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ABSTRACT

Motivation: Identifying the emergence and underlying mechanisms

of drug side effects is a challenging task in the drug development

process. This underscores the importance of system–wide

approaches for linking different scales of drug actions; namely drug-

protein interactions (molecular scale) and side effects (phenotypic

scale) toward side effect prediction for uncharacterized drugs.

Results: We performed a large-scale analysis to extract correlated

sets of targeted proteins and side effects, based on the co-

occurrence of drugs in protein-binding profiles and side effect

profiles, using sparse canonical correlation analysis. The analysis

of 658 drugs with the two profiles for 1368 proteins and 1339

side effects led to the extraction of 80 correlated sets. Enrichment

analyses using KEGG and Gene Ontology showed that most

of the correlated sets were significantly enriched with proteins

that are involved in the same biological pathways, even if their

molecular functions are different. This allowed for a biologically

relevant interpretation regarding the relationship between drug–

targeted proteins and side effects. The extracted side effects can

be regarded as possible phenotypic outcomes by drugs targeting

the proteins that appear in the same correlated set. The proposed

method is expected to be useful for predicting potential side effects

of new drug candidate compounds based on their protein-binding

profiles.

Supplementary information: Datasets and all results are available

at http://web.kuicr.kyoto-u.ac.jp/supp/smizutan/target-effect/.

Availability: Software is available at the above supplementary

website.

Contact: yamanishi@bioreg.kyushu-u.ac.jp, or goto@kuicr.kyoto-u

.ac.jp

1 INTRODUCTION

Predicting and countering the side effects of a new drug during

its developmental phase remain important to the drug’s overall

commercial success. Side effects are responsible for a significant

number of cases where premarketed drugs fail during clinical

trials. Identifying the underlying mechanisms of side effects is a

challenging task, often because of the drugs’ pleiotropic effects on a

biological system. Most drugs are small compounds that target and

interact with proteins to induce perturbations in the proteins network.

This underscores the need of system-wide approaches for predicting

∗
To whom correspondence should be addressed.

drug side effects by linking different scales of drug actions; drug–

protein interactions (molecular scale) and relationships between

drugs and side effects (phenotypic scale) (Fliri et al., 2005, 2007;

Tatonetti et al., 2009).

The most widely used approach to identify possible side effects

for a drug is to use its chemical structure information, based

on the observation that drug chemical structures can direct the

ligand promiscuity toward protein targets (Bender et al., 2007).

For example, Scheiber et al. (2009) investigated correlations

between drug chemical substructures and side effects, although

they do not provide any prediction frameworks for new drug

molecules. Yamanishi et al. (2010) proposed a method to predict

the pharmacological effects of drugs using their chemical structures.

They then inferred drug-target interactions, but their method cannot

be directly applied to the prediction of high-dimensional side effect

profiles. Atias and Sharan (2011) proposed a method to predict

side effects from chemical structure data using canonical correlation

analysis (CCA). This work was pioneering in terms of simultaneous

prediction of many side effects. Pauwels et al. (2011) proposed

a method to relate drug chemical fragments with side effects

using sparse CCA (SCCA), and used the chemical fragments to

predict side effect profiles. However, these chemical structure-based

methods cannot provide any biological interpretations regarding the

underlying mechanisms at a molecular interaction level.

Chemically unrelated drugs may present similar side effects

because they happen to share common off-target proteins

(Finlaysona et al., 2004). On the basis of this observation, Campillos

et al. (2008) used side effect similarity of marketed drugs to predict

drug pairs with common protein targets. Xie et al. (2009) identified

drug off-targets by docking the drug into protein binding pockets

similar to that of its primary target, followed by mapping the proteins

with the best docking scores to known biological pathways, thus

predicting potential side effects. Using a similar docking approach,

Wallach et al. (2010) searched for correlated pairs of side effects and

biological pathways. These docking-based methods depend heavily

on the availability of protein 3D structures, which presents serious

limitations as many useful drug targets are membrane proteins, for

which very few structures are available.

From a system-wide viewpoint, Fliri et al. (2005) performed

a biological spectra-based approach to investigate the correlation

between drug-targeted proteins and their side effects. They clustered

drugs based on their biological spectra (i.e. their ability to inhibit

each of 92 selected proteins) and revealed a correlation between the

chemical structures of the corresponding drugs and their biological

activity in terms of protein inhibition profile. They further showed

that drugs with similar protein inhibition profiles tend to cause

similar side effects (Fliri et al., 2007). However, it remains difficult

© The Author(s) 2012. Published by Oxford University Press.
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Relating drug–protein interaction with side effects

to experimentally determine the link between drug-targeted proteins

and side effects in a large-scale datasets in a cost-effective and

efficient manner (Whitebread et al., 2005). Therefore, there is a

strong incentive to develop computational approaches for analyzing

and predicting drug side effects.

In this article, we examine the correlation between drug–protein

interactions and their side effects on a large scale, without limiting

ourselves to proteins of known 3D structures. We identify correlated

sets of proteins and side effects based on the co-occurrence of drugs

in protein-binding profiles and in side effect profiles using SCCA.

Results demonstrate that proteins in the same correlated set tend to

be involved in only a few biological pathways even if their molecular

functions are different. We also address that the side effects in each

correlated set present possible outcomes from drug perturbations of

corresponding proteins. The originality of the proposed method lies

in the integration of drug–protein interactions at a molecular scale

and drug side effect relationships at a phenotypic scale. Performance

evaluation showed that this method works better than the case where

chemical structure profiles are used in the SCCAframework. We also

conduct a comprehensive side effect prediction for drug molecules

stored in DrugBank without side effect information and confirm

interesting predictions using independent source of information.

2 MATERIALS

2.1 Drug–protein interaction profiles and side effect

profiles

Drug–protein interactions were obtained from DrugBank (Wishart

et al., 2008) and Matador (Günther et al., 2008). Both the primary

target proteins as well as all proteins known to directly interact with

a particular drug were used for analysis. Side effect information was

obtained from SIDER, which accumulates reported side effects from

package inserts for marketed drugs (Kuhn et al., 2010). In total, 658

drugs had both targeted protein and side effect information. This

led to the construction of 5074 drug–protein interactions containing

1368 targeted proteins and 49 051 drug side effect pairs containing

1339 side effects. Each of the 658 drugs was represented by

a 1368-dimensional protein-binding profile and 1339-dimensional

side effect profile, which encodes for the presence or absence of

proteins (side effects) by 1 or 0, respectively.

2.2 Chemical structures

To encode drug chemical structures, a fingerprint was used, which

consisted of 881 chemical substructures defined in the PubChem

database (Li et al., 2010). This resulted in a binary profile referred

to as chemical substructure profile.

2.3 Annotation of drug-targeted proteins

265 pathway maps and 546 BRITE terms were obtained from

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa

et al., 2010). Note that ‘global pathways’ and ‘disease pathways’

were excluded from the pathway set. Fourteen molecular function

categories used in the protein annotations were also obtained from

KEGG. 22 043 biological process terms and 9971 molecular function

terms were obtained from Gene Ontology (GO) (Ashburner et al.,

2000).

3 METHODS

3.1 Ordinary canonical correlation analysis (OCCA)

Suppose that we have a set of n drugs with p targeted protein features and

q side effect features. Each drug is represented by a targeted protein feature

vector x= (x1,...,xp)T , and by a side effect feature vector y= (y1,...,yq)T .

We consider two linear combinations for targeted proteins and side effects

as ui =αT xi and vi =βT yi (i=1,2,...,n), where α= (α1,...,αp)T and β =
(β1,...,βq)T are weight vectors. We attempt to find weight vectors α and β

which maximize the following canonical correlation coefficient:

ρ =corr(u,v)=
∑n

i=1αT xi ·βT yi

√
∑n

i=1(αT xi)2

√

∑n
i=1(βT yi)2

, (1)

where u (respectively, v) is centered. u (respectively, v) is called ‘canonical

component’, score.

Let X denote the n×p matrix defined as X = [x1,...,xn]T , and Y denote

the n×q matrix defined as Y = [y1,...,yn]T .

Then the maximization problem can be written as follows:

max{αT XT Yβ} subjectto ||α||22 ≤1, ||β||22 ≤1. (2)

3.2 Sparse canonical correlation analysis (SCCA)

Most elements in the weight vectors α and β in OCCA are non-zeros, which

makes it difficult to interpret the result. In practice, it is desirable to find

weight vectors that have large correlation, but that are also sparse for easier

interpretation.

To impose the sparsity on α and β, we consider the following

maximization problem with additional L1 penalty terms:

max{αT XT Yβ} subjectto

||α||22 ≤1, ||β||22 ≤1, ||α||1 ≤c1
√

p, ||β||1 ≤c2
√

q, (3)

where ||·||1 is L1 norm (the sum of all absolute values of the vector elements),

and c1 and c2 are parameters to control the sparsity (0<c1 ≤1 and 0<c2 ≤1).

For simplicity, the same value is used for c1 and c2 in this study. The CCA

with L1 penalties is referred to as SCCA. The weight vectors α and β can be

optimized by solving penalized matrix decomposition of the matrix Z =XT Y

(Witten et al., 2009).

To obtain multiple canonical components, we perform a deflation

manipulation iteratively as follows: Z (k+1) ←Z (k) −dkαkβ
T
k , where Z (k) is

the input of step k (Z (1) =XT Y ), αk and βk are the weight vectors, and

dk is singular value obtained in the k-th step (corresponding to the k-th

component) (k =1,2,...,m). Finally, we obtain m pairs of weight vectors

(α1,β1),...,(αm,βm). Proteins and side effects with non-zero weights in the

weight vectors are extracted as correlated sets.

3.3 Prediction of side effect profiles for new molecules

Given the profile of targeted proteins xnew for a drug of unknown side effects,

we consider predicting its potential side effect profile ynew based on the

weight vectors {αk}m
k=1 and {βk}m

k=1.

We use the following prediction score for a given molecule:

ynew =
m

∑

k=1

βkρkα
T
k xnew =B�AT xnew, (4)

where A=[α1,...,αm], B=[β1,...,βm] and � is the diagonal matrix whose

elements are canonical correlation coefficients. If the j-th element in ynew

has a high score, the new molecule is predicted to have the j-th side effect

(j=1,2,...,q). The same prediction score was proposed in the previous work

(Pauwels et al., 2011).

3.4 Enrichment analyses of targeted proteins

Let Gc denote the set of extracted proteins in component c and G denote

the set of proteins in a functional unit (e.g. KEGG pathway map). Let
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Fig. 1. An illustration of the network of drug-targeted proteins and side effects in the extracted 80 CCs. Proteins (pink rectangles) and side effects (green

diamonds) are connected if they appear in the same canonical component (CC). The highlighted CCs, 1 (red), 2 (light blue), 5 (orange) and 15 (purple) are

discussed in Section 5. CC1: DRD2 (Dopamine D2 receptor), SC6A2 (Sodium-dependent noradrenaline transporter), SC6A4 (Sodium-dependent serotonin

transporter), SCNs (Sodium channel protein subunits); CC2: GBRs (Gamma-aminobutyric acid receptor subunits); CC5: PGH1/2 (Prostaglandin G/H synthase

1/2), TOP2A (DNA topoisomerase 2-alpha), TTHY (Transthyretin), LOX5 (Arachidonate 5-lipoxygenase) and CC15: PA24A (Cytosolic phospholipase A2),

ANXA1 (Annexin A1), GCR (Glucocorticoid receptor), CBG (Corticosteroid-binding globulin)

r =|Gc|,k =|G|,z=|Gc ∩G| and l the total number of proteins in the whole

dataset. We assume that z follows a hypergeometric distribution. The

probability to observe an intersection of size z between G and Gc is computed

as follows:

p(G,Gc)=
min(k,r)
∑

i=z

(

k

i

)(

l−k

r− i

)

(

l

r

) . (5)

We then define the enrichment score s(c) of a component c by

s(c)=−log10 pFDR(G,Gc)

where pFDR(G,Gc) is the corrected value of p(G,Gc) by the false discovery

rate (FDR) (Benjamini and Hochberg, 1995).

4 RESULTS

4.1 Extraction of canonical component sets of

drug-targeted proteins and side effects

We applied the proposed SCCA method to the protein-binding

profiles and side effect profiles (see ‘Materials’ section), which

provided us with 80 canonical components. The correlated sets of

proteins and side effects were extracted from each component. A

list of drugs that contributed to the correlation was also obtained

for each component. We refer to these correlated sets as canonical

components (CCs) hereafter. All components present a limited

number of proteins and side effects, which is a consequence of the

sparsity of SCCA. This allows meaningful biological interpretation,

indicating an advantage over OCCA.

Figure 1 illustrates the network of extracted targeted proteins

and side effects within the 80 CCs, where proteins (rectangles) and

side effects (diamonds) are connected if they appear in the same

component. The top five proteins and three side effects with highest

weights are shown for easier visibility. The highlighted components

CC1, CC2, CC5 and CC15 are further discussed in Section 5. The

contents of all 80 CCs are listed in Supplementary Table S1.

4.2 Evaluation for canonical component sets based on

targeted proteins

To evaluate the biological relevance of targeted proteins within

the extracted 80 canonical components, we examine the functional

units of proteins in two levels, biological pathways and molecular

functions. Accordingly, we performed two kinds of enrichment

analyses: (1) pathway enrichment analyses and (2) molecular

function enrichment analyses. We used the KEGG database

(Kanehisa et al., 2010) and the GO database (Ashburner et al., 2000)

as gold standards for pathway and molecular function information.

KEGG pathway maps and GO biological process terms were used

in (1), whereas KEGG BRITE terms and GO molecular function

terms were used in (2).

As summarized in Table 1, all 298 proteins extracted as

members in the 80 canonical components were given molecular

function annotations. 215 and 281 proteins were given pathway

annotations by KEGG and GO, respectively. For each component,

we computed an enrichment score for each of the functional units.

A component was determined to be significantly enriched with a

particular functional unit if the enrichment score, FDR-corrected

P-value ≤0.05.

Figure 2 shows the distributions of canonical components

against the number of enriched functional units associated with

the component(s). The results of pathway enrichment analyses

(Fig. 2a and b) displayed skewed distributions, i.e. the number

of components decreased as the number of enriched pathways

increased. Pathway enrichment analysis with KEGG pathway maps

showed that 33 components were enriched with one or two

pathway(s), and the additional 23 components were enriched with

<10 pathways. This trend suggests that the majority of components

were characterized by only a small number of KEGG pathways.

Pathway enrichment analysis with GO biological process terms also

displayed this trend. In contrast, the component distributions for

molecular functions in Figure 2c and d showed much less skewness,
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Table 1. Statistics in pathway and molecular function enrichment analyses

(a) (b) (c) (d)

Number of annotated proteins 215 281 298 298

Number of pathways/terms used in annotation 112 751 105 318

Number of components with enrichment 57 72 75 74

Number of enriched pathways/terms 33 93 50 75

Four types of functional units were tested; (a) KEGG pathway maps; (b) GO biological

process; (c) KEGG BRITE terms and (d) GO molecular function.

and components were distributed across varying numbers of terms.

This suggests that components are likely to represent a few distinct

biological pathways for proteins from different molecular functions.

However, there remains a possibility that molecular functions of

similar categories appear in a component. Thus, we also examined

molecular functions of proteins in more general categories, such as

‘Ion channels’, ‘G Protein-coupled receptors’, and ‘Enzymes’. For

the majority of components, as a result, proteins were annotated

with more than one molecular function category, which confirms

that proteins of very different molecular functions were grouped

into the same component (Supplementary Fig. S1).

Table 2 shows the 10 most frequently appearing enriched

KEGG pathway maps that showed enrichment. Component-based

enriched pathways and associated enrichment scores are shown

in Supplementary Table S2. Pathways co-appearing in the same

component are biologically relevant. Among the 40 components that

are enriched with more than one pathway, 14 contained two or three

of the following pathways: ‘Calcium signaling pathway’, ‘Cardiac

muscle contraction’, and ‘MAPK signaling pathway’. Interestingly,

calcium is a signaling molecule that is well known to play an

important role in muscle contraction, and there exists a direct cause-

and-effect relationship between MAP kinase activation and smooth

muscle contraction (Dessy et al., 1998). Therefore, in many cases

where components contain more than one pathway, these pathways

seem to take part in the same global biological function.

We are aware that the KEGG pathways do not always describe

signal transductions of proteins. For example, ‘Neuroactive ligand–

receptor interaction pathway’ lists ligand–receptor interactions

for G protein-coupled receptors (GPCRs) and ion channels. It

describes protein families, rather than signal transductions occurring

downstream of the ligand–receptor interactions. However, 18 out of

19 components were enriched with additional pathways.

These results indicate that component-based grouping of targeted

proteins provides biologically relevant information in two ways.

First, a significant number of proteins co-extracted in the same

component are involved in the same biological pathway(s). Second,

in many components, such proteins belong to different protein

families. The component-based protein grouping cannot be inferred

only from drug-targeted protein interactions, because they are often

targeted by drugs of different chemical families. Accordingly, the

side effects extracted in a component can be viewed as possible

outcomes of biological pathway perturbations by drugs targeting

the proteins that appear in the component.

4.3 Performance evaluation

It is difficult to evaluate the performance of the feature extraction

method, because there is little knowledge about true association

KEGG pathway maps

KEGG BRITE terms

GO Biological process

GO Molecular function

A B

C D

Fig. 2. Canonical component distribution of the number of enriched

pathways and molecular functions. For each of the 80 canonical components,

enrichment score was computed in terms of the number of proteins associated

with the component. The score was calculated for each of the functional

units in two levels; biological pathways and molecular functions. Each

histogram shows the frequency of canonical components against the number

of enriched functional units associated with the components. (a and b)

Pathway enrichment analysis using KEGG pathway maps showed that

33 components were enriched with one or two maps, and the other 23

components were enriched with <10 maps. For GO biological process

terms, the frequency of components decreased as the number of enriched

terms increased. (c and d) Molecular function enrichment analysis with

KEGG BRITE terms showed much less skewed distribution compared to

the distribution for KEGG pathway maps. GO molecular function terms

showed a bell-shaped distribution with a mean at 3.95 terms. Comparison

between the two enrichment analyses suggests that proteins extracted in a

component are likely to be characterized by a limited number of biological

pathways, even if their molecular functions are different

between targeted proteins and side effects. However, if the

extracted components are biologically meaningful, they should

contain some general properties which could be exploited for side

effect prediction. We evaluate the performance of the method by

recovering known drug side effect profiles from drug protein-

binding profiles, using the extracted canonical components.

In previous literature, chemical structure fingerprints were used

for predicting side effect profiles in the framework of OCCA (Atias

and Sharan, 2011) and SCCA (Pauwels et al., 2011). Therefore, we

made a comparison between chemical structure-based approach and

targeted protein-based approach in the framework of both OCCA

and SCCA by performing the following 5-fold cross-validation.

First, drugs in the gold standard set were split into five subsets of

roughly equal sizes, and each subset was used in turn as a test set.

Second, the CCA model was trained on the remaining four sets.

Third, the prediction score was computed from the test set, based on

the components extracted from the training set. Finally, the model

was evaluated for prediction accuracy over the 5-folds.

We evaluated the performance of the methods by the receiver-

operating characteristic curve (ROC curve) and the Precision–Recall

curve (Supplementary Fig. S2). The ROC curve is a plot of true

positives as a function of false positives based on various prediction

score thresholds, where true positives are correctly predicted side

effects and false positives are incorrectly predicted side effects.

The Precision–Recall curve is the plot of ‘precision’ (positive
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Table 2. Most frequently appearing enriched pathways

ID KEGG pathway maps

map04080 Neuroactive ligand–receptor interaction

map04020 Calcium signaling pathway

map04728 Dopaminergic synapse

map04010 MAPK signaling pathway

map04260 Cardiac muscle contraction

map04727 GABAergic synapse

map04970 Salivary secretion

map04725 Cholinergic synapse

map00590 Arachidonic acid metabolism

map04270 Vascular smooth muscle contraction

All component-based enriched pathways and associated enrichment scores are shown

in Supplementary Table S2.

predictive value) as a function of ‘recall’ (sensitivity) based on

various thresholds.

We summarized the performance by the area under the ROC curve

(AUC) score and the area under the Precision–Recall curve (AUPR)

score. To obtain robust results, we repeated the cross-validation

experiment five times, and computed the mean and the standard

deviation (SD) of the AUC scores over the five repetitions. Sparsity

parameters c1, c2 ranged from 0 to 1 by 0.1 increments, and m

ranged from 10 to 200 by 10 increments. The best results were

obtained with c1 =0.1, c2 =0.1 and with m=80 components in the

case of SCCA. The same cross-validation experiments were repeated

for OCCA (with no sparsity constraint), and the best results were

obtained for m=20 components.

Table 3 shows the resulting AUC and AUPR scores for the four

different approaches, where the prediction scores for all side effects

were merged, and a global ROC curve and a global PR curve were

evaluated for each approach. This indicates that both SCCA and

OCCA produce fairly good results and SCCA is slightly better than

OCCA. It also seems that the targeted protein-based approach works

better than the chemical structure-based approach. Results suggest

that the targeted protein information is indeed useful for side effect

prediction.

4.4 Prediction of side effects for uncharacterized drugs

In the DrugBank database, there are still 730 drugs whose target

protein information is available, but side effects are not stored in the

SIDER database. On the basis of their protein-binding profiles, we

predicted the potential side effects for these uncharacterized drugs

using the SCCA model, all of the 658 reference drugs being used as

a training set. All prediction results can be found in Supplementary

Table S3A. Complete analysis of all predictions is of course out of

reach, so we focused on the side effect predictions of highest scores.

Some of the top-ranked predicted side effects involve Cinnarizine

(DB00568), an anti-histaminic drug used against motion sickness.

This drug binds to the histaminic H1 receptor, which is believed to

explain its effectiveness in preventing vomiting in motion sickness.

Its predicted ‘tremor’ (cyclical movement of a body part) side

effect was confirmed by literature (Gimenez-Roldan and Mateo,

1991). Interestingly, Cinnarizine also binds to the voltage-dependent

calcium channel involved in muscle contraction, which might

Table 3. Performance evaluation based on 5-fold cross-validation

Method AUC ± S.D. AUPR ± S.D.

Chemical structure-based approach

Random 0.5000 ± 0.0000 0.0556 ± 0.0000

OCCA 0.8355 ± 0.0010 0.3753 ± 0.0016

SCCA 0.8708 ± 0.0007 0.3766 ± 0.0030

Targeted protein-based approach

Random 0.5000 ± 0.0000 0.0556 ± 0.0000

OCCA 0.8850 ± 0.0007 0.4067 ± 0.0006

SCCA 0.8895 ± 0.0002 0.4103 ± 0.0018

Scores of the proposed method are highlighted in bold.

explain the ‘tremor’ side effect. ‘Constipation’ is also predicted

for Cinnarizine, as found in the adverse effect report 6127929-0

of the Food and Drug Administration (FDA). The predicted ‘dry

mouth’side effect for Cinnazarine was also confirmed from literature

(Gordon et al., 2001).

The second ranked predicted side effect is ‘diplopia’ (double

vision) for Benzocaine (DB01086), a surface anesthetic that acts by

preventing transmission of impulse along nerve fibers. Consistent

with this activity, Benzocaine is an inhibitor of voltage-dependent

sodium channel. The predicted side effect was confirmed from the

literature (Horowitz et al., 2005). ‘Syncope’ was another side effect

predicted for Benzocaine with a high score (Walker et al., 2003).

The fourth ranked predicted side effect is ‘tremor’ for Bepridil

(DB01244), an antihypertensive drug. Tremor is indeed one of the

most common side effects for this drug, reported for 5% of all

patients (Williams et al., 2002). ‘Tachycardia’ was also confirmed

for Promazine (DB00420), an antipsychotic agent (Aronson, 2007).

The side effect ‘diplopia’ for Nisoldipine (DB00401), a calcium

channel blocker used for the management of hypertension, was also

confirmed (O’Keefe and Creamer, 1987).

5 DISCUSSION

We provide biological interpretations of proteins and side effects

extracted in each canonical component CC. Although CCs

highlighted in Figure 1 are discussed here, the distinct characteristics

were also observed in many other components.

In CC1, the top-ranked proteins were serotonin and noradrenaline

transporters. They belong to the family of neurotransmitter

transporters and are responsible for the release and re-uptake of the

serotonin and noradrenaline neurotransmitter molecules by neurons,

at the level of synapses. The uptake of the neurotransmitters is

coupled to the co-transport of sodium ion by sodium channels to

derive the required energy to pump the neurotransmitter against

its gradient. Therefore, neurotransmitter transporters and sodium

channels can be viewed as proteins playing part in the same

biological process. This indicates that drugs-targeting sodium

channels or neurotransmitter transporters share some side effects,

indeed, drugs such as Venlafaxine or Bupropion that target

neurotransmitter transporters gained high score in CC1, together

with drugs such as Flecainide or Lamotrigine that target sodium

channels. As shown in Figure 3a and b, channel blockers and

drugs targeting serotonin and noradrenaline transporters display

very diverse chemical structures, because they probably target
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Relating drug–protein interaction with side effects

very different binding sites. The fact that they lead to similar

side effects could not have been foreseen based on analysis of

chemical structures. Dopamine receptor was also found in CC1.

This receptor belongs to the GPCR family and is implicated in

many neurological processes such as motivation, cognition or fine

motor control. Dopamine is a neurotransmitter that is structurally

similar to noradrenaline, and in fact, it is a precursor of noradrenaline

(Figure 3c). Consequently, a drug targeting one of these two proteins

might also bind to the other, which might explain why these

two proteins share some side effects and are found in the same

component. Venlafaxine has a high score in CC1 and is an example

of such a case.

In CC2, the top-ranked proteins were gamma-aminobutyric acid

(GABA) receptors (GABA-A receptors). These receptors function

as chloride channels gated by GABA. They mediate neuronal

inhibition in the central nervous system. Consistent with this

role, most of the high scoring drugs in CC2 were molecules

that target GABA receptors and modulate their function. They

are used as anti-anxiety agents, muscle relaxants or anesthesia

adjuvants. Midazolam and Baclofen are examples of drugs targeting

GABA receptors (Figure 3d), although these molecules belong to

very different chemical families. Midazolam is a benzodiazepine

molecule that binds to GABA-A receptors and acts as an agonist

that increases GABA activity. Baclofen is a GABA derivative that

targets GABA type B receptors (which are GPCRs) in addition to

the GABA-A receptors. Interestingly, Gabapentin was one of the

high scoring drugs in CC2 (Figure 3e), although it does not bind

to GABA receptors. This molecule binds to and inhibits voltage-

sensitive calcium channels. However, this drug is known to increase

GABA concentration in the synapse, although the corresponding

mechanism is not understood (Petroff et al., 2000). Consequently,

it indirectly increases the activity of GABA receptors, which is

consistent with its use (among others) as anti-anxiety agent.

Proteins extracted in CC5 and CC15 are mainly involved in

pathways related to inflammation. In CC5, most proteins with high

weights are enzymes belonging to the arachidonic acid metabolism

pathway, such as prostaglandin G/H synthases, arachidonate 5-

lipoxygenase and leukotriene A-4 hydrolase. Indeed, CC5 was

enriched with the KEGG ‘Arachidonic acid metabolism’ pathway,

in which proinflammation molecules such as leukotrienes or

prostaglandins are synthesized. High scoring drugs in CC5 were

mainly non-steroidal anti-inflammatory drugs (NSAIDs), that inhibit

enzymes of this pathway. Some of these drugs are structurally

unrelated, such as Diclofenac and Indomethacin, but they both

inhibit prostaglandin G/H synthases (Figure 3f). Others also have

very different chemical structures, such as Leflunomide that binds

arachidonate 5-lipoxygenase (Figure 3g). However, all these drugs

exert their anti-inflammatory action by inhibiting the same overall

biological pathway, which explains why they lead to common side

effects and contributed to the same component.

In CC15, most of the extracted proteins belong to the

glucocorticoid signaling pathway, such as glucocorticoid

receptor (a nuclear receptor) or corticosteroid-binding globulin.

Glucocorticoids are a class of steroid hormones that are part

of the feedback mechanism in the immune system that turns

inflammation down. In this pathway, cytosolic glucocorticoid

receptors are activated by glucocorticoid binding. The receptor–

ligand complex translocates to the nucleus where it up-regulates

anti-inflammatory proteins such as annexin 1, or down-regulates

Bupropion

(DB01156)

Midazolam

(DB00683)

Baclofen

(DB00181) (DB00996)

Indomethacin

(DB00328)

Triamcinolone (DB00620)

Leflunomide   

(DB01097)

Amcinonide (DB00288)

A

B

C

D E

F G

H

Diclofenac

(DB00586)

Flecainide

(DB01195)

Venlafaxine

(DB00285)

Lamotrigine

(DB00555)

noradrenaline dopamine
Venlafaxine

(DB00285)

Fig. 3. Examples of molecules responsible for extraction of CCs. (a and

c; CC1) Venlafaxine and Bupropion bind to neurotransmitter transporters.

Flecainide and Lamotrigine bind to sodium channels. Noradrenaline and

dopamine are the two natural ligands of noradrenaline transporter and

dopamine receptor, respectively. Venlafaxine also binds to noradrenaline and

dopamine receptor. (d and e; CC2) Midazolam and Baclofen interact directly

with GABA receptors. Gabapentin indirectly modulates GABA receptors

activity by increasing GABA concentration in the synapse. (f and g; CC5)

Examples of non steroidal anti-inflammatory drugs (NSAIDs) responsible

for extraction of CC 5. They bind to prostaglandin G/H synthase (f) or

arachidonate 5-lipoxygenase (g). (h; CC15) Example of steroidal anti-

inflammatory drugs that bind proteins involved in the glucocorticoid

signaling pathway. DrugBank IDs are provided in parentheses

proinflammatory proteins such as interleukins or cytokines. High

scoring drugs in CC15 were molecules from the steroid family such

as Triamcinolone that binds glucocorticoid receptor or Amcinonide

that binds glucocorticoid receptor and annexin 1 (Figure 3h).

Therefore, although high scoring drugs in CC5 or CC15 present an

anti-inflammation activity, they do not act on the same biological

pathways. Consequently, they do not present the same side effects.

Interestingly, CC5 contained a human DNA topoisomerase. This

protein controls the topological states of DNA, and therefore, one

could wonder why this protein was extracted in CC5. In fact, various

drugs from the fluoroquinolone family, namely, Ciprofloxacin,

Ofloxacin and Doxorubicin, which target DNA topoisomerase were

found among high scoring drugs in CC5. These fluoroquinolones

and NSAIDs, or example Diclofenac and Indomethacin, share

some of the extracted side effects of CC5, namely, ‘Stevens

Johnson syndrome’, ‘stomatitis’ and ‘agranulocytosis’. NSAIDs

and fluoroquinolone are structurally unrelated molecules, have

completely different modes of action and target functionally

unrelated proteins. The fact that they share the common side effects

may not be explained by our current pathway data. Additional

information such as relationships between pathways will be required

to fully explain such cases.

Another case is a possibility that certain side effects can be caused

by an alteration of the immune system introduced by drugs. It is

known that synthetic glucocorticoids down-regulate the functions

of immune cells (Flammer and Rogatsky, 2011), and certain anti-

cancer drugs show immunosuppressive activities (Law, 2005). To

discuss whether the occurrence of common side effects between

these drugs is due to the direct inhibitions of the targeted proteins

or indirect alterations of the immune system, an investigation of

cross talks between signaling pathways and immune pathways is

necessary.
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6 CONCLUSION

In this article, we proposed a novel SCCA-based approach to

relate drug targeted proteins with drug side effects. Using a cross-

validation scheme, we found that the proposed approach displays

better performance than chemical-structure-based methods for the

prediction of drug side effects. Results suggest that side effect of

drugs are more correlated to their mechanism of action, rather than

to their chemical structure, which presents an interesting result. In

most drug discovery projects, a therapeutic target playing a role in a

given disease is searched for, and once identified, the corresponding

pathways can be identified. The components that are enriched in

these pathways provide a list of potential side effects that one can

expect for future drugs acting on the target of interest.

We constructed a statistical model for the prediction of side

effect profiles from protein-binding profiles, primarily because the

number of drugs with side effect information is much less than

those with targeted protein information. Indeed, it is unlikely in a

practical situation that detailed side effect profiles are known for

newly arriving drug candidate molecules. One limitation of our

proposed method is that targeted protein information is not always

obtainable; however, increasing information regarding protein-

ligand interactions is becoming available from various biological

assays. Thus, we envisage scenarios where a drug candidate

molecules'f targeted protein information is available, but not side

effect information. In this context, we believe that our proposed

method presents itself as a powerful and informative tool for use

within the drug discovery process.
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