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The primary goal of this article is to demonstrate the close relationship between 2 classes of
dynamic models in psychological research: latent change score models and continuous time
models. The secondary goal is to point out some differences. We begin with a brief review of
both approaches, before demonstrating how the 2 methods are mathematically and conceptu-
ally related. It will be shown that most commonly used latent change score models are related
to continuous time models by the difference equation approximation to the differential equa-
tion. One way in which the 2 approaches differ is the treatment of time. Whereas there are
theoretical and practical restrictions regarding observation time points and intervals in latent
change score models, no such limitations exist in continuous time models. We illustrate our
arguments with three simulated data sets using a univariate and bivariate model with equal and
unequal time intervals. As a by-product of this comparison, we discuss the use of phantom
and definition variables to account for varying time intervals in latent change score models.
We end with a reanalysis of the Bradway–McArdle longitudinal study on intellectual abili-
ties (used before by McArdle & Hamagami, 2004) by means of the proportional change score
model and the dual change score model in discrete and continuous time.

Keywords: continuous time models, difference equation, differential equation, latent change
score models, time intervals

Longitudinal studies are becoming increasingly popular in
the social sciences, and so are the methods for analyzing
the data that arise from them. Among the plethora of
different approaches, choosing the method that is best suited
to address one’s research question is not an easy task.
Depending on how time is treated in the analysis, we can
roughly distinguish between two different types of longitu-
dinal models: static models and dynamic models. In static
models, time is treated as a predictor in the model equation,
just like any other predictor (e.g., in a standard regression
model). This, for example, is the case in latent growth
curve models (Bollen & Curran, 2006; Duncan, Duncan, &
Strycker, 2006) or multilevel/mixed-effects models (Hox,
2010; Pinheiro & Bates, 2000; Singer & Willett, 2003).

These models are useful because they allow us to investigate
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changes in one or more dependent variables as a function of
time (and possible other predictors). However, time per se
does not cause anything. Thus, from the perspective of a
cause–effect relationship, these models are misspecified.
Time might often be a good proxy for the actual mechanisms
underlying the change in a dependent variable, but—other
than suggested by the model equation—certainly does not
cause this change.1 In contrast to static models, dynamic
models try to capture the actual mechanisms of a change
process. Common examples include autoregressive, cross-
lagged, or latent change score (LCS) models (e.g., Du Toit
& Browne, 2001; Jöreskog, 1970; Jöreskog & Sörbom,
1977; McArdle, 2001, 2009; McArdle & Hamagami, 2004).
In these models, time is considered implicitly by the order
of the measurement occasions, but is not explicitly used as
a predictor. Thus, these models are particularly useful when

1This is already apparent from the very definition of a cause–effect
relationship, which requires that the cause precedes the effect in time.
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one is interested in the dynamics and the causes of a change
process.

Researchers’ preferences for dynamic versus static mod-
els have changed back and forth over the years. As pointed
out in a recent review by McArdle (2009), cross-lagged mod-
els (i.e., dynamic models) were widely used in the 1970s and
1980s, and growth curve models (i.e., static models) became
extremely popular in the late 1990s and 2000s follow-
ing the seminal publications by Meredith and Tisak (1990)
and McArdle (1986). Even though growth curve models
remain very popular, with the development and advance-
ment of (dual) change score models during the last 10 years,
researchers are increasingly considering dynamic modeling
approaches as well.

A similar shift in preference can be observed with
respect to the question of whether time should be treated
continuously or discretely. In the econometric literature,
researchers have highlighted the need to model time contin-
uously as early as in the 1940s (Bartlett, 1946; Bergstrom,
1988), followed by similar calls in the sociological literature
(Coleman, 1968; Simon, 1952). In psychology, it was proba-
bly the advent of multilevel models that popularized the use
of time as a predictor in static models of change. Despite
their long history, dynamic models in continuous time are
only recently starting to find their way into the psychologi-
cal literature (Oud & Jansen, 2000; Voelkle, Oud, Davidov,
& Schmidt, 2012).

The goal of this article is to facilitate this process by
demonstrating the close relationship between two dynamic
models for the analysis of change: the (discrete time) LCS
model and the continuous time model. To this end, we
begin with a brief review of the LCS concept, in particu-
lar the so-called proportional change score model, the dual
change score model, and the multivariate dual change score
model. Next, we introduce the basic idea of continuous time
modeling, followed by a discussion of the mathematical and
conceptual relationship between the two. We illustrate our
arguments with three simulated data sets and end with a
reanalysis of the Bradway–McArdle longitudinal study on
intellectual abilities. The data have been analyzed before
by McArdle and Hamagami (2004) using LCS models. All
models are discussed from a structural equation modeling
(SEM) perspective and path diagrams are used to facilitate
the specification of the different approaches.

THE BASICS OF LATENT
CHANGE SCORE MODELING

For a comprehensive introduction to LCS modeling, we
refer the reader to McArdle (2001, 2009) and McArdle and
Hamagami (2001, 2004). In the following, we just sketch the
basics of LCS by means of SEM. In line with this literature
we limit ourselves to the use of continuous variables.

One of the main advantages of SEM is distinguishing
between manifest variables, which can be directly observed,
and latent (unobserved) variables. This accommodates for
the fact that most measurements are not without error. In line
with classical test theory (Gulliksen, 1950; Lord & Novick,
1968) an observed score of individual i = 1, . . . , N on any
variable x can be conceived of as being composed of a true
score ηi and an error score εi. Accordingly, we distinguish
between manifest (x) and latent (η, ε) variables, such that 2

xi = ηi + εi. (1)

For at least two measurement occasions, we can com-
pute the change from one time point to the next. This can
be done at the level of manifest variables [�xi

(
tj − tj−1

) =
xi

(
tj
) − xi

(
tj−1

)
] as well as at the level of latent vari-

ables [�ηi
(
tj − tj−1

) = ηi
(
tj
) − ηi

(
tj−1

)
]. In this notation,

t represents the actual time point and j = 1, . . . , T the
measurement occasion. For example, xi

(
tj−1=4 = 2005

)
is

the value of individual i on variable x at the j = fifth mea-
surement occasion (j = 0 is the first measurement occasion),
which happened to be the year t = 2005. In practice, the
observation occasions could also differ across individuals
(tj,i). For example, whereas individual i = 1 might have had
his or her fifth measurement taken in the year 2005, the
same year might have been the tenth measurement occa-
sion for individual i = 2 (i.e., tj−1=4,i=1 = tj−1=9,i=2 = 2005).
Likewise, the time intervals between two measurement occa-
sions �ji = tji − tj−1i might differ across individuals and the
(latent) change score for any individual i is a function of the
difference �ηi(�j,i).

Other than the name might suggest, in LCS modeling
we are not as interested in the latent change per se (i.e.,
�ηi(�j,i)) as in the rate of change. The rate of change is the

change over a certain time interval; that is,
�ηi(�j,i)

�ji
. Only

if �j,i = 1 does the rate of change reduce to the differ-
ence between two measurement occasions. In this simplified
situation—and for only two time points—the univariate LCS
model can be defined as

ηi
(
tj
) = 1 · ηi

(
tj−1

) + 1 · �ηi. (2)

Figure 1 provides a graphical illustration of the model. Note
that with only two time points the model is saturated (i.e., the

2To stay consistent with the existing literature on the use of SEM to rep-
resent (continuous time) state–space models (e.g., Chow, Ho, Hamaker, &
Dolan, 2010; Oud & Jansen, 2000; Voelkle et al., 2012), we deviate from
the notation used by McArdle (2009), following roughly the LISREL nota-
tion. For multiple variables, we could thus use matrix notation to represent
the relationship between latent and manifest variables, with � being the fac-
tor loading matrix, and τ a vector of intercepts, resulting in the well-known
measurement model (Bollen, 1989):

x = τ + �η + ε.

.
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FIGURE 1 Univariate latent change score model for two time points. The
model is just identified, thus there are five free parameters: The mean μη(t0)

and variance σ 2
η(t0) of the variable at the initial time point, the mean μ�η(t1)

and variance σ 2
�η(t1) of the latent change variable, and the covariance σ 2

η,�η

between the two. The measurement error variances are constrained to zero.
Regression paths of error terms are fixed to 1.

number of parameters to be estimated is equal to the number
of nonidentical elements in the data covariance matrix and
mean vector) and it is not possible to separate true variance
from measurement error.

For more than two time points, we can not only sepa-
rate true variance from measurement variance, but we can
also postulate a structure among the latent variables; that is,
we can begin to formulate and test hypotheses regarding the
dynamics of a change process. For example, the proportional
change score model (PCM) assumes a “carry-over” or “self-
feedback” effect (McArdle, 2001; McArdle & Hamagami,
2004, p. 316), in the sense that future changes decrease or
increase proportionally to the current status. The propor-
tional effect is represented by the time-invariant parameter
a∗ in Equation 3:

�ηi = a∗ · ηi
(
tj−1

)
, (3)

with �ηi = ηi
(
tj
) − ηi

(
tj−1

)
as defined in Equation 2. The

star symbol (∗) will be used in the following to differentiate
between parameters of an LCS and a continuous time model
(to be introduced later on).

In addition to parameter a∗, the dual change score model
(DCM) postulates a random effect S∗i that captures interindi-
vidual differences in the rate of change. Because S∗i is a
constant (but individual-specific) term that is added at each
measurement occasion, McArdle and Hamagami (2004)
denoted it a “latent slope” (p. 316). However, one could also
conceive of it as a latent “trait,” as it is more common in the
literature on continuous time models (Oud & Jansen, 2000,

p. 200). In the following we therefore use the two terms
synonymously. The DCM, whose name stems from the two
additive components a∗ · ηi

(
tj−1

)
and S∗i, is thus defined as

�ηi = a∗ · ηi
(
tj−1

) + S∗i (4)

with the first measurement occasion xi (t0) = ηi (t0) +
εi (t0) and ηi (t0) = I∗i = μI∗ + ζI∗i. The measurement
errors are assumed to be uncorrelated with time-invariant
measurement variance ε (t) ∼ N

[
0, σ 2

ε

]
. In contrast, the

two random factors can be correlated with

(
I∗i

S∗i

)
∼

N

[(
μI∗
bS∗

)
,

(
σ 2

I∗
σ 2

I∗,S∗ σ 2
S∗

)]
.

The standard DCM allows for measurement errors, but
does not include a dynamic error term in Equation 4 and
Figure 2. However, Equation 4 can be extended by introduc-
ing a dynamic error term, albeit the error term is only defined
in discrete time with �j,i = 1 for all j and i (e.g., McArdle,
2001).3 Likewise, the extension to multivariate models—
including the univariate and multivariate PCM and the DCM
as special cases—is straightforward. If we further account
for different time intervals (with the exception of the error
term), the complete multivariate dual change score model
for any discrete time interval �j,i can be defined as:

�ηi

(
�j,i

)
�j,i

= A∗ · ηi

(
tj−1,i

) + S∗i + ζ∗i. (5)

with �ηi

(
�j,i

)
being a p-dimensional vector of latent

difference scores of p latent variables, represented by the
vector ηi. The p × p matrix A∗ contains the time-invariant
proportional effects in the main diagonal and coupling
parameters (i.e., effects of one variable in a multivariate
model on another) in the off-diagonals. The p-dimensional
vector S∗i represents person-specific constants that are added
to the equation—latent traits—with p × p covariance matrix
�S∗ and mean (intercept) vector bS∗. The p-dimensional
dynamic error vector is represented by ζ∗i with covariance
matrix Q∗. We thus distinguish between two different types
of error terms: A measurement error (ε; see Equation 1) and
a prediction or dynamic error (ζ; see Equation 5). Finally, the
covariance matrix of the initial time point is denoted �I∗, its
mean vector μI∗, and the covariance between the initial time
point and the traits �I∗,S∗. By default, measurement errors
are assumed to be uncorrelated and multivariate normally
distributed.

3By this we mean that in LCS models, the change of the dynamic
error term �ζ∗i over interval �j,i is only defined under the assump-

tion of �j,i = 1, so that
�ζ∗i(�j,i=1)

�j,i=1 = ζ∗i

(
�j,i

) = ζ∗i. As will be shown

later on, the continuous time model does not depend on this—usually
unrealistic—assumption.
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FIGURE 2 Univariate dual change score model. The dots to the right of
the figure indicate that the time series can continue to any arbitrary num-
ber of time points T. No measurement took place at t1 (indicated by the
dashed part, which is not part of the model), thus the latent variable η (t1) is
a phantom variable. Regression paths of error terms are fixed to 1.

Accounting for Unequal Time Intervals by Using
Phantom Variables

As discussed before, and as explicated in Equation 5, the
time intervals (�j,i) between two adjacent measurement
occasions could differ across assessment waves (j) and indi-
viduals (i). As long as most individuals are observed at
the same occasion, we can account for differences in time
intervals between occasions by using so-called phantom
variables (Rindskopf, 1984). Phantom variables are latent
variables without indicators. As illustrated by the dashed part
in Figure 2, they can be used as “placeholders” to artifi-
cially create equal intervals. For example, if measurements
were obtained in t1 = 2005, t2 = 2006, and t3 = 2008,
we could introduce a phantom variable in 2007 (i.e., add a
fourth measurement wave to the data, with all values miss-
ing), to make the time intervals equidistant. When doing so,
�j,i can be dropped from the equation because—after cre-
ating equal intervals �j,i = 1 for all j and i—the rate of
change would be identical to the difference score. Although
a practical solution, there are limits to this approach. First,
for many different time intervals the model specification gets
quite cumbersome. More important, however, the approach
breaks down if time intervals vary across individuals and
not just assessment waves. For example for T = 11 time
points and N = 100 individuals, we might end up with
(T – 1)·N = 1,000 different time intervals. Note that this also
limits our ability to use LCS models to investigate change as

a function of age (which is likely to vary across individuals
in a given sample).

Reformulating the LCS Model as an Autoregressive
and Cross-Lagged Panel Model for �j,i

For �ηi

(
�j,i

) = ηi

(
tj,i

) − ηi

(
tj−1,i

)
, Equation 5 can also be

written as

ηi

(
tj,i

) = (
A∗ · �j,i + I

) · ηi

(
tj−1,i

) + �j,i · S∗i + ζ∗i, (6)

which corresponds to a vector autoregressive and cross-
lagged (ARCL) panel model of the general form

ηi

(
tj,i

) = A
(
�j,i

) · ηi

(
tj−1,i

) + Si
(
�j,i

) + ζi

(
�j,i

)
, (7)

with A
(
�j,i

) = (
A∗ · �j,i + I

)
, Si

(
�j,i

) = �j,i · S∗i, and
ζi

(
�j,i

) = ζ∗i.
For the special case of �j,i = 1 and ζ∗i = 0, Equations 6

and 7 reduce to the DCM defined for the univariate case in
Equation 4. If in addition S∗i= 0, Equations 6 and 7 represent
the PCM defined for the univariate case in Equation 3.

The reformulation of an LCS model as an ARCL panel
model provides an easy way to specify an LCS model
by means of simple parameter constraints instead of latent
change variables. This makes the specification of an LCS
model less cumbersome and less error-prone. In addition, the
approach suggests a different way to deal with unequal mea-
surement intervals. Instead of introducing phantom variables
for missing measurement occasions, one could simply con-
strain the parameter estimates in terms of �j,i as shown in
Equation 7. Because �j,i are known, this would also over-
come the limitation of the phantom variable approach that
time intervals cannot vary across individuals. In SEM par-
lance, �j,i would enter the model as a definition variable
(Mehta & Neale, 2005). Maybe most important, however, the
reformulation serves as the basis of relating and comparing
LCS models to continuous time models, which is introduced
in the next section.

THE BASICS OF CONTINUOUS
TIME MODELING

As previously for change score models, in the following we
only sketch the basics of continuous time (CT) modeling by
means of SEM. For a more comprehensive introduction to
the approach, we refer the reader to Voelkle et al. (2012), and
to Oud and colleagues for additional background information
(Oud, 2007b; Oud & Delsing, 2010; Oud & Jansen, 2000).

In LCS we predict the rate of change, which we defined
before as the difference between two latent variables over a

discrete time interval
(

ηi(tj,i)−ηi(tj−1,i)
�j,i

)
. In CT modeling we

assume the interval to be infinitesimally small (Coleman,
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1968). Another way to think about the relationship between
a discrete and a CT model is that the former is sampled from
the latter at some selected time points, a notion that is com-
mon in control theory (e.g., Zadeh & Desoer, 1963). This
applies to most longitudinal studies where few discrete mea-
surement occasions have to suffice to infer how a construct
changes over time (e.g., how cognitive ability changes across
the life span based on a longitudinal study with annual mea-
surement occasions only). We thus define the rate of change
as the derivative of ηi (t) with respect to time. Just as in
Equation 5, the continuous time model predicts this rate of
change in ηi (t):

dηi (t)

dt
= A ηi (t) + Si + G

dWi (t)

dt
. (8)

Like the discrete-time LCS model, the p × p matrix A
(the so-called drift matrix) contains the auto-effects in
the main diagonal and the cross-effects of one variable
on another (the coupling parameters) in the off-diagonals.
Also as before, the p-dimensional vector Si represents a
person-specific constant (trait) that is added to the equa-
tion with covariance matrix �S, intercept vector bS, and
covariance with the first measurement occasion �I,S. Capital
letter Wi (t) denotes the so-called Wiener process, a ran-
dom walk in continuous time with initial value 0 and
independent increments with distribution N(0,�jI) over
interval �j. To model arbitrary variances and covariances
among the error terms, dWi(t)

dt is premultiplied by the
Cholesky triangle G so that the resulting error covariance
matrix in continuous time—the diffusion matrix—is Q =
GG′.

Reformulating the CT Model as an Autoregressive and
Cross-Lagged Panel Model for �j,i

Just like LCS Equation 5 can be expressed as Equation 6, the
differential Equation 8 can be solved for any arbitrary time
interval �j,i = tj,i − tj−1,i and initial values ηi

(
t0,i

)
, resulting

in

ηi

(
tj,i

) = eA·�j,iηi

(
t0,i

) + A−1
[
eA·�j,i − I

]
Si

+ ∫tj,i
t0 eA·(tj,i−s)GdWi (s) .

(9)

This corresponds to a vector ARCL panel model as
defined in Equation 7, with A

(
�j,i

) = eA·�j,i , Si
(
�j,i

) =
A−1

[
eA·�j,i − I

]
Si, and ζi

(
�j,i

) = ∫tj,i
t0 eA·(tj,i−s)GdWi (s) .

With these parameter constraints in place, the dynamic
error covariance matrix is:

Q
(
�j,i

) = irow
{
(A ⊗ I + I ⊗ A)−1 [

e(A⊗I+I⊗A)·�j − I
]

row (Q)
}

for = GG′,

with I being the identity matrix, ⊗ the Kronecker product,
row meaning that the elements of matrix Q are put row-wise
into a column vector, and irow denoting the inverse opera-
tion. Likewise (because of the constraint A−1

[
eA·�j,i − I

]
in

Equation 9), the covariance matrix of traits �S
(
�j,i

)
is

�S
(
�j,i

) = A−1
[
eA·�j,i − I

]
�S

(
A−1

[
eA·�j,i − I

])′
,

the intercept vector bS
(
�j,i

)
is

bS
(
�j,i

) = A−1 [
eA·�j,i − I

]
bS

and the covariance matrix of traits and initial time point is

�I,S
(
�j,i

) = �I,S
(
A−1

[
eA·�j,i − I

])′
.

Because of the constraints in Equation 9, �S, bS, and �I,S

are automatically estimated without additional constraints.
Note, that just like the LCS model, the CT model allows
the modeling of means and intercepts. For a more detailed
discussion of the preceding equations, we refer the reader
to the step-by-step introduction to CT modeling by Voelkle
et al. (2012, pp. 181–184). For the purpose of this article,
it suffices to realize that CT models can be reformulated as
constrained ARCL panel models (Equation 9).

ON THE RELATIONSHIP BETWEEN LATENT
CHANGE SCORE AND CONTINUOUS TIME

MODELING

What LCS and CT models have in common is that both aim
at predicting the rate of change. They differ in their def-
inition of the rate of change. In LCS models the rate of
change is the difference in the latent variable(s) of interest
between two discrete time points divided by the length of
the time interval between them (Equation 5). In CT models,
the rate of change is the derivative of the latent variable(s)
with respect to time (Equation 8). As demonstrated earlier,
for any discrete time interval �j,i, LCS and CT models can
both be reformulated as ARCL panel models with discrete
time parameters constrained to the underlying parameters of
an LCS or CT model, respectively. For the special univariate
case (i.e., A = a; Q = q; �I= φI ; �S = φS; �I,S = φI,S),
this is illustrated in Figure 3, which provides a graphical rep-
resentation of the LCS model and the CT model. For the
general multivariate case, the parameter constraints are sum-
marized in Table 1. Because of the different constraints, the
two modeling approaches are not the same. For example, for
the same time interval between two consecutive measure-
ment occasions (�j = t2 − t1), the effect(s) of η(t1) on η (t2)
would be

(
A∗ · �j + I

)
in the LCS model (Equation 5) and

eA·�j in the CT model (Equation 8). The reason for this dif-
ference is that both models make different assumptions about
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FIGURE 3 Univariate latent change score model. The dots to the right
of the figure indicate that the time series can continue to any arbitrary
number of time points T. The different types of circles indicate parameter
constraints. The constraints are defined below the figure for the approximate
and exact approach. For �j = 1, the model resulting from implementing
the approximate parameter constraints is identical to the (LCS) model in
Figure 2. Regression paths of error terms are fixed to 1.

TABLE 1
Latent Change Score and Continuous Time Constraints for Time

Interval �j ,i

Parameter Latent Change Score Model Continuous Time Model

A
(
�j,i

) = (
A∗ · �j,i + I

) = eA·�j,i

Si
(
�j,i

) = �j,i · S∗i, = A−1
[
eA·�j,i − I

]
Si

ζi

(
�j,i

) = ζ∗i = ∫tj,i
t0 eA·(tj,i−s)GdWi (s)

the process between the observed measurement occasions.
This is best understood when putting the matrix exponential
constraint of the CT model in power series expansion:

A
(
�j,i

) = eA·�j,i = I + A · �j,i + 1

2!A2 · �2
j,i

+ 1

3!A3 · �3
j,i · · · .

(10)

The first two terms of the power series expansion are iden-
tical to the LCS constraint (I + A∗ · �j,i in Equation 6).
The LCS constraint is thus a crude approximation of the
full power series of the CT model, which results from the
difference score approximation to the actual derivative.4

Operating in discrete time, the LCS model assumes that
the process formulated in Equation 5 only operates between,
but not within, measurement occasions. In contrast, the CT
model assumes that the model process (Equation 8) also
operates between the observed measurement occasions. For
equal and discrete intervals, both models should thus pro-
vide the same description of the observed discrete-time data,
but differ in the interpolation or extrapolation to other time
intervals. Such interpolation or extrapolation, however, is
crucially important for the comparison of parameter esti-
mates across different time intervals within a study, different
time intervals across different studies, and different time
intervals across individuals. Without being able to answer
whether an effect observed for individual i = 1 at a time
interval �j=1,. . .,T ,i=1 = 1 is weaker or stronger than an effect
of another individual i = 2 at a time interval �j=1,. . .,T ,i=2 =
2, no cumulative scientific knowledge can be generated
(Voelkle et al., 2012).

Based on these considerations, we expect that as dynamic
models focusing on the prediction of the rate of change, LCS
and CT models should both make it possible to address the
same questions in longitudinal data analysis and yield similar
results. However, because the two approaches differ in their
definition of the rate of change, and in the assumptions about
the process between measurement occasions, we also expect
the results to be not identical, particularly if time intervals
differ. More specifically, we expect discrete time parameter
estimates [i.e., A

(
�j,i

)
, Si

(
�j,i

)
, ζi

(
�j,i

)
] for observed time

intervals to be identical for both approaches if time intervals
are the same (for all j and i). The same should hold true if
equidistant time intervals are artificially created by means of
phantom variables, which is possible as long as most indi-
viduals are observed at the same measurement occasions.
Because of the crude approximation of the change process
between measurement occasions, the use of definition vari-
ables in LCS models is unlikely to be a viable solution to
account for individually varying time intervals. Rather we
assume that only CT models will yield correct results for
individually varying time intervals (e.g., for the analysis of a
change process in terms of age). To substantiate our theoret-
ical arguments, we provide three examples using simulated

4The approximation is also known as the “rectangle” approximation
(Oud, 2007a, p. 27). Voelkle et al. (2012) described it as an “intuitive”
approach to CT modeling.
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data in the next section, and a reanalysis of an empirical data
set in the section following.

AN ILLUSTRATION USING
THREE SIMULATED DATA SETS

The purpose of Example 1 is to demonstrate that LCS and
CT models provide the same description of the observed
data if all intervals are equal. Example 2 is supposed to
demonstrate the importance of accounting for time intervals
if they are unequal across measurement occasions. To this
end we compare four different approaches: (a) the use of
phantom variables in LCS models and (b) in LCS models that
are reformulated as ARCL models, (c) the use of definition
variables in the latter, and (d) CT models. Example 3 then
demonstrates how to deal with individually varying time
intervals by means of CT modeling. We restrict ourselves to
univariate and bivariate models without latent traits (S∗i) in
this section. The DCM with latent traits will be used in the
empirical example.

Example 1: Univariate Model With Equal Time
Intervals

Method. Data were generated for N = 500 cases
at 11 measurement occasions according to a true
CT model with I ∼ N

[
μI = 2, �I = 2

]
, drift coef-

ficient A = −0.4, and dynamic error ζ
(
�j,i

) ∼
N

[
0, cov

(
∫tj,i

t0 eA·(tj,i−s)GdWi(s)
)]

with GG′ = Q = 1.

All time intervals were assumed to be equal with �j,i = 1
for all j and i.

In a next step we fitted three models (M1–M3) to this
data set. M1 was the PCM using the standard formulation
by means of latent variables (Equations 3 and 5). M2 was the
PCM reformulated as an ARCL model (Equation 7). M3 was
the CT model (Equation 8).

For all examples, the free software environment R (R
Development Core Team, 2012) was used for data genera-
tion, Mplus (Muthén & Muthén, 1998–2012) was used for
estimating the LCS models (here M1 and M2), and the R-
based SEM program OpenMx (Boker et al., 2011) was used
for estimating the CT models (here M3).5

Results. Parameter estimates for all three models are
provided in Table 2. There are four free parameters (nonitalic
in Table 2). Because LCS and CT models have a differ-
ent tradition and use a slightly different terminology (e.g.,

5Although LCS models can be estimated with most SEM software
packages, to the best of our knowledge at present only OpenMx (Boker
et al., 2011) and Mx (Neale, Boker, Xie, & Maes, 2003) allow the user to
implement the matrix exponential constraint necessary for continuous time
modeling.

proportion parameter vs. auto-effect; latent slope vs. latent
trait), we list both names where necessary. As pointed out
before, the fit of the models is equal in this equal inter-
val case, but the parameters, although closely related, are
not identical. This is most apparent in the parameter esti-
mate a∗ = −0.34 in M1 and M2, versus a = −0.41 in M3.
Because of the constraints given in Table 1, however, they
both result in the same autoregressive effect A

(
�j,i = 1

) =
– 0.34 · 1 + 1 = e−0.41·1 = 0.66, which is shown in italics in
Table 2. Likewise, because of the constraints in Equation 9,
the dynamic error variance is the same [Q

(
�j,i = 1

) =
(−0.41 + (−0.41))−1

[
e(−0.41+(−0.41))·1 − 1

] · 1 = 0.68], as
also shown in italics in Table 2. Apart from minor round-
ing differences, which could partly be due to the different
programs (OpenMx vs. Mplus), results are identical. This is
also true for the likelihood of all three models.

Discussion. This first example demonstrates that LCS
models can be reformulated as ARCL models and both
yield identical results. In addition, for �j,i = 1 the model
fit (–2LogL) and discrete time parameters of the LCS, the
reformulated LCS, and the CT model are identical. However,
when it comes to identifying the CT parameters used to
generate the data (a = –0.4 and q = 1), with estimates of
a = –0.41 and q = 1.00, not surprisingly the CT model
gets closer to the true parameters than the LCS models
(a∗ = –0.34 and q∗ = 0.68). We therefore conclude that
although it is safe to interpret the discrete time parame-
ters of all three models, the LCS proportion parameter and
dynamic error variance should not be used to generalize
beyond immediately observed measurement occasions.

Example 2: Univariate Model With Unequal Time
Intervals

Method. Data were generated in the same way as in
the first example, but with �j,i = 1, 2, 3, 1, 4, 2, 3, 1,
2, 1 (for j = 1, . . . , 10 and all i); that is, time intervals
were allowed to differ between assessment occasions while
remaining constant across individuals.

In a next step we fitted five models (M1–M5) to this data
set: M1, the PCM using the standard formulation by means
of latent variables (Equations 3 and 5), but without account-
ing for unequal time intervals; M2, the same PCM as M1,
but with 10 additional phantom variables included so as to
create artificial time intervals with �j,i = 1 for all j and i;
M3, Model M2 reformulated as an ARCL model (includ-
ing phantom variables); M4, Model M2 reformulated as an
ARCL model, but instead of phantom variables, definition
variables were used to account for different time intervals
(i.e., instead of creating equal time intervals before using
�j,i = 1 in Equation 7, the actually observed time intervals
�j,i were used directly in Equation 7); and M5, the CT model
(Equation 8).
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TABLE 2
Example 1: Univariate Model With Equal Time Intervals (�j ,i = 1 for all j and i)

Parameter
M1: Latent Change

Score Model

M2: Latent Change Score Model
Reformulated as an Autoregressive and

Cross-Lagged Panel Model
M3: Continuous Time

Model

Initial mean (μI ) 1.99 (0.06) 1.99 (0.06) 1.99 (0.06)
Proportion (a∗) auto-effect (a) −0.34 (0.01) −0.34 (0.01) −0.41 (0.01)
Autoregression a

(
�j,i = 1

)
0.66 0.66 0.66

Dynamic error variance (q∗)
diffusion coefficient (q)

0.68 (0.01) 0.68 (0.01) 1.00 (0.01)

Dynamic error variance q
(
�j,i = 1

)
0.68 0.68 0.68

Initial variance (φI ) 1.99 (0.13) 1.99 (0.13) 1.98 (0.13)
−2LogL 13985.79 13985.79 13985.79
Number of free parameters 4 4 4

Note. Standard errors in parentheses. The first column (M1) contains the parameter estimates of the proportional change score model using the standard
formulation by means of latent variables (Equations 3 and 5). The second column (M2) shows the reformulation of the proportional change score model as
an autoregressive and cross-lagged model (Equation 7). The third column (M3) contains the parameter estimates of the continuous time model (Equation 8).
The italicized parameters are obtained via the constraints in Table 1. Mplus (Muthén & Muthén, 1998–2012) was used to estimate the first two models and
OpenMx (Boker et al., 2011) was used to estimate the continuous time model.

Results. Parameter estimates for all five models are
provided in Table 3. As before, there are four free param-
eters (nonitalic in Table 3) and the relationship between
A

(
�j,i = 1

)
(shown in italics in Table 3) and a∗, respectively

a, (Q
(
�j,i = 1

)
and q∗, respectively q is given in Table 1.

For example, for M5, A
(
�j,i = 1

) = e−0.37·1 = 0.69. When
ignoring the actual length of the time intervals (M1), the
model fit differs from all other models, and the parameter
estimates are incorrect and hard to interpret. For example,
it is impossible to compute a

(
�j,i = 1

)
and q

(
�j,i = 1

)
if

the observed time intervals do not just happen to be �j,i = 1
for all j and i, as was the case in the first example. This
problem is resolved when using phantom variables as in
M2 and M3. Confirming and extending our previous find-
ing, even with phantom variables, M2 and M3 are identical in
terms of fit and parameter estimates. Likewise, M5 yields the
same model fit and discrete time—but not CT—parameter
estimates as M2 and M3. Finally, M4 yields a model fit
and estimates for a∗ and q∗ that differ from all other mod-
els. Because the dynamics between measurement occasions
are not taken into account, parameter estimates of M4 are
further from the true parameters than those of M2, M3,
and M5.

Discussion. This second example demonstrates that if
time intervals between assessment occasions differ, ignor-
ing this difference results in incorrect results and hard-
to-interpret parameter estimates. This has been demon-
strated before in a series of publications (Bergstrom, 1988;
Hamagami & McArdle, 2001; Oud & Jansen, 2000; see
Voelkle et al., 2012, for more detailed references). Creating
artificially equal time intervals by introducing phantom
variables is a straightforward solution to this problem, yield-
ing correct discrete time parameter estimates for the newly

created time interval (here, �j,i = 1 in M2 and M3). The
phantom variable approach works for the LCS model as well
as the rewrite as an ARCL model (M2 and M3). However,
as in the previous example, when it comes to identify-
ing the CT parameters used to generate the data, the CT
model is superior to all other models. Finally, using defini-
tion variables in the reformulated LCS model (M4) seems
tempting, but it is not a viable solution. As compared to M2,
M3, and M5, the parameter estimates of model M4 devi-
ate most from the true parameters. We therefore conclude
that it is safe to interpret the discrete time parameters of
M2, M3, and M5, but only M5 allows an exact gener-
alization beyond the immediately observed measurement
occasions. Note that in the presence of unequal time inter-
vals, the LCS model should never be used without phantom
variables (M1). Although the use of definition variables is
better than ignoring time altogether, we generally recom-
mend not using the definition variable approach in LCS
modeling.

Example 3: Bivariate Model With Individually Varying
Time Intervals

Method. In this example, data were
generated for N = 500 cases at 11 measurement
occasions according to a bivariate model with

I ∼ N

[
μI =

(
2
1

)
, �I =

(
1 0.5

0.5 2

)]
, drift

matrix A =
( −0.4 0.1

0.2 −0.6

)
, and dynamic error

ζ
(
�j,i

) ∼ N
[
0, Cov

(∫ tj,i
to

eA·(tj,i−s )GdWi(s)
)]

with

GG′ = Q =
(

1 0.5
0.5 2

)
. Time intervals were drawn from

a continuous uniform distribution, with a minimum length of
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TABLE 3
Example 2: Univariate Model With Unequal Time Intervals (�j ,i = 1, 2, 3, 1, 4, 2, 3, 1, 2, 1 for j = 1, . . . , 10 and all i)

Parameter

M1: Latent Change
Score Model Without

Accounting for
Unequal �j,i

M2: Latent Change
Score Model With

Phantom Variables

M3: Latent Change
Score Model With

Phantom Variables
Reformulated as an
Autoregressive and
Cross-Lagged Panel

Model

M4: Latent Change Score
Model Reformulated as an

Autoregressive and
Cross-Lagged Panel

Model Using Definition
Variables to Account for

�j,i

M5: Continuous
Time Model

Initial mean (μI ) 1.96 (0.06) 1.96 (0.06) 1.96 (0.06) 1.96 (0.06) 1.96 (0.06)
Proportion (a∗)

auto-effect (a)
−0.46 (0.01) −0.31 (0.01) −0.31 (0.01) −0.24 (0.01) −0.37 (0.01)

Autoregression
a

(
�j,i = 1

) — 0.69 0.69 0.76 0.69

Dynamic error
variance (q∗)
Diffusion
coefficient (q)

0.97 (0.02) 0.67 (0.01) 0.67 (0.01) 0.92 (0.02) 0.95 (0.01)

Dynamic error variance
q

(
�j,i = 1

) — 0.67 0.67 0.92 0.67

Initial variance (φI ) 1.98 (0.13) 1.98 (0.13) 1.98 (0.13) 1.98 (0.13) 1.98 (0.13)
−2LogL 15792.73 15366.23 15366.23 15545.21 15366.23
Number of free

parameters
4 4 4 4 4

Note. Standard errors in parentheses. The first column (M1) contains the parameter estimates of the proportional change score model (Equations 3 and
5) without accounting for unequal time intervals. Unequal time intervals are accounted for in the second column (M2) by using phantom variables. The
third column (M3) shows the reformulation of the proportional change score model as an autoregressive and cross-lagged model (Equation 7) using phantom
variables to account for different time intervals. The fourth column (M4) shows the reformulation of the proportional change score model as an autoregressive
and cross-lagged model. Instead of phantom variables, however, unequal time intervals are accounted for by the use of definition variables. The last column
(M5) contains the parameter estimates of the continuous time model (Equation 8). The italicized parameters are obtained via the constraints in Table 1. Mplus
(Muthén & Muthén, 1998–2012) was used to estimate the first four models and OpenMx (Boker et al., 2011) was used to estimate the continuous time model.

1 and a maximum length of 4 (�j,i ∼ U(1, 4)), resulting in up
to (N = 500) · (T – 1 = 10) = 5,000 different time intervals.6

With such a large number of time intervals of totally dif-
ferent length, the use of phantom variables would become
extremely complicated. Although the use of definition vari-
ables would still be possible, this would again result in incor-
rect parameter estimates because the dynamics between mea-
surement occasions are not taken into account as illustrated
in the previous example. Thus, we limit ourselves to the esti-
mation of a CT model (M2), which we contrast with an LCS
model that ignores the length of the time intervals (M1).

Results. Parameter estimates are provided in Table 4.
There are 12 free parameters in the bivariate model (noni-
talics in Table 4). Despite the large number of different time
intervals, all parameter estimates of the CT model (M2) are
close to the true parameters. In contrast, when ignoring
time intervals, parameter estimates are quite different. For
example, whereas the auto-effect (proportion) of the first
variable is a∗11 = −0.60 in M1, it is a11 = −0.40 in M2
(true parameter: a11 = −0.40). Similar differences can be
observed for the other parameters (see Table 4).

6For reasons of simplicity, time intervals were rounded to two decimal
places, thus the actual number of different time intervals might be somewhat
lower.

Discussion. As demonstrated in Example 2, the use
of phantom variables is a straightforward solution to the
problem of unequal time intervals as long as the number
of unequal time intervals is limited. With a large number
of different time intervals—there could be up to N · (T − 1)

individually varying time intervals as in this example—
the use of LCS models becomes infeasible. Ignoring such
individual differences by creating a few discrete “bins” of
individuals (in this example T – 1 = 10 such bins were
used) that are then treated as equally spaced measurement
occasions will usually result in biased parameter estimates
as apparent from Table 4 (M1). In contrast, CT models as
defined in Equation 8 can handle this situation, yield cor-
rect parameter estimates, and should thus be used (see M1 in
Table 4).

AN EMPIRICAL EXAMPLE: THE
BRADWAY–MCARDLE LONGITUDINAL STUDY

ON INTELLECTUAL ABILITIES

To further illustrate and extend our discussion on the rela-
tionship between LCS and CT models, we use empirical
data on short-term memory from the Bradway–McArdle
Longitudinal Study (Bradway & Thompson, 1962; McArdle,
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TABLE 4
Example 3: Bivariate Model With Individually Varying Time Intervals (�j ,i ∼ U[1, 4] for all j and i)

Parameter
M1: Latent Change Score Model

Without Accounting for Unequal �j,i M2: Continuous Time Model

Initial mean (μI1 ) 2.08 (0.09) 2.08 (0.06)
Initial mean

(
μI2

)
0.96 (0.09) 0.98 (0.06)

Proportion (a∗11) auto-effect (a11) −0.60 (0.02) −0.40 (0.02)
Autoregression a11

(
�j,i = 1

)
— 0.67

Proportion (a∗22) auto-effect (a22) −0.71 (0.02) −0.56 (0.03)
Autoregression a22

(
�j,i = 1

)
— 0.58

Coupling (a∗12) cross-effect (a12) 0.07 (0.02) 0.11 (0.02)
Cross-lagged effect a12

(
�j,i = 1

)
— 0.07

Coupling (a∗21) cross-effect (a21) 0.12 (0.02) 0.17 (0.02)
Cross-lagged effect a21

(
�j,i = 1

)
— 0.11

Dynamic error variance (q∗1) Diffusion coefficient (q1) 1.20 (0.03) 0.99 (0.01)
Dynamic error variance (q∗2) Diffusion coefficient (q2) 1.82 (0.05) 1.91 (0.03)
Dynamic error covariance (q∗12) Diffusion coefficient (q12) 0.78 (0.13) 0.48 (0.02)
Initial variance (φI1 ) 2.02 (0.18) 2.05 (0.13)
Initial variance (φI2 ) 1.82 (0.16) 2.01 (0.13)
Initial covariance (φI1,2 ) 0.83 (0.13) 0.97 (0.10)
−2LogL 17019.87 33517.82
Number of free parameters 12 12

Note. Standard errors in parentheses. The first column (M1) contains the parameter estimates of the bivariate proportional change score model
(Equations 3 and 5), without accounting for unequal time intervals. The second column (M2) contains the parameter estimates of the continuous time
model (Equation 8). The italicized parameters are obtained via the constraints in Table 1. Mplus (Muthén & Muthén, 1998–2012) was used to estimate
the first model and OpenMx (Boker et al., 2011) was used to estimate the continuous time model.

Hamagami, Meredith, & Bradway, 2000). In this study, intel-
lectual abilities of 111 individuals were assessed at up to
six measurement occasions between the ages of 2 (youngest
person at the first measurement occasion) and 67.5 years
(oldest person at last measurement occasion). We chose this
data set because it has been analyzed before with LCS mod-
els (McArdle & Hamagami, 2004). This allows us to build
directly on previous pioneering work by relating it to CT
modeling. For reasons of space, however, we limit our-
selves to just two exemplary models used by McArdle and
Hamagami (2004): the PCM and the DCM.

We start with the PCM by first replicating the analy-
ses by McArdle and Hamagami (2004) using LCS models
with phantom variables to account for unequal time intervals.
We then redo the analysis using the ARCL reformulation of
the LCS model (with phantom variables), before comparing
it to the CT model (without phantom variables). In the sub-
sequent section we proceed in the same way with the DCM.

Participants’ age at the first measurement occasion var-
ied between 2 and 6.5 years, which is a large age range
in terms of cognitive development. As discussed earlier,
it is not possible to account for these differences in LCS
models. For this reason, McArdle and Hamagami (2004,
p. 301) computed age-adjusted scores by linearly extrapo-
lating the original data within occasions to the average age
before linearly extrapolating across occasions into 5-year
age segments. This results in short-term memory scores that
are adjusted to the values that would have been obtained
if everyone at measurement occasion 1 to 6 had been
exactly 5, 15, 30, 40, 55, and 65 years of age. To keep

results comparable we work with the adjusted scores in
the next two sections. Because CT models can account
for such age variation, however, we redo the analyses in
terms of age rather than measurement occasion in the final
section.

The Proportional Change Score Model in Discrete and
Continuous Time

The adjusted short-term memory scores (xi
(
tj
)
) ranged from

a minimum value of 0.28 to a maximum of 100. In a first
attempt (M1) to analyze changes in short-term memory by
dynamic models, we replicated the PCM by McArdle and
Hamagami (2004, p. 317; see their Table 3a, third column).
Equal time intervals (�j,i = 1 for all j and i) were created
by adding seven phantom variables to the six observed mea-
surement waves, resulting in 13 measurement occasions at
the average (and hypothetical) ages of 5, 10, 15, 20, 25,
30, 35, 40, 45, 50, 55, 60, and 65 (measurement occasions
represented by phantom variables are shown in italics). The
model was defined in Equation 3 with xi

(
tj
) = ηi

(
tj
) + εi

(
tj
)
,

assuming normally distributed and uncorrelated measure-
ment errors with time-invariant variance ε ∼ N

[
0, σ 2

ε

]
. Note

that the model differs from the PCM used in the sim-
ulated examples. Whereas we allowed for dynamic error
but no measurement error in the simulated examples, this
model allows for measurement error but no dynamic error.
We return to this issue later on. Without the latent vari-
able S∗ (i.e., when deleting S∗ from the figure), Figure 2
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provides a graphical representation of the model. We next
reformulated the LCS model as a constrained ARCL model
(M2) as defined in Equation 7, before estimating a CT model
(M3) as defined in Equation 8 with �j,i = 2, 3, 2, 3, 2 (for
j = 1, . . . , 5 and all i; without S; with measurement error
instead of dynamic error; without phantom variables).

Results are given in Table 5. As demonstrated before,
the original LCS model in terms of latent change vari-
ables and phantom variables, its reformulation as an ARCL
model with phantom variables, and the CT model (with-
out phantom variables) yield identical model fit and discrete
time parameters and replicate the results of McArdle and
Hamagami (2004). With an autoregression parameter larger
than 1 [a

(
�j,i = 1

) = 1.07], the model is unstable, mean-
ing that the predicted short-term memory scores approach
infinity as time goes toward infinity. Clearly, this is not a
reasonable assumption for the task at hand. In addition, the
model-predicted mean trajectory provides a poor descrip-
tion of the actual data. This is illustrated in Figure 4, which
shows the predicted average short-term memory scores for
LCS model M1 and M2 together with the nonadjusted indi-
vidual short-term memory scores (in gray) as a function
of measurement occasion. Solid circles represent predicted
average short-term memory at occasions where actual mea-
surements were obtained, whereas empty circles indicate
phantom variables. It is important to understand that the LCS
model—being a discrete time model—does not make any
predictions between these discrete time points. The straight
line connecting the dots is used for illustrative purposes only
and is not predicted by the model. In contrast, the CT model
(M4; solid black line in Figure 4) predicts a continuous tra-
jectory of short-term memory development across the entire
age range. We will hold off the discussion of model M4 until
later on.

In any case, however, predicting a steadily improving
short-term memory is certainly not correct. Part of the
reason for the extremely high autoregressive parameters
(> 1.00) might not only be the dynamic process, but also
stable interindividual differences—that is, unobserved het-
erogeneity (cf. Halaby, 2004)—which might bias the propor-
tion parameter. By adding a random trait (or “slope” in LCS
parlance) this is accounted for in the DCM.

The Dual Change Score Model in Discrete and
Continuous Time

Adding a random trait (slope) factor to the LCS model
results in a significant improvement in model fit (compare
Table 5 and Table 6). Because the two models are nested,
the difference between the two log-likelihoods follows a
χ2distribution with χ2 = 4428.61 – 4066.56 = 362.05,
df = 7 – 4 = 3, p < .001. Unfortunately, however, the addi-
tion of S∗ resulted in a nonpositive definite covariance matrix
of the latent variables, with initial φI∗ = –265.78 (not shown
in Table 6). To account for this, McArdle and Hamagami

(2004) constrained the correlation between S∗ and I∗ to a
value smaller than 0.99. To keep our results comparable,
we adopted the same constraint, but discuss an alternative
approach later.

Results are given in Table 6. As before, the DCM with
latent change scores (M1) and the reformulation as an ARCL
model (M2) yield identical results. Interestingly, however,
the results of the CT model (M3) differ slightly in terms of
model fit (–2LogL = 4066.56 vs. 4065.22) and parameter
estimates, which is likely due to the boundary constraint on
the discrete time correlation. In all three models, the intro-
duction of a trait (slope) factor led to a considerable change
in parameter estimates. Most important, the introduction led
to the expected decrease of the proportion (auto) parame-
ter and the associated autoregressive effect [a

(
�j,i = 1

) =
0.47, respectively a

(
�j,i = 1

) = 0.48], resulting in a stable
model. As apparent from Figure 5, the resulting model pre-
dicting short-term memory scores (discrete time LCS model
M1 & M2) provide a much better description of the observed
data than the PCM presented earlier (Figure 4). The same is
true for the trajectory of short-term memory development as
predicted by the CT model (M5). However, as before, we
hold off the discussion of this model until the next section.

In an attempt to avoid the boundary constraint on the
correlation, we fitted a slightly different CT model (M4) in
which we introduced a dynamic error term, while constrain-
ing the measurement error to zero (this is the same model that
was used in the simulated Example 2, but with an additional
trait factor). As a matter of fact, this model converges without
problems and yields a positive definite matrix of latent vari-
ables, without the need for boundary constraints (see model
M4 in Table 6). Thus, this model is used in the following.

Cognitive Development as a Function of Measurement
Occasion Versus Age

All analyses of short-term memory presented so far (discrete
and continuous time analyses) were based on age-adjusted
scores; that is, scores that were extrapolated into 5-year
age segments. This was done for reasons of comparabil-
ity because LCS models cannot handle individually varying
time intervals. In addition, the development of short-term
memory was modeled as a function of measurement occasion
rather than age (accounting for within-occasion variation in
age only by linear extrapolation but not in the actual model).
To find out whether this makes a difference, we reestimated
the previous CT model in terms of age instead of measure-
ment occasion; that is, by accounting for the age of each
individual at each measurement occasion (different �j,i for
all j and i). To this end it was necessary to define a starting
point, for which we chose the age of the youngest individ-
ual in the data set (2 years). All subsequent intervals (for all
individuals) were computed as the distance in age from this
reference point.
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TABLE 5
Proportional Change Score Model in Discrete and Continuous Time for the Bradway–McArdle Study (M1 & M2: �j ,i = �j = 1 for all j and i;

M3: �j ,i = �j = 2, 3, 2, 3, 2 for j = 1, . . . , 5 and all i; M4: �j ,i Accounting for Individual Age of Participant)

Parameter

M1: Latent Change
Score Model With

Phantom Variablesa

M2: Latent Change Score Model
With Phantom Variables

Reformulated as an
Autoregressive and Cross-Lagged

Panel Model
M3: Continuous Time
Model for Different �j

M4: Continuous Time
Model for Different

�j,i

Initial mean (μI ) 37.67 (1.41) 37.67 (1.41) 37.67 (1.41) 34.12 (1.39)
Proportion (a∗)

auto-effect (a)
0.07 (0.01) 0.07 (0.01) 0.06 (0.004) 0.01 (< 0.001)

Autoregression
a

(
�j,i = 1

) 1.07 1.07 1.07 1.01

Measurement error
variance (σ 2

ε )
556.67 (41.18) 556.67 (41.18) 556.67 (41.18) 563.67 (41.06)

Initial variance (φI ) 21.33 (13.04) 21.33 (13.04) 21.33 (13.04) 10.64 (9.55)
−2LogL 4428.61 4428.61 4428.61 4440.70
Number of free

parameters
4 4 4 4

Note. Standard errors in parentheses.
aThe first model corresponds to the proportional change score model reported by McArdle and Hamagami (2004; Table 3a, M2). Parameter estimates and

model fit are identical to those reported by McArdle and Hamagami (2004).
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FIGURE 4 Predicted trajectories of latent change score (LCS) models
M1 and M2, and continuous time model M4 presented in Table 5. The gray
lines represent the N = 111 observed trajectories of short-term memory as a
function of age. Measurement occasions with phantom variables in the LCS
models are represented by empty circles.

Parameter estimates and the model-predicted trajectory
for the CT model without trait (slope) factor are given
in Table 5 and Figure 4 (M4). For the CT model includ-
ing the trait (slope) factor, these values are given in
Table 6 and Figure 5 (M5). In particular M5 provides
a theoretically and empirically sound description of the
data. The estimated short-term memory score at age 2 is
μI = 2.95, with an estimated initial variance φI = 21.11,

a predicted average trajectory of η (t) = e−0.09·(t−2) · 2.95 +
−0.09−1

[
e−0.09·(t−2) − I

] · 6.10, for t ≥ 2, a dynamic error
variance q = 56.47, a trait (slope) variance φS = 1.16,
and a covariance φI,S = –1.30. Apart from the nonsignifi-
cant covariance between I and S, all parameter estimates are
significant.

Discussion of the Empirical Example

The goal of this article is to (a) demonstrate the close rela-
tionship between LCS and CT models, and (b) point out
some differences. In line with this goal, the empirical exam-
ple has shown that LCS and CT models might yield similar
results (similarly bad in the case of the PCM [Figure 4] or
similarly good in the case of the DCM [Figure 5]) if the time
of measurement is adequately accounted for. However, even
if great care is taken to adequately account for differences
in time intervals, as the number of different time intervals
increases (e.g., when analyzing cognitive development as a
function of individual age instead of measurement occasion),
there are certain limits to what can be done with LCS mod-
els. Because there are no such restrictions in CT models,
results will begin to diverge between the two approaches.
By computing age-adjusted scores via linear extrapolation of
the data within occasions to the average age before linearly
extrapolating across occasions into 5-year age segments and
by the use of phantom variables, the authors of the origi-
nal study took great care to meet the assumption of equal
time intervals in the LCS analysis (McArdle & Hamagami,
2004). Accordingly, LCS and CT model results are similar in
this empirical example. In fact, both yield identical estimates
and fit indices if the analysis is done in terms of few dis-
crete measurement occasions (compare M1, M2, and M3 in
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FIGURE 5 Predicted trajectories of latent change score (LCS) models
M1 and M2, and continuous time model M5 presented in Table 6. The gray
lines represent the N = 111 observed trajectories of short-term memory as
a function of age. Measurement occasions with phantom variables in the
LCS models are represented by empty circles. To better see how the models
differ in their prediction of early cognitive development, the figure in the
lower right corner zooms into the part of the entire figure marked by the
dashed rectangle.

Table 5 and M1, M2, and M3 in Table 6). However, even in
this example results diverge if the analysis is done in terms of
age. This is particularly true for early cognitive development:
As apparent from Figure 5, the average LCS model-predicted
short-term memory score between the age of 2 and 7.5 years
is 12.9 (first solid dot in Figure 5). In contrast, the CT model
predicts a continuous nonlinear increase in short-term mem-
ory from 2.95 at the age of 2 to 28.26 at the age of 7.5 years.

GENERAL DISCUSSION

In psychology, the majority of models for the analysis of
longitudinal data are static models. Mixed-effects models or
(latent) growth curve models are two prototypical examples.
Although these models are very useful in many regards, they
are not suited to uncover the (causal) dynamics underlying a
change process. In contrast to static models, dynamic mod-
els are less common. This is surprising, because—albeit not
always under the name “dynamic models” (cf. ARCL panel
models)—dynamic models have a long history in the social
sciences (McArdle, 2009). However, it was not until the
introduction of LCS models that a constant increase in sub-
stantive applications of dynamic models in the psychological
literature occurred (e.g., Bielak, Gerstorf, Kiely, Anstey, &
Luszcz, 2011; Emery, Finkel, & Pedersen, 2012; Gerstorf,
Lövdén, Röcke, Smith, & Lindenberger, 2007; Ghisletta &

Lindenberger, 2003, 2004, 2005; Sargent-Cox, Anstey, &
Luszcz, 2012).

The question of whether time in dynamic models should
be treated continuously or discretely has an equally long
history (e.g., Arminger, 1986; Bergstrom, 1988; Coleman,
1968; Oud & Folmer, 2011; Tuma & Hannan, 1984).
However, only recently have CT models begun to diffuse into
the psychological literature (Oud & Delsing, 2010; Oud &
Jansen, 2000; H. Singer, 2012; Voelkle et al., 2012).

At the most general level, the purpose of this article was
thus to push both trends by unifying the development of LCS
models with the development of CT models. Both classes
of models are extremely powerful because they allow us to
address key objectives in longitudinal research (Baltes &
Nesselroade, 1979; McArdle & Hamagami, 2001) including
questions regarding the dynamic development and inter-
play between psychological constructs over time. At a more
specific level, the purpose of this article was to provide a
mathematical, conceptual, and empirical comparison of three
different dynamic models: the PCM, the DCM, and the CT
model (as well as different variants thereof).

Commonalities and Differences of Latent Change
Score and Continuous Time Models

All three models are dynamic models that predict the rate
of change. As demonstrated in this article, they can all be
reformulated as ARCL panel models. They differ, however,
in the definition of the rate of change and in the constraints
needed for the reformulation. Conceptually, LCS models
assume a change process that takes place from one discrete
measurement occasion to the next. The change process does
not operate between the observed time points. In contrast, CT
models assume that change is a continuous process, and that
we only happen to observe it at certain discrete occasions.
Once these observations are made, we can try to reconstruct
the generating mechanism (which also operates between
the observed measurement occasions). Mathematically, CT
models are stochastic differential equations that predict the
derivative of a process with respect to time, whereas LCS
models approximate the derivative by a difference equation
over successive discrete time intervals. The link between
the two becomes most obvious when putting the solution
of the CT differential equation for the auto-effect in power
series expansion (Equation 10). In contrast to the CT model,
which provides an exact solution, the LCS uses the first
two terms to approximate the entire series. The difference is
even more striking when considering the dynamic error term.
Whereas CT models assume an underlying Wiener process,
LCS models assume discrete time error terms with �j,i = 1.

As long as time intervals are equal across all measure-
ment occasions and across all individuals (�j,i = 1 for all
j and i), LCS and CT models show the same model fit
and yield identical discrete time parameters. Also, the data
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TABLE 6
Dual Change Score Model in Discrete and Continuous Time for the Bradway-McArdle Study (M1 & M2: �j ,i = �j = 1 for all j and i; M3 & M4:

�j ,i = �j = 2, 3, 2, 3, 2 for j = 1, . . . , 5 and all i; M5: �j ,i Accounting for Individual Age of Participant)

Parameter

M1: Latent
Change Score
Model With

Phantom
Variablesa, b, c

M2: Latent Change
Score Model With

Phantom Variables
Reformulated as an
Autoregressive and
Cross-Lagged Panel

Modelb, c

M3: Continuous
Time Model for
Different �j

d

M4: Continuous Time
Model for Different �j

and Dynamic Error
Instead of

Measurement Error

M5: Continuous Time
Model for Different �j,i and
Dynamic Error Instead of

Measurement Error

Initial mean (μI ) 12.90 (1.35) 12.90 (1.35) 12.97 12.98 (0.60) 2.95 (1.30)
Slope mean (b∗)

Continuous time
intercept (b)

35.15 (2.00) 35.15 (2.00) 48.59 47.41 (4.29) 6.10 (0.43)

Proportion (a∗)
auto-effect (a)

−0.53 (0.03) −0.53 (0.03) −0.72 −0.70 (0.07) −0.09 (0.01)

Autoregression
a

(
�j,i = 1

) 0.47 0.47 0.48 0.50 0.92

Measurement error
variance (σ 2

ε )
195.52 (14.52) 195.52 (14.52) 198.07 — —

Dynamic error
variance (q∗)
diffusion
coefficient (q)

— — — 408.13 (1.13) 56.47 (0.31)

Initial variance (φI ) 8.76 (8.12) 8.76 (8.11) 10.16 39.43 (5.29) 21.11 (7.91)
Slope variance (φS) trait

variance
71.69 (15.17) 71.70 (15.17) 128.61 98.97 (1.62) 1.19 (0.22)

Covariance (φI,S) 24.81 (11.80) 24.81 (11.80) 44.41 36.79 (9.30) −1.30 (1.53)
[r < .99] [r < .99] [r < .99] [r = .59] [r = −0.26]

−2LogL 4066.56 4066.56 4065.22 3927.067 4034.31
Number of free

parameters
7 7 7 7 7

Note. Standard errors are provided in round and correlations in squared brackets.
aThe first model corresponds to the dual change score model, reported by McArdle and Hamagami (2004; Table 3a, M4). Apart from rounding errors,

parameter estimates and model fit are identical to those reported by McArdle and Hamagami (2004). bStandard errors might not be trustworthy due to a
nonpositive definite first-order derivative product matrix. cCorrelation constrained to r < .99. dNo standard errors computed.

requirements in terms of the number of variables and indi-
viduals are identical, allowing LCS and CT analyses with
most available longitudinal data sets. Even if intervals are
equal, however, the approaches differ in their estimates of
the underlying CT parameters. The same applies for different
observed intervals if phantom variables can be used to cre-
ate artificially equal intervals. If there are too many different
intervals for phantom variables to offer a solution, three dif-
ferent possibilities remain: (a) ignoring the length of the time
intervals, (b) using definition variables to account for differ-
ing time intervals, or (c) the use of CT models. In this article,
we have demonstrated, by means of simulated and empirical
data, that only the latter is a viable solution.

Limitations and Future Directions

At first sight, a disadvantage of LCS and CT models might
be that they are mathematically somewhat more challenging
than other models for longitudinal data analysis. This is par-
ticularly true for CT models. However, as development in CT
modeling and CT software takes place, it will become easier
to specify and estimate such models. Given the increasing

popularity of LCS models, we are optimistic that researchers
will begin to consider other dynamic models, too, and we
hope this article can serve as a first step in this direction.

Maybe more critically, McArdle and Hamagami (2004)
reported “mathematical and statistical difficulties using
[LCS] models with [. . .] sparse longitudinal data” (p. 327)—
we experienced similar problems. As demonstrated in this
article, CT models overcome problems due to sparse data,
but this advantage comes at the price of more complicated,
nonlinear, parameter constraints. Especially the matrix expo-
nential constraint makes parameter estimation more difficult
and more dependent on good starting values. However, the
recently proposed procedure of “oversampling” (H. Singer,
2012) could offer at least partial a solution to this problem
(see also Voelkle & Oud, 2013).

Another limitation of this article is that we did not discuss
all possible variants of LCS and CT models. As a matter of
fact, the LCS and CT models we were dealing with in this
article represent just two popular representatives of a much
broader class of analytic techniques for dynamical systems
in discrete and continuous time (cf. Boker & Wenger, 2007).
For example, we did not discuss the bivariate DCM with
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trait variables, or the introduction of additional predictors.
An external “shock,” such as a highly emotionally evoking
situation, could change an otherwise continuous develop-
ment (of affect) almost instantaneously and would have to
be included as an exogenous input variable or else parame-
ter estimates will be incorrect. However, even though these
are all important extensions, the basic arguments set forth in
this article remain valid. We also did not discuss the spec-
ification of additional growth factors (e.g., freely estimated
factor loadings of the latent trait), resulting in a combination
of dynamic and static models (Bollen & Curran, 2004; Oud,
2010; Voelkle, 2008).

As already pointed out by Coleman (1968) “there are at
least two fundamental cases in the application of calculus
to the study of change” (p. 431): the study of changes in a
quantity and the study of changes in a state. By assuming
continuous variables that develop continuously over time,
we limited ourselves to the former in this article. However,
by applying the same tool of calculus to the probability
of being in a given state, we could also model the rate of
change of the probability with respect to time (Coleman,
1968, p. 432). Facilitated by recent advances in latent
variable modeling, such as SEM-based CT survival analysis
(Asparouhov, Masyn, & Muthén, 2006), future research
could profit from a combination of the two.

Finally, we did not discuss issues related to the design
of longitudinal studies. All models presented in this article
were discussed from the perspective of how they would be
used for the analysis of existing data. However, conceiving
of different time intervals not as a statistical problem but
rather as a source of information holds many advantages.
For example, McArdle and Woodcock (1997) demonstrated
how varying time intervals in a “time-lag” design can be
used to separate different psychometric components of
developmental interest. Likewise, Voelkle and Oud (2013)
showed how individually varying time intervals might help
in the estimation of oscillating processes when the sampling
rate, as compared to the frequency of oscillation, is low.
Furthermore, we only indirectly addressed the issue of
missing values in longitudinal studies. A missing value in
an LCS model transforms into an unequal measurement
interval in a CT model. From a CT perspective, missing
values do not exist in longitudinal studies. Rather, the
task is to reconstruct an underlying CT process based on
limited information, which is obtained from a few existing
measurement occasions (and an infinite number of missing
measurement occasions). A more detailed discussion of the
advantages of this perspective will be given elsewhere.

Despite its limitations in depth and scope, we hope this
article appeals to three different audiences: first, readers
familiar with LCS models who want to learn more about their
relationship to CT models and how the latter might over-
come some of the limitations of the former; second, readers
familiar with CT models—as they are more common in the
econometric literature—who want to learn more about their

relationships to dynamic (LCS) models used in psychology;
and finally, readers who are neither familiar with CT nor with
LCS models. We hope the article might serve as an inspira-
tion to learn more about dynamic approaches to modeling
longitudinal data.
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