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In this paper, we show that bilattices are robust mathematical structures that pro-

vide a natural accommodation to, and bridge between, intuitionistic fuzzy sets and
interval-valued fuzzy sets. In this way, we resolve the controversy surrounding the

formal equivalence of these two models, and open up the path for a new tradition

for representing positive and negative information in fuzzy set theory.

1. Motivation

Bilattices are algebraic structures that were introduced by Ginsberg14, and
further examined by Fitting12,13 and others, e.g.2, as a general framework
for many applications in computer science. In this paper, we show that
these structures can also elegantly and naturally accomodate intuitionistic
fuzzy sets (IFSs) and interval-valued fuzzy sets (IVFSs), which are two fre-
quently encountered and syntactically equivalent generalizations of Zadeh’s
fuzzy sets. In particular, and more generally than in previous works, we
demonstrate that Atanassov’s decision to restrict the evaluation set for
L-intuitionistic fuzzy sets to consistent couples of the “square” L2 forces
the resulting structure to coincide with the “triangle” I(L). This insight
provides a convenient stepping stone towards more general and expressive
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models for the representation and processing of positive and negative im-
precise information.

2. Preliminaries: IFSs, IVFSs, and Bilattices

2.1. Intuitionistic fuzzy sets (IFSs)

A fuzzy set17 is a nebular collection of elements from a universe U , described
by a membership function µ : U → [0, 1]. An intuitionistic fuzzy set3 (IFS,
for short) is a nebular collection of elements from a universe U , described
by a pair of functions (µ, ν), each one maps elements from U to the unit
interval [0, 1], such that for every u in U , µ(u) + ν(u) ≤ 1. Intuitively, µ

is a membership function and ν is a non-membership function. These two
functions are not necessarily each other’s complement (an assumption which
is implicit in Zadeh’s fuzzy set theory), i.e., the amount of the ‘missing
information’, 1− µ(u)− ν(u), may be strictly positive.

Given a complete lattice L = (L,≤), Goguen15 introduced the concept
of L–fuzzy sets as a mapping µ : U → L. Intuitionistic fuzzy sets can be
interpreted as a particular kind of L–fuzzy sets, where the corresponding
complete lattice is the following10:

Definition 2.1. Define: L∗ = (L∗,≤L∗), where L∗ = {(x1, x2) | (x1, x2) ∈
[0, 1]×[0, 1] and x1+x2≤1}, and (x1, x2)≤L∗ (y1, y2) iff x1≤y1 and x2≥y2.

Atanassov and Stoeva4 introduced the following generalization of the
IFS construct, called an intuitionistic L–fuzzy set (ILFS).

Definition 2.2. Let (L,≤L) be a complete lattice with an involution oper-
ationa N and a non–empty set U called universe. An intuitionistic L–fuzzy
set in U is a mapping g : U → L×L, such that if g(u) = (x1, x2) then
x1 ≤L N (x2), for all u in U .

2.2. Interval-valued fuzzy sets (IVFSs)

In interval-valued fuzzy sets the membership degrees are represented by
intervals in [0, 1] that approximate the correct (but unknown) membership
degree. Another justification for this approach is that, in reality, intervals
of values better reflect experts’ opinions than exact numbers.

An IVFS can be seen as an LI–fuzzy set, where the corresponding lattice
is given by the following definition.

aI.e., for every x, y in L, N (N (x)) = x, and if x ≤L y then N (x) ≥L N (y).
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Definition 2.3. Define: LI = (LI ,≤LI ), where LI = {[x1, x2] | (x1, x2) ∈
[0, 1]× [0, 1] and x1 ≤ x2}, and [x1, x2]≤LI [y1, y2] iff x1≤y1 and x2≤y2.

Atanassov and Gargov5 defined another generalization of the IFS con-
struct, called interval–valued intuitionistic fuzzy set (IVIFS), which devi-
ates from the line of thinking of ILFS, and which is more related to the
intuition behind IVFSs.

Definition 2.4. An interval-valued intuitionistic fuzzy set5 in a universe
U is a mapping g : U → (LI)2, such that g(u) = ([xl

1, x
h
1 ], [xl

2, x
h
2 ]) and

xh
1 + xh

2 ≤ 1, for all u in U .

Indeed, applying Definition 2.2 to (LI ,≤LI ), where the involution N on
the lattice (LI ,≤LI ) is defined by N ([x1, x2]) = [1 − x2, 1 − x1], gives the
alternative condition [xl

1, x
h
1 ] ≤LI [1− xh

2 , 1− xl
2].

2.3. Bilattices

As noted above, bilattices are used here for relating IFSs and IVFSs. First,
we recall some basic definitions and notions that are related to these struc-
tures.

Definition 2.5. A pre-bilattice12 is a structure B = (B,≤t,≤k), such that
B is a nonempty set containing at least two elements, and (B,≤t), (B,≤k)
are complete lattices.

Definition 2.6. A bilattice14 is a structureb B = (B,≤t,≤k,¬), such that
(B,≤t,≤k) is a pre-bilattice, and ¬ is a unary operation on B that has the
following properties: for every x, y in B,

(1) if x ≤t y then ¬x ≥t ¬y, (2) if x ≤k y then ¬x ≤k ¬y, (3) ¬¬x = x.

The original motivation of Ginsberg14 for using bilattices was to provide
a uniform approach for a diversity of applications in AI. In particular, he
considered first-order theories and their consequences, truth maintenance
systems, and default reasoning. Later, it was shown that bilattices are

bNote that Definition 2.6 is not the same as the one in 7, but rather corresponds to

Ginsberg’s original definition of bilattices. In terms of Fitting, the definition above
describes a pre-bilattice with a negation, while the structures considered in 7 are pre-

bilattices that are interlaced . As a bilattice may not be interlaced on one hand, and it
may not be possible to define a negation operator for a given interlaced pre-bilattice on
the other hand, the present definition of bilattices is incomparable with that of 7. This
will not be an obstacle in what follows, though.
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useful for giving semantics to logic programs11,12 and that they provide an
intuitive semantics to consequence relations for reasoning with uncertainty1.

Following the conventional notations in the literature, we shall denote
by ∧ (by ∨) ≤t-meet (≤t-join), and by ⊗ (by ⊕) ≤k-meet (≤k-join) of a
bilattice B; f and t will denote the extreme elements of (B,≤t), and ⊥, >
will denote the extreme elements of (B,≤k).

In some bilattices a dual negation operator, called conflation12 (−), is
definable. It is an involution of (B,≤k) and order preserving of (B,≤t):

(1) if x ≤k y then −x ≥k −y, (2) if x ≤t y then −x ≤t −y, (3) −−x = x.

Proposition 2.1. Let B = (B,≤t,≤k,¬) be a bilattice. Then:

a) 14 ¬f = t, ¬t=f , ¬⊥=⊥, ¬>=>. Also, for every x, y in B,
¬(x∧y)=¬x∨¬y, ¬(x∨y)=¬x∧¬y, ¬(x⊗y)=¬x⊗¬y, ¬(x⊕y)=¬x⊕¬y.

b) 12 If B has a conflation, then −f =f , −t= t, −⊥=>, −>=⊥.
For every x, y in B, −(x ∧ y) = −x ∧−y, −(x ∨ y) = −x ∨−y, −(x⊗ y) =
−x⊕−y, and −(x⊕ y) = −x⊗−y.

3. Squares and Triangles

3.1. Squares

Definition 3.1. 14 Let L = (L,≤L) be a complete lattice. The structure
L2 = (L×L,≤t,≤k,¬) is defined as follows: (1) ¬(x1, x2) = (x2, x1),
(2) (x1, x2) ≤t (y1, y2) iff x1 ≤L y1 and x2 ≥L y2,
(3) (x1, x2) ≤k (y1, y2) iff x1 ≤L y1 and x2 ≤L y2.

In what follows we refer to L2 as a square. A pair (x1, x2) ∈ L2 may
intuitively be understood so that x1 represents the amount of belief for
some assertion, and x2 is the amount of belief against it. This is clearly the
same idea as that of Atanassov3, discussed in Section 2.1, of splitting a belief
about the membership of an element u to two components (µ(u), ν(u)). As
we shall show, the similarity does not remain only on this intuitive level.

Proposition 3.1. Let L = (L,≤L) be a complete lattice with a join uL

and a meet tL. Then:

a) 14 L2 is a bilattice, in which ⊥L2 = (inf(L), inf(L)),
>L2 = (sup(L), sup(L)), tL2 = (sup(L), inf(L)), fL2 = (inf(L), sup(L)).

The basic operations in L2 are defined as follows: ¬(x1, x2) = (x2, x1),
(x1, x2)∨(y1, y2)=(x1tLy1, x2uLy2), (x1, x2)∧(y1, y2)=(x1uLy1, x2tLy2),
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(x1, x2)⊕(y1, y2)=(x1tLy1, x2tLy2), (x1, x2)⊗(y1, y2)=(x1uLy1, x2uLy2).

b) 11 Suppose that L has an involution. Denote by x− the ≤L-involute of
x in L. Then a conflation is defined on L2 by −(x1, x2)=(x−2 , x−1 ).

Example 3.1. The square derived from ({0, 1
2 , 1},≤) is shown in Figure 1

(left); Belnap’s four-valued bilattice6 is obtained by the square that is de-
rived from ({0, 1},≤).

Remark that B endorses the main intuition behind L–IFSs: if the mem-
bership degree of an element u is x in L, it is not necessarily the case that
the non-membership degree of u is 1−x, but it is rather some y in L. Also
note that, when L = [0, 1], the structure B = L2 simultaneously encom-
passes the order relations among IVFSs and IFSs: the ≤k–ordering of this
bilattice is exactly the same as the partial order of LI (Definition 2.3). The
≤t–order of B, on the other hand, corresponds to the partial order of L∗
(Definition 2.1).

3.2. Triangles

Definition 3.2. 12 For a complete lattice L = (L,≤L), let I(L) be a triple
(I(L),≤t,≤k) with a set I(L) of intervals [x1, x2] = {x | x ∈ L and x1 ≤L

x≤L x2}, s.t. (1) [x1, x2] ≤t [y1, y2] iff x1 ≤L y1 and x2 ≥L y2,
(2) [x1, x2] ≤k [y1, y2] iff x1 ≤L y1 and x2 ≤L y2.

An interval [y1, y2] in I(L) is ≤k–greater (i.e., more informative) than
[x1, x2] in I(L) if [y1, y2] ⊆ [x1, x2]; it is ≤t–greater than [x1, x2] if (∀x ∈
[x1, x2]) (∃y ∈ [y1, y2]) (x ≤L y) and (∀y ∈ [y1, y2]) (∃x∈ [x1, x2]) (y≥L x).
Note that I(L) is not closed under ≤k–join, and so it is not a (pre–)bilattice
but only a so–called pseudo ≤k–lower pre-bilattice12. In what follows we
shall call I(L) a triangle. The triangle I({0, 1

2 , 1}) is shown in Figure 1
(right).

When L is the unit interval, I(L) naturally describes membership of
IVFSs, and the valuation lattice LI is exactly (I(L),≤t). Moreover, I(L)
extends LI in the sense that it contains the partially ordered set (I(L),≤k),
that orders the intervals according to their amount of information.

Definition 3.3. 12 Let B be a bilattice with a conflation. An element x in
B is called exact if x=−x; it is consistent if x≤k−x.

Proposition 3.2. 12 Let L be a complete lattice with involution. Then
I(L) is isomorphic to the structure of the consistent elements of L2.
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Figure 1. The square {0, 1
2
, 1}2 and the triangle I({0, 1

2
, 1})

The last proposition allows to put several matters into the right per-
spective:

(1) The isomorphism f :I(L) → L2 for the proof of Proposition 3.2 is
given by f([x1, x2]) = (x1,−x2), where −x2 is the involute of x2 in
L. For the unit interval, then, f([x1, x2]) = (x1, 1−x2), which is the
same transformation considered by Cornelis et al.8 for switching
between IVFSs and IFSs. Proposition 3.2 shows that the same
transformation is useful not only for LI and L∗ (i.e., when the
underlying lattice is the unit interval), but for any complete lattice
with involution.

(2) Proposition 3.2 may also serve as a justification for Atanassov’s deci-
sion to consider only the “lower triangle” of [0, 1]2 (i.e., the elements
in (a, b) in [0, 1]2 s.t. a + b ≤ 1): these are exactly the consistent
elements of [0, 1]2 and so, as Proposition 3.2 above indicates, the
lattice L∗ (of the consistent elements in [0, 1]) is isomorphic to the
lattice LI of the [0, 1]-interval-valued fuzzy sets. The fact that we
consider super-lattices of L∗ (i.e., all the elements in [0, 1]2) allows
us to introduce elements such as (a, b) = (1, 1), in which the mem-
bership degree (a) and the non-membership degree (b) are both
maximal. This means that we have a totally inconsistent belief in
this case. As an important aspect of fuzzy logic is reasoning with
imprecise and possibly conflicting information, such values should
not be ruled out!
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(3) Remarkably, Atanassov and Stoeva’s ILFS construct4 (Defini-
tion 2.2), is the exact embodiment of Proposition 3.2. It is not
difficult to see that the condition on g in Definition 2.2 means that
g(u) is a consistent element of L2, where the conflation is defined
as −(x1, x2) = (N (x2),N (x1)), for every (x1, x2) ∈ L2.

(4) Pankowska and Wygralak16 introduced a kind of L–IFSs based on
the lattice ([0, 1],≤) with an involution operation defined, for any
positive real number n, by Nn(x) = n

√
1− xn. It is easy to see that

when n increases, so does the number of elements (x1, x2) in [0, 1]2

for which x1 ≤ Nn(x2), or equivalently x2 ≤ Nn(x1). In fact, if
x1 6= 1, then lim

n→+∞
Nn(x1) = 1, but when x1 = 1, always Nn(x1) =

0. Hence, when n approaches +∞, the set of consistent elements
of [0, 1] × [0, 1] approaches [0, 1]2 without the elements (x1, 1) and
(1, x2), for which x1, x2 > 0.

4. Concluding Remarks

Bilattices are rich mathematical structures that nicely reflect the intuitions
behind IFSs and IVFSs and relate the corresponding theories. The square
L2, together with its ‘information order’ ≤k, generalizes the [0,1]-interval-
valued structure LI , and at the same time L2 with its ‘truth order’ ≤t

extends the [0,1]-intuitionistic fuzzy structure L∗. In particular,

• lattices other than the unit interval fit into Atanassov’s framework,
and

• inconsistent elements are also allowed (for representing inconsistent
beliefs).

These considerations open up new and challenging directions for (L-) fuzzy
set theory, in particular, w.r.t. the processing of collections of partial and
potentially conflicting positive and negative information items.
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