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Abstract The Little map and the Edelman–Greene insertion algorithm, a generaliza-
tion of the Robinson–Schensted correspondence, are both used for enumerating the
reduced decompositions of an element of the symmetric group. We show the Little
map factors through Edelman–Greene insertion and establish new results about each
map as a consequence. In particular, we resolve some conjectures of Lam and Little.
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1 Introduction

1.1 Preliminaries

In this paper, we clarify the relationship between two algorithmic bijections, due to
Edelman and Greene [6] and to Little [14], respectively, both of which deal with
reduced decompositions in the symmetric group Sn . It is well known that Sn can be
viewed as a Coxeter group with the presentation

Sn = 〈s1, s2, . . . , sn−1 | s2
i = 1, si s j = s j si for |i − j | ≥ 2, si si+1si = si+1si si+1〉
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where si can be viewed as the transposition (i i+1). Let σ = σ1, σ2, . . . , σn ∈ Sn .
A reduced decomposition or reduced expression of σ is a minimal-length sequence
sw1 , sw2 , . . . , swm such that σ = sw1 , sw2 , . . . , swm . The word w = w1, w2, . . . , wm is
called a reduced word of σ . It is convenient to refer to a reduced decomposition by its
corresponding reduced word and we will conflate the two often. The set of all reduced
decompositions of σ is denoted Red(σ ). An inversion in σ is a pair (i, j) with i < j
and σi > σ j . Let l(σ ) be the number of inversions in σ . Since each transposition si

either introduces or removes an inversion, for w = w1, . . . , wm a reduced word of σ ,
we can show m = l(σ ).

The enumerative theory of reduced decompositions was first studied in [18], where
using algebraic techniques it is shown for the reverse permutation σ = n . . . 21 that

|Red(σ )| =
(n

2

)!
(2n − 3)(2n − 5)2 · · · 5n−23n−2 . (1)

This is the same as the number of standard Young tableaux with the staircase shape λ =
(n−1, n−2, . . . , 1). In addition, Stanley conjectured for arbitraryσ ∈ Sn that |Red(σ )|
can be expressed as the number of standard Young tableaux of various shapes (possibly
with multiplicity). This conjecture was resolved in [6] using a generalization of the
Robinson–Schensted insertion algorithm, usually called Edelman–Greene insertion.
Edelman–Greene insertion maps a reduced word w to the pair of Young tableaux
(P(w), Q(w)) where the entries of P(w) are row-and-column strict and Q(w) is a
standard Young tableau. The same map also provides a bijective proof of (1), as there
is only one possibility for P(w) while every standard Q(w) is possible.

Algebraic techniques developed in [11] can be used to compute the exact multiplic-
ity of each shape for given σ . A bijective realization of Lascoux and Schützenberger’s
techniques in this setting is demonstrated in [14]. A descent is an inversion of the form
(i, i + 1). Permutations with precisely one descent are referred to as Grassmannian.
There is a simple bijection between reduced words of a Grassmannian permutation σ

and standard Young tableaux of a shape determined by σ . The Little map works by
applying a sequence of modifications referred to as Little bumps to the reduced word
w until the modified word’s corresponding permutation is Grassmannian so that it can
be mapped to a standard Young tableau denoted LS(w).

1.2 Results

Since the Little map’s introduction, there has been speculation on its relationship
to Edelman–Greene insertion. In the appendix of [8], written by Little, Conjecture
4.3.2 asserts that LS(w) = Q(w) when the maps are restricted to reduced words
of the reverse permutation. Similar comments are made in [14]. We show that the
connection is much stronger than previously suspected: this equality is true for every
permutation.

Theorem 1 Let w be a reduced word. Then

Q(w) = LS(w).
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The proof is based on an argument from canonical form. First, we verify the theo-
rem for the column reading word, a canonical reduced word associated to P(w) that
plays nicely with both Edelman–Greene insertion and Little bumps. We then show
the statement’s truth is invariant under Coxeter–Knuth moves, transformations that
traverse the space of reduced words with identical P(w). Using Theorem 1, we also
demonstrate a method for computing the set of P(w) associated to the permutation σ

that is more efficient than those previously known.
Given Theorem 1, one might suspect the respective structures of the two maps

are intimately related. Specifically, Conjecture 2.5 of [10] proposes that Little bumps
relate to Edelman–Greene insertion in a way that is analogous to the role dual Knuth
transformations play for the Robinson–Schensted–Knuth algorithm.

Let v and w be reduced words. We say v and w communicate if there exists a
sequence of Little bumps changing v to w. This is an equivalence relation as Little
bumps are invertible.

Theorem 2 (Lam’s Conjecture) Let v and w be two reduced words. Then v and w

communicate if and only if Q(v) = Q(w).

For σ a permutation, we define a graph Gσ on Red(σ ) by saying two reduced
words are adjacent if they differ by a Coxeter–Knuth move. Using Theorem 2, we
demonstrate this graph is a dual equivalence graph, as introduced in [4] and expanded
on in [16].

Theorem 3 The graph Gσ is a dual equivalence graph.

Theorem 3 is an observation of Sara Billey (in a private communication), and our
proof strategy follows closely her original proof. A last consequence of our work is
Algorithm 4.3, which computes the set of Edelman–Greene P tableaux associated
to a permutation. We have not investigated whether this algorithm is more efficient
than the algorithms in [15] for the same purpose; however, our algorithm is easier to
implement, and perhaps conceptually clearer.

1.3 Random sorting networks

In recent years, there has been interest in the properties of randomly chosen reduced
decompositions for the reverse permutation, known as random sorting networks. intro-
duced in [3] and studied further in [1,2]. Little is known about these objects rigorously,
though conjectures are plentiful, striking, and strongly supported by numerical evi-
dence. Most of the results that are known come from analyzing the asymptotics of
staircase-shaped Young tableaux, by way of the Edelman–Greene correspondence.

For instance, it is conjectured in [3, Conjecture 2] that the “partial” permutation
matrix of a random sorting network, obtained by concatenating the first half of the
transpositions, has its nonzero entries distributed according to the Archimedean dis-
tribution. Curiously, this distribution is also found in the limiting shape of a random
domino tiling of the Aztec Diamond [5]. However, the current best result in this direc-
tion [3, Theorem 4] is an octagonal bound on the support of the nonzero entries in the
partial permutation matrix. The bound is obtained by computing the limiting profile of
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a random staircase Young tableau (which can be done precisely), and then attempting
to push this information through the Edelman–Greene correspondence (which cannot).

We think that an incomplete understanding of the Edelman–Greene algorithm is
one of the main obstacles to progress on the random sorting network problem. As
such, we hope that by strengthening the combinatorial foundations of this area, better
asymptotic characterizations of random sorting networks will be attained. We regard
this paper as a first step in this direction.

1.4 Structure of the paper

In the second section, we review those parts of [6,14] which we need: we define
Edelman–Greene insertion and the Little map, as well as generalized Little bumps.
Additionally, we state some properties of these maps that are important to our work.
The third section defines Coxeter–Knuth transformations and studies their interaction
with Little bumps and action on Q(w). We conclude in the fourth section by proving
our main results and resolving several conjectures of Little and Lam.

2 Two maps

2.1 Edelman–Greene insertion

In order to define Edelman–Greene insertion, we must first define a rule for inserting a
number into a tableau. Let n ∈ N and T be a tableau with rows R1, R2, . . . , Rk where
Ri = r i

1 ≤ r i
2 ≤ · · · ≤ r i

li
. We define the insertion rule for Edelman–Greene insertion,

following [6].

1. If n ≥ r1
l1

or if R1 is empty, adjoin n to the end of R1.

2. If n < r1
l1

, let j be the smallest number such that n < r1
j .

(a) If r1
j = n + 1 and r1

j−1 = n, insert n + 1 into T ′ = R2, . . . , Rk and leave R1
unchanged.

(b) Otherwise, replace r1
j with n and insert it into T ′ = R2, . . . , Rk .

Aside from 2(a), this is the RSK insertion rule. Such exceptional bumps are referred to
as special. For w = w1 . . . wm a word (not necessarily reduced), we define EG(w) =
(P(w), Q(w)) via the following sequence of tableaux (see Fig. 1 for an example).
We obtain P1(w) by inserting wm into the empty tableau. Then Pj (w) is obtained
by inserting wm− j+1 into Pj−1(w). Note we are inserting the entries of w from right
to left. At each step, one additional box is added. In Q(w), the entry of each box
records the time of the step in which it was added. From this, we can conclude that
Q(w) is a standard Young tableau. Note the fourth insertion in Fig. 1 follows 2(a). For
w a reduced word of some σ , it is shown in [6] that the entries of P(w) are strictly
increasing across rows and down columns. Additionally, we can recover σ from P(w)

with no additional information, that is P(w) determines σ .
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Fig. 1 Edelman–Greene insertion for w = 4, 2, 1, 2, 3, 2, 4

2.2 Grassmannian permutations

Recall a permutation σ is Grassmannian if it has exactly one descent. We can then write

σ = a1a2 . . . akb1b2 . . . bn−k

where {ai }k
i=1 and {b j }n−k

j=1 are increasing sequences with ak > b1. A word w is Grass-
mannian if it is the reduced word of a Grassmannian permutation. From the Grass-
mannian word w = w1, . . . , wm we construct a tableau Tab(w) as follows. Index
the columns of Tab(w) by b1, . . . , bn−k and the rows by ak, ak−1, . . . , a1. Since all
inversions in σ feature an ai and a b j , each wl in w represents the swap between an
ai and a b j . For wl , we enter m + 1 − l in the column indexed by ai and b j . If ai

swaps with b j , we see it must later swap with each smaller b. This shows entries are
increasing across rows. Likewise, if b j swaps with ai , it must later swap with each
larger a so entries increase down columns. From this, we can conclude that Tab(w)

is a standard Young tableau whose shape is determined by σ . There is an example of
Tab in Fig. 2. For a given Grassmannian permutation σ , this map is a bijection as the
process is easily reversed. Multiple Grassmannian permutations may correspond to
the same shape. However, they will only differ by some fixed points at the beginning
and end of the permutation.

2.3 Little bumps and the Little map

We now describe the method in [14] for transforming an arbitrary reduced word into
the reduced word of a Grassmannian permutation. This method is implemented in an
easy-to-use Java applet [13] and we strongly recommend that the reader follow along
in our descriptions using this software, if possible. Let w = w1 . . . wm be a reduced
word and w(i) = w1 . . . wi−1wi+1 . . . wm . We construct

w(i−) =
{

w1 . . . wi−1(wi − 1)wi+1 . . . wm if wi > 1
(w1 + 1) . . . (wi−1 + 1)wi (wi+1 + 1) . . . (wm + 1) if wi = 1
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Fig. 2 The Little map for the reduced word w = 4212324 of σ = 35241. The dashed crosses show the
modifications made by the next Little bump

by decrementing wi by one or incrementing each other entry if wi = 1.
Let w be a reduced word such that w(i) is also reduced. Note w(i−) may not be

reduced, as wi − 1 may swap the same values as some w j with j �= i . However, this
is the only way w(i−) can fail to be reduced as w(i) is reduced and we have added
only one additional swap. Removing w j from w(i−), we obtain a new reduced word
w(i−)( j). Repeating this process of decrementation, we can construct w(i−)( j−) and
so on until w has been transformed into a reduced word v = v1 . . . vm . We refer to
this process as a Little bump beginning at position i and say v = w↑i , where i is the
initial index the bump was started at. To see that this process terminates, we refer to
the following lemma.

Lemma 1 (Lemma 5, [14] ) Let w be a reduced word such that w(i) is reduced. Let
i1, i2, . . . be the sequence of indices decremented in w↑i . Then no two of i1, i2, . . .

are equal.

Since w is finite, we see the process terminates so that w↑i is well defined. We
highlight a property of Little bumps observed in [14], that they preserve the descent
structure of w.
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Corollary 1 Let w = w1, . . . , wm and v = v1, . . . , vm be reduced words and ↑ be a
Little bump such that v = w↑. Then vi > vi+1 if and only if wi > wi+1 for all i .

Proof Let wi > wi+1. As each wi is decremented at most once, we see vi ≥ vi+1, but
vi �= vi+1. Thus, vi > vi+1. By the same reasoning, if wi < wi+1, we see vi < vi+1.

Let w be a reduced word of σ ∈ Sn . We define the Little map LS(w).

1. If w is a Grassmannian word, then LS(w) = Tab(w)

2. If w is not a Grassmannian word, identify the swap location i of the last inversion
(lexicographically) in σ and output LS(w↑i ).

It is a result from [14] extending work in [11] that LS terminates. We then see that
w 
→ LS(w) where LS(w) is a standard Young tableau. An example can be seen in
Fig. 2, where the word w is represented by its wiring diagram: an arrangement of
horizontal, parallel wires spaced one unit apart, labeled 1 through n on the left-hand
side, in which each letter in the word w is represented by a crossing of wires.

3 The action of Coxeter–Knuth moves

3.1 Basics of Coxeter–Knuth moves

First introduced in [6], Coxeter–Knuth moves are perhaps the most important tool for
studying Edelman–Greene insertion. They are modifications of the second and third
Coxeter relations. Let a < b < c and x be integers. The three Coxeter–Knuth moves
are the modifications

1. acb ↔ cab
2. bac ↔ bca
3. x(x + 1)x ↔ (x + 1)x(x + 1)

applied to three consecutive entries of a reduced word. Let w = w1, w2, . . . , wm be a
reduced word of σ and α denote a Coxeter–Knuth move on the entries wi−1wiwi+1.
Since a < b < c, if α is of type one or two we have wα a reduced word of σ as well
by the second Coxeter relation. If α is of type three then wα is a reduced word of σ

by the third Coxeter relation. We say two reduced words v and w are Coxeter–Knuth
equivalent if there exists a sequence α1, α2, . . . , αk of Coxeter–Knuth moves such that

v = wα1 . . . αk .

Note that two Coxeter–Knuth equivalent reduced words must correspond to reduced
decompositions of the same permutation. We can see their action on wiring diagrams
in Fig. 3.

Coxeter–Knuth moves play a role in the study of Edelman–Greene insertion anal-
ogous to that of Knuth moves in the study of RSK insertion.

Theorem 4 (Theorem 6.24 in [6]) Let v and w be reduced words. Then P(v) = P(w)

if and only if v and w are Coxeter–Knuth equivalent.
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(a) (b) (c)

Fig. 3 The three types of Coxeter–Knuth moves acting on wiring diagrams

3.2 The action of Coxeter–Knuth moves on Q(w)

In order to understand the relationships of Coxeter–Knuth moves and Little bumps, we
must first understand in greater detail how Coxeter–Knuth moves relate to Edelman–
Greene insertion. From Theorem 4, we understand how Coxeter–Knuth moves relate
to P(w). We must also understand their action on Q(w). For T a standard Young
tableau with n entries, let T ti, j be the Young tableau obtained by swapping the entries
labeled n − i and n − j . Note this notation is unintuitive, as we use i to index the
position in the word, rather than the label in T .

Lemma 2 Let w = w1 . . . wm be a reduced word and α be a Coxeter–Knuth move
on wi−1wiwi+1. If α is a Coxeter–Knuth move of type one or three, then

Q(wα) = Q(w)ti−1,i .

If α is a Coxeter–Knuth move of type two, then α acts on Q(w) as above or

Q(wα) = Q(w)ti,i+1.

Proof For w = w1 . . . wm a reduced word we see w|i−1 := wi−1wi . . . wm is also a
reduced word. Let α be a Coxeter–Knuth move on wi−1wiwi+1. By Theorem ?? we
see

P(w|i−1) = P(w|i−1α) = P(wα|i−1)

as they differ by a Coxeter–Knuth move. Since w1 . . . wi−2 remain unmodified,
their insertion is unchanged. Additionally, as w |i+2= wα|i+2 we see Q(w|i+2) =
Q(wα|i+2), so changes in Q(w) can only occur at the entries labeled m−i+1, m−i
and m−i−1. The remainder of this argument is adapted from the proof for Theorem
6.24 in [6]. The strategy of proof is to analyze the insertion of the triplet wi−1wiwi+1
and its counterpart in wα into one row of P(w|i+2). If one such w j fails to bump
anything, the analysis is straightforward. Otherwise the three entries bumped by each
will continue to differ by a Coxeter–Knuth move, allowing us to reduce the problem
to the previous case.

1. In this case, we do not need to complete the full analysis described above. Let α be a
Coxeter–Knuth move of type one. Then wi+1 inserts into the same spot in P(w|i+2)

for both w and wα. Since Q(w) �= Q(wα), we see Q(wα) = Q(w)ti−1,i .
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2. Let α be a Coxeter–Knuth move of type three. This case is treated now as we will
use it in the case where α is a move of type two. We compare the insertion of
x(x + 1)x and (x + 1)x(x + 1) into the same row of P(w|i+2). Assume both x
and x +1 bump an entry of the row. Let p denote the entry bumped by x , ε1 be the
entry preceding p and ε2 be the entry following p. If p > x +1, we see x and x +1
are inserted into the same position, so Q(wα) = Q(w)ti−1,i as in the first case.
Let p = x +1. Since w|i+2 is reduced, ε2 = x +2 (otherwise, inserting x +1 first
would leave consecutive occurrences of x + 1). There are two remaining possibil-
ities: ε1 < x or ε1 = x . Let ε1 < x . Upon inserting x(x + 1)x into the row, we see
the first x bumps x + 1, x + 1 bumps x + 2 and the second x bumps the x + 1 just
inserted (a special bump), so that (x + 1)(x + 2)(x + 1) is inserted into the next
row. Upon inserting (x + 1)x(x + 1) into the row, we see the first x + 1 produces
a special bump of x + 2, the x bumps x + 1 and the second x + 1 bumps the x + 2
remaining after the special bump, so that (x + 2)(x + 1)(x + 2) is inserted into
the next row. The case where ε1 = x is simpler. Every bump is a special bump, so
that p and ε2 are unchanged throughout the insertion process. Each x and x + 1
will bump an entry precisely one larger, so that the entries to be inserted into the
next row will be (x + 1)(x + 2)(x + 1) and (x + 2)(x + 1)(x + 2), respectively.
In both cases, we are left with a Coxeter–Knuth move of type three.
If one of the three inserted letters does not bump an entry of the row, we see the
largest entry k of the row must be less than x +1. As P(wα|i+1) is row and column
strict, we see k < x , so x or x + 1 would both insert at the end of the row. Thus,
Q(wα) = Q(w)ti−1,i .

3. Let α be a Coxeter–Knuth move of type two. For a < b < c, we compare
the insertion of bca and bac into a row of P(w|i+2) bumping pqr and p′q ′r ′,
respectively. If p = p′, we see Q(wα) = Q(w)ti−1,i as as in the first case.
Assume p �= p′. One can then check that a and c bump the same entries regardless
of order, so that p = q ′ and q = p′. If b bumps the same entry in each case, it is
straightforward to see that pqr and p′q ′r ′ differ by a Coxeter–Knuth move of type
two. The only way this does not occur is if q = p + 1 (so they are next to each
other) with c = p. In this case, upon inserting bca we obtain q(q + 1)q, while the
insertion of bac produces (q + 1)q(q + 1) as the bump of q + 1 by c is special.
Therefore, we are left with another Coxeter–Knuth move of type two or one of
type three. In the latter case, we see Q(wα) = Q(w)ti−1,i by the second case.
If some letter does not bump an entry of the row, there are two possibilities. Let k
be the largest entry of the row. If k < a, then a and c would insert into the same
position, so Q(wα) = Q(w)ti−1,i . If a < k < c, then c inserts on the end of
the row and a bumps the same entry x of the row regardless of the order of inser-
tion. Since x is the only entry bumped, we see P(w|i ) = P(wα|i ). Therefore,
Q(wα) = Q(w)ti,i+1.

3.3 Coxeter–Knuth moves and Little bumps

We now set out to show that Coxeter–Knuth moves commute with Little bumps. This
requires two results. The first is that the order we perform a Coxeter–Knuth move α

and a Little bump ↑ does not affect the resulting reduced word.
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Lemma 3 Let w = w1 . . . wm be a reduced word, α a Coxeter–Knuth move on
wi−1wiwi+1, and ↑ j,k be a Little bump begun at the swap between the j and kth
trajectories. Then

(wα)↑ j,k = (w↑ j,k)α.

Note that α is used here to represent two Coxeter–Knuth moves, possibly of different
types, on the same indices.

Proof Let v = w↑ j,k and v′ = (wα)↑ j,k . Recall from Lemma 1 and Corollary 1 that
w j − v j ∈ {0, 1} and v has the same descent structure of w.

1. Let α be a Coxeter–Knuth move of the first type, i.e. wi−1wiwi+1 
→ wiwi−1wi+1
with wi+1 strictly between wi−1 and wi . Since a Little bump decrements an entry
of w by at most one, one can check that if wi+1 differs from wi or wi−1 by more
than one, we can perform a Coxeter–Knuth move of type one on vi−1vivi+1. In
the event that they differ by exactly one and the largest entry is decremented, we
see in Fig. 4 that after the bump they differ by a Coxeter–Knuth move of the third
type.

2. Let α be a Coxeter–Knuth move of the second type, i.e. wi−1wiwi+1 
→
wi−1wi+1wi with wi−1 strictly between wi+1 and wi . Since a Little bump decre-
ments an entry of w by at most one, one can check that if wi−1 differs from wi or
wi+1 by more than one, there is a Coxeter–Knuth move of type two on vi−1vivi+1.
In the event that they differ by exactly one and the largest entry is bumped, we
see in Fig. 4 that after the bump they differ by a Coxeter–Knuth move of the third
type.

3. Let α be a Coxeter–Knuth move of the third type. In the event that all three entries
are bumped, the resulting entries will continue to differ by a Coxeter–Knuth move
of the third type. In the event fewer entries (but not zero) are bumped, we see
in Fig. 5 that there will be a Coxeter–Knuth move of the first or second type
remaining.

Fig. 4 Transitional bumps for type one and two Coxeter–Knuth moves
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Fig. 5 Transitional bumps for type three Coxeter–Knuth moves

We next show that the rest of the Little bump proceeds in the same manner once the
crossings involved in the Coxeter–Knuth move have been bumped. To see this, we
need only observe that the last bumped swap is between the same two trajectories.
This can be verified readily by examining Figs. 4 and 5.
The preceding argument assumes that the bumping path does not return to the
crossings involved in the Coxeter–Knuth move. It is possible that the bumping
path passes through the crossings involved in the Coxeter–Knuth path twice (but
no more than that, by Lemma 1). However, the same argument applies, showing
that all three crossings are bumped regardless of whether the Coxeter–Knuth move
is performed before or after the bump.

We now show that the action of a Coxeter–Knuth move on Q(w) remains the same
after applying a Little bump. Combined with Lemma 3, this shows that the order in
which Coxeter–Knuth moves and Little bumps are performed on a reduced word w

does not affect either the resulting reduced word or the resulting recording tableau.

Lemma 4 Let w be a reduced word, α be a Coxeter–Knuth move and ↑ a Little bump.
Then Q(wα) = Q(w)ti,i+1 if and only if Q(w↑α) = Q(w↑)ti,i+1.

Proof Let w = w1 . . . wn be a reduced word and α a Coxeter–Knuth move acting on
w such that Q(wα) = Q(w)ti,i+1. Then by Lemma 2, there are two cases: α is either
acting on wi−1wiwi+1, or on wiwi+1wi+2. We first show Q((wα)↑) = Q(w↑)ti,i+1
for the case where α acts on wi−1wiwi+1. Note that Lemma 2 implies that α’s action
on w is that of a Coxeter–Knuth move of type 2.

Let w′ = wα. Then w|i = wiwi+1wi+2 . . . wn and w′|i = wi+1wiwi+2 . . . wn are
the parts of w and w′, respectively to the right of wi−1. Applying Edelman–Greene
insertion to w|i and w′|i , we see Q(w|i ) = Q(w′|i )ti,i+1, so P(w|i ) and P(w′|i )
have the same shape. Moreover, we see that P(w|i−1) = P(w′|i−1) (that is, after one
more insertion the two P-tableaux coincide), since w|i−1α = w′|i−1. Additionally,
the largest label n − i − 1 is in the same entry of Q(w|i−1) and Q(w′|i−1) so the
insertion of wi−1 terminates in the same cell. Each step of Edelman–Greene insertion
is bijective. Therefore, upon reversing the last insertion, we find P(w|i ) = P(w′|i ).

123



704 J Algebr Comb (2014) 40:693–710

Then by Theorem 4, there exists a sequence of Coxeter–Knuth moves α1 . . . αm such
that w|i = w′|iα1, . . . , αm . We then see

Q(w↑|i ) = Q((w′α1 . . . αm)↑|i ) = Q((w′↑)α1 . . . αm |i )

by Lemma 3. Therefore, w↑|i and w′↑|i differ solely at their first two positions and
are Coxeter–Knuth equivalent, so we see Q(w↑|i ) and Q(w′↑|i ) have the same shape
with Q(w↑|i ) = Q(w′↑|i )ti,i+1. Thus, Q(w↑) = Q(w′↑)ti,i+1 = Q(wα↑)ti,i+1.
Since the inverse of a Little bump is also a Little bump, the converse holds as well.
Therefore, in the case where α acts on wi−1wiwi+1, we see Q(wα) = Q(w)ti,i+1 if
and only if Q(w↑α) = Q(w↑)ti,i+1.

For the case where α acts on wiwi+1wi+2, we argue by contradiction. Assume
Q(wα) = Q(w)ti,i+1, but Q(wα↑) �= Q(w↑)ti,i+1. By Lemma 2 we see Q(wα↑) =
Q(w↑)ti+1,i+2. Applying the first case to w↑, we conclude Q(wα) = Q(w)ti+1,i+2,
a contradiction. Thus, Q(wα) = Q(w)ti,i+1 if and only if Q(w↑α) = Q(w↑)ti,i+1.

4 Proof of results

4.1 The Grassmannian case

Before proving Theorem 1, we need to establish the base case where w is a
Grassmannian word. In order to do so, we must understand which entries are
exchanging places with each swap. For w = w1 . . . wm a reduced word, we
define σ i = sw1sw2 . . . swi where σ 0 is the identity permutation. The lth trajec-
tory of w is the sequence {(σ i )−1(l)}m

i=0. For w a Grassmannian word of σ =
a1a2 . . . akb1b2 . . . bn−k , observe that the j th column of Tab(w) lists the times for
all swaps featuring b j . Since all such swaps increase the position of b j , we can recon-
struct its trajectory from the number and location of these swaps. Similarly, we can
reconstruct the trajectory of each ai from the k + 1 − i th row of Tab(w). We will find
it convenient to identify the lth trajectory of a Grassmannian word with the indices
{i1, i2, . . . , itl } ⊂ [n] of the swaps featuring l. Since insertion takes place from right
to left, we index the entries such that i1 > i2 > · · · > itl .

Lemma 5 Let w = w1 . . . wm be a reduced decomposition of a Grassmannian per-
mutation σ . Then Tab(w) = Q(w).

Proof Let σ = a1a2 . . . akb1b2 . . . bn−k be a Grassmannian permutation with sole
descent akb1 and w = w1 . . . wm a reduced decomposition of σ . Note the trajectories
of the b j ’s are non-intersecting as no two swap with each other.

We now show that when applying Edelman–Greene insertion to w, if wl changes
the trajectory of b j at time l, then wl will be inserted into the j th column of Pn+1−l(w)

and each entry bumped during this insertion will in turn insert into the j th column.
From this and the definition of Tab, we can conclude that Tab(w) = Q(w).

If b1 has the only non-trivial trajectory amongst the b j , then Q(w) = Tab(w)

trivially; there is only one column in Tab(w). Assume there are multiple b j with non-
trivial trajectories. Let {i1, i2, . . . , it2} be the trajectory of b2. Note wik = wik+1 + 1.
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Then, b1 has trajectory {l1, . . . , lt1} with t1 ≥ t2 and lk > ik , i.e. the kth from last
swap featuring b1 comes later than the kth from last featuring b2 and so on. Inserting
from right to left, we see that upon inserting any wi j , we will have already inserted
wl j . Therefore, wi1 will be inserted into the second column as any previously inserted
entry will be from the trajectory of b1, and thus have inserted into the first column.
When wi2 is inserted, it too will insert into the second column as wl2 will have been
inserted into the first column. For identical reasons as before, wi1 will remain in the
second column upon being bumped. We then see inductively that, unimpeded by other
swaps, the trajectory of b2 will insert one after another into the second column.

The same argument applies to b3 and so on. Thus, Tab(w) = Q(w).

Corollary 2 For w a Grassmannian word, Edelman–Greene insertion coincides with
RSK insertion performed on the reverse word.

Proof The argument in Lemma 5 shows there are no special bumps, so the two algo-
rithms agree.

Remark 1 As pointed out by a referee, Corollary 2 implies that Lemma 5 is essen-
tially a fact about the RSK algorithm, so an alternative approach to proving these two
facts is possible. The sketch of this alternative argument is as follows. First, prove
the statement of Corollary 2 independently: roughly, Grassmannian words come from
321-avoiding permutations, so special bumps cannot occur. Then, apply Green’s the-
orem [9] to identify the longest increasing subsequences in w with trajectories in the
wiring diagram of W , proving the statement of Lemma 5.

4.2 The column reading word

The only ingredient missing from our argument is a canonical form that is invariant
under Little bumps.

Definition 1 For T a Young tableau with columns C1, C2, . . . , Cm where Ci =
ci

1, ci
2, . . . , ci

k with ci
j being the ( j, i)th entry of T . We define the column reading

word of T to be the word

τ(T ) = CmCm−1 . . . C1.

If T is row and column strict then P(τ (T )) = T and each column of Q(τ (T )) has
consecutive entries. For w a reduced word, we define τ(w) to be τ(P(w)). By the
previous observation, w and τ(w) are Coxeter–Knuth equivalent.

For example, the tableau in Fig. 2 has columns 1245, 36 and 7, so its column word is
7361245. One can think of the column reading word as closely related to the bottom-up
reading word. Since insertion takes place from right to left, the column reading word
is in some sense its transpose.

Lemma 6 Let w be a reduced word and ↑ a Little bump on w. Then

Q(τ (w)) = Q(τ (w)↑).
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Proof Letw be a reduced word, τ(w)=CmCm−1. . . C1 and τ(w)↑ = Dm Dm−1. . . D1

where |Ci | = |Di | (note Dk is not a priori a column of P(τ (w)↑)). Since τ(w) and
τ(w)↑ have the same descent structure, we see C1 and D1 insert identically. As each
entry of τ(w)↑ is decremented at most once and P(τ (w)) is row and column strict,
we see

dk
i ≤ ck

i ≤ dk
i + 1 ≤ dk+1

i ,

so dk+1
i will not bump any dk

j with j ≤ i . Therefore, any entry of Dk will stay
in the kth column of P(τ (w)↑) for all k, that is the entries of the kth column of
P(τ (w)↑) are Dk . Thus, τ(w)↑ is a column reading word with identical column
sizes, so Q(τ (w)) = Q(τ (w)↑).

4.3 Proof of Theorem 1 and its corollaries

Combining Lemma 6 with Lemmas 3 and 4, we can conclude the following:

Proposition 1 Let w be a reduced word and ↑ be a Little bump on w. Then

Q(w) = Q(w↑).

Proof Let w be a reduced word. There exists a sequence α1, α2, . . . , αk of Coxeter–
Knuth moves such that w = τ(w)α1 . . . αk . As Q(τ (w)) = Q(τ (w)↑) by Lemma 6,
we compute

Q(w) = Q(τ (w)α1 . . . αk)

= Q((τ (w)↑)α1 . . . αk)

= Q((τ (w)α1 . . . αk)↑) = Q(w↑)

where the second equality follows from Lemmas 4 and 6 and the third equality follows
from Lemma 3.

Proof (Proof of Theorem 1) Let w be a reduced word and ↑i1 , . . . ,↑ik be the sequence
of canonical Little bumps. By Prop 1 and Lemma 5, we see

Q(w) = Q(w↑i1 . . . ↑ik ) = Tab(w↑i1 . . . ↑ik ) = LS(w).

We now demonstrate several consequences. First, we show how to use our results
to compute the set of P-tableaux associated to a given permutation.

For the permutation σ , let P(σ ) = {P(w) : w ∈ Red(σ )}. We outline an algorithm
for computing P(σ ). In order to do so, we must define the Lascoux-Schützenberger tree
of a permutation σ [8,11,14]. This is a tree rooted at σ ; its other nodes are indexed by
permutations, defined recursively as follows. If σ is Grassmannian, it has no children.
Otherwise, the children of σ are

{σ t(r,s)t(i,r) : i < r and l(σ t(r,s)t(i,r)) = l(σ )}
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where (r, s) is the last inversion in σ lexicographically. If no such i exists, the children
of σ are the same as those of 1 ⊕ σ = 1(σ1+1) . . . (σn+1). As described in [14], the
paths from σ to each of the leaves encode a canonical seqence of Little bumps which
transform any reduced word for σ into an associated Grassmannian word.

Algorithm 5 (to compute the Edelman–Greene P-tableau asociated to σ )

1. Compute the Lascoux–Schützenberger tree for σ .
2. For each leaf of the tree, pick a representative reduced word, e.g. the column word.
3. Apply inverse Little bumps along the tree to each representative until it is a reduced

word of σ . Such bumps are initiated at the swap introducing the inversion (i, r),
following the notation used to define the Lascoux-Schützenberger tree.

4. Compute P(w) for each representative. The set of outcomes will be P(σ ).

In fact, by [18], we can improve efficiency in step 1 slightly by stopping at vexillary
(2143-avoiding) permutations, rather than continuing to Grassmannian permutations.
Another method for computing P(σ ) can be found in [15].

Next is a simple consequence of Corollary 1.

Corollary 3 The descent structure of a reduced word w is determined by Q(w).

There is an analogous result for the Robinson–Schensted-Knuth algorithm, which
appears first in a paper of Schützenberger [17]. It was subsequently rediscovered by
Foulkes [7]. The proof can also be found in the standard reference [19, Lemma 7.23.1].
For sorting networks, this result was proved in [6].

The next is Conjecture 11 from [12], which first appeared as Conjecture 4.3.3 in
the appendix of [8].

Corollary 4 Let w be a reduced word and let ↑i1 ,↑i2 , . . . ,↑ik be any sequence of
Little bumps such that

v = w↑i1 . . . ↑ik

is a Grassmannian word. Then Tab(v) = LS(w).

This follows from Prop 1. We can extend this result further. Let λ be a partition
with w a Grassmannian word whose corresponding tableau is of shape λ. The permu-
tation σ associated to w can be characterized by the number of initial fixed points. A
Grassmannian permutation is minimal if it has no initial fixed points. Note the mini-
mal Grassmannian permutation of a given shape is unique in S∞. Recall two reduced
words communicate if there exists a sequence of Little bumps and inverse Little bumps
changing one to the other.

We next provide proofs of our remaining main theorems (of Lam’s conjecture, and
of the dual equivalence graph structure of the set of Coxeter–Knuth moves).

Proof (of Theorem 2) Let v and w be reduced words. Suppose first that v and w

communicate. Then by Theorem 1, we have that Q(v) = Q(w).
Conversely, suppose that Q(v) = Q(w). By applying the canonical sequence of Lit-

tle bumps, w can be changed to the Grassmannian word w′ and v to the Grassmannian
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Fig. 6 Removing a fixed point from the Grassmannian word w = 7523645 via the canonical sequence of
bumps

word v′. Since Little bumps are invertible, Q(w) = Q(w′) and Q(v) = Q(v′), we
can conclude that v and w communicate if Grassmannian permutations of the same
shape communicate. To show this, we demonstrate a sequence of Little bumps that will
remove a fixed point at the beginning of an arbitrary Grassmannian permutation. Let
σ = a1 . . . akb1 . . . bn−k be a Grassmannian permutation with akb1 its sole descent.
Our sequence is constructed by initiating a Little bump at the last swap featuring each
b j , beginning with b1. See Fig. 6 for an example. If σ has initial fixed points, this
sequence will decrement each entry of w, removing an initial fixed point.

We now verify that our sequence works as described. First, we must verify that
the swap locations at which we begin a Little bump are valid choices, that is that
removing that swap from w leaves a reduced word. To see this, note that the first
such swap chosen is the swap between ak and b1, the last swap in w. This bump will
decrement every entry in the trajectory of b1. After the first Little bump, the second
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swap chosen is the last in the trajectory of b2. Since the trajectories of all b j with
j > 2 are unaffected by the initial Little bump, this is the last swap for both b2 and ak ,
so removing it leaves a reduced word. This bump will decrement every entry in the
trajectory of b2. Note because we have already decremented the swaps in the trajectory
of b1 and these trajectories were initially disjoint, they will remain disjoint after the
second Little bump. Applying this line of reasoning inductively, we see that each Little
bump in the sequence is a valid Little bump which decrements every entry of each
trajectory. We have now shown v and w communicate if Q(v) = Q(w).

Therefore, any Grassmannian permutation communicates with the minimal permu-
tation of that shape. From this, we can conclude any two Grassmannian permutations
with the same shape communicate.

For a permutation σ , we define the graph Gσ = (V, E) where V = Red(σ ) and
(v,w) ∈ E if v = wα where α is a Coxeter–Knuth move. In [4], the notion of a
dual equivalence graph is introduced and axiomatized. Such graphs satisfy certain
connectivity properties and can be assigned weights in a specific fashion. The axioms
are quite complicated, and we refer the reader to [16] or [4] for a complete characteri-
zation. The existence of such graphs imply Schur positivity for associated symmetric
functions. It is known that the graphs on words induced by Knuth equivalence and
dual Knuth equivalence, respectively, satisfy these axioms [16, Theorem 3.2]. Addi-
tionally, we make use of the fact that the disjoint union of dual equivalence graphs
with comparable labels is a dual equivalence graph.

Proof (of Theorem 3) Our strategy here follows an original proof of this idea due to Sara
Billey (private communication). We first examine the case where σ is a Grassmannian
permutation. By Corollary 2, RSK and Edelman–Greene insertion coincide on Red(σ ).
Since Knuth transformations coincide with Coxeter–Knuth transformations, we see
the Gσ is a dual equivalence graph as it is the same as the graph on Red(σ ) induced
by Knuth transformations.

We now study the image of Gσ under Little bumps. By Lemma 3, we see Gσ
∼=

(Gσ )↑, the image of Gσ under any Little bump. Therefore, for an arbitrary permutation
σ , we see Gσ

∼= Gσ1 � · · · � Gσk where σ1, . . . , σk are Grassmannian permutations.
Since the disjoint union of dual equivalence graphs is a dual equivalence graphs, we
see Gσ is a dual equivalence graph.

Finally, we show how to embed Robinson–Schensted insertion and RSK in the
Little map. In doing so, we recover a modified version of [12, Theorem 9] through a
much simplified argument. This embedding was first predicted as Conjecture 4.3.1 in
the appendix of [8].

Theorem 6 Let σ = σ1 . . . σn ∈ Sn, so that w(σ) = (2σn − 1) . . . (2σ1 − 1) is a
reduced word as it has no repeated entries. Let RS(σ ) = (P ′(σ ), Q′(σ )) be the output
of Robinson–Schensted insertion applied to σ . Upon applying the transformation
k 
→ (k + 1)/2 to the entries of LS(w(σ)), we obtain Q′(σ ). We can obtain P ′(σ ) by
applying the same transformation to LS(w(σ−1)).

Proof Since LS(w) = Q(w) and there are no special bumps, Edelman–Greene inser-
tion will perform the same insertion process on w as Robinson–Schensted insertion
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performs on σ . Therefore, upon applying the transformation k 
→ (k + 1)/2, we see
LS(w(σ)) = Q(w(σ)) = Q′(σ ). Since RS(σ−1) = (Q′(σ ), P ′(σ )) (see e.g. [19]),
we can obtain P ′(σ ) by applying the same transformation to LS(w(σ−1)).

Since RSK can be embedded in Robinson–Schensted insertion (see Sect. 7 of [12]
for a description of this process), Theorem 6 recovers an embedding of RSK into the
Little map as well.

Acknowledgments We would like to thank Omar Angel, Sara Billey, Vadim Gorin, Ander Holroyd,
Thomas Lam, David Little, Eric Nordenstam, Dan Romik, Balint Virag and Peter Winkler for helpful
discussions and the referees for helpful comments. This research began while we were visiting the Math-
ematical Sciences Research Institute in 2012, for the program in Random Spatial Processes. This project
made heavy use of computer experiments in Sage [20]. Also, David Little’s applet [13] was very helpful in
understanding the Little bijection.

References

1. Angel, O., Gorin, V., Holroyd, A.E.: A pattern theorem for random sorting networks. arXiv, preprint.
arXiv:1110.0160. (2011)

2. Angel, O., Holroyd, A.E.: Random subnetworks of random sorting networks. Electron. J. Comb. 17(23),
1 (2010)

3. Angel, O., Holroyd, A.E., Romik, D., Virág, B.: Random sorting networks. Adv. Math. 215(2), 839–868
(2007)

4. Assaf, Sami H,: Dual equivalence graphs I: a combinatorial proof of LLT and macdonald positivity.
arXiv, preprint. arXiv:1005.3759. (2010)

5. Chhita, S., Johansson, K., Young, B.: Asymptotic domino statistics in the Aztec diamond. arXiv,
preprint. arXiv:1212.5414. (2012)

6. Edelman, P., Greene, C.: Balanced tableaux. Adv. Math. 63(1), 42–99 (1987)
7. Foulkes, H.O.: Enumeration of permutations with prescribed up-down and inversion sequences. Discret.

Math. 15(3), 235–252 (1976)
8. Garsia, Adriano.: The saga of reduced factorizations of elements of the symmetric group. Laboratoire

de combinatoire et d’informatique mathématique. Université du Québec à Montréal, Montréal, Canada
(2002)

9. Greene, Curtis: An extension of schensted’s theorem. Adv. Math. 14(2), 254–265 (1974)
10. Lam, T.: Stanley symmetric functions and Peterson algebras. Arxiv, preprint arXiv:1007.2871, (2010)
11. Lascoux, A., Schützenberger, M.P.: Schubert polynomials and the Littlewood–Richardson rule. Lett.

Math. Phys. 10(2), 111–124 (1985)
12. Little, David P.: Factorization of the Robinson–Schensted–Knuth correspondence. J. Comb. Theory

Ser. A 110(1), 147–168 (2005)
13. Little, David P.: Diagram Viewer: a java applet implementing the Little bijection. http://www.math.

psu.edu/dlittle/DiagramViewer.zip, (2012)
14. Little, D.P.: Combinatorial aspects of the Lascoux–Schützenberger tree. Adv. Math. 174(2), 236–253

(2003)
15. Reiner, Victor, Shimozono, Mark: Plactification. J. Algebr. Comb. 4(4), 331–351 (1995)
16. Roberts, Austin.: Dual equivalence graphs revisited and the explicit Schur expansion of a family of

LLT polynomials. J. Algebr. Comb. 39(2), 1–40 (2013)
17. Schützenberger, M.P.: Quelques remarques sur une Construction de Schensted. Math. Scand 12, 117–

128 (1963)
18. Stanley, R.P.: On the number of reduced decompositions of elements of Coxeter groups. Eur. J. Comb.

5, 359–372 (1984)
19. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge Univ Pr, Cambridge, MA (2001)
20. Stein, W.A. et al.: Sage Mathematics Software (Version 5.3). The sage development team. http://www.

sagemath.org. (2012)

123

http://arxiv.org/abs/arXiv:1110.0160
http://arxiv.org/abs/arXiv:1005.3759
http://arxiv.org/abs/arXiv:1212.5414
http://arxiv.org/abs/arXiv:1007.2871
http://www.math.psu.edu/dlittle/DiagramViewer.zip
http://www.math.psu.edu/dlittle/DiagramViewer.zip
http://www.sagemath.org
http://www.sagemath.org

	Relating Edelman--Greene insertion to the Little map
	Abstract
	1 Introduction
	1.1 Preliminaries
	1.2 Results
	1.3 Random sorting networks
	1.4 Structure of the paper

	2 Two maps
	2.1 Edelman--Greene insertion
	2.2 Grassmannian permutations
	2.3 Little bumps and the Little map

	3 The action of Coxeter--Knuth moves
	3.1 Basics of Coxeter--Knuth moves
	3.2 The action of Coxeter--Knuth moves on Q(w)
	3.3 Coxeter--Knuth moves and Little bumps

	4 Proof of results
	4.1 The Grassmannian case
	4.2 The column reading word
	4.3 Proof of Theorem 1 and its corollaries

	Acknowledgments
	References


