" and on (2n —

1)-forms as A(p?"~D) = (=1)"p*~1). Furthermore, we define a B-twisted Hodge-star
operator acting on forms p as [17, 21, 49]
*xpp=etP /\*)\(e*Bp) . (4.14)

For three-forms «p, we then find for instance that

<aA,*Bag> = (aA A e*B) A * (ag A e*B) , (4.15)
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and similarly for the others. Since for three-forms on a Calabi-Yau three-fold the factor
e~ B gives no contribution, we can express the matrix (4.6) also in the following way

(ap, xpax) (an,*p %)
My = . 4.16
1 +/X <<5A,*Baz> <ﬁA,*Bﬁz>> 10

The analogue of in (4.16) for the even co-homology takes a very similar form. In particular,
we have

*xgwp) (W, xgoP
Mzz—/X<<wA’ BwB) (WA, xp >>, (4.17)

(aA,*BwB> <O’A, *BO'B>

where for instance
<wA,*BwB> = —(wA/\e_B)/\*(wB/\e_B) . (4.18)

Note that both M7 and My are positive definite matrices.

Fluxes. The action of fluxes on the cohomology in a local basis has been given in (3.2).
However, for a Calabi-Yau manifold this can be made more specific. Similarly to [18], we

define

Day = qrwa + faac?, DA = P wa+ fAac?, (4.19)
Dwa = —fAaap + faaB?, Dot = P ay — g ph.

Here, foa and f2A denote the geometric F-fluxes, while go® and ¢** are the non-geometric
Q-fluxes. Furthermore, we use the following convention for the H- and R-flux

AN <A
fao=1a, ffo=171",

Ao (4.20)

gn’ = ha,

Let us also note that the H-flux from section 3 is related to the flux parameters as H =
—hMap + hp B2, For later convenience, we also define a (2h%! +2) x (2h1! +2) matrix as

follows
—fAa P
0= ( vk (4.21)

4.2 Evaluating the action

Next, we evaluate the action derived in the previous section for a Calabi-Yau three-fold.
The action for the NS-NS sector has been shown in (3.34), and for the R-R sector in
equation (3.39).

NS-NS sector — Part 1. We begin with the NS-NS sector, and focus on the three-form
X defined in (3.35). First, we expand in the basis (4.7)

) 1 1
P —ed =14 JRhwa + 3 [NABCJBJC} o + 6 [HABCJAJBJC] wo - (4.22)
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Using then the combined basis {w4, 04}, we can define a complex (2h"! + 2)-dimensional
vector V1 in the following way

sraBcTATBIC
A
V= ‘71 , (4.23)

1
srkABCT BT ¢

and employing matrix multiplication we observe that (wq o) - Vi = e7. Next, we note
that the last line in (4.19) can be expressed using (4.21) as

D <‘:§> = o7 <gﬁ> . (4.24)

x=ePDel =e P (ay p)-0-1, (4.25)

We then evaluate

and together with the matrix M; given in equation (4.16), we have
/x/\*X:VlT-OT-Ml-O-Vl. (4.26)
X

NS-NS sector — Part 2. A very similar route can be followed for the even multi-form
U defined in equation (3.36). We introduce a (2h*! + 2)-dimensional vector as

Vo = <_§£> , (4.27)

and with the basis of three-forms given in (4.1) we can write

Q= (ap BY) V3. (4.28)

Analogous to (4.24), we observe that using the matrix O defined in (4.21) we have

[OFN ~ [ WA A T
D(BA>:O<UA>’ o=Cc-0-Cc, (4.29)
where we introduced a matrix C defined as
o ( 0 +ﬂ> | (1:30)
-1 0

As it will be clear from the context, the dimensions of this symplectic structure are either
(2h5Y 4+ 2) x (2h11 4 2) or (2h%1 +2) x (2h%! +2). We then obtain

U=e¢5D (eB Q) = —e B (wa O‘A) L0V, (4.31)
and with the help of (4.17) we evaluate

/\DA*\IJZVQT-@-MQ-@T-VZ. (4.32)
X
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NS-NS sector — Part 3. Let us now consider the second line in the NS-NS ac-
tion (3.34). We first note that for two six-forms p; and p2 and with V the volume of
the Calabi-Yau three-fold X the following relation holds

1
/plA*pQZV/p1X/p2. (433)
X X X

Using (4.2) and the matrix C defined in (4.30), let us then determine for instance
/Q/\X—VQT-C-(’)-Vl. (4.34)
X

The various other combinations are obtained analogously, and we can combine these results

in the following way

/X[(mx) AH(@AT) + (QAT) Ax(@A)]

_ !
RS

(4.35)
V2T~C’-O‘(%xV{—FleVlT)'OT'CT'VQ.

R-R sector. We finally turn to the Ramond-Ramond sector. The corresponding rewrit-
ten action is shown in equation (3.39). We expand the R-R three-form flux F®) in the
basis (4.1), and define a corresponding (2h%! + 2)-dimensional vector as

B _EA
FO = Fhay +Fppt = FB) = < EA) . (4.36)

For the B-twisted R-R potentials, we expand the relevant contributions in the basis of even
forms (4.8) as

eBC=CO 4 CPApp + COp™ +CO (4.37)
which defines a (2h!! + 2)-dimensional vector C
C(6)
2)A
C= Cc( (S) . (4.38)
C,
For the three-form flux given in equation (3.38), we recall (4.24) and determine
&= (apr ) (F+0-0). (4.39)

Employing finally the matrix M given in (4.6), we arrive at

/6/\*@5:(FT+CT-OT)~M1-(F+O-C). (4.40)
X
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Final result. We can now combine the above results and obtain the scalar potential
originating from evaluating the DFT actions (3.34) and (3.39) on a Calabi-Yau three-fold.
Including the appropriate pre-factors, we find from the above expressions

1
V:§(FT+CT-OT)-M1‘(F+(”)-C)

—2¢
+€2 vI.oT M -0V

2 o o (4.41)

VIO My OT .V,

e "2 =T = =
-5 VZT-C-(’)-<V1><V1—|—V1><V1T)-(’)T-CT-V2.

This scalar potential can be brought into the form given in equation (9) in [23] (see also [52]),
which was shown to agree with the scalar potential of N = 2 gauged supergravity. To see
that, we first rescale V; o — V8V V1,2 and note that the potential (4.41) is multiplied by
M2, where Mp, = M2 V? e=4%. Introducing then ® = %6*2‘1’]2, we can write (4.41) as

M4
V—>V’:8f£’21 (FF 4+ 0T) - My - (F+0-C)
2 M3
+ (I)PlvlT'OT'Ml'O"/l
) (4.42)
2 Mp,
P

8 M3 -7 — _
THI/QT-C-O~<V1><V1T+V1><V1T)-(’)T-CT-VQ.

_l’_

Vil - O - My -OT .V,

Thus, we have succeeded in relating DFT on Calabi-Yau three-folds to the scalar potential
of N = 2 gauged supergravity. This is a quite satisfying result in that DFT not only
provides the higher dimensional origin of N = 4, but also of N = 2 gauged supergravity.

5 Relation to type 1IB orientifolds

In this section, we show how the scalar potential (4.41) can be expressed within the N =1
supergravity framework. Since in section 4 the four-dimensional theory preserved N = 2
supersymmetry, we therefore perform an orientifold projection. We choose this projection
such that it leads to orientifold three- and seven-planes. Related computations have ap-
peared for instance in [16-18, 23]. For completeness, here we present the full derivation of
the scalar F- and D-term potentials, and provide explicit expressions for the case of type
IIB orientifolds.

5.1 Generalities

We begin our discussion by introducing the notation and conventions to be employed below,
and by recalling some well-known properties of type IIB orientifold compactifications on
Calabi-Yau three-folds [50].
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Cohomology. The orientifold projection we perform is Qp(—1)Lo, where Qp denotes
the world-sheet parity operator and F7, is the left-moving fermion number. The holomor-
phic involution o : X — X acts on the K&hler form J and the holomorphic (3,0)-form
of the Calabi-Yau three-fold X as

o J—=J, 0" Q= -0, (5.1)

and the fixed loci of this involution correspond to O7- and O3-planes. This holomorphic
involution splits the cohomology into even and odd parts. This means in particular that

HP(X) = HPI(X) @ HPUX),  hP9 = W29 4 P (5.2)

Note that constants as well as the volume form /g dS2z on X are always even under the
involution. For the other bases introduced in section 4.1 we employ the following notation

{wa} € HY'(X)  a=1,...,h%", {wo} e HYY(X)  a=1,...,hY,

{o*y e H**(X) a=1,...,h}", {o"} e H**(X) a=1,...,h"",

{a;,8"} € H3(X) A=1,...,h%", {an, B} € H? (%) A=0,...,h%"N
(5.3)

Moduli. The fields of the ten-dimensional theory transform under the combined world-
sheet parity and left-moving fermion number in the following way

0 @
Op(—1)Fi = g, ¢, C%Y, C even,
B, C® odd.

Together with (5.1), it then follows that the holomorphic three-form (2 is expanded in the
odd cohomology H? (X)

(5.4)

Q=X ay— Fp . (5.5)

Note that the complex-structure moduli U* with p =1, ... 7112_’1 are encoded in the holo-
morphic three-form. The Kéahler form J and the components of the ten-dimensional form
fields along the six-dimensional space X can be expanded as

J =1%w,, B =b'w,, 0 = fw,, CcW = p,o®, (5.6)

where the components t* of the Kéahler form are in string frame. Quantities in Einstein
frame will be denoted by a hat, and the transition between string and Einstein frame is
achieved by

i =792 (5.7)

Apart from the complex structure moduli, the remaining moduli fields in the effective
four-dimensional theory after compactification are the following [50]

7=C0 4 je? ,

Ga:Ca—l-Tba, (58)

i 32 1 1 _
T, = 3 Kapy P71 + po + iﬁaabcabb - Ze¢maabGa(G -G,
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where £y and Kqqy are the triple intersection numbers defined in (4.10). Using the sum
of even R-R potentials C defined in (3.37), these moduli can be encoded in a complex and
even multi-form ®¢" as follows [17]
e =ePC+ie ?Re (eP1)
(5.9)
=7+ Gy +Tpo.

Fluxes. For the R-R three-form flux F®) and the various geometric and non-geometric
NS-NS fluxes, we observe the following behavior under the combined world-sheet parity
and left-moving fermion-number transformation. In particular, we have

P F, R even,
Qp(-1)"™ =

5.10
H,Q, F®  odd. (5-10)

Including the holomorphic involution o defined in (5.1), recalling (5.3), and employing the
same notation as at the end of section 4.1, we can deduce the non-vanishing flux components

as follows ey B
H ha, b,
Fio finPasfras P (5.11)
Q: %P,
R r;\,fj‘.

5.2 F-term potential

In this section, we show how after the orientifold projection (part of) the scalar poten-
tial (4.41) can be expressed in terms of an F-term potential in an N = 1 supergravity
language.

General form. The Kéhler potential for the moduli of type IIB orientifolds with O3-
and O7-planes takes the following general form [50]

K:—log[—i(T—F)} —2logV — log |:’L/XQ/\Q:| , (5.12)

where V = % Kafy {287 denotes the volume of the Calabi-Yau three-fold in Einstein frame.
The superpotential in the presence of R-R three-form flux F®) and general NS-NS fluxes
can be written as [8] (see also [10-12, 19, 21, 24, 51])

W= /X(F@”) + chgV) AQ. (5.13)

The resulting F-term potential is expressed via the Kéahler-covariant derivative D;W =
oW + KW, where 0; denotes the derivative with respect to the scalar fields mentioned

above and where ; = 0;K. With G the inverse of the Kihler metric G5 = 015K,
we have

Ve = ef [GﬁD[W DWW —3|W 2] . (5.14)
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When using the Kéhler potential (5.12), the scalar F-term potential can be simplified. For
that purpose, let us split the appearing sums into a sum over complex-structure moduli
U*, and a sum over i = {1, G% T,}. Employing the no-scale property of (5.12), that is [50]

G K K5 =4, (5.15)

and defining K' = G¥0: K, we obtain
Vi = ¢ |GUUDyWDGW + G ;W 0;W + (K'9;W W + c.c.) + W\Q] : (5.16)

Rewriting part 1. We now consider each line in (5.16) separately and bring them into
a form suitable for comparison with the general expression given at the end of section 3.
We start with the complex-structure moduli in the first line. For ease of notation we define

A=F® + Do = [F<3> +D (eBC)} ti [eﬂﬁDRe (eB”J)} , (5.17)

for the superpotential (5.13). Let us observe that the real and imaginary part of A cor-
respond to the three-forms (3.38) and (3.35), respectively. In particular, taking into ac-
count (5.11) and recalling that five-forms on a Calabi-Yau three-fold are trivial in coho-
mology, we have

A=0&+iec?Rex, (5.18)

where the check indicates the quantities after the orientifold projection. Using then the
relations given in (A.10) and (A.11), we can write for the first line in (5.16)

/A/\Q
X

Using (5.18), the first term on the right-hand side of (5.19) can be written out as follows

2

_ L @ _ _
KGUUDEWDEW = —— [/ A/\*A—i—z’/ AAA} — X (5.19)
4V? [ Jx X

« /A/\*.A— <’ [/(’3/\*(’3+e‘2¢/(Re“)/\*(Rev)] (5.20)
4v2 Jx Cav? | Jx P N '

The second term in (5.19) contributes to various Dp-brane tadpoles and has to be canceled
by local sources. Employing the relation shown in equation (A.13), we find

[ o )
€A z/ A/\A:+1A/ F®) A DRe (eB'HJ)
4v?  Jx 2V2 Jx
(5.21)
e¢

=0, /X [(ImT) — (ImG*)wq + (ImTa)aa] ADF®)

The third term on the right-hand side of (5.19) will be addressed below.
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Rewriting part 2. For the second line in (5.16) we recall that ®¢V in the superpoten-
tial (5.13) is given by (5.9). We can therefore compute

1
al-W:/ D(a@?)m:/ Dl w | na, (5.22)
X X

O.Oé

where i = 7,G* T,. Using then the relations shown in equation (A.13) of the appendix,
we obtain

1

8¢W:/ o | ADO= | (D), | | (5.23)
X o
ag

where, taking into account (5.11), we expanded D2 in the basis (4.8) as
DO = (DN)°wo + (DQ)y0® + (DQ)* Wy - (5.24)

Let us now evaluate the second line in (5.16). Using the formula for the inverse Kéhler
metric G given in (A.18), we obtain

x4V

Koo =< [ [PDa] nxlePD0] (529

X

where V (without the hat) denotes the volume of X in string frame. By comparing
with (3.36) and noting that in cohomology there are no five-forms on a Calabi-Yau three-
fold, we can identify e 2DQ = U. Furthermore, for the scalar potential evaluated at a
particular point in field space, we can use the relation (A.1). We then find that

K ~ij e =
K G g,waw = £ /\IJ/\*\IJ. (5.26)
J 4V? Jx

Rewriting part 3. Next, we discuss the third line in equation (5.16). With the help
of the Kahler metric computed from the Kéhler potential (5.12), and after a somewhat
tedious but straightforward computation, we find

K=—(r-7), K =-G-G6)", Kl=-(T-T)a, (5.27)

where as before K! = Gﬁ&le. For the derivatives of ®¢¥ defined in (5.9) with respect to
the moduli, we then determine

Ki0;08 = % + &, . (5.28)
Employing the short-hand notation (5.17) for the superpotential (5.13), we find

/C"aiW:—/AAQJr/AAQ. (5.29)
X X
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Coming back to the potential (5.16), using (5.29), and re-arranging terms, we obtain for

the third line
(/AAQ /(A—MAQ
X X

The first term on the right-hand side will be cancelled by the last term in (5.19). For the
second term we recall (5.18), (4.33) and (A.1), and determine

2 2

e’c[ (K'oW W + c.c.) + ]W\Q] = — X (5.30)

ek /X(AA)/\QQ:;; X{(Re;{)/\ﬁ]/\*[(ReX)/\ﬁ}
— o o
——SW/X[(Q/\X)/\*(Q/\)'()—%(Q/\)’()/\*(Q/\X)}.
(5.31)

In the last step we noted that due to (5.11) we have (Im y) € H3 (X) whereas Q € H? (X),
and therefore [(Imyx) A Q = 0.

Combining the results. We finally combine the individual results obtained above to
obtain the full scalar F-term potential. In particular, we can rewrite (5.16) as

MR e e [1 Lol =
—i@AﬁA*@A@—i@A@A*@A@}

+ B AXG — [(Im) — (Im G%) wq, + (ImTa)aa] /\DF(3)> . (5.32)

DO |

Taking into account that the prefactor is proportional to M2, the first two lines match
with the orientifold projected DFT actions (3.34) and (3.39) in the NS-NS and R-R sector.
Note, however, that only the real part of y appears; the imaginary part is contained in
a D-term, which we discuss in the next section. The third line in (5.32) corresponds to
tadpole terms, which have to be cancelled by local sources.

5.3 D-term potential

We now want to consider the imaginary part of y, which does not appear in the scalar
F-term potential (5.32). As mentioned before, we have (Im y) € H3 (X) and therefore the
only contribution in the DFT Lagrangian (3.34) relevant here comes from

*Lps = —% e (Imx) Ax(Imy). (5.33)

Using the definition (3.35) as well as (5.11), we can evaluate Imx as

Imy = (a;\ M) : <Bi) , (5.34)
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where we defined

o < 1 < -
D = # (v - chaabtababb> + @ Faapt®d” — ot
(5.35)

1
D; = 75 (V 3 naabtababb) — 43" Faap OV + fi, 1

Similarly as in section 4.2, we can now evaluate (5.33). We find

~ T ~
1 ., (D . (D
st =3 (o) 4-(o)

1 ~ \G ~ . ~ 3 ~ .
=3 e 2 {(DX +Re Ny, DF) (ImN ) (Ds + Re Ny, D) + DM m A, D7 |
(5.36)

where M; has been defined in (4.6), and the check indicates the restriction to indices
A= 1,..., hi’l. Note that (5.36) corresponds to a positive semi-definite scalar potential in
four dimensions.
Let us now check that this scalar potential can be understood as a D-term from the
N = 1 supergravity point of view. We will follow the discussion first presented in [22]
(see also [42]). To begin, let us recall that in the absence of a Fayet-Iliopolous term,
&a = 10,W/W , the D-term of an abelian gauge field A® in supergravity is given by
Dy =1i» (9:K)dathi, (5.37)
i
where 0,¢; is the variation of the chiral superfield ¢; under a gauge transformation A* —

A%+ dA®, and K denotes again the Kahler potential. The corresponding D-term potential
reads

Vo= M [(Ref) '] Duy, (539)

with Re f,p the real part of the gauge kinetic function for the gauge fields. In our case, the
gauge fields of interest originate from the R-R four-form C® via a dimensional reduction
on three-cycles of the Calabi-Yau three-fold. Let us therefore expand

~

4 by ) 2,1
CW=Aas+ A0+, A=1,...,h%", (5.39)

where the ellipsis denote terms of different degree in the internal manifold not of importance
here. The gauge transformations of A5 and A* have their origin in a higher-dimensional
gauge symmetry. In particular, note that the DFT Lagrangian (3.39) is invariant under

C—>C+9A, (5.40)

with C the sum of even R-R potentials (3.37), D was defined in (3.33), and A is a sum of odd
forms. In order to obtain the gauge transformation A* — A* + dA* and flj\ — flj\ — d]&;\
in four dimensions, we therefore have to choose the gauge parameter A as

ePC = PC+D(Aay —AB). (5.41)
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In turn, this gauge transformation implies variations of the chiral superfields ¢ € {7, G*, T, }.
Indeed, using (5.9) together with (4.19) and (5.11) we find that

T =T+ (r;\AA — 775‘[&5\) ,

G = GO+ (q;\“A)‘ - q@“[\}) , (5.42)
To = Tt (S0 = FPady) -

Note that due to the nilpotency of D, the superpotential is invariant under transformations
of the form (5.40) and thus no Fayet-Iliopolous parameter is generated.

In order to evaluate (5.37), let us also determine the derivatives of the Kéhler poten-
tial (5.12) with respect to the moduli fields (5.8). As in the previous section, we perform
the computation in Einstein frame, and then transform the result to string frame. We find

O, K = (V= = ket
2V 2
, , (5.43)
ie ie
K=——t% oK = — Bpe .
or, 2y ™, loe] 2y Kagct”b

Using these results and the transformations of the moduli fields under gauge transforma-
tions (5.42), we can compute the D-terms (5.37) as follows

-4 N 1 . i
DN = Tev {M (v - QKMbt%abb) + @ Kaapt®V = o t“} :
(5.44)

€¢ 1 ararnb a apb «
Ds = B3 |:—T5\ <V— §I€aabt bb > — 45" Faad t"0” + f5,t ] )
We observe that up to an overall factor, these D-terms agree with the expressions (5.35)
obtained from a reduction of the DFT action (5.33). We furthermore note that the Ramond-
Ramond four-form potential C'¥ is self-dual in ten dimensions. The two sets of gauge
fields A* and A 5 In (5.39) are therefore not independent, and in the following we choose to
eliminate fli in favor of A*. Also, as argued in [22], as long as the fluxes are integer-valued
one can rotate them by an Sp(hi’l, Z) transformation into a basis where A = (jj‘a = fj‘a =
0. This implies that the D-term D? vanishes.3

Let us finally turn to the D-term potential (5.38). The gauge kinetic function for the
gauge fields AN s given by the imaginary part of the matrix (4.4) [50], properly restricted
to indices \ = 1,... ,hi’l

fro = 5N (5.45)

3In this basis the Bianchi identities connecting the fluxes in the D-terms are trivially satisfied. There
are further Bianchi identities which mix the flux parameters in the superpotential (5.13) with those in Dy
in (5.44).
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Furthermore, Im N is meant to only depend on the complex structure moduli U# surviving
the orientifold projection. For the D-term potential we therefore obtain

A L A6
Vp = M3, [—Q(Imj\/)_ } D; D,
(5.46)
Mf%l e*?

22

where D was defined in (5.35). Expressing then again the Planck mass in terms of the

string scale via Mél = M2V?e % and noting that the potential appears as —V in the
Lagrangian £, we see that the D-term potential (5.46) agrees with the DFT result (5.36),
after D* has been set to zero. We therefore conclude that the scalar potential resulting
from the dimensional reduction of DFT for hi’l > ( also correctly reproduces the expected
D-term potential.

6 Conclusions

In this paper we have performed the dimensional reduction of the DFT action in its flux
formulation on a Calabi-Yau three-fold with non-trivial constant fluxes turned on. The
main initial obstacle that the DFT action contained explicitly the unknown metric on the
CY could be overcome by rewriting all contributions to the action in terms of the Kéahler
form, holomorphic three-form, and operations that could be further evaluated on the CY
using special geometry. The induced scalar potential agrees with that of N = 2 gauged
supergravity. Up to additional D-terms, a further orientifold projection to N = 1 leads to
the potential derived from the generalized Gukov-Vafa-Witten superpotential containing
the non-geometric fluxes. This nicely confirms the consistency of the whole approach.

Our results put the generalized flux-induced scalar potential on firmer grounds, thereby
lending further support to its use in tree-level moduli stabilization applied to string phe-
nomenology and cosmology. It is known that, with all types of fluxes turned on, there does
not exist a dilute flux limit so that it is not straightforward to argue for a consistent higher
dimensional uplift of the solutions found in the four-dimensional field theory model. How-
ever, in view of the now established DFT origin of the four-dimensional potential, the fate
of these vacua is closely related to the claim that DFT, though not an effective low-energy
theory, might be a consistent truncation of full string (field) theory.
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A Useful relations on a Calabi-Yau three-fold

In this appendix, we collect some technical relations concerning Calabi-Yau three-folds,
which are important for the computations in the main part of the paper.

A.1 Normalization and primitivity

Since a Calabi-Yau manifold is a complex Kahler manifold, it is useful to work in a complex
basis with indices a and @. The hermitian metric then has non-vanishing components gz,
whereas the almost complex structure reads I%, = 6% and [ = —i0%. The Kéahler
form Ji; = gim I™; in complex coordinates is given by J ; = ig, ;. For the holomorphic
three-form on a Calabi-Yau three-fold, we employ the normalization

QAQ:éﬂ. (A1)

| .

Using (A.1), one can show the following useful relations
Qave Vg 9°° = 8 (9aa 95 — Yup 96a) »

Qabe Q- gbg gCE =16 gaa , (A2)

abe
Qabc QEEE gaﬁ gbg cc 48 .
Since on a Calabi-Yau three-fold there are no homologically non-trivial one- and five-
cycles, we can assume that all combinations leaving effectively one free-index are trivial.
This includes e.g.

HAJ=0, QeJ=0, R.(JAJ)=0, (A.3)

as well as the conditions (3.5). Note that (A.3) can be considered as generalized primitivity
constraints on the fluxes.

A.2 Relations regarding complex-structure moduli
In this section, we derive some formulas important for section 5.2. We begin by noting
that a complex basis of (2, 1)-forms x, with p=1,..., h%! is given by

DUuQ = XH s (A4)

with Dy the Kéhler covariant derivative defined below (5.13). In a similar fashion, a basis
of (1,2)-forms X7 can be introduced. The Kéhler metric for the complex-structure moduli
derived from (5.12) is expressed as

_qu/\YU

T (A.5)

Next, we observe that on a Calabi-Yau three-fold the holomorphic (3,0)-form © and the
(2,1)-forms x,, introduced in equation (A.4), and their complex conjugates form a basis of
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the third cohomology. An arbitrary complex three-form A can therefore be expanded in
the following way

A:aOQ+a“XH+&“yﬁ+&0§. (A.6)

Using the Kéhler metric (A.5), the coefficients in this expansion can be determined as

A Yo
a’ = f Ax a“:—ifA/\XlG”“,
fQAQ JanQ
(A.7)
JanQ fana
Furthermore, we note that the Hodge-star operator acting on {2 and x, gives
*Q0=—iQ, *Xp = i Xy - (A.8)

Using the above relations, for two different complex three-forms A and B we can then
compute

/A A+B = z/Q IR [a”bo + @ 4+ Gb +13“G,wd”} . (A.9)
Employing (A.7) and defining Kes = —log [i [ Q A Q], we arrive at
/AA*B_e&{GWDW</AAQ>DW</BAQ>
+GWIMu</BAQ>L%u</AAQ) (A.10)
+</A/\Q> (/msz) " </AAQ> </BAQ>] |
Similarly, we determine for the wedge product of two three-forms A and B
/AAB:—MQﬁ?WDW</AAQ>DW</BAQ>
—GWDW</BAQ>DW</AAQ>+</AAQ></BAQ> (A.11)
() (o)

A.3 Relations regarding D

We now derive relations for the twisted differential D, which was defined via (4.19). Let
us consider a closed three-form A with dA = 0, and expand A the basis (4.1) as

A= Arap +ApBL. (A.12)
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Using the definitions (4.19), we can then show by explicit computation that

/DwA/\A——/wA/\DA,
/DJA/\A:—l—/UA/\DA.

Let us also consider an even, d-closed multi-form B, which can be expanded in the ba-
sis (4.8) as

(A.13)

B = BAw, + Bac?. (A.14)

For a Calabi-Yau three-fold with the action of D given by (4.19), it follows that DB is a
three-form. Setting then A = DB and using the Bianchi identities D? = 0, it follows that

/DB/\DwAzo, /DB/\DaAzo. (A.15)

A.4 Kahler metric and inverse

We now discuss the Kéhler metric Gﬁ for the moduli 7, G* and T,, which were defined
n (5.8). From [17] we know that this metric can be expressed as

e* B B
Gﬁ = 1w [Vi Aet ] /\*[Vj Aet ] , (A.16)
where i, j = 7, G* T, and
vi=(1, —wg, %), (A.17)

and where V denotes the volume of the Calabi-Yau three-fold in string frame. The inverse
Kéhler metric has not been given in [17], but can be determined as follows. Let us make
the following ansatz

4y

ij 22
G =%

[pi A e_B] A *[p7 A e_B] ) (A.18)
with the dual forms
= (wo, —0%, wa) - (A.19)
We now verify that (A.18) is indeed the inverse of (A.16). For that purpose, we note that
/[Vi/\€+B]/\[pj/\e_B]Z/Z/Z'/\pj:(slj. (A.20)
This implies that we can expand the Hodge duals as
*(vi netP) = My (0P ne P, *(p'Ne B) =N (v; netP) | (A.21)

with M and N some matrices. Applying the Hodge star to the second relation and noting
that for even forms on six-dimensional manifold *? = 1, gives N M jk = 5};. This allows
us to compute

We have therefore shown that the metric (A.18) is indeed the inverse of (A.16).
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B Proof of general results

In this appendix we show that for vanishing B-field, x Lxgng can indeed be cast as proposed
in (3.34). We have already proved that (3.6), (3.18), (3.21), (3.25) and (3.26), comply
with (3.34) when only one kind of flux is switched on at a time. When fluxes are turned
on simultaneously we have to care about mixed terms. In the original NS-NS Lagrangian
there are FFR and H(Q mixed terms in (2.22). On the other hand, given its structure,
in (3.34) the only mixed terms are precisely of type F'R and HQ. Concretely, the relevant
terms in (3.34) are Tyqg + Trr, where

1 — 1
THQ:_H/\*<Q02J2>+Re(Q/\H)/\*<Q/\Q'2J2>a (B'l)
and similarly
1 — 1
TFR:—FOJ/\*<R\_3'J3> +RQ(Q/\FOJ)/\*<Q/\RL3|J3> . (B.2)

We will proceed by evaluating separately each term in the above relations.
Let us begin with (B.1). Using (3.19) and the property Ji; = gim I™; we find

1 1 y -/ / sl
—H N~ <Q L] 2J2> = _EHi’j’k’QijkIJ ]Ik kg” *1. (BS)

It is convenient to express the right hand side in a complex basis and then simplify it
applying an appropriate Bianchi identity. With F, H and @ different from zero, the
second identity in (3.4) yields

QaEE) o gaa (HachabC + HaBEQEEE) + 2ga6 (FEab Fb@ o FCaE FEEC) —-0.
(B.4)
Notice that when only F' # 0 this identity reduces to (3.11). Going to a complex basis and

gaa (Hachabc +H

abe

substituting (B.4) we arrive at
1 a 7 _ _
—H A (Q y 2J2> =g" (H“bCQabc + HaEeQabc - HabEQabc — HabEQEbC) * 1
—g"(Fu FPz — Fe ; FEEC) *1. (B.5)

The F depending piece will cancel against an analogous contribution in %Eg AN*xZ3, B3 =
FoJ. In fact, from (3.10) we see that before using (3.11), the right hand side of (3.12)
has an extra term that offsets the second line in (B.5). In the complex basis we also obtain

_ 1 _ —
Re(QA H) A * (Q ANQ e 2J2> = 29" (HopeQy + H7.Q,°) x 1. (B.6)

Finally, for the HQ term in (2.22) the Bianchi identity (B.4) further implies that

1 g _ T _ _
_5 mejmngz] *x1 = _gaa (Hachabc + HEEEQabC + HEbEQabc + HabEQﬁbc) *1

9" (FCp Fge — FC 5 Flg.) % 1. (B.7)
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The term involving F' is cancelled by a similar contribution in %F i ¢ %1 that also
appears in (2.22). In the analysis of pure F' flux this extra contribution was absent by
virtue of (3.11). Observe that adding the first line in (B.5) and (B.6) precisely matches
the first line in (B.7). Hence, we have shown that the mixed terms in Tx¢ indeed lead to
the HQ term in the NS-NS Lagrangian.

To evaluate the mixed F'R terms we basically take the same steps as in the preceding
calculation. A crucial ingredient is the Bianchi identity that follows from the fourth line
in (3.4)

Guz (REbCF%c"‘RaEEFEgE) - (RabCFabc—"_RaBEF%E) 120z (anc QCEE_QbaE anb) -0, (B.8)

which clearly shortens to (3.20) when only @ # 0. Inserting this identity in the F'R term
in (2.22) gives

1 o o S
— SR g% 1 = — gaa (R F%, + R™F%_ + R™F%, + R™F% ) x1
+9aa (Q2" Q™ — QY Q%) + 1. (B.9)

The @ part is nullified by an identical term with opposite sign in %Qrg’iQnmj gij * 1. Using
the identity (B.8) we also find that adding the pieces in Tr g reproduces the first line in (B.9)
up to an additional contribution that is cancelled by a similar one in ) e %J ZA%(Qe %J 4,
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