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Abstract

We investigated in depth the interrelations among structure, magnetic properties,
relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers.
The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores.
They display a remanent magnetization, which we explain by the exchange coupling
between the cores, but we observe indications for internal spin disorder. By polarized
small angle neutron scattering we unambiguously confirm that on average the nanoflow-
ers are preferentially magnetized along one direction. The extracted discrete relaxation
time distribution of the colloidally dispersed particles indicates the presence of three
distinct relaxation contributions. We can explain the two slower processes by Brow-
nian and classical Néel relaxation, respectively. The additionally observed very fast
relaxation contributions are attributed by us to the relaxation of the disordered spins
within the nanoflowers. Finally, we show that the intrinsic loss power (ILP, magnetic
hyperthermia performance) of the nanoflowers measured in colloidal dispersion at high
frequency is comparatively large and independent of the viscosity of the surrounding
medium. This concurs with our assumption that the observed relaxation in the high
frequency range is primarily a result of internal spin relaxation, and probably connected

to the disordered spins within the individual nanoflowers.

Introduction

Application of iron oxide nanoparticles for magnetic hyperthermia therapy (MHT) has been
intensively studied in recent years, as summarized in various review articles.'™ The underly-
ing principle of MHT is to administer nanoparticles within, or close to, tumors, induce heat
in the particles by applying an external AC magnetic field, and thereby induce apoptosis
of the cells containing magnetic nanoparticles only. Amongst the ongoing research into the
realization of MHT is the optimization of the properties of the nanoparticle ensembles, so as

to achieve maximal heating behavior.5'* This in turn is connected to the understanding of



the dominant heating mechanisms for given particles ensembles, which requires the ability
to model experimental results. The simplest model is based on the linear response theory
(LRT).

A brief insight into optimization of the particles for increased hyperthermia performance
can be gained by considering this theory. Within this theoretical framework, the dissipated
power density is given by!®

1
P, = iungwx"(w). (1)

Here, ug is the permeability of free space, Hy is the amplitude of the alternating excitation
field H(w) which drives an oscillation of the sample magnetization M(w), w = 27 f is the
angular frequency, and x”(w) is the imaginary part of the complex volume susceptibility
X(w) = M(w)/H(w). For a single relaxation process x”(w) = xo - wr/(1 + (w7)?),'0 with the
pre-factor xo = M/H being the static susceptibility, and 7 being the effective characteristic

relaxation time. In case of a single particle it is usually assumed that 7 = 7 - 78/(™~ + 8),

where:

KWD;>‘ o)

™ = To€Xp < 6k‘BT

is the classical, longitudinal Néel relaxation time, and:

mnD;
= 3
B kT (3)

is the Brownian relaxation time. In Eq. (2), K is the effective anisotropy constant, Dy, is the
magnetic core diameter, kg is the Boltzmann constant, and 7' is the absolute temperature.
The pre-factor 7y is generally taken as 107 — 107!°s, although it is sensitive on several
parameters such as the particle size, temperature and dipolar interactions.!'™!8 Tn Eq. (2),
7 is the viscosity of the surrounding medium and D), is the hydrodynamic diameter of the
particle, including surrounding surfactant and/or depletion layer. Hence, by this theory the
key to a large heating power at a given frequency w is a large absolute value of the imaginary

part of the volume susceptibility. As it stands, clinical applications of nanoparticles are



restricted to iron-oxide nanoparticles, and so the saturation magnetization is basically fixed,
which otherwise could be a valuable approach to increase the heating.'®*?! Consequently,
for a given frequency range an optimization of the MHT performance needs to be achieved
by obtaining samples which exhibit significant magnetic relaxation in the frequency range
where the MHT experiments are usually performed.

In recent years, so-called nanoflowers, which are densely packed aggregates of iron oxide
crystallites/cores, have emerged as promising candidates for MHT.?72° It has been specu-
lated that their phenomenal heating behavior in MHT is primarily a result of an exchange
coupling between the cores, which leads to a superferromagnetic magnetization state.?25
With the aim to further advance the understanding of the interrelations between structure,
magnetic properties, relaxation dynamics and MHT performance, we performed a detailed
study of dextran coated nanoflowers by combining several key techniques.

The results and discussion section consists of four different subsections. It starts with
the structural characterization of the nanoflowers, which was mainly conducted by trans-
mission electron microscopy (TEM), dynamic light scattering (DLS) and small-angle X-ray
scattering (SAXS). The second part focuses on the magnetic properties of the nanoflowers,
which were determined via temperature dependent AC susceptibility (ACS(T')), Méssbauer,
isothermal magnetization and field-dependent optomagnetic measurements, as well as polar-
ized small-angle neutron scattering (SANS) experiments. In the third subsection we discuss
the relaxation dynamics of the nanoflowers, which was investigated by frequency dependent
AC susceptibility (ACS(w)), magnetorelaxation (MRX) and frequency-dependent optomag-
netic measurements on the colloidally dispersed nanoflowers. And finally in the fourth part

we present the MHT results of the colloidal dispersion and discuss them.



Methods

The nanoflower particles were supplied by micromod Partikeltechnologie GmbH, Ger-
many. The synomag®-D nanoflowers are dextran coated iron oxide (mixture of v — FeyO3
and Fe30,) nanoparticles, which were synthesized by a polyol method adapted from Lartigue
et al.?*. The concentration of the as-prepared sample was 5kgp,/m?3. Details regarding the
synthesis of synomag@®particles (research abbreviations: MMO8 or NF2) can be found in a
previous literature report. %

TEM was performed using a JEOL JEM 2100 (FEG). The sample was prepared by
drop-casting the diluted dispersion of the particles on a carbon coated copper grid.

DLS measurements of the diluted aqueous dispersion were performed with the Zetasizer
Nano ZS90 (Malvern Instr. Ltd., Great Britain). The mean hydrodynamic size (z-average)
of the particles was derived from the data of the autocorrelation function by a cumulant
analysis.

SAXS of the colloidal dispersion was measured with a Kratky system with slit focus,
SAXSess by Anton Paar, Graz, Austria. To obtain the scattering intensity /(q) in absolute
units the scattering curves of the sample holder (capillary) and water were subtracted during
the data reduction procedure using the implemented SAXSquant software. To additionally
correct for the slit focus smearing the curve was deconvoluted with the beam profile.

ICP-OES was conducted with an apparatus from Perkin Elmer, model OPTIME 2100DV,
to determine the iron concentration cp, [kgr./m?] within the colloidal dispersion.

The ACS(T) measurements in the range 7' = 5 — 390K were conducted with a
Quantum Design MPMS XL SQUID applying excitation frequencies of w = 1.07 — 5969 s~ L.
For these measurements the particles were immobilized by putting a small droplet of the
colloidal dispersion on cotton wool.

’"Fe Mdssbauer spectroscopy was performed using a conventional constant acceler-
ation spectrometer with a source of °*Co in rhodium. Calibration was carried out at room

temperature using a 12.5 pym a-Fe foil. A closed helium refrigerator from APD Cryogenics



was used to cool the sample. Approximately 1 ml of the sample (5kgp./m?) was added to a
measurement capsule and frozen in Ny(l). The spectra were folded and calibrated and the
spectra fitted in MATLAB (MathWorks Inc., USA) using a previously described in-house
protocol.?”

Isothermal magnetization curves of the colloidal dispersion were recorded at T =
300K using a Magnetic Property Measurement System (MPMS)-XL (Quantum Design,
USA). The sample holder (V' = 20 ul) signal was measured and subtracted from all measure-
ments, and additionally the contribution of the water was subtracted from the curve of the
colloidal dispersion. The measured magnetic moment was normalized to the iron content cp,
determined by ICP-OES, to obtain M (H) in units [Am?/kgg.].

Polarized SANS was conducted at the instrument D33 at the Institut Laue-Langevin
(ILL), Grenoble.?®* Employing longitudinal neutron-spin analysis (POLARIS)?® all four
neutron spin-resolved intensities I71(q), I77(q), I77(¢) and I77(q) of the colloidal disper-
sion were measured in presence of an externally applied, homogeneous magnetic field H.
The field was applied perpendicular to the neutron beam (ﬁ 1 l;) with field amplitudes of
poHmin = 2mT (minimal field) and poHpax = 17T (maximal field). The mean wavelength
of the neutrons was A = 0.6nm, with a wavelength spread of AXA/A = 10% and detector
distance 6 m.

MRX experiments were conducted with a custom-built fluxgate setup at 7" = 300 K,
with a measurement time range of 2.8-10~* —1.5s.3! The initially applied field to magnetize
the sample was applied for several seconds and had a strength of 2mT.

Frequency-dependent ACS(w) measurements were performed with two custom-
built susceptometers®? at 7' = 300K and normalized to obtain the volume susceptibility
X(w). The field amplitudes of the two setups were 567 T and 90 uT, respectively, and the
frequency range w = 62.8 — 6.28 - 10657 *

Optomagnetic measurements were recorded at room temperature with a custom

built cuvette setup described in Ref. 33. The complex second harmonic signal Vs(w) =



Vi (w) + V3 (w) in response to a sinusoidal applied magnetic field was calculated using FFT
and normalized to the sum of even harmonics, Vo = zz‘:o Va;, to account for variation in
light intensity. For the measurements glycerol was added to the original colloidal dispersion
to lower the relaxation frequencies. The weight percentage of glycerol in the mixture was
¢m = 53.7% and hence the viscosity was a factor of 7.1 times that of the original aqueous
colloid (n = 7.1 mPas).

Magnetic hyperthermia experiments were performed with a magnetic alternating
current hyperthermia "MACH’ system (Resonant Circuits Ltd, UK) using previously de-
scribed sample preparation and ILP analysis methods.?* The viscosity of the colloidal dis-
persion of nanoflowers was changed by adding glycerol. The applied alternating field had an
amplitude of poH = 8.8mT and a rotational frequency of w = 5.9 - 10571,

Numerical inversion approach: Several different approaches exist to extract from
experimental data the underlying 1D distribution function, without the need for a priori
assumptions regarding their functional form.3*3% In Refs. 40,41 for example we used a simple
regularized inversion to estimate the moment distribution from isothermal magnetization
data. This method is based on the approach introduced in Refs. 42,43 to perform an indirect
Fourier transform, which can be used to determine the so-called pair distance distribution
functions of nanoparticulate scatterers from small-angle scattering data. In the current
work we use the same approach as in Refs. 40,41 to analyze the small angle scattering data
of the nanoflowers, their isothermal magnetization measurement as well as the frequency-
dependent optomagnetic and ACS(w) measurements. But to extract the moment-weighted
relaxation time density distribution p,(7) from ACS(w) data we appended additionally the
MRX measurement, which results in more stable solutions of the relaxation time distribution
in the low frequency range. The numerical details for the combined inversion of the ACS(w)

and MRX measurements can be found in the SI.



Briefly, the least square solution of the the functional

_ = 112
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was determined for P(7) = xop,(7)AT > 0, where p,(7) is the moment-weighted relaxation
time density distribution (> p,(7)dr = 1). Here, o are the measurement uncertainties, the
matrix L is a N x N regularization matrix weighted by the regularization parameter a and the
vector Oy is a zero vector of length NV, with IV being the number of bins of the reconstructed
histogram P(7). The matrices U, V and W are the M x N data transfer matrices, with M
being the number of data points (U;; = 1/ (1 + (w;r;)?), Vij = witj/ (1 + (wit5)?), Wi =
exp (—t;/7;)). The constant c is the normalization constant of the MRX signal, which has
to be introduced due to the fact that the raw signal of the fluxgate sensors was analyzed.

The least square solution of Eq. (4) was then determined for 200 different values of the
regularization parameter o as well as varying values of the normalization constant ¢ of the
MRX signal. Afterwards the posterior probability P(«, c) was calculated. The correct value
for ¢ was defined as the value ¢, for which the highest evidence P(«, c¢) was calculated. To
determine the average distribution P(7), all 200 solutions P, (7), which were calculated at
this particular value ¢y, were added with a weight given by the probability P(«).

It has to be remarked that the total measurement uncertainty o can assumed to be larger
than the standard deviation calculated from repeated measurements. Therefore we used for
the numerical inversion of the M(H), otpomagnetic, ACS(w) and MRX measurements in
each case an uncertainty of 1% of the maximal data value. For example in case of the M (H)
curve the uncertainty of each data point is assumed to be 0.01 - Mg. The applied error bars

are always plotted but are barely larger than the used symbol size.



Results and Discussion

Structural characterization of the nanoflowers

Figure 1: (a) TEM tomography image of the nanoflowers. (b) A closer look at two particles
viewed parallel to the electron beam direction in TEM and (¢) perpendicular to it. (d)
TEM bright field image of a nanoflower. (e) Selected area electron diffraction pattern of the
particle shown in (d). Arrows indicate the diffraction spots used to form dark field images
shown in (f) and (g).

Figs.1(a), (b) and (c) show representative TEM tomography images of the nanoparticles.
The corresponding video can be found in the supplementary information (SI). The particle
sizes were determined from the bright-field TEM images (Fig. 1(d)). By measuring the size of
200 nanoparticles and fitting the histogram with a lognormal function we obtained a number-
weighted mean value for the size of (Dy) = 39.0 £ 0.3nm and width of o = 0.12 + 0.01.
Direct inspection of the particles shows, however, that their shape significantly deviates from
homogeneous isometric spheres. We determined the volume of 10 particles directly from the
3D TEM tomography images, which resulted in an average volume of 1.440.5-10723m?3. This
is about 2.2 times smaller than the volume for spheres with D = 39 nm. The discrepancy can

be attributed to the irregular shape of the particles, in particular to their rough surface. Due
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to their characteristic morphology, these particles are commonly referred to as nanoflowers.*

Additional investigation indicates a slight anisotropy for most of the particles, as exemplified
in Figs.1(b) and (c) for two particles. Their irregular shape is a result of the fact the
particles are composed of several small crystallites/cores, which are fused together, as shown
in Fig. 1(e), (f) and (g). According to the dark-field TEM images, the volumes with identical
crystal orientation are quite diffuse, with sizes ranging from about 5-15nm. Hence, the

particles can be regarded as nanoparticles with a nanocrystalline substructure.
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Figure 2: SAXS intensity I(¢) measured at 7' = 300K of the colloidal dispersion and re-
constructed curve Ire.(q) for the extracted PDDF (fit). Inset: The PDDF determined by an
indirect Fourier transform of the scattering intensity /(q) and comparison with the PDDF
calculated for a sphere with a diameter of 31 nm.

With DLS a mean hydrodynamic size (z-average) of the particles of (D)) = 56 nm was
determined, with a polydispersity index of PDI = 0.099. The hydrodynamic size is signifi-
cantly larger than the size of the individual nanoflowers determined by TEM (39nm), and
can be explained by the Dextran shell surrounding the nanoflowers which is not visible in
TEM.

With SAXS we measured the radially averaged scattering intensity I(q) (Fig.2), and
extracted the underlying radial pair distance distribution function (PDDF) by an indirect
Fourier transform,*?* following the approach described in Ref. 40. The PDDF represents
the probability of finding a scatterer a distance r away and hence contains information

about the average particle geometry.*5 As seen in Fig. 2 (inset), the derived PDDF exhibits
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a main peak in the low r-range with a maximum at » = 16nm, and finite values in the
large r-range up to 63nm. In case of a homogeneous sphere a maximum at r = 16nm
corresponds to a diamater of 31 nm.*° Accordingly, the main peak is quite well described
by the PDDF calculated for a homogeneous sphere with diameter D = 31nm. The value
for the particle diameter is below the average size of the nanoflowers determined by TEM
(Dx = 39nm), though, it is safe to assume that this discrepancy can be attributed to the
significant deviation of the particles from perfect spheres.

The finite values of the PDDF in SAXS for » > 39nm in Fig. 2 then indicate the presence
of particle agglomerates. However, the PDDF values for » > 39nm are quite low (low
probabilities), and we can thus conclude that only a small fraction of the nanoflowers were
agglomerated to e.g. dimer-like structures and that the majority of the nanoflowers were

individually dispersed.

Magnetic properties of the nanoflowers

Fig. 3(a) shows the real and imaginary parts, ' and ", of ACS(T') measurements on the
immobilized particles, performed at (T = 5—390 K) with varying excitation frequencies (w =
1.07 — 5969s~!). The imaginary part x” has a non-zero signal over the whole temperature
range, which indicates a broad distribution of blocking temperatures. There are at least
two sets of frequency dependent cusps in both y' and x”, one indicated by arrows at 300 K,
and one above the maximum temperature of the instrument with blocking temperatures
Tg(w) > 400 K. Considering that the nanoflowers consist of small iron-oxide cores, which are
fused together, we speculate that the observed multimodality is a result of a superposition of
individual and collective relaxation modes. This suggests the presence of strong interactions
between the neighboring nanocrystals within the nanoflowers.

Fig. 3(b) displays the Mdssbauer spectrum obtained at T = 18 K of the frozen disper-
sion of nanoflowers. As shown in the SI, all spectra are magnetically split (i.e. magneti-

cally blocked) up to at least 200 K. Moreover, the spectra are characteristic of maghemite
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Figure 3: (a) ACS(T'): Magnitude of real and imaginary parts, x’ and x”, of the susceptibility
for varying excitation frequencies w measured at different temperatures of the immobilized
nanoflowers. (b) Mdssbauer: Spectrum obtained at 7' = 18 K of the frozen colloidal disper-
sion and (c) the mean hyperfine field vs. temperature (bottom).

(7 — FepO3) and the mean isomer shift (calculated from the isomer shifts listed in the SI,
according to the method outlined in*%) shows that the nanoflowers are essentially free of
magnetite (FesO, content 5 +£5%). At temperatures well below the superparamagnetic
blocking temperature, the intra-well fluctuations of the magnetic moment can be measured
using Mossbauer spectroscopy due to a reduction of the observed magnetic hyperfine field ac-
cording to Bops = B(T = 0K)[1 —kgT/(kV)], where k is a constant describing the curvature
of the anisotropy energy of a particle core near an energy minimum.*” From the analysis of
Méssbauer spectra measured between 7' = 18 K and 60 K, we obtained kV/kg = 47004+300 K
(Fig. 3(c)). For non-interacting particles with uniaxial anisotropy, KV = 2KV. In the litera-
ture, the anisotropy constant K for maghemite particles larger than 7 nm has been found to
be in the range 1 —13kJ m~3.%8%3 Due to shape and surface anisotropies, these values are an
order of magnitude larger than the bulk value. Assuming a core size of 15 nm and the upper
limit of K we obtain 2K'V/kg = 3400 K, which is well below the measured value of kKV/kg.
In a simple model, Mgrup showed that the presence of exchange coupling between particles
serves to increase the curvature of the anisotropy energy and hence result in a value of x.%7

Indeed, even when considering a combination of magnetocrystalline anisotropy, as well as

13



both shape and size anisotropies, we observe a higher than expected value for k. Whilst it is
not possible to exclude other contributions such as magnetostatic based dipole interactions,

our observed value of x is consistent with exchange coupled cores.
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Figure 4: (a) M(H) curve of the colloidal dispersion at 7' = 300K. M,.(H) is the re-
constructed curve for the derived moment distribution P(u). Dashed line: Reconstructed
magnetization curve using only the main peak of P(u). (b) Discrete moment distribution
P(p) = Msp,(p)Ap (logarithmic spacing Ay, moment-weighted) determined by numerical
inversion of M(H) of the colloidal dispersion. Summation of the main peak (grey area)
results in a value of MJ" = Zfil P(u;) = 95Am?/kgp.. The red curve is the moment
distribution derived from the optomagnetic measurements. (c¢) Second V3 (black) and fourth
Vi (red) harmonic of the optomagnetic signal measured at w =19s™!, T = 300 K and nor-
malized with the fitted signal strength, nzAc, described by the number concentration, n,
the path length of the light, 2 = 2mm, and the difference in extinction cross sections be-
tween the particle moment being parallel or perpendicular to the direction of the magnetic
field/light, Ao. The lines are fits to the equilibrium model.

Fig. 4(a) shows the isothermal magnetization curve of the colloidal dispersion measured
at T' = 300 K with a logarithmic field scale. The curve is anhysteretic and approaches at
poH = 4.9T a saturation value of about Mg = 110 Am? /kgp,, which is close to the expected
value for bulk maghemite (Mg = 118 Am?/kgr.).?* Assuming the stoichiometry of maghemite
this corresponds to a volume magnetization of Mgy = 3.74 - 10° A/m.

To determine the underlying apparent magnetic moment distribution of the nanoflow-
ers we applied a numerical inversion approach using the Langevin-function as model func-
tion.*** Fig.4(b) shows the extracted moment-weighted distribution P(u) = Mgsp,(p)Ap

(where p,(p) is the moment-weighted probability density), and the corresponding recon-
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structed curve M,..(H) is displayed in Fig.4(a). As can be seen, P(u) exhibits one distinct,
lognormal-like main peak in the range u = 107!% — 107" Am?. Using this main peak to
reconstruct the magnetization curve yields a value of MJ*" = Zfil P(p;) = 95 Am? /kgp,,
and which provides an excellent description of the observed magnetization behavior for fields
oH < 10mT. Therefore, we may conclude that this peak corresponds to the remanent mo-
ment distribution of the nanoflowers, which in colloidal dispersion can align along the field
direction by Brownian rotation.

Using optomagnetic measurements, the remanent moment distribution of the nanoflowers
could be alternatively obtained as described by Fock et al.3?. Briefly, the magnetic field-
induced modulation of light transmitted through a suspension of the magnetic nanoparticles
was measured vs. the amplitude of an oscillating magnetic field at low frequency. Fig. 4(c)
shows the obtained 2’'nd and 4’th harmonic components of the transmitted light, and the
curves show a fit obtained using an equilibrium model assuming a lognormal distribution
of moments.3* The optomagnetic signal depends on the scaling of both the magnetic mo-
ment and the extinction cross section with the particle size. If both the magnetic moment
and the extinction cross sections are proportional to the particle volume, the optomagnetic
signal is weighted by the particle volume (or equivalently, the magnetic moment).** With
this assumption, the obtained moment (or volume)-weighted magnetic moment distribution
Puo(p), shown in Fig.4(b), had a median moment of p = 3.5-107® Am? and o = 0.46.
As can be seen (Fig.4(b)), this distribution is in very good agreement with the main peak
of the moment distribution derived from the M (H) curve of the colloidal dispersion. Thus
the isothermal magnetization and optomagnetic measurements indicate that the nanoflow-
ers have a moment-weighted mean remanent moment of about (u) = 3.9 - 107! Am?. This
corresponds to a mean volume of (V) = (u) /Mgy ~ 1-1072*m?, which is slightly smaller
than the average volume determined by 3D TEM tomography (1.4 £ 0.5 - 10723 m?). This
indicates a slight spin disorder within the individual nanoflowers, which would reduce the

remanent moment. Such an assumption is strengthened by the isothermal magnetization
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behavior detected at high fields. As shown in Fig.4(a), the particle moments should be
completely aligned along the field direction at pgH = 0.1 — 1T (main peak). By contrast
field strengths of more than pyH = 5T are needed to magnetically saturate the sample. As
a consequence of the increasing magnetization in high fields, the apparent moment distribu-
tion extracted from the magnetization curve exhibits minor peaks in the low-moment range
(Fig.4(b)). We assume that these contributions belong to uncorrelated/disordered spins
within the individual nanoflowers (e.g. surface spins), which account for a volume fraction
of ¢ = (Mg — MZ%")/Mg ~ 0.2. Nevertheless, we can surmise that the majority of spins
was preferentially magnetized along one direction, which could be unambiguously confirmed
by a model independent analysis of polarized SANS data.

The analysis of the polarized SANS experiments focused mainly on the structural in-
formation, which is contained in the non-spin-flip (nsf) intensities I~~(¢) and I77(g). The
analysis of the nsf channels allows to extract the pure nuclear scattering signal from sectors
along the field direction. Defining x as the direction of the neutron beam and z as the

direction of the applied magnetic field, the nsf cross sections can be written 30

I**(q) | N|? 4 b2| M, |*sin*©
+ b2| M, |*sin®Ocos?0
— b2(M,M; + MZM;)sin?’@cos@
F b(NM: + N*M,)sin*©

+ bh(](f]\;fg + N*M,)sinOcosO, (5)

Here © is the angle between the scattering vector ¢ and the magnetic field H and b, =
2.7-10""m/pug, where g is the Bohr magneton. Moreover, N(7) and M, () denote the
Fourier transforms of the nuclear scattering length density and of the magnetization in the
y- and z-directions, respectively. From the measured nsf intensities, the purely nuclear cross

sections [ue(q) o ]NP and the nuclear magnetic cross terms leposs(q) (NM; + N*MZ)
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were determined as a function of the applied field. For dilute isotropic particles and without
formation of aggregates in magnetic field, no field dependence of the nuclear cross section is
expected and hence the SANS signal should be qualitatively identical to the SAXS intensity.
The same applies for the nuclear magnetic cross terms when the particles are homogeneously

magnetized, such that the functional form of N and M, would be identical.

—
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Figure 5: Polarized SANS experiments performed on the colloidal dispersion at 7' = 300 K.
(a) 2D scattering pattern of the nsf SANS intensity I~ (¢) (top) and of the difference
I==(q) — I'""(q) (bottom), at uogH = 2mT. (b) SAXS scattering intensity I(q) from Fig.2
(rescaled), nuclear scattering intensity I,,.(¢) determined by integrating the SANS intensity
I~ (q) in sectors parallel to H as well as the nuclear magnetic cross terms Ioos(q) deter-
mined by sector average I~ (q) — I1(q) vertical to H for poH = 2mT and poH = 1T
(cross terms are rescaled by factor 0.05). The solid lines are the reconstructed curves for the
corresponding PDDFs. (c) PDDFs determined by indirect Fourier transform of I(q), Inu(q)
and I.oss(q). For comparison purposes the distributions are rescaled. Insets show the zoom
of the peak maximums.

Fig. 5(a) shows the 2D scattering patterns of the nsf intensity /=~ (¢) and of the difference
I=7(q) — I'""(q), measured at uoH = 2mT. Integration of I~ (§) in a 10° sector around
© = 0° (Fig. 5(a), parallel to H) enables determination of the purely nuclear 1D scattering
intensity Iue(q) o< |N|? of the nanoflowers, plotted in Fig. 5(b). Comparison with the SAXS
intensity I(q) from Fig. 2 (rescaled) shows that in the low g-range the shapes of both intensi-
ties are virtually identical. In the high ¢-range the two SANS scattering intensities differ due
to the large incoherent scattering background from HyO. An indirect Fourier transform® of
Le(q) at poH = 2mT results in a PDDF comparable to SAXS with the maximum of the

main peak at r = 16.3nm (Fig. 5(c)). Interestingly, at poH = 1T the determined intensity
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Iue(q) is slightly shifted to lower values on the ¢ axis. As a result, the extracted PDDF
is shifted to larger r values with its maximum at r = 17.1nm. With TEM we observed
that the particles are slightly anisotropic. Hence, we can conclude from SANS that the
nanoflowers seem to be preferentially magnetized along their longest dimension due to the
shape anisotropy, and that magnetic saturation is accompanied by a physical rotation of the
nanoflowers in field direction. To gain information about the spatial magnetization configu-
ration within the nanoflowers, the nuclear magnetic cross-term /Ieos5(q) (NMZ* + N*Mz)
was determined at poH = 2mT and 1T. For this purpose the difference I=7(q) — I77(q)
was integrated in a 10° sector around © = 90° (Fig. 5(a), perpendicular to H). For homoge-
neously magnetized, single-domain particles, the functional form of N and M, are identical,
at least if the surfactant layer is contrast matched by the matrix (HoO). Then Iios(q)
would be expected to follow the purely nuclear scattering intensity of the iron oxide par-
ticles. As seen in Fig.5(b), the absolute values of I.s(q) measured at 1T are a factor of
about 2.4 times those at 2m'T. This is in excellent agreement with the isothermal magne-
tization curve (Fig.4(a)) where the magnetization measured at 1T (108 Am?/kgg,) is also
about 2.4 times that at 2mT (46 Am?/kgg.). The functional forms of both cross terms are
basically identical and comparable to that for nuclear scattering. Consequently, the PDDFs
determined by an indirect Fourier transform*® of the cross sections I.(q) are very similar
to the purely nuclear PDDFs (Fig.5(c)). Only the maximum of the primary (main) peak is
shifted in both cases by about 1-2nm to lower values, which can be attributed to the slight
shape anisotropy of the nanoflowers. Hence, we can directly conclude from the extracted
PDDFs that the magnetic moments within the whole nanoflower volume were in fact oriented
preferentially parallel to each other, as (indirectly) deduced before from the isothermal and

optomagnetic measurements.
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Relaxation dynamics of the nanoflowers

Fig. 6(a) shows the normalized MRX signal B(t)/cmax of the colloidal dispersion and Fig. 6(b)
shows the corresponding measurements of the real and imaginary parts of the AC suscep-
tibility. Here, cpax 1S @ normalization constant of the MRX signal, which is included to
facilitate the simultaneous numerical inversion of the two data sets, and discussed further
in the SI. The real part x'(w) of the susceptibility starts in the low-frequency range at a
nearly constant value of xo = 0.134 (Fig.6(b)). This concurs with the isothermal magneti-
zation results in the previous section. A linear fit of M (H) in units [A/m] in the field range
H=0-1625A/m (uoH = 0 — 2mT) results in yo = 0.151. When w > 1000s™!, x/(w) is
drastically reduced, but it does not reach zero within the experimentally accessible frequency
range. Correspondingly, the imaginary part x”(w) exhibits a pronounced peak with its max-

imum at w ~ 31 -10%3s™'.

Together, these observations indicate that the majority of the
relaxation processes take place in the measured region w = 62.8s7! to 6.28 - 10°s~1. Due to
the fact that MRX covers a time range of t = 0.28 ms to 1.5s, i.e., slow relaxation processes,
the MRX signal B(t)/cmax (Fig. 6(a)) is already at the first data point much lower than yo.
From the combined susceptibility and MRX measurements, the underlying relaxation time
distribution P(7) = xopu(7)AT (where p,(7) is the moment-weighted probability density)
was extracted by numerical inversion (Fig.6(c)), with further details provided in the SI. In

the window of experimental observation times, the relaxation time distribution P(7) exhibits

two distinct peaks, labeled 1 and 2.
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Figure 6: MRX, ACS(w) and frequency dependent optomagnetic measurements of the col-
loidal dispersion performed at T'= 300 K. (a) MRX: Normalized fluxgate signal of the col-
loidal dispersion (B(t)/cmax) and the reconstructed curve for P(7) (solid line). (b) ACS(w):
Real and imaginary part of the measured AC susceptibility of the colloidal dispersion (y'(w),
X" (w)) and the reconstructed curves for P(7) (solid lines). (¢) Relaxation time distribution
P(1) = xopu(7)AT (where p,(7) is the moment weighted probability density) determined by
the numerical inversion of the ACS(w) and MRX data, and the rescaled distribution P,(7) ex-
tracted from the optomagnetic measurements. Grey area: Rescaled distribution py (15)ATg
(logarithmic scaling A7g), calculated for a particle ensemble with a volume-weighted lognor-
mal distribution of the hydrodynamic size (¢ = 0.32, (D)) = 54nm). (d) Normalized signal
Va(w) /Viet of the optomagnetic measurements and reconstructed curves (solid lines) for the
extracted relaxation time distributionP, (7).
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Optomagnetic measurements vs. frequency at low magnetic field amplitude were used
to assess the hydrodynamic size of the particles as described in detail by Fock et al.®. In
Fig.6(d) the real and imaginary part of the normalized second harmonic signal Vy(w)/Vies
are plotted. Optomagnetic measurements are sensitive only to Brownian relaxation of the
slightly elongated nanoflowers and are completely insensitive to relaxation arising from Néel
processes. Theoretically, at low magnetic field amplitudes, the signal Va(w)/Vies o ix(w)?,
with y(w) being the complex susceptibility.?® Therefore, the distribution of Brownian relax-
ation times can be extracted by a combined numerical inversion of V3 (w)/Vier and V3 (w) /Viet,
in analogy to the inversion of only the ACS data, and is plotted in Fig. 6(c).

A comparison of P,(7) with the distribution P(7), extracted from both the ACS(w) and
MRX data, indicate that there is excellent agreement between the two techniques and thus
we attribute this peak to Brownian rotation. To derive the distribution of hydrodynamic
sizes, a lognormal distribution of relaxation times was fitted to peak 1 (grey area in Fig. 6(c))
and related to the distribution of hydrodynamic sizes using Eq. (3). The distribution has a
mean value of (Dy) = 54nm and o = 0.32. This is in good agreement with the hydrodynamic
size measured by DLS ((Dy) = 56 nm).

Peaks 2 and 3 (Fig. 6(c), lower 7), on the other hand, are not observed by optomagnetic
measurements and therefore must arise from a Néel-like relaxation. As shown in the SI,
similar spectra were also determined by numerical inversion of two other ACS(w) data sets,
which emphasizes that at least peak 2 is reproducible. The maximum of peak 2 is located
at about 7 = 107%s, which is in good agreement with the estimated Néel relaxation times
(Eq.2) calculated for 2KV /kg = 4700 + 300K (as determined previously by Mossbauer
spectroscopy). Peak 3, observed outside the window of experimental observation times,
cannot be given a direct physical interpretation as it may be a numerical artifact resulting
from the boundary condition on the distribution of relaxation times at low 7. Nevertheless,
the finite value of the susceptibility at w = 6.28 - 10%s™ (x” = 0.009) clearly shows the

presence of fast relaxation processes (7 < 1.6 - 107"s) and we assume that these may be

21



connected to the disordered /uncorrelated spins within the nanoflowers, which were observed

by isothermal magnetometry (Fig.4(b), low moment contributions).

Magnetic hyperthermia performance of the nanoflowers

In Table 1 we list the intrinsic loss power (ILP5®) values measured of the colloidal dispersion
for varying viscosity. As can be seen, the ILP values are nearly independent of the viscosity
and with values of about 7nHm?/kgr,, they are quite large compared to literature, where
typical values are in the range 0.2 — 4.4nHm?/kgp..%® The insensitivity to the viscosity
confirms that the heating in the nanoflowers is generated by internal magnetization processes
and not by Brownian relaxation. This is consistent with our analysis of the relaxation
dynamics which shows that Brownian relaxation takes place at frequencies much smaller
than w = 5.9-10%s™! and that the relaxation dynamics of the nanoflowers is dominated by
internal moment relaxation in the high-frequency range.

To complete, we compare the average measured ILP value (about 7nHm?/kgg.) with the

expected value according to the LRT. In this theory, the ILP value is given by:

27 P, "
ILP — Tha _ THoX (W)7 (6)

cre H?w CFe

where P, is the dissipated power density (Eq. (1)) and cg. is the iron concentration in the
colloid; in this case determined by ICP-OES to cp, = 5kgp./m?. At w = 6.28 - 106571
the measured imaginary part of the susceptibility was x” = 0.009 and hence the ILP value
expected to be about 7.1 nHm? /kgg,. The good agreement between measured and calculated
ILP value indicates that the LRT properly describes the heating behavior of the nanoflowers.

Table 1: ILP values measured for the colloidal dispersion of nanoflowers (uoH =
8.8mT, w=5.9-10%s"1) with varying glycerol concentration and hence viscosity.

glycerol content [wt%] 0 18.75 37.5 56.25 75
viscosity [mPa - g] 1 2.2 4.1 7.5 16.1
ILP [nHm?/kgr.] 74+01 71£01 62401 62+01 69+£0.1
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With this in mind, we conclude that the dominant heating mechanism are significant intrinsic

moment relaxations, probably enhanced by the internal spin disorder.

Conclusions

We presented here an in-depth study relating the structure of nanoflowers to their mag-
netic properties (in timescales spanning from quasi-static to microseconds) and finally to
the remarkable heat generated by magnetic hyperthermia. The particles had a mean size of
about 39nm, were composed of several iron oxide crystallites/cores, and as a result of the
nanocrystalline structure had an irregular shape and a slight shape anisotropy. We demon-
strated that the individual nanoflowers had a remanent magnetization (due to an exchange
coupling between the cores), were preferentially magnetized along their longest dimension
(due to shape anisotropy), but with a slight internal spin disorder/misalignment.

We determined the relaxation time distribution of the colloidally dispersed nanoflowers,
which exhibited two distinct peaks within the experimentally accessible time range. We
could associate the peak of large relaxation times (slow relaxation processes) with Brownian
relaxation, and the derived hydrodynamic size distribution was in good agreement with DLS
measurements. The peak in the small relaxation time range could be then attributed to
classical Néel-like relaxation processes. However, even at the largest measured frequency the
volume susceptibility still had finite values indicating the presence of very fast relaxation pro-
cesses outside of the accessible time range, which we attribute to the disordered /uncorrelated
spins within the individual nanoflowers.

Finally, we showed that the intrinsic loss power of the nanoflowers with a value of about
7nHm? /kgr, was high compared to conventional iron oxide nanoparticles and also inde-
pendent of the viscosity of the surrounding medium. The insensitivity to viscosity agreed
well with the observation that in the high-frequency range the relaxation dynamics of the

nanoflowers was dominated by internal moment relaxation. The average detected ILP value
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could be well described within the linear response theory, and hence the large detected
ILP values could be directly connected to the quite large value of the imaginary part of
the volume susceptibility at high frequencies. We surmise that the observed fast relaxation
dynamics, which resulted in finite values of x” also at high frequencies, is related to the
fact that the nanoflowers constitute disordered spin systems caused by the nanocrystalline
structure, but which are easily magnetized by external magnetic fields likely aided by an

57,58

exchange coupling. By using kinetic Monte-carlo simulations of the nanoflower particle

structures, we verified that including exchange interactions between the cores in the multi-
core structure together with anisotropy energy and dipole-dipole interactions, increases the

power absorption significantly.
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