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1 Introduction

One of the main issues in relating string theory to observable physics is the problem of

moduli stabilization. For instance supersymmetric compactifications of string theory on

Calabi-Yau (CY) manifolds come with a plethora of massless scalars, so-called moduli. At

string tree-level these moduli can be stabilized by turning on fluxes on the Calabi-Yau

– 1 –



J
H
E
P
1
2
(
2
0
1
5
)
1
2
2

manifold (for reviews see e.g. [1–3]). This procedure is mostly discussed in an effective

four-dimensional framework, i.e. one starts with the initial CY geometry and considers the

fluxes as off-shell deformations of the theory. In the effective description this leads to the

generation of a scalar potential that depends on the moduli fields. The hope is that new

classical field theory vacua of this scalar potential reflect new solutions to the true ten-

dimensional equations of motion. Finding these solutions concretely is a highly non-trivial

step, as it involves going away from the initial CY geometry.

The prime example of the application of flux-induced potentials are type IIB mod-

els with non-trivial Neveu-Schwarz-Neveu-Schwarz (NS-NS) and Ramond-Ramond (R-R)

three-form fluxes [4, 5]. In this case a no-scale potential involving only the complex struc-

ture moduli and the axio-dilaton is obtained. The Kähler moduli remain massless, but can

be lifted by subleading perturbative and non-perturbative effects. This is the idea behind

the KKLT [6] and LARGE volume scenario [7].

It is known that in order to stabilize also the Kähler moduli at tree-level, one needs

to consider additional non-geometric fluxes [8, 9]. For the toroidal case this has been

investigated in [10–15] and for generic Calabi-Yau manifolds in [16–22], among others. In

particular, it has been shown that the generalized flux-induced scalar potential can be

related to the scalar potential of N = 2 gauged supergravity [23]. Lately, this kind of flux

vacua have been investigated from a string phenomenological point of view, with special

emphasis on realizing F-term axion monodromy inflation [24].

From the higher dimensional point of view, it has been argued that non-geometric

aspects of string theory can be captured by double field theory (DFT) [25–29]; for reviews

see [30–32]. DFT provides a self-consistent framework that features new symmetries such

as generalized diffeomorphisms and a manifest global O(D,D) symmetry that close upon

invoking the so-called strong constraint. In particular, though derived from string field

theory on a torus, DFT is claimed to be background independent. See also [33, 34] for the

derivation of a DFT action resulting from string field theory on WZW models.

There exist two formulations of the DFT action, which differ by terms that are either

total derivatives or vanish due to the strong constraint. For our purposes it is convenient

to use the so-called flux formulation of the DFT action in the form presented in [35]. This

is motivated by the scalar potential in gauged supergravity which, as shown in [36], is also

related to the early work of W. Siegel [25, 26].

It has been shown that compactifying or Scherk-Schwarz reducing DFT on a toroidal

background equipped with constant geometric and non-geometric fluxes gives the scalar

potential of half-maximal gauged supergravity in four dimensions [37–39]. The relation

of DFT to the scalar potential of N = 2 gauged supergravity has however not explicitly

been clarified. Clearly, the expectation is that dimensionally reducing DFT on a genuine

Calabi-Yau manifold carrying constant geometric and non-geometric fluxes should give

the scalar potential of N = 2 gauged supergravity. It is the purpose of this paper to

fill this gap and explicitly show how the dimensional reduction of DFT can be performed

in order to match N = 2 gauged supergravity results. This can be considered as the

generalization of the computation first performed in [4], where the dimensional reduction

of the kinetic terms of the NS-NS and R-R type IIB three-form on a (non-toroidal) CY
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three-fold gives the no-scale scalar potential described in supergravity language by the

tree-level Kähler potential for the complex structure/axio-dilaton moduli and the Gukov-

Vafa-Witten (GVW) superpotential [40].

The main technical problem is that the action of DFT contains the metric on the CY

three-fold, which is not explicitly known. Therefore, one first has to appropriately rewrite

the DFT action so that only quantities appear that can be treated without knowing the

metric explicitly. For instance, for the simple H-flux case we can write

⋆L = −e−2φ

2
d10x

√
−GHijk Hi′j′k′ g

ii′gjj
′

gkk
′

= −e−2φ

2
H ∧ ⋆H , (1.1)

but DFT contains many more terms that are not of this simple type. To perform the

dimensional reduction, it is most appropriate to start with the DFT action in the flux

formulation. This action essentially contains the kinetic terms of the various geometric

and non-geometric fluxes. We will treat the background fluxes as constant parameters that

are only subject to their Bianchi identities, which are quadratic constraints for the constant

fluxes. The indices for these fluxes are contracted using the constant O(D,D) metric or

the generalized metric. The latter contains the background CY metric, hence depending

on the complex structure and complexified Kähler moduli. The CY metric is assumed to

only depend on the usual coordinates.1

This paper is organized as follows: in section 2 we provide a brief review of the main

aspects of DFT that are relevant for this paper. As mentioned, we focus on the DFT action

in the flux formulation. In section 3, following a step by step procedure, we rewrite the

action compactified on a CY in terms of quantities that only contain operations like wedge

products, the Hodge-star map and actions of fluxes on p-forms. The main result is the

generalization of (1.1). We find that all NS-NS terms appearing in the DFT action can be

rewritten as

⋆LNSNS = −e−2φ

[

1

2
χ ∧ ⋆χ +

1

2
Ψ ∧ ⋆Ψ

−1

4

(

Ω ∧ χ
)

∧ ⋆
(

Ω ∧ χ
)

− 1

4

(

Ω ∧ χ
)

∧ ⋆
(

Ω ∧ χ
)

]

,

(1.2)

where χ = DeiJ and Ψ = DΩ. Here D denotes a twisted differential that involves all

geometric and non-geometric fluxes, and J and Ω are the Kähler and holomorphic three-

form of the CY. In section 4, this action is evaluated after introducing the fluxes on the

internal CY manifold as in [16, 18]. We show that the resulting scalar potential takes the

same form as the one in [23], which was shown there to be equivalent to the N = 2 gauged

supergravity result. In section 5, we perform an orientifold projection of type IIB with

O7-/O3-planes and show that the scalar potential derived from (1.2) in general is a sum

of three terms

V = VF + VD + VNS-tad , (1.3)

1The same procedure to carry out the dimensional reduction/oxidation of DFT compactified on a torus

(orbifold) background was employed in [41, 42].
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where VF is the F-term scalar potential derived from the tree-level Kähler potential and

the generalized flux-induced GVW superpotential. VD is a D-term potential related to

the abelian gauge fields arising from the dimensional reduction of the R-R four-form on

orientifold even three-cycles of the Calabi-Yau. The last term is the flux induced NS-NS

tadpole contribution that will be cancelled by localized sources upon invoking R-R tadpole

cancellation. We remark that VF is the scalar potential used in the string phenomenological

studies of [19, 20, 24].

2 Review of double field theory

In this section, we briefly review the salient features of DFT important for our subsequent

discussion. For a more detailed introduction we would like to refer to the reviews [30–32].

2.1 Basics of DFT

Double Field Theory is defined on a space with a doubled number of dimensions, where in

addition to the standard coordinates xi one introduces winding coordinates x̃i. The two

types of coordinates can be arranged into a doubled vector of the form XI = (x̃i, x
i), with

i = 1, . . . , D. One also introduces an O(D,D)-invariant metric as

ηIJ =

(

0 δij
δi

j 0

)

, (2.1)

and combines the dynamical metric and Kalb-Ramond field Gij and Bij into the generalized

metric

HIJ =

(

Gij −GikBkj

BikG
kj Gij −BikG

klBlj

)

. (2.2)

For these matrices a coordinates basis with indices I, J, . . . has been chosen, however, one

can also employ a non-holonomic frame

HIJ = EA
I SAB EB

J , (2.3)

distinguished by indices A,B, . . . from the beginning of the alphabet. The diagonal matrix

SAB is given by

SAB =

(

sab 0

0 sab

)

, (2.4)

and sab denotes the flat D-dimensional Minkowski metric, which is related to the curved

metric as Gij = eaisabe
b
j . For the parametrization of the generalized metric shown in (2.2),

one can then find that

EA
I =

(

ea
i −ea

kBki

0 eai

)

. (2.5)
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An action for DFT is determined by invoking symmetries: first, one requires the

action to be invariant under local diffeomorphisms of the doubled coordinates XI , that is

(x̃i, x
i) → (x̃i+ ξ̃i(X), xi+ξi(X)). Second, the action should be invariant under a global (or

rigid) O(D,D) symmetry. It has been realized that for manifest O(D,D) invariance and

for closure of the algebra of infinitesimal diffeomorphisms, one has to impose the so-called

strong constraint

∂iA ∂̃iB + ∂̃iA∂iB = 0 , (2.6)

where ∂̃i denotes the derivative with respect to the winding coordinate x̃i. There exist two

formulations of a DFT action, which differ by terms that are either total derivatives or are

vanishing due to the strong constraint (2.6). For our purposes it is convenient to use the

so-called flux formulation of DFT, which we review in the following.

2.2 The flux formulation of DFT

The flux formulation of DFT has been developed in [37–39] and is, as has been shown

in [36], related to earlier work of Siegel [25, 26]. In a frame with flat indices, the action in

the NS-NS sector is given by

SNSNS =
1

2κ210

∫

dDX e−2d

[

FABCFA′B′C′

(

1

4
SAA′

ηBB′

ηCC′ − 1

12
SAA′

SBB′

SCC′ − 1

6
ηAA′

ηBB′

ηCC′

)

+ FAFA′

(

ηAA′ − SAA′

)

]

, (2.7)

where we used dDX = dDx ∧ dDx̃. The definition of e−2d contains the dilaton φ and the

determinant of the metric Gij , and reads exp(−2d) =
√
−G exp(−2φ). Throughout most

parts of the upcoming computation we set 2κ210 = 1 and only introduce mass scales Ms or

MPl when necessary. The FA are expressed as

FA = ΩB
BA + 2EA

I∂Id , (2.8)

with the generalized Weitzenböck connection

ΩABC = EA
I(∂IEB

J)ECJ . (2.9)

The three-index object FABC is the anti-symmetrization of ΩABC , that is
2

FABC = 3Ω[ABC] . (2.10)

The Ramond-Ramond sector of DFT has been analyzed in [43–47]. We note that the

fields transform in the spinor representation of O(10, 10) so that one can expand

G =
∑

n

1

n!
G

(n)
i1...in

ea1
i1 . . . ean

in Γa1...an |0〉 , (2.11)

2Our convention is that the anti-symmetrization of n indices contains a factor of 1/n!.
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where Γa1...an defines the totally anti-symmetrized product of n Γ-matrices. Similarly, we

combine the R-R gauge potentials C(2n) into a spinor C̃. Then, as shown in [38], one can

define the R-R field strengths as

G =��∇C̃ , (2.12)

with the generalized fluxed Dirac operator given by

��∇ = ΓADA − 1

3
ΓAFA − 1

6
ΓABCFABC . (2.13)

For type IIB on a CY, the only relevant R-R form is the three-form field strength, whose

action is

SRR =
1

2κ210

∫

dDX

[

− 1

12
SAA′

SBB′

SCC′ GABC GA′B′C′

]

. (2.14)

2.3 Compactification

Taking the point of view that DFT is not only defined on a toroidal background, our

aim in this paper is to study compactifications of the DFT action on Calabi-Yau three-

folds. In particular, we are interested in the resulting scalar potential for the moduli of the

Calabi-Yau that is generated by background fluxes. The fluxes FABC and FA are treated

as small deviations from the Calabi-Yau background. In terms of the vielbeins (2.5), this

requirement can be expressed as follows

EA
I = E̊A

I + E
A
I +O

(

E
2
)

, E
A
I ≪ 1 , (2.15)

where E̊A
I describes the Calabi-Yau background and E

A
I encodes the fluxes. Using this

expansion in (2.9), for (2.8) and (2.10) we obtain up to first order in E

FABC = F̊ABC + FABC +O
(

E
2
)

, FA = F̊A + FA +O
(

E
2
)

. (2.16)

Note that F̊ABC and F̊A are computed using only the Calabi-Yau generalized vielbein E̊A
I .

Since E̊A
I satisfies the DFT equations of motion, these fluxes do not generate a scalar

potential for the moduli of the CY and will be neglected. We consider the action (2.7)

up to second order in the deviations EA
I . Since FABC and FA start at linear order in

E, it follows that all other quantities appearing in the action are those of the Calabi-Yau

background.

In order to define the starting point of our investigation, let us specify the setting

considered in this paper:

• We limit our discussion to the internal Calabi-Yau part, and ignore the remaining

directions. The exterior derivative d is understood to only contain derivatives with

respect to the internal coordinates, and similarly for the Hodge-star operator ⋆.

• For the underlying Calabi-Yau background we impose the strong constraint. In par-

ticular, the metric of the Calabi-Yau three-fold is denoted by gij and only depends
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on the usual coordinates xi. It appears in (2.5) via the vielbeins ea
i and is in gen-

eral not known for the Calabi-Yau manifold. However, its complex-structure and

Kähler deformations are well understood. Similarly, the B-field of the background

only depends on coordinates xi, and furthermore satisfies dB = 0 on the Calabi-Yau

manifold.

• For a Calabi-Yau three-fold there are no non-trivial homological one-cycles, and hence

non-trivial fluxes with one index cannot be supported on the CY. For the internal

part of the action (2.7) we can therefore set

FA = 0 . (2.17)

• The term FABCFA′B′C′ηAA′

ηBB′

ηCC′

vanishes via Bianchi identities. This will be

discussed in section 3.1 below.

• Analogously to Scherk-Schwarz reductions, we consider constant expectation values

for the fluxes FIJK = E̊A
IE̊

B
J E̊

C
KFABC along the Calabi-Yau three-fold. These

are related to the geometricH- and F -flux, and to the non-geometric Q- and R-flux as

F ijk = Hijk , F i
jk = F i

jk , F i
jk = Qi

jk , F ijk
= Rijk . (2.18)

Again, in analogy to Scherk-Schwarz reductions, for these background fluxes we do

not impose the strong constraint, but only the quadratic constraints given by the

Bianchi identities, which can be found in equation (3.4).

In the setting explained above, the relevant part of the DFT Lagrangian (2.7) in the NS-NS

sector (restricted to a Calabi-Yau three-fold) reduces to [41]

LNSNS = e−2φFIJKFI′J ′K′

(

1

4
HII′ηJJ

′

ηKK′ − 1

12
HII′HJJ ′HKK′

)

+ . . . (2.19)

Note that the generalized metric H and the dilaton φ are that of the Calabi-Yau back-

ground, which only depends on the usual coordinates xi. As it will be shown in the

remainder of this paper, upon dimensional reduction, it is precisely this part of the DFT

action that can be identified with the scalar potential of a gauged supergravity theory. We

emphasize that the computations to be performed go through once the quadratic Bianchi

identities for the fluxes are imposed. Requiring stronger conditions, such as the strong

constraint, only eliminates some of these fluxes.

As explicitly shown in [41], the action (2.19) can be further expanded, for which it

turns out to be convenient to introduce the following combinations of fluxes

Hijk = Hijk + 3Fm
[ij Bmk] + 3Q[i

mnBmjBnk] +RmnpBm[iBnjBpk] ,

Fi
jk = F i

jk + 2Q[j
miBmk] +RmniBm[jBnk] ,

Qk
ij = Qk

ij +RmijBmk ,

Rijk = Rijk .

(2.20)
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Let us emphasize that for these fluxes Bianchi identities similar to (3.4) have to be satisfied,

which can be checked by explicit computation. We come back to this question below. For

the term in (2.19) containing three factors of the metric, we then find

L1 = −e−2φ

12

(

HijkHi′j′k′g
ii′gjj

′

gkk
′

+ 3Fi
jkF

i′
j′k′gii′g

jj′gkk
′

+ 3Qi
jkQi′

j′k′gii
′

gjj′gkk′

+RijkRi′j′k′gii′gjj′gkk′

)

,

(2.21)

whereas for the term in (2.19) with a single factor of the metric we have

L2 = −e−2φ

2

(

Fm
niF

n
mi′g

ii′ +Qm
niQn

mi′gii′ − HmniQi′
mngii

′ − Fi
mnR

mni′gii′

)

. (2.22)

For the R-R sector of type IIB DFT we can perform a similar analysis. We introduce a

three-form in the following way

Gijk = F
(3)
ijk − HijkC

(0) − 3Fm
[ijC

(2)
|m|k] +

3

2
Q[i

mnC
(4)
jk]mn +

1

6
RmnpC

(6)
mnpijk, (2.23)

where F (3) denotes the background three-form flux in the R-R sector. Up to second order

in the fluxes, the Lagrangian (2.14) can then be expressed as

LRR = − 1

12
Gijk Gi′j′k′ g

ii′ gjj
′

gkk
′

. (2.24)

Note that again the metric appearing in (2.24) is that of the Calabi-Yau background.

3 DFT action on a Calabi-Yau manifold

As we discussed above, in the DFT actions (2.7) and (2.14) the metric gij appears explicitly.

Since the metric of a Calabi-Yau three-fold is in general not known, a dimensional reduction

is not straightforward. However, by rewriting the various terms and expressing them via

known objects, the problem becomes tractable. In the following, we explain this approach

in simple cases with only one type of flux turned on, and later give the general result.

3.1 Fluxes as operators

For our subsequent discussion, it will turn out to be convenient to interpret the geometric

H- and F -flux, as well as the non-geometric Q- and R-flux, as operators acting on p-forms.

In particular, we have [10–12]

H ∧ : p-form → (p+ 3)-form ,

F ◦ : p-form → (p+ 1)-form ,

Q • : p-form → (p− 1)-form ,

R x: p-form → (p− 3)-form .

(3.1)

– 8 –



J
H
E
P
1
2
(
2
0
1
5
)
1
2
2

Employing a local basis {dxi} and the contraction ιi satisfying ιidx
j = δji , this mapping

can be implemented by

H ∧ =
1

3!
Hijkdx

i ∧ dxj ∧ dxk ,

F ◦ =
1

2!
F k

ijdx
i ∧ dxj ∧ ιk ,

Q • =
1

2!
Qi

jkdxi ∧ ιj ∧ ιk ,

R x =
1

3!
Rijkιi ∧ ιj ∧ ιk .

(3.2)

Note that our convention for a p-form η is such that η = 1
p! ηi1...ipdx

i1 ∧ . . . ∧ dxip . Fur-

thermore, the above fluxes can be combined with the exterior derivative d into a so-called

twisted differential D

D = d−H ∧ −F ◦ −Q • −R x . (3.3)

Requiring this operator to be nilpotent, in particular that D2 = 0, leads to a set of con-

straints on the fluxes (2.18). These constraints correspond to Bianchi identities, and take

the form

0 = Hm[abF
m

cd] ,

0 = Fm
[bc F

d
a]m +Hm[abQc]

md ,

0 = Fm
[ab]Qm

[cd] − 4F [c
m[aQb]

d]m +HmabR
mcd ,

0 = Qm
[bcQd

a]m +Rm[ab F c]
md ,

0 = Rm[abQm
cd] ,

0 = Rmn[aF b]
mn ,

0 = RamnHbmn − F a
mnQb

mn ,

0 = Q[a
mnHb]mn ,

0 = RmnlHmnl .

(3.4)

We will further impose

F i
ij = 0 , Qi

ij = 0 , (3.5)

which are standard in the literature [8, 9]. Moreover, on a CY three-fold there are no

homologically non-trivial one- and five-cycles, so that it is justified to require that all

combinations leaving effectively one free-index are trivial. The five first identities in the

upper block were originally obtained both by T-duality and from Jacobi identities of a

flux algebra [8, 9]. By virtue of (3.5) the three identities in the second block follow by

taking appropriate index contractions in the middle identities of the upper block. We
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are then left with the last identity RmnlHmnl = 0, which in turn implies F l
mnQl

mn = 0.

Similar results have been reported in [22]. Let us emphasize that these two identities imply

that FABCFA′B′C′ηAA′

ηBB′

ηCC′

= 0. Furthermore, we note that in orientifold theories

RmnlHmnl = 0 is automatically satisfied, as H and R are of opposite parity with respect

to the Z2 orientifold projection ΩP(−1)FL . This will be discussed below.

3.2 Lessons from one type of flux

Let us now consider situations with vanishing B-field, and only one type of non-trivial flux

on the Calabi-Yau manifold. More involved cases are discussed in the subsequent sections.

Pure H-flux. We begin by turning on only H-flux in the Lagrangians (2.21) and (2.22).

For the NS-NS sector LNSNS = L1 + L2 we obtain

⋆ LNSNS = −e−2φ

12
HijkHi′j′k′ g

ii′gjj
′

gkk
′

⋆ 1 = −e−2φ

2
H ∧ ⋆H , (3.6)

where ⋆1 =
√
g d6x is a convenient way to write the six-dimensional volume form of the

Calabi-Yau manifold. Let us note that the Hodge-star operator for a three-form on a

Calabi-Yau three-fold can be evaluated using special geometry, for which the explicit form

of the metric is not needed. For the next case we follow a similar strategy.

Pure F -flux. We now turn to a more complicated situation and consider pure F -flux in

the case of vanishing B-field. The Lagrangians in the NS-NS sector (2.21) and (2.22) then

take the form

LNSNS = −e−2φ

4

(

F i
jk F

i′
j′k′ gii′g

jj′gkk
′

+ 2Fm
ni F

n
mi′ g

ii′
)

. (3.7)

Part 1. For the first term, we define a three-form Ξ3 = −DJ = F ◦ J , where J denotes

the Kähler form of the Calabi-Yau three-fold. Using our conventions (3.2), we determine

the components of Ξ3 as

Ξijk = Fm
ij Jmk + cyclic . (3.8)

We then consider the analogue of the kinetic term for the H-flux and compute

1

2
Ξ3 ∧ ⋆Ξ3 =

[

1

4
Fm

ijF
m′

i′j′ gmm′ gii
′

gjj
′ − 1

2
Fm

ijF
m′

i′j′ I
j′
m Ijm′ gii

′

]

⋆ 1 , (3.9)

where Ii
j = Jimgmj is the complex structure of the Calabi-Yau three-fold, which satisfies

Ii
mIm

j = −δi
j . Note that the first term in (3.9) agrees with the first term in (3.7). For

the second term in (3.9) we switch to a complex coordinate basis and compute

−1

2
Fm

ijF
m′

i′j′ I
j′
m Ijm′ gii

′

=
(

F c
abF

b
ac + F c

abF
b
ac − F c

abF
b
ac − F c

abF
b
ac

)

gaa .

(3.10)

Next, we note that using the second Bianchi identity in (3.4) (for vanishing H- and Q-flux)

as F k
ab F

b
ak + cyclic = 0, we can show that

gaaF c
ab F

b
ac = gaaF c

ab F
b
ac . (3.11)
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We use this relation in (3.10) and obtain

−1

2
Fm

ijF
m′

i′j′ I
j′
m Ijm′ gii

′

=
(

F c
abF

b
ac + F c

abF
b
ac − 2F c

abF
b
ac

)

gaa . (3.12)

Part 2. Equation (3.9) together with (3.12) only partially reproduce the Lagrangian (3.7).

Let us therefore consider a second term given by Ξ6 = Ω ∧ Ξ3 = −Ω ∧ (DJ), where Ω is

the holomorphic three-form of a Calabi-Yau three-fold. In components, Ξ6 reads

Ξijklmn = 20Ω[ijk Ξlmn] , (3.13)

and the corresponding kinetic term can be evaluated using the relations shown in ap-

pendix A.1. After a somewhat tedious but straightforward computation, we find

−1

2
Ξ6 ∧ ⋆Ξ6 = −2

[

F c
abF

c
abgccg

aagbb − 2F c
abF

b
acg

aa
]

⋆ 1 . (3.14)

Part 3. One of the terms in (3.14) has the required form to complete the matching with

the Lagrangian (3.7). However, also an additional term was generated. In order to cancel

this new term, we consider Ξ4 = −DΩ = F ◦ Ω. Note that Ξ4 is a (2, 2)-form, since there

are no cohomological (3, 1)-forms on a Calabi-Yau three-fold. In components, we find

Ξijkl = 6Ω[ijm Fm
kl] , (3.15)

and the kinetic term can again be evaluated using the identities given in appendix A.1. In

particular, we have

1

2
Ξ4 ∧ ⋆Ξ4 = 2F c

ab F
c
ab gcc g

aa gbb ⋆ 1 . (3.16)

Combining the individual terms. We can now combine equation (3.9) and (3.12),

together with (3.14) and (3.16). Since the prefactors have been chosen in an appropriate

way, with the help of the Bianchi identity (3.11) we obtain

⋆LNSNS = −e−2φ

[

1

2
Ξ3 ∧ ⋆Ξ3 +

1

2
Ξ4 ∧ ⋆Ξ4 −

1

2
Ξ6 ∧ ⋆Ξ6

]

. (3.17)

Substituting the definitions for Ξ3, Ξ4 and Ξ6 given above, we arrive at

⋆LNSNS = −e−2φ

[

1

2
(F ◦ J) ∧ ⋆(F ◦ J) + 1

2
(F ◦ Ω) ∧ ⋆(F ◦ Ω)

− 1

2
(Ω ∧ F ◦ J) ∧ ⋆(Ω ∧ F ◦ J)

]

.

(3.18)

Let us emphasize that this expression does not contain the metric of the Calabi-Yau man-

ifold explicitly but depends only on J and Ω. It can therefore be evaluated using special

geometry. We will come back to this point in section 4.
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Pure Q-flux. The case of pure Q-flux is similar to the situation with pure F -flux. We do

not present a detailed derivation here, but only want to mention one important technical

step in the computation. In particular, since there are no one-forms on a Calabi-Yau

manifold, we have Q • J = 0 (in cohomology). This implies that

(

Q • 1

2
J2

)

ijk

= Qi
mnJjmJkn + cyclic . (3.19)

With all other fluxes set to zero the only Bianchi identity in (3.4) that survives is Qm
[ij

·Qk
l]m = 0. In a complex basis it implies in particular

gaaQ
ac
b

Qc
ab = gaaQ

ac
b Qc

ab . (3.20)

Using this identity, the relation (3.19), as well as properties shown in appendix A.1, we

then obtain

⋆LNSNS = −e−2φ

[

1

2

(

Q • 1

2
J2

)

∧ ⋆

(

Q • 1

2
J2

)

+
1

2
(Q • Ω) ∧ ⋆

(

Q • Ω
)

−1

2

(

Ω ∧Q • 1

2
J2

)

∧ ⋆

(

Ω ∧Q • 1

2
J2

)]

.

(3.21)

Note that this expression is completely analogous to the pure F -flux result (3.18).

Pure R-flux. Finally, we analyze the case of pure R-flux. To do so, we first note that

the volume form of a Calabi-Yau three-fold can be expressed using the Kähler form J as

√
g d6x =

1

6!
ǫi1...i6 dx

i1 ∧ . . . ∧ dxi6 =
1

3!
J3 , (3.22)

where ǫi1...i6 is the totally anti-symmetric tensor with ǫ123456 =
√
g. Recalling the definition

of R x shown in (3.2), we can compute

R x

(

1

3!
J3

)

= − 1

3! 3!
Rijk ǫijkpqrdx

p ∧ dxq ∧ dxr . (3.23)

Next, with the relation ǫm1m2m3i1i2i3ǫm1m2m3j1j2j3 = 3! 3! δ
[i1
j1

δ
i2
j2
δ
i3]
j3

(valid for a manifold

with Euclidean signature), we compute

R x

(

1

3!
J3

)

∧ ⋆R x

(

1

3!
J3

)

=
1

3!
RijkRi′j′k′ gii′gjj′gkk′ ⋆ 1 . (3.24)

For the Lagrangians (2.21) and (2.22) we therefore obtain

⋆LNSNS = −e−2φ

2
R x

(

1

3!
J3

)

∧ ⋆R x

(

1

3!
J3

)

. (3.25)

For future use we also note the following relation, which can be verified using for instance

equation (A.1):

(R xΩ) ∧ ⋆
(

R xΩ
)

−
(

Ω ∧R x

1

3!
J3

)

∧ ⋆

(

Ω ∧R x

1

3!
J3

)

= 0 . (3.26)
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3.3 General result

In the last section we have shown how the DFT Lagrangians (2.21) and (2.22) can be

rewritten, such that only the Kähler form J and the holomorphic three-form Ω appear

explicitly. We assumed a vanishing B-field, and have considered only one type of flux

being present. In this section, we now allow for all types of fluxes H, F , Q and R being

present simultaneously (subject to Bianchi identities).

Motivated by our previous results, summarized in equations (3.6), (3.18), (3.21), (3.25)

and (3.26), we define the three-form

χ = −H − F ◦ (iJ)−Q •
(

(iJ)2

2!

)

−R x

(

(iJ)3

3!

)

. (3.27)

Noting then that the Kähler form J is closed under d, we can write

χ = D
(

eiJ
)

. (3.28)

Similarly, recalling that the holomorphic three-form is d-closed, we define a multi-form of

even degree as

Ψ = −H ∧ Ω− F ◦ Ω−Q • Ω−R xΩ = DΩ . (3.29)

We now propose the following form of the DFT Lagrangian in the NS-NS sector on a

Calabi-Yau three-fold with vanishing B-field

⋆LNSNS = −e−2φ

[

1

2
χ ∧ ⋆χ +

1

2
Ψ ∧ ⋆Ψ

− 1

4

(

Ω ∧ χ
)

∧ ⋆
(

Ω ∧ χ
)

− 1

4

(

Ω ∧ χ
)

∧ ⋆
(

Ω ∧ χ
)

]

.

(3.30)

In appendix B, we show that this Lagrangian indeed corresponds to the full La-

grangian (2.19) (for vanishing B-field).

3.4 Including the B-field

Let us now include a non-vanishing B-field, which however satisfies dB = 0 on the Calabi-

Yau manifold. The computations are completely analogous to section 3.2, provided we

substitute

H → H , F → F , Q → Q , R → R , (3.31)

where the flux orbits have been defined in (2.20). This implies that the Lagrangian (3.30)

is the correct expression even with B-field, but with the twisted differential D in (3.28)

and (3.29) replaced by

D → D = d− H ∧ −F ◦ −Q • −R x . (3.32)
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Next, we note that using the (local) form of the flux operators (3.2), we can check that D

can be expressed in terms of D as

D = e−BD eB − 1

2

(

Qi
mnBmndx

i +RimnBmn ιi

)

. (3.33)

On a Calabi-Yau manifold, the last two terms may be locally defined, but not globally. This

is due to the absence of non-trivial one-forms (in cohomology), and therefore we can discard

them in the following. However, in general these terms combine with the fluxes (2.8) into

new flux orbits, analogous to (2.20).

Employing then the relation (3.33) on a Calabi-Yau manifold, we can conclude that

the rewritten Lagrangian for non-vanishing B-field is also given by (3.30), that is

⋆LNSNS = −e−2φ

[

1

2
χ ∧ ⋆χ +

1

2
Ψ ∧ ⋆Ψ

− 1

4

(

Ω ∧ χ
)

∧ ⋆
(

Ω ∧ χ
)

− 1

4

(

Ω ∧ χ
)

∧ ⋆
(

Ω ∧ χ
)

]

,

(3.34)

together with

χ = −H− F ◦ (iJ)−Q •
(

(iJ) ∧ (iJ)

2

)

−Rx

(

(iJ) ∧ (iJ) ∧ (iJ)

6

)

= DeiJ

= e−BD
(

eB+iJ
)

,

(3.35)

and

Ψ = −H ∧ Ω− F ◦ Ω−Q • Ω−RxΩ

= DΩ

= e−B D
(

eB Ω
)

.

(3.36)

3.5 The Ramond-Ramond sector

The R-R sector (2.24) of the DFT action is much simpler to rewrite. Let us first introduce

an even multi-form of R-R potentials C(2n) as

C = C(0) + C(2) + C(4) + C(6) + C(8) + C(10) . (3.37)

The individual components are not all independent, but are subject to duality relations.

Furthermore, our convention is that the forms C(2n) are closed on the Calabi-Yau three-

fold, and the only non-vanishing flux is F (3), corresponding to the R-R two-form. With

the help of the operators (3.2), we can express the flux shown in (2.23) as

G = F (3) − H ∧ C(0) − F ◦ C(2) −Q • C(4) −R xC(6)

= F (3) +D C
= F (3) + e−B D

(

eB C
)

.

(3.38)

The DFT action in the Ramond-Ramond sector (2.24) can then be written as

⋆LRR = −1

2
G ∧ ⋆G . (3.39)
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4 Relation to N = 2 gauged supergravity

In this section, we evaluate the DFT actions (3.34) and (3.39) on a Calabi-Yau three-

fold. We show that the resulting scalar potential in four dimensions is that of N = 2

gauged supergravity. As we have emphasized before, the rewritten DFT actions (3.34)

and (3.39) no longer depend on the metric explicitly, but only on the Kähler form J and

the holomorphic three-form Ω. We can therefore employ special geometry to carry out the

dimensional reduction.

4.1 Generalities

Let us first introduce some notation, and recall relations in special geometry. For more

details and derivations, we would like to refer the reader for instance to [48].

Odd cohomology. In the following, we consider a Calabi-Yau three-fold X , and denote

a symplectic basis for the third cohomology by

{αΛ, β
Λ} ∈ H3(X ) , Λ = 0, . . . , h2,1 . (4.1)

This basis can be chosen such that the only non-vanishing pairings satisfy
∫

X
αΛ ∧ βΣ = δΛ

Σ . (4.2)

The holomorphic three-form Ω can be expanded in the basis (4.1) as

Ω = XΛ αΛ − FΛ βΛ, (4.3)

where the periods XΛ and FΛ are functions of the complex-structure moduli Um, with

i = m, . . . , h2,1. The periods FΛ can be determined from a holomorphic prepotential F as

FΛ = ∂F/∂XΛ, and using FΛΣ = ∂FΛ/∂X
Σ we define the so-called period matrix as

NΛΣ = FΛΣ + 2i
Im(FΛΓ)X

Γ Im(FΣ∆)X
∆

XΓ Im(FΓ∆)X∆
. (4.4)

This matrix can be used to determine
∫

X
αΛ ∧ ⋆αΣ = − (ImN )ΛΣ −

[

(ReN ) (ImN )−1 (ReN )
]

ΛΣ
,

∫

X
αΛ ∧ ⋆βΣ = −

[

(ReN ) (ImN )−1
] Σ

Λ
,

∫

X
βΛ ∧ ⋆βΣ = −

[

(ImN )−1
]ΛΣ

.

(4.5)

For later convenience, we also define

M1 =

(

1 ReN
0 1

)(

−ImN 0

0 −ImN−1

)(

1 0

ReN 1

)

=

∫

X

(

αΛ ∧ ⋆αΣ αΛ ∧ ⋆βΣ

βΛ ∧ ⋆αΣ βΛ ∧ ⋆βΣ

)

.

(4.6)
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Even cohomology. For the (1, 1)- and (2, 2)-cohomology of X we introduce bases of

the form
{ωA} ∈ H1,1(X ) ,

{σA} ∈ H2,2(X ) ,
A = 1, . . . , h1,1 . (4.7)

For later convenience, we can group these two- and four-forms together with the zero- and

six-form of the Calabi-Yau three-fold. In particular, we write

{ωA} =

{√
g

V dx6, ωA

}

,

{σA} =
{

1, σA
}

,

A = 0, . . . , h1,1 , (4.8)

where V =
∫

X

√
gd6x is the volume of the Calabi-Yau three-fold X . These two bases can

be chosen such that
∫

X
ωA ∧ σB = δA

B . (4.9)

The triple intersection numbers corresponding to the bases (4.7) are given by

κABC =

∫

X
ωA ∧ ωB ∧ ωC . (4.10)

The Kähler form J of the Calabi-Yau three-fold X and the Kalb-Ramond field B are

expanded in the basis {ωA} in the following way

J = tAωA , B = bAωA , (4.11)

which can be combined into a complex field J as

J = B + iJ =
(

bA + itA
)

ωA = J AωA . (4.12)

B-twisted Hodge-star operator and Mukai pairings. For later convenience, let us

define the so-called Mukai pairing between forms ρ and ν. It is given by

〈ρ, ν〉 =
[

ρ ∧ λ(ν)
]

top
, (4.13)

where the projection operator λ acts on 2n-forms as λ(ρ(2n)) = (−1)nρ(2n) and on (2n −
1)-forms as λ(ρ(2n−1)) = (−1)nρ(2n−1). Furthermore, we define a B-twisted Hodge-star

operator acting on forms ρ as [17, 21, 49]

⋆B ρ = e+B ∧ ⋆ λ
(

e−Bρ
)

. (4.14)

For three-forms αΛ, we then find for instance that

〈

αΛ, ⋆BαΣ

〉

=
(

αΛ ∧ e−B
)

∧ ⋆
(

αΣ ∧ e−B
)

, (4.15)
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and similarly for the others. Since for three-forms on a Calabi-Yau three-fold the factor

e−B gives no contribution, we can express the matrix (4.6) also in the following way

M1 = +

∫

X

(

〈αΛ, ⋆BαΣ〉 〈αΛ, ⋆B βΣ〉
〈βΛ, ⋆BαΣ〉 〈βΛ, ⋆B βΣ〉

)

. (4.16)

The analogue of in (4.16) for the even co-homology takes a very similar form. In particular,

we have

M2 = −
∫

X

(

〈ωA, ⋆BωB〉 〈ωA, ⋆B σB〉
〈σA, ⋆BωB〉 〈σA, ⋆B σB〉

)

, (4.17)

where for instance

〈

ωA, ⋆BωB

〉

= −
(

ωA ∧ e−B
)

∧ ⋆
(

ωB ∧ e−B
)

. (4.18)

Note that both M1 and M2 are positive definite matrices.

Fluxes. The action of fluxes on the cohomology in a local basis has been given in (3.2).

However, for a Calabi-Yau manifold this can be made more specific. Similarly to [18], we

define
DαΛ = qΛ

AωA + fΛAσ
A , DβΛ = q̃ΛAωA + f̃Λ

Aσ
A ,

DωA = −f̃Λ
AαΛ + fΛAβ

Λ , DσA = q̃ΛAαΛ − qΛ
AβΛ .

(4.19)

Here, fΛA and f̃Λ
A denote the geometric F -fluxes, while qΛ

A and q̃ΛA are the non-geometric

Q-fluxes. Furthermore, we use the following convention for the H- and R-flux

fΛ0 = rΛ , f̃Λ
0 = r̃Λ ,

qΛ
0 = hΛ , q̃Λ0 = h̃Λ .

(4.20)

Let us also note that the H-flux from section 3 is related to the flux parameters as H =

−h̃ΛαΛ + hΛβ
Λ. For later convenience, we also define a (2h2,1 + 2)× (2h1,1 + 2) matrix as

follows

O =

(

−f̃Λ
A q̃ΛA

fΛA −qΛ
A

)

. (4.21)

4.2 Evaluating the action

Next, we evaluate the action derived in the previous section for a Calabi-Yau three-fold.

The action for the NS-NS sector has been shown in (3.34), and for the R-R sector in

equation (3.39).

NS-NS sector — Part 1. We begin with the NS-NS sector, and focus on the three-form

χ defined in (3.35). First, we expand in the basis (4.7)

eB+iJ = eJ = 1 + J AωA +
1

2

[

κABCJ BJ C

]

σA +
1

6

[

κABCJ AJ BJ C

]

ω0 . (4.22)
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Using then the combined basis {ωA, σ
A}, we can define a complex (2h1,1 + 2)-dimensional

vector V1 in the following way

V1 =











1
6 κABCJ AJ BJC

J A

1
1
2 κABCJ BJ C











, (4.23)

and employing matrix multiplication we observe that (ωA σA) · V1 = eJ . Next, we note

that the last line in (4.19) can be expressed using (4.21) as

D
(

ωA

σA

)

= OT

(

αΛ

βΛ

)

. (4.24)

We then evaluate

χ = e−BD eJ = e−B
(

αΛ βΛ
)

· O · V1 , (4.25)

and together with the matrix M1 given in equation (4.16), we have
∫

X
χ ∧ ⋆χ = V T

1 · OT · M1 · O · V1 . (4.26)

NS-NS sector — Part 2. A very similar route can be followed for the even multi-form

Ψ defined in equation (3.36). We introduce a (2h2,1 + 2)-dimensional vector as

V2 =

(

XΛ

−FΛ

)

, (4.27)

and with the basis of three-forms given in (4.1) we can write

Ω =
(

αΛ βΛ
)

· V2 . (4.28)

Analogous to (4.24), we observe that using the matrix O defined in (4.21) we have

D
(

αΛ

βΛ

)

= −Õ
(

ωA

σA

)

, Õ = C · O · CT , (4.29)

where we introduced a matrix C defined as

C =

(

0 +1

−1 0

)

. (4.30)

As it will be clear from the context, the dimensions of this symplectic structure are either

(2h1,1 + 2)× (2h1,1 + 2) or (2h2,1 + 2)× (2h2,1 + 2). We then obtain

Ψ = e−B D
(

eB Ω
)

= −e−B
(

ωA σA
)

· ÕT · V2 , (4.31)

and with the help of (4.17) we evaluate
∫

X
Ψ ∧ ⋆Ψ = V T

2 · Õ ·M2 · ÕT · V 2 . (4.32)
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NS-NS sector — Part 3. Let us now consider the second line in the NS-NS ac-

tion (3.34). We first note that for two six-forms ρ1 and ρ2 and with V the volume of

the Calabi-Yau three-fold X the following relation holds

∫

X
ρ1 ∧ ⋆ρ2 =

1

V

∫

X
ρ1 ×

∫

X
ρ2 . (4.33)

Using (4.2) and the matrix C defined in (4.30), let us then determine for instance

∫

X
Ω ∧ χ = V T

2 · C · O · V1 . (4.34)

The various other combinations are obtained analogously, and we can combine these results

in the following way

∫

X

[

(

Ω ∧ χ
)

∧ ⋆
(

Ω ∧ χ
)

+
(

Ω ∧ χ
)

∧ ⋆
(

Ω ∧ χ
)

]

=
1

V V T
2 · C · O ·

(

V1 × V
T
1 + V 1 × V T

1

)

· OT · CT · V 2 .

(4.35)

R-R sector. We finally turn to the Ramond-Ramond sector. The corresponding rewrit-

ten action is shown in equation (3.39). We expand the R-R three-form flux F (3) in the

basis (4.1), and define a corresponding (2h2,1 + 2)-dimensional vector as

F (3) = −F̃
ΛαΛ + FΛβ

Λ ⇒ F
(3) =

(

−F̃
Λ

FΛ

)

. (4.36)

For the B-twisted R-R potentials, we expand the relevant contributions in the basis of even

forms (4.8) as

eB C = C
(0) + C

(2)AωA + C
(4)

Aσ
A + C

(6)ω0 , (4.37)

which defines a (2h1,1 + 2)-dimensional vector C

C =















C
(6)

C
(2)A

C
(0)

C
(4)

A















. (4.38)

For the three-form flux given in equation (3.38), we recall (4.24) and determine

G =
(

αΛ βΛ
)

· (F+O · C) . (4.39)

Employing finally the matrix M1 given in (4.6), we arrive at

∫

X
G ∧ ⋆G =

(

F
T + C

T · OT
)

· M1 · (F+O · C) . (4.40)
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Final result. We can now combine the above results and obtain the scalar potential

originating from evaluating the DFT actions (3.34) and (3.39) on a Calabi-Yau three-fold.

Including the appropriate pre-factors, we find from the above expressions

V =
1

2

(

F
T + C

T · OT
)

· M1 · (F+O · C)

+
e−2φ

2
V T
1 · OT · M1 · O · V1

+
e−2φ

2
V T
2 · Õ ·M2 · ÕT · V 2

− e−2φ

4V V T
2 · C · O ·

(

V1 × V
T
1 + V 1 × V T

1

)

· OT · CT · V 2 .

(4.41)

This scalar potential can be brought into the form given in equation (9) in [23] (see also [52]),

which was shown to agree with the scalar potential of N = 2 gauged supergravity. To see

that, we first rescale V1,2 →
√
8V V1,2 and note that the potential (4.41) is multiplied by

M4
s , where M4

Pl = M4
s V2 e−4φ. Introducing then Φ = 1

2 e
−2φV , we can write (4.41) as

V → V ′ =
M4

Pl

8Φ2

(

F
T + C

T · OT
)

· M1 · (F+O · C)

+
2M4

Pl

Φ
V T
1 · OT · M1 · O · V1

+
2M4

Pl

Φ
V T
2 · Õ ·M2 · ÕT · V 2

− 8M4
Pl

Φ
V T
2 · C · O ·

(

V1 × V
T
1 + V 1 × V T

1

)

· OT · CT · V 2 .

(4.42)

Thus, we have succeeded in relating DFT on Calabi-Yau three-folds to the scalar potential

of N = 2 gauged supergravity. This is a quite satisfying result in that DFT not only

provides the higher dimensional origin of N = 4, but also of N = 2 gauged supergravity.

5 Relation to type IIB orientifolds

In this section, we show how the scalar potential (4.41) can be expressed within the N = 1

supergravity framework. Since in section 4 the four-dimensional theory preserved N = 2

supersymmetry, we therefore perform an orientifold projection. We choose this projection

such that it leads to orientifold three- and seven-planes. Related computations have ap-

peared for instance in [16–18, 23]. For completeness, here we present the full derivation of

the scalar F- and D-term potentials, and provide explicit expressions for the case of type

IIB orientifolds.

5.1 Generalities

We begin our discussion by introducing the notation and conventions to be employed below,

and by recalling some well-known properties of type IIB orientifold compactifications on

Calabi-Yau three-folds [50].
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Cohomology. The orientifold projection we perform is ΩP(−1)FLσ, where ΩP denotes

the world-sheet parity operator and FL is the left-moving fermion number. The holomor-

phic involution σ : X → X acts on the Kähler form J and the holomorphic (3, 0)-form Ω

of the Calabi-Yau three-fold X as

σ∗ : J → J , σ∗ : Ω → −Ω , (5.1)

and the fixed loci of this involution correspond to O7- and O3-planes. This holomorphic

involution splits the cohomology into even and odd parts. This means in particular that

Hp,q(X ) = Hp,q
+ (X )⊕Hp,q

− (X ) , hp,q = hp,q+ + hp,q− . (5.2)

Note that constants as well as the volume form
√
g d6x on X are always even under the

involution. For the other bases introduced in section 4.1 we employ the following notation

{ωα} ∈ H1,1
+ (X ) α = 1, . . . , h1,1+ , {ωa} ∈ H1,1

− (X ) a = 1, . . . , h1,1− ,

{σα} ∈ H2,2
+ (X ) α = 1, . . . , h1,1+ , {σa} ∈ H2,2

− (X ) a = 1, . . . , h1,1− ,

{αλ̂, β
λ̂} ∈ H3

+(X ) λ̂ = 1, . . . , h2,1+ , {αλ, β
λ} ∈ H3

−(X ) λ = 0, . . . , h2,1− .

(5.3)

Moduli. The fields of the ten-dimensional theory transform under the combined world-

sheet parity and left-moving fermion number in the following way

ΩP(−1)FL =

{

g, φ, C(0), C(4) even ,

B, C(2) odd .
(5.4)

Together with (5.1), it then follows that the holomorphic three-form Ω is expanded in the

odd cohomology H3
−(X )

Ω = Xλαλ − Fλβ
λ . (5.5)

Note that the complex-structure moduli Uµ with µ = 1, . . . , h2,1− are encoded in the holo-

morphic three-form. The Kähler form J and the components of the ten-dimensional form

fields along the six-dimensional space X can be expanded as

J = tαωα , B = baωa , C(2) = caωa , C(4) = ρασ
α , (5.6)

where the components tα of the Kähler form are in string frame. Quantities in Einstein

frame will be denoted by a hat, and the transition between string and Einstein frame is

achieved by

t̂α = e−φ/2 tα . (5.7)

Apart from the complex structure moduli, the remaining moduli fields in the effective

four-dimensional theory after compactification are the following [50]

τ = C(0) + ie−φ ,

Ga = ca + τ ba ,

Tα = − i

2
καβγ t̂

β t̂γ + ρα +
1

2
καab c

abb − i

4
eφκαabG

a(G−G)b ,

(5.8)
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where καβγ and καab are the triple intersection numbers defined in (4.10). Using the sum

of even R-R potentials C defined in (3.37), these moduli can be encoded in a complex and

even multi-form Φev
c as follows [17]

Φev
c = eB C + ie−φRe

(

eB+iJ
)

= τ +Gaωa + Tασ
α .

(5.9)

Fluxes. For the R-R three-form flux F (3) and the various geometric and non-geometric

NS-NS fluxes, we observe the following behavior under the combined world-sheet parity

and left-moving fermion-number transformation. In particular, we have

ΩP(−1)FL =

{

F, R even ,

H, Q, F (3) odd .
(5.10)

Including the holomorphic involution σ defined in (5.1), recalling (5.3), and employing the

same notation as at the end of section 4.1, we can deduce the non-vanishing flux components

as follows
F (3) : Fλ , F̃

λ ,

H : hλ , h̃
λ ,

F : fλ̂ α , f̃
λ̂
α , fλ a , f̃

λ
a ,

Q : qλ̂
a , q̃λ̂ a , qλ

α , q̃λα ,

R : rλ̂ , r̃
λ̂ .

(5.11)

5.2 F-term potential

In this section, we show how after the orientifold projection (part of) the scalar poten-

tial (4.41) can be expressed in terms of an F-term potential in an N = 1 supergravity

language.

General form. The Kähler potential for the moduli of type IIB orientifolds with O3-

and O7-planes takes the following general form [50]

K = − log
[

−i(τ − τ)
]

− 2 log V̂ − log

[

i

∫

X
Ω ∧ Ω

]

, (5.12)

where V̂ = 1
3! καβγ t̂

αt̂β t̂γ denotes the volume of the Calabi-Yau three-fold in Einstein frame.

The superpotential in the presence of R-R three-form flux F (3) and general NS-NS fluxes

can be written as [8] (see also [10–12, 19, 21, 24, 51])

W =

∫

X

(

F (3) +DΦev
c

)

∧ Ω . (5.13)

The resulting F-term potential is expressed via the Kähler-covariant derivative DIW =

∂IW + KIW , where ∂I denotes the derivative with respect to the scalar fields mentioned

above and where KI = ∂IK. With GIJ the inverse of the Kähler metric GIJ = ∂I ∂JK,

we have

VF = eK
[

GIJDIW DJW − 3 |W |2
]

. (5.14)
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When using the Kähler potential (5.12), the scalar F-term potential can be simplified. For

that purpose, let us split the appearing sums into a sum over complex-structure moduli

Uµ, and a sum over i = {τ,Ga, Tα}. Employing the no-scale property of (5.12), that is [50]

Gij KiKj = 4 , (5.15)

and defining Ki = Gij∂j K, we obtain

VF = eK
[

GUUDUWDUW +Gij ∂iW ∂jW +
(

Ki∂iW W + c.c.
)

+ |W |2
]

. (5.16)

Rewriting part 1. We now consider each line in (5.16) separately and bring them into

a form suitable for comparison with the general expression given at the end of section 3.

We start with the complex-structure moduli in the first line. For ease of notation we define

A = F (3) +DΦev
c =

[

F (3) +D
(

eB C
)

]

+ i
[

e−φDRe
(

eB+iJ
)

]

, (5.17)

for the superpotential (5.13). Let us observe that the real and imaginary part of A cor-

respond to the three-forms (3.38) and (3.35), respectively. In particular, taking into ac-

count (5.11) and recalling that five-forms on a Calabi-Yau three-fold are trivial in coho-

mology, we have

A = Ǧ+ ie−φRe χ̌ , (5.18)

where the check indicates the quantities after the orientifold projection. Using then the

relations given in (A.10) and (A.11), we can write for the first line in (5.16)

eKGUUDUWDUW =
eφ

4V̂2

[∫

X
A ∧ ⋆A+ i

∫

X
A ∧A

]

− eK
∣

∣

∣

∣

∫

X
A ∧ Ω

∣

∣

∣

∣

2

. (5.19)

Using (5.18), the first term on the right-hand side of (5.19) can be written out as follows

eφ

4V̂2

∫

X
A ∧ ⋆A =

eφ

4V̂2

[ ∫

X
Ǧ ∧ ⋆Ǧ+ e−2φ

∫

X
(Re χ̌) ∧ ⋆(Re χ̌)

]

. (5.20)

The second term in (5.19) contributes to various Dp-brane tadpoles and has to be canceled

by local sources. Employing the relation shown in equation (A.13), we find

eφ

4V̂2
i

∫

X
A ∧A = +

1

2V̂2

∫

X
F (3) ∧ DRe

(

eB+iJ
)

= − eφ

2V̂2

∫

X

[

(Im τ)− (ImGa)ωa + (ImTα)σ
α
]

∧ DF (3) .

(5.21)

The third term on the right-hand side of (5.19) will be addressed below.
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Rewriting part 2. For the second line in (5.16) we recall that Φev
c in the superpoten-

tial (5.13) is given by (5.9). We can therefore compute

∂iW =

∫

X
D (∂iΦ

ev
c ) ∧ Ω =

∫

X
D







1

ωa

σα






∧ Ω , (5.22)

where i = τ,Ga, Tα. Using then the relations shown in equation (A.13) of the appendix,

we obtain

∂iW =

∫

X







1

−ωa

σα






∧ DΩ =







(DΩ)0

−(DΩ)a
(DΩ)α






, (5.23)

where, taking into account (5.11), we expanded DΩ in the basis (4.8) as

DΩ = (DΩ)0ω0 + (DΩ)aσ
a + (DΩ)αωα . (5.24)

Let us now evaluate the second line in (5.16). Using the formula for the inverse Kähler

metric Gij given in (A.18), we obtain

eK Gij ∂iW ∂jW = eK
4V
e2φ

∫

X

[

e−BDΩ
]

∧ ⋆
[

e−BDΩ
]

, (5.25)

where V (without the hat) denotes the volume of X in string frame. By comparing

with (3.36) and noting that in cohomology there are no five-forms on a Calabi-Yau three-

fold, we can identify e−BDΩ = Ψ̌. Furthermore, for the scalar potential evaluated at a

particular point in field space, we can use the relation (A.1). We then find that

eK Gij ∂iW ∂jW =
e−φ

4V̂2

∫

X
Ψ̌ ∧ ⋆Ψ̌ . (5.26)

Rewriting part 3. Next, we discuss the third line in equation (5.16). With the help

of the Kähler metric computed from the Kähler potential (5.12), and after a somewhat

tedious but straightforward computation, we find

Kτ = −(τ − τ) , KGa

= −(G−G)a , KTα = −(T − T )α , (5.27)

where as before Ki = Gij∂jK. For the derivatives of Φev
c defined in (5.9) with respect to

the moduli, we then determine

Ki∂iΦ
ev
c = −Φev

c +Φ
ev
c . (5.28)

Employing the short-hand notation (5.17) for the superpotential (5.13), we find

Ki∂iW = −
∫

X
A ∧ Ω+

∫

X
A ∧ Ω . (5.29)
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Coming back to the potential (5.16), using (5.29), and re-arranging terms, we obtain for

the third line

eK
[

(

Ki∂iW W + c.c.
)

+ |W |2
]

= eK
∣

∣

∣

∣

∫

X
A ∧ Ω

∣

∣

∣

∣

2

− eK
∣

∣

∣

∣

∫

X

(

A−A
)

∧ Ω

∣

∣

∣

∣

2

. (5.30)

The first term on the right-hand side will be cancelled by the last term in (5.19). For the

second term we recall (5.18), (4.33) and (A.1), and determine

−eK
∣

∣

∣

∣

∫

X

(

A−A
)

∧ Ω

∣

∣

∣

∣

2

= − e−φ

4V̂2

∫

X

[

(Re χ̌) ∧ Ω
]

∧ ⋆
[

(Re χ̌) ∧ Ω
]

= − e−φ

8V̂2

∫

X

[

(

Ω ∧ χ̌
)

∧ ⋆
(

Ω ∧ χ̌
)

+
(

Ω ∧ χ̌
)

∧ ⋆
(

Ω ∧ χ̌
)

]

.

(5.31)

In the last step we noted that due to (5.11) we have (Im χ̌) ∈ H3
+(X ) whereas Ω ∈ H3

−(X ),

and therefore
∫

(Im χ̌) ∧ Ω = 0.

Combining the results. We finally combine the individual results obtained above to

obtain the full scalar F-term potential. In particular, we can rewrite (5.16) as

VF =
M4

Pl e
φ

2V̂2

∫

X

(

e−2φ

[

1

2
(Re χ̌) ∧ ⋆(Re χ̌) +

1

2
Ψ̌ ∧ ⋆Ψ̌

− 1

4

(

Ω ∧ χ̌
)

∧ ⋆
(

Ω ∧ χ̌
)

− 1

4

(

Ω ∧ χ̌
)

∧ ⋆
(

Ω ∧ χ̌
)

]

+
1

2
Ǧ ∧ ⋆Ǧ−

[

(Im τ)− (ImGa)ωa + (ImTα)σ
α
]

∧ DF (3)

)

. (5.32)

Taking into account that the prefactor is proportional to M4
s , the first two lines match

with the orientifold projected DFT actions (3.34) and (3.39) in the NS-NS and R-R sector.

Note, however, that only the real part of χ̌ appears; the imaginary part is contained in

a D-term, which we discuss in the next section. The third line in (5.32) corresponds to

tadpole terms, which have to be cancelled by local sources.

5.3 D-term potential

We now want to consider the imaginary part of χ̌, which does not appear in the scalar

F-term potential (5.32). As mentioned before, we have (Im χ̌) ∈ H3
+(X ) and therefore the

only contribution in the DFT Lagrangian (3.34) relevant here comes from

⋆LH3
+
= −1

2
e−2φ (Im χ̌) ∧ ⋆(Im χ̌) . (5.33)

Using the definition (3.35) as well as (5.11), we can evaluate Imχ̌ as

Imχ̌ =
(

αλ̂ βλ̂
)

·
(

D̃
λ̂

Dλ̂

)

, (5.34)
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where we defined

D̃
λ̂ = r̃λ̂

(

V − 1

2
καab t

αbabb
)

+ q̃λ̂a κaαb t
αbb − f̃ λ̂

α t
α ,

Dλ̂ = −rλ̂

(

V − 1

2
καab t

αbabb
)

− qλ̂
a κaαb t

αbb + fλ̂α t
α .

(5.35)

Similarly as in section 4.2, we can now evaluate (5.33). We find

⋆LH3
+
= −1

2
e−2φ

(

D̃

D

)T

· M̌1 ·
(

D̃

D

)

=
1

2
e−2φ

[

(Dλ̂ +ReNλ̂κ̂ D̃
κ̂)

(

ImN−1
)λ̂σ̂

(Dσ̂ +ReNσ̂ρ̂ D̃
ρ̂) + D̃

λ̂ ImNλ̂σ̂ D̃
σ̂

]

,

(5.36)

where M1 has been defined in (4.6), and the check indicates the restriction to indices

λ̂ = 1, . . . , h2,1+ . Note that (5.36) corresponds to a positive semi-definite scalar potential in

four dimensions.

Let us now check that this scalar potential can be understood as a D-term from the

N = 1 supergravity point of view. We will follow the discussion first presented in [22]

(see also [42]). To begin, let us recall that in the absence of a Fayet-Iliopolous term,

ξa = iδaW/W , the D-term of an abelian gauge field Aa in supergravity is given by

Da = i
∑

i

(∂iK) δaφi , (5.37)

where δaφi is the variation of the chiral superfield φi under a gauge transformation Aa →
Aa + dΛa, and K denotes again the Kähler potential. The corresponding D-term potential

reads

VD = M4
Pl

[

(Ref)−1
]ab

DaDb , (5.38)

with Refab the real part of the gauge kinetic function for the gauge fields. In our case, the

gauge fields of interest originate from the R-R four-form C(4) via a dimensional reduction

on three-cycles of the Calabi-Yau three-fold. Let us therefore expand

C(4) = Aλ̂αλ̂ + Ãλ̂β
λ̂ + . . . , λ̂ = 1, . . . , h2,1+ , (5.39)

where the ellipsis denote terms of different degree in the internal manifold not of importance

here. The gauge transformations of Aλ̂ and Ãλ̂ have their origin in a higher-dimensional

gauge symmetry. In particular, note that the DFT Lagrangian (3.39) is invariant under

C → C +DΛ , (5.40)

with C the sum of even R-R potentials (3.37), D was defined in (3.33), and Λ is a sum of odd

forms. In order to obtain the gauge transformation Aλ̂ → Aλ̂ + dΛλ̂ and Ãλ̂ → Ãλ̂ − dΛ̃λ̂

in four dimensions, we therefore have to choose the gauge parameter Λ as

eB C → eB C +D
(

Λλ̂αλ̂ − Λ̃λ̂β
λ̂
)

. (5.41)
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In turn, this gauge transformation implies variations of the chiral superfields φ∈{τ,Ga, Tα}.
Indeed, using (5.9) together with (4.19) and (5.11) we find that

τ → τ +
(

rλ̂Λ
λ̂ − r̃λ̂ Λ̃λ̂

)

,

Ga → Ga +
(

qλ̂
aΛλ̂ − q̃λ̂a Λ̃λ̂

)

,

Tα → Tα +
(

fλ̂αΛ
λ̂ − f̃ λ̂

α Λ̃λ̂

)

.

(5.42)

Note that due to the nilpotency of D, the superpotential is invariant under transformations

of the form (5.40) and thus no Fayet-Iliopolous parameter is generated.

In order to evaluate (5.37), let us also determine the derivatives of the Kähler poten-

tial (5.12) with respect to the moduli fields (5.8). As in the previous section, we perform

the computation in Einstein frame, and then transform the result to string frame. We find

∂τK =
ieφ

2V

(

V − 1

2
καbct

αbbbc
)

∂TαK = − ieφ

2V tα , ∂GaK =
ieφ

2V κaβct
βbc .

(5.43)

Using these results and the transformations of the moduli fields under gauge transforma-

tions (5.42), we can compute the D-terms (5.37) as follows

D̃λ̂ =
eφ

2V

[

r̃λ̂
(

V − 1

2
καab t

αbabb
)

+ q̃λ̂a κaαb t
αbb − f̃ λ̂

α t
α

]

,

Dλ̂ =
eφ

2V

[

−rλ̂

(

V − 1

2
καab t

αbabb
)

− qλ̂
a κaαb t

αbb + fλ̂α t
α

]

.

(5.44)

We observe that up to an overall factor, these D-terms agree with the expressions (5.35)

obtained from a reduction of the DFT action (5.33). We furthermore note that the Ramond-

Ramond four-form potential C(4) is self-dual in ten dimensions. The two sets of gauge

fields Aλ̂ and Ãλ̂ in (5.39) are therefore not independent, and in the following we choose to

eliminate Ãλ̂ in favor of Aλ̂. Also, as argued in [22], as long as the fluxes are integer-valued

one can rotate them by an Sp(h2,1+ ,Z) transformation into a basis where r̃λ̂ = q̃λ̂a = f̃ λ̂
α =

0. This implies that the D-term D̃λ̂ vanishes.3

Let us finally turn to the D-term potential (5.38). The gauge kinetic function for the

gauge fields Aλ̂ is given by the imaginary part of the matrix (4.4) [50], properly restricted

to indices λ̂ = 1, . . . , h2,1+

fλ̂σ̂ = − i

2
N̄λ̂σ̂ . (5.45)

3In this basis the Bianchi identities connecting the fluxes in the D-terms are trivially satisfied. There

are further Bianchi identities which mix the flux parameters in the superpotential (5.13) with those in Dλ̂

in (5.44).
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Furthermore, ImN is meant to only depend on the complex structure moduli Uµ surviving

the orientifold projection. For the D-term potential we therefore obtain

VD = M4
Pl

[

−2(ImN )−1
]λ̂σ̂

Dλ̂Dσ̂

= −M4
Pl e

2φ

2V2

[

(ImN )−1
]λ̂σ̂

Dλ̂Dσ̂ ,

(5.46)

where Dλ̂ was defined in (5.35). Expressing then again the Planck mass in terms of the

string scale via M4
Pl = M4

s V2 e−4φ and noting that the potential appears as −V in the

Lagrangian L, we see that the D-term potential (5.46) agrees with the DFT result (5.36),

after D̃
λ̂ has been set to zero. We therefore conclude that the scalar potential resulting

from the dimensional reduction of DFT for h2,1+ > 0 also correctly reproduces the expected

D-term potential.

6 Conclusions

In this paper we have performed the dimensional reduction of the DFT action in its flux

formulation on a Calabi-Yau three-fold with non-trivial constant fluxes turned on. The

main initial obstacle that the DFT action contained explicitly the unknown metric on the

CY could be overcome by rewriting all contributions to the action in terms of the Kähler

form, holomorphic three-form, and operations that could be further evaluated on the CY

using special geometry. The induced scalar potential agrees with that of N = 2 gauged

supergravity. Up to additional D-terms, a further orientifold projection to N = 1 leads to

the potential derived from the generalized Gukov-Vafa-Witten superpotential containing

the non-geometric fluxes. This nicely confirms the consistency of the whole approach.

Our results put the generalized flux-induced scalar potential on firmer grounds, thereby

lending further support to its use in tree-level moduli stabilization applied to string phe-

nomenology and cosmology. It is known that, with all types of fluxes turned on, there does

not exist a dilute flux limit so that it is not straightforward to argue for a consistent higher

dimensional uplift of the solutions found in the four-dimensional field theory model. How-

ever, in view of the now established DFT origin of the four-dimensional potential, the fate

of these vacua is closely related to the claim that DFT, though not an effective low-energy

theory, might be a consistent truncation of full string (field) theory.
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A Useful relations on a Calabi-Yau three-fold

In this appendix, we collect some technical relations concerning Calabi-Yau three-folds,

which are important for the computations in the main part of the paper.

A.1 Normalization and primitivity

Since a Calabi-Yau manifold is a complex Kähler manifold, it is useful to work in a complex

basis with indices a and a. The hermitian metric then has non-vanishing components gab,

whereas the almost complex structure reads Iab = iδab and Iab = −iδab. The Kähler

form Jij = gim Imj in complex coordinates is given by Jab = igab. For the holomorphic

three-form on a Calabi-Yau three-fold, we employ the normalization

i

8
Ω ∧ Ω =

1

6
J3 . (A.1)

Using (A.1), one can show the following useful relations

ΩabcΩabc g
cc = 8

(

gaa gbb − gab gba
)

,

ΩabcΩabc g
bb gcc = 16 gaa ,

ΩabcΩabc g
aa gbb gcc = 48 .

(A.2)

Since on a Calabi-Yau three-fold there are no homologically non-trivial one- and five-

cycles, we can assume that all combinations leaving effectively one free-index are trivial.

This includes e.g.

H ∧ J = 0 , Q • J = 0 , Rx(J ∧ J) = 0 , (A.3)

as well as the conditions (3.5). Note that (A.3) can be considered as generalized primitivity

constraints on the fluxes.

A.2 Relations regarding complex-structure moduli

In this section, we derive some formulas important for section 5.2. We begin by noting

that a complex basis of (2, 1)-forms χµ with µ = 1, . . . , h2,1− is given by

DUµΩ = χµ , (A.4)

with DU the Kähler covariant derivative defined below (5.13). In a similar fashion, a basis

of (1, 2)-forms χµ can be introduced. The Kähler metric for the complex-structure moduli

derived from (5.12) is expressed as

Gµν = −
∫

χµ ∧ χν
∫

Ω ∧ Ω
. (A.5)

Next, we observe that on a Calabi-Yau three-fold the holomorphic (3, 0)-form Ω and the

(2, 1)-forms χµ introduced in equation (A.4), and their complex conjugates form a basis of
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the third cohomology. An arbitrary complex three-form A can therefore be expanded in

the following way

A = a0Ω+ aµχµ + ãµχµ + ã0Ω . (A.6)

Using the Kähler metric (A.5), the coefficients in this expansion can be determined as

a0 = +

∫

A ∧ Ω
∫

Ω ∧ Ω
, aµ = −

∫

A ∧ χν
∫

Ω ∧ Ω
Gνµ ,

ã0 = −
∫

A ∧ Ω
∫

Ω ∧ Ω
, ãµ = −

∫

A ∧ χν
∫

Ω ∧ Ω
Gνµ .

(A.7)

Furthermore, we note that the Hodge-star operator acting on Ω and χµ gives

⋆Ω = −iΩ , ⋆χµ = +i χµ . (A.8)

Using the above relations, for two different complex three-forms A and B we can then

compute

∫

A ∧ ⋆B = i

∫

Ω ∧ Ω×
[

a0 b
0
+ ã0 b̃

0
+ aµGµν b

ν
+ b̃

µ
Gµν ã

ν

]

. (A.9)

Employing (A.7) and defining Kcs = − log
[

i
∫

Ω ∧ Ω
]

, we arrive at

∫

A ∧ ⋆B = eKcs

[

GµνDUµ

(∫

A ∧ Ω

)

D
U

ν

(∫

B ∧ Ω

)

+GµνDUµ

(∫

B ∧ Ω

)

D
U

ν

(∫

A ∧ Ω

)

+

(∫

A ∧ Ω

)(∫

B ∧ Ω

)

+

(∫

A ∧ Ω

)(∫

B ∧ Ω

)]

.

(A.10)

Similarly, we determine for the wedge product of two three-forms A and B

∫

A ∧B = −i eKcs

[

GµνDUµ

(∫

A ∧ Ω

)

D
U

ν

(∫

B ∧ Ω

)

−GµνDUµ

(∫

B ∧ Ω

)

D
U

ν

(∫

A ∧ Ω

)

+

(∫

A ∧ Ω

)(∫

B ∧ Ω

)

−
(∫

A ∧ Ω

)(∫

B ∧ Ω

)]

.

(A.11)

A.3 Relations regarding D

We now derive relations for the twisted differential D, which was defined via (4.19). Let

us consider a closed three-form A with dA = 0, and expand A the basis (4.1) as

A = A
ΛαΛ + AΛβ

Λ . (A.12)
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Using the definitions (4.19), we can then show by explicit computation that
∫

DωA ∧ A = −
∫

ωA ∧ DA ,

∫

DσA ∧ A = +

∫

σA ∧ DA .

(A.13)

Let us also consider an even, d-closed multi-form B, which can be expanded in the ba-

sis (4.8) as

B = B
AωA + BAσ

A . (A.14)

For a Calabi-Yau three-fold with the action of D given by (4.19), it follows that DB is a

three-form. Setting then A = DB and using the Bianchi identities D2 = 0, it follows that
∫

DB ∧ DωA = 0 ,

∫

DB ∧ DσA = 0 . (A.15)

A.4 Kähler metric and inverse

We now discuss the Kähler metric Gij for the moduli τ , Ga and Tα, which were defined

in (5.8). From [17] we know that this metric can be expressed as

Gij =
e2φ

4V

∫

[

νi ∧ e+B
]

∧ ⋆
[

νj ∧ e+B
]

, (A.16)

where i, j = τ, Ga, Tα and

νi = ( 1 , −ωa , σ
α) , (A.17)

and where V denotes the volume of the Calabi-Yau three-fold in string frame. The inverse

Kähler metric has not been given in [17], but can be determined as follows. Let us make

the following ansatz

Gij =
4V
e2φ

∫

[

ρi ∧ e−B
]

∧ ⋆
[

ρj ∧ e−B
]

, (A.18)

with the dual forms

ρi = ( ω0 , −σa , ωα) . (A.19)

We now verify that (A.18) is indeed the inverse of (A.16). For that purpose, we note that
∫

[

νi ∧ e+B
]

∧
[

ρj ∧ e−B
]

=

∫

νi ∧ ρj = δji . (A.20)

This implies that we can expand the Hodge duals as

⋆
(

νi ∧ e+B
)

= Mij

(

ρj ∧ e−B
)

, ⋆
(

ρi ∧ e−B
)

= N ij
(

νj ∧ e+B
)

, (A.21)

with M and N some matrices. Applying the Hodge star to the second relation and noting

that for even forms on six-dimensional manifold ⋆2 = 1, gives N ijMjk = δik. This allows

us to compute

Gij G
jk = MjiN kj = N kj Mji = δki . (A.22)

We have therefore shown that the metric (A.18) is indeed the inverse of (A.16).
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B Proof of general results

In this appendix we show that for vanishing B-field, ⋆LNSNS can indeed be cast as proposed

in (3.34). We have already proved that (3.6), (3.18), (3.21), (3.25) and (3.26), comply

with (3.34) when only one kind of flux is switched on at a time. When fluxes are turned

on simultaneously we have to care about mixed terms. In the original NS-NS Lagrangian

there are FR and HQ mixed terms in (2.22). On the other hand, given its structure,

in (3.34) the only mixed terms are precisely of type FR and HQ. Concretely, the relevant

terms in (3.34) are THQ + TFR, where

THQ = −H ∧ ⋆

(

Q • 1

2
J2

)

+Re (Ω ∧H) ∧ ⋆

(

Ω ∧Q • 1

2
J2

)

, (B.1)

and similarly

TFR = −F ◦ J ∧ ⋆

(

R x

1

3!
J3

)

+Re(Ω ∧ F ◦ J) ∧ ⋆

(

Ω ∧R x

1

3!
J3

)

. (B.2)

We will proceed by evaluating separately each term in the above relations.

Let us begin with (B.1). Using (3.19) and the property Jij = gim Imj we find

−H ∧ ⋆

(

Q • 1

2
J2

)

= −1

2
Hi′j′k′Q

jk
i Ij

′

j I
k′
k g

ii′ ⋆ 1 . (B.3)

It is convenient to express the right hand side in a complex basis and then simplify it

applying an appropriate Bianchi identity. With F , H and Q different from zero, the

second identity in (3.4) yields

gaa
(

HabcQ
bc
a +HabcQ

bc
a

)

− gaa
(

HabcQ
bc
a +HabcQ

bc
a

)

+ 2gaa
(

F c
ab F

b
ac − F c

ab F
b
ac

)

= 0 .

(B.4)

Notice that when only F 6= 0 this identity reduces to (3.11). Going to a complex basis and

substituting (B.4) we arrive at

−H ∧ ⋆

(

Q • 1

2
J2

)

= gaa
(

HabcQ
bc
a +HabcQ

bc
a −HabcQ

bc
a −HabcQ

bc
a

)

⋆ 1

−gaa
(

F c
ab F

b
ac − F c

ab F
b
ac

)

⋆ 1 . (B.5)

The F depending piece will cancel against an analogous contribution in 1
2 Ξ3 ∧ ⋆Ξ3, Ξ3 =

F ◦ J . In fact, from (3.10) we see that before using (3.11), the right hand side of (3.12)

has an extra term that offsets the second line in (B.5). In the complex basis we also obtain

Re(Ω ∧H) ∧ ⋆

(

Ω ∧Q • 1

2
J2

)

= −2gaa
(

HabcQ
bc
a +HabcQ

bc
a

)

⋆ 1 . (B.6)

Finally, for the HQ term in (2.22) the Bianchi identity (B.4) further implies that

−1

2
HmniQ

mn
j gij ⋆ 1 = −gaa

(

HabcQ
bc
a +HabcQ

bc
a +HabcQ

bc
a +HabcQ

bc
a

)

⋆ 1

+gaa
(

F c
ab F

b
ac − F c

ab F
b
ac

)

⋆ 1 . (B.7)
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The term involving F is cancelled by a similar contribution in 1
2F

m
niF

n
mjg

ij ⋆ 1 that also

appears in (2.22). In the analysis of pure F flux this extra contribution was absent by

virtue of (3.11). Observe that adding the first line in (B.5) and (B.6) precisely matches

the first line in (B.7). Hence, we have shown that the mixed terms in THQ indeed lead to

the HQ term in the NS-NS Lagrangian.

To evaluate the mixed FR terms we basically take the same steps as in the preceding

calculation. A crucial ingredient is the Bianchi identity that follows from the fourth line

in (3.4)

gaa
(

RabcF a
bc+RabcF a

bc

)

−gaa
(

RabcF a
bc+RabcF a

bc

)

+2gaa
(

Qb
acQc

ab−Q ac
b Q ab

c

)

= 0 , (B.8)

which clearly shortens to (3.20) when only Q 6= 0. Inserting this identity in the FR term

in (2.22) gives

−1

2
RmniF j

mngij ⋆ 1 = −gaa
(

RabcF a
bc +RabcF a

bc
+RabcF a

bc +RabcF a
bc

)

⋆ 1

+gaa
(

Qab
c Qb

ac −Qab
c Qb

ac
)

⋆ 1 . (B.9)

The Q part is nullified by an identical term with opposite sign in 1
2Q

ni
m Q mj

n gij ⋆ 1. Using

the identity (B.8) we also find that adding the pieces in TFR reproduces the first line in (B.9)

up to an additional contribution that is cancelled by a similar one in Q • 1
2J

2 ∧ ⋆(Q • 1
2J

2).
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Double Field Theory on Group Manifolds, JHEP 08 (2015) 056 [arXiv:1502.02428]

[INSPIRE].
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