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Abstract 
 

Relating protein pharmacology by ligand chemistry 

 

Michael James Keiser 

 

The identification of protein function based on biological information is an area of 

intense research. Here we consider a complementary technique that quantitatively groups and 

relates proteins based on the chemical similarity of their ligands. We began with 65,000 ligands 

annotated into sets for hundreds of drug targets. The similarity score between each set was 

calculated using ligand topology. A statistical model was developed to rank the significance of 

the resulting similarity scores, which were expressed as networks to map the sets together. 

Although these networks were connected solely by chemical similarity, biologically sensible 

clusters nevertheless emerged. 

When we used this “Similarity Ensemble Approach” to compare drugs to target sets, 

unexpected links emerged. Methadone, Emetine, and Imodium were predicted and 

experimentally found to antagonize muscarinic M3, α2 adrenergic, and neurokinin NK2 

receptors, respectively. Whereas drugs are intended to be selective, at least some bind to several 

physiologic targets, explaining their side effects and efficacy. We thereby sought further 

unexpected links by comparing a collection of 3,665 FDA-approved and investigational drugs 

against hundreds of targets. Chemical similarities between drugs and ligand sets predicted 

thousands of unanticipated associations. Thirty were tested experimentally, including the 

antagonism of the β1 receptor by the transporter inhibitor Prozac, the inhibition of the 5-HT 

transporter by the ion channel drug Vadilex, and the antagonism of the histamine H4 receptor by 
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the enzyme inhibitor Rescriptor. Overall, 23 additional novel drug-target associations were 

confirmed, five of which were potent (< 100 nM). The physiological relevance of one, the drug 

DMT on serotonergic receptors, was confirmed in a knock-out mouse. This Similarity Ensemble 

Approach is systematic and comprehensive, and may suggest side-effects and new indications 

for many drugs. 

Small molecule drugs also target many core metabolic enzymes in humans and 

pathogens. We therefore grouped and compared drugs and metabolites by their associated 

targets and enzymes, mapping these associations onto existing metabolic networks. This revealed 

what novel territory remains for metabolic drug discovery. We calculated these networks for 385 

model organisms and pathogens. Chemical similarity links between drugs and metabolites may 

suggest drug toxicity, routes of metabolism, and polypharmacology. 
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Introduction 

 

Half a decade ago, we set out to build a protein function identification engine. Its proof-

of-concept was to span a three-month rotation project—and instead became this thesis. The 

engine itself remains incomplete, but then, the branching paths of its manufacture were those 

that led to its most intriguing results. In this introduction, I delineate the motivations for this 

project, describe its development, and provide a guide to the chapters that follow. 

 

But first, what should we care for protein function? One answer derives from the 

combination of medicine with Francis Crick’s central dogma:1 

 
The central dogma of molecular biology deals with the detailed residue-by-
residue transfer of sequential information. It states that information cannot be 
transferred back from protein to either protein or nucleic acid. 

 

If this dogma holds, a protein is the last step in the deterministic flow of sequence information 

through biopolymers. Unlike DNA or RNA, whose functions are entangled with information 

flow, a protein’s function stands alone. This function comprises actions such as catalysis, trans-

membrane signaling, scaffolding, or transport, and we can observe its therapeutic effects. 

Proteins are the major actors on the biological stage and agents that modulate their actions can 

directly modulate therapeutic outcomes. 

Many proteins interact with small-molecule ligands that modulate their function, and 

these interactions are not arbitrary. Furthermore, some ligands bind to multiple proteins in 

blatant defiance of the fact that these proteins have unrelated sequences and structures. For 

instance, serotonin and serotonergic molecules bind to serotonin receptor subtypes 1, 2, and 4-7 
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(5-HT1,2,4-7), which are G-protein coupled receptors, but also to an ion channel, the 5-HT3 

receptor.2 Similarly, the opioid methadone binds not only to the μ-opioid receptor, a GPCR, but 

also to the NMDA receptor, an ion channel, and both are thought to be involved in the drug’s 

biological activity.3, 4 Existing bioinformatics approaches that are based on sequence or structure 

would miss these relationships. 

In the days before modern molecular biology, pharmacology and drug discovery efforts 

operated without knowledge of molecular protein targets. Successful drugs were those that 

produced desirable phenotypes in disease models and acceptable safety profiles—as measured at 

the organism level. Shockingly, this approach appears to have been no less productive than our 

newer target-based efforts.5 Drug discovery in the absence of targets follows an older logic of 

drug action, articulated by the structures of the drugs themselves. In this thesis, I seek to 

combine the strength of both approaches, by applying this older logic directly to our 

understanding of protein targets. 

The key technique we borrow from pre-target drug discovery is that of chemical 

similarity. This follows from the “similarity principle” of chemoinformatics, which states that 

molecules with similar structures are likely to have similar physicochemical properties and 

biological activities.6 Whereas this principle may be violated in specific cases, chemical similarity 

is often a good guide to the biological action of an organic molecule.7 With this principle at its 

core, the protein function identification engine is a similarity engine. This entails great limitation 

but also great power. Just as the requirement of similarity shackles us to the past—which is a 

haphazard admixture of serendipity, incremental advance, and the sweeping insight of others—

so too does this similarity leverage the data accreted over drug discovery’s full history, as 

encoded into the hundreds of thousands of known drug-like molecules. Only recently have these 

data become readily available. 
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With the data and the engine at hand, we sought to find and formalize patterns among 

ligands that would in turn reflect the functional relationships among their respective proteins. 

I. Chemical backgrounds 

Given the many possible interpretations of protein function, we narrowed our scope to a 

protein’s “pharmacological” function, e.g., that which we can perturb and test by small molecule 

agents. We worked with ligands derived from patent literature and annotated by their protein 

target or therapeutic function. To compare these ligands, we turned to “fingerprints,” a 

chemoinformatics tool that computationally encodes small molecules as collections of structural 

patterns. The identification engine’s parts were all in place; one detail remained—the design to 

bring them together. How were we to actually “find and formalize” these presumed patterns 

among the ligands, in their teeming thousands? 

In the early days, we sought out chemical similarity patterns visually. To do so, we 

encoded each target-vs.-target comparison as its own histogram, designed to summarize the 

distribution of ligand structure similarity between two targets (Figure 1a-b). This was an 

extension of rotation-project work done by Morris Feldman. In each histogram, the horizontal 

axis ran from zero to one hundred percent similarity—any given pair of ligands between the two 

targets must necessarily fall somewhere within this range. The vertical axis denoted frequency of 

scores at each bin. It immediately became apparent that most targets did not share even one pair 

of ligands with better than 40% similarity to each other (Figure 1a, Figure 1c). This seems 

sensible enough, as one certainly wouldn’t expect an androgen receptor agonist to look much 

like an antifolate—after all; the one target is a nuclear hormone receptor and the other an 
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enzyme.1 But how similar would we expect ligands to be for two enzymes that do operate on 

folate, dihydrofolate reductase (DHFR) and glycinamide ribonucleotide formyltransferase 

(GART)? These enzymes had ligand pairs between them that scored well, some in excess of 80% 

(Figure 1c). 

Most striking, however, was the observation that targets compared to their most perfect 

match—that is, to themselves—still showed the highest-scoring peaks far down in the 20% 

similarity region (Figure 1b). This could mean several things: Perhaps we weren’t representing 

the molecules well. Perhaps many inhibitors were based on wildly different scaffolds, even 

among those intended for a single target. Or perhaps it was wrong to think that all ligands for a 

particular target should look that much alike after all. What if only some did? 

 

                                                 

1 Caveat lector—Chapters 1 and 2 challenge the assumption that ligands of structurally different proteins should 

themselves always have different chemical structures. 
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Figure i.1 Early similarity‐histogram analyses 

Early attempts to find patterns among sets of 

protein target ligands were qualitative. The 

histogram in (a) plots the pair-wise similarity 

scores between each ligand of S-adenosyl-L-

homocysteine-hydrolase (SAHH) paired with a 

ligand of the adenosine receptor (AR); no pair 

of ligands across sets has better than 38% 

similarity to each other. In contrast, many ligand 

pairs in (b) score better than 50% similar, and 

this is because this histogram compares the set 
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of AR ligands against themselves. (c) The matrix 

excerpt here is from an exhaustive comparison 

of fourteen drug targets. The red histograms on 

the diagonal are comparisons of the target vs. 

itself, such as in (b); most of the off-target 

histograms resemble panel (a). 

 

While intuitive, this approach remained cumbersome on the broad scale; comparing even 

14 targets against themselves required significant human review and interpretation (Figure 1c). 

We needed to simplify these results if we were to have any hope of focusing on the most 

“interesting” target-vs.-target relationships. Later, we realized that by “interesting,” we had 

actually meant “significant;” this was to be the basic motivation for the statistical model we 

would eventually develop. The first attempt at simplification, however, was a minor one: We 

automatically removed from the matrix any off-diagonal histogram that lacked at least one pair-

wise ligand-ligand score above 50%. In Figure 1c, this would remove the majority of the blue 

histograms shown, while still retaining some of the most interesting ones such as DHFR vs. 

GART (a target pair that I address in Chapter 1). 

The second significant development during this period arose from frequent discussions 

with Brian Shoichet and John Irwin on the concept of a “chemical background” for these 

histograms. Over and over again, we saw that the majority of target-vs.-target comparisons 

yielded uninteresting histograms – ones with not a single ligand-pair scoring over 50% similar. 

But the shapes of these “uninteresting” histograms gave us pause. They were far from ideal 

normal distributions, but were more normal than the on-diagonal symmetric-target histograms 

(colored red in Figure 1c). What’s more, why did they all tend to fall off by about the 40% 

similarity mark? What kind of similarity among ligands would we expect by random chance, 

anyhow? We didn’t yet know. 

My first foray in this direction was wrong. Motivated by the shapes and the scales of the 

histograms, I built machinery to calculate a random background for each histogram bin position 
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and to normalize the actual histograms on a bin-by-bin basis (Figure 2). After doing so, we saw 

that the bin-by-bin z-scores were weakest in the 4-20% similarity range, as most random 

molecule pairs fell into this region. While this was consistent with our earlier observation that 

even nonrandom ligand pairs preferentially scored near the 20% mark, it did little to help us 

discriminate the strength of overall similarity among targets that did share highly similar ligands. 

Whereas this approach was statistically invalid, it nonetheless brought us closer to a better one. 

 

 

Figure i.2 Initial but incorrect histogram normalization procedure 

Panels (a) and (b) present two examples of 

incorrectly normalized similarity histograms for 

random chemical backgrounds. I first calculated 

the mean and standard deviation of completely 

random molecule-molecule comparisons, 

evaluated at each pair-wise similarity (x-axis) 

bin. Then, for each real histogram such as those 

show here, I expressed each bin’s raw 

(unmodified) count as a z-score (a z-score is the 

number of standard deviations above the 

expected mean that a particular raw score 

achieves). This led to interesting similarity-

distribution patterns, but is invalid because it 

assumed independence of the similarity bins, 

which is not the case. 
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II. taniBLAST and SEA 

Two people in particular helped enable the transition to the first true version of 

“taniBLAST,” which was the precursor to the Similarity Ensemble Approach: Paul Valiant and 

Eswar Narayanan. Paul immediately saw that bin-by-bin normalization was wrong and suggested 

condensing the entire histogram into a single score instead. Eswar, a postdoctoral research assistant 

in Andrej Sali’s lab, directed me to empirical BLAST theory for ideas on random background 

models, and also to papers that described the Extreme Value Distribution underlying the 

BLAST statistics.8-10 Michael Mysinger also deserves mention here; during his rotation project, he 

wrote code for rapid ligand-ligand comparisons using bitwise logic that decreased calculation 

time by several orders of magnitude and made large-scale random chemical backgrounds 

practical. 

Even so, it was not immediately apparent how, or even that, these parts would fit 

together—time makes stories out of journeys, and polishes the fits and starts away. Over the 

next few months, I embarked on several false directions, filled my lab book with forty-five 

scribbled pages of incremental advances and their failures, and discussed countless ideas with 

Brian and John. I began to see an analogy to early BLAST empirical models, wherein our 

comparison of protein targets was similar to BLAST’s alignment of protein sequences, our 

ligand-ligand pairs corresponded to BLAST’s heuristic “word” pairs, and in both cases 

threshold-based “raw” scores with statistical correction could be tuned to fit extreme value 

distributions. The analogy was a strained one and our ligands were unordered, unlike the 

residues of a protein sequence—but it was enough to get started. 

The only problem was that it didn’t work. That is to say, it didn’t work until Thursday 

the 11th of August 2005, lab book #1 page 46, when I finally stumbled upon and slew the last of 
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the major conceptual bugs in the background generation code.† Then, shockingly, it did work. 

And we called it the Similarity Ensemble Approach, or SEA. 

III. Guide to the chapters 

This thesis comprises three major chapters based on published first-author or co-first-author 

papers. Lest the reader wonder at the ties that bind them together, I preface each chapter with a 

short “gloss” that is both a summary and an attempt to provide research context. 

The first chapter introduces the Similarity Ensemble Approach and the global mapping 

of pharmacological space that it enables; it was published in Nature Biotechnology two years ago. In 

the course of this work, we began to use SEA to predict the protein targets of commercial drugs. 

We pick up and expand on this theme in the second chapter, scouring all commercial drugs for 

unexpected target associations predicted by SEA. Chapter 2 also presents a new bipartite view of 

pharmacological space, where we link drug targets only by the presence of commercial drugs 

that are known—or predicted—to bind them. In some cases, we find that drugs thought to 

operate only within a particular class of proteins, such as ion channels, also had unreported 

activity in a new class, such as GPCRs. This work was recently accepted at Nature. In Chapter 3, 

we explore the use of SEA beyond another boundary; we ask how similar are drug targets, 

represented by their drugs, to metabolic reactions, represented by their substrates, cofactors, and 

products. 

The fourth chapter discusses future directions. Appendix A provides the full 

supplementary information for the first three chapters, except where this was not feasible in the 

case of large datasets. Appendix B is a technical reference for the interested reader, where we 

                                                 

† Raw scores = 0 were overrepresented in the random background, shifting the distribution to a Gaussian, when in 

truth they should have been discarded because they represented “no score.” 
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have detailed the steps necessary to generate the pharmacological SEA networks of Chapter 1. It 

was published contemporaneously with this thesis, as a chapter of Chemogenomics: Concepts and 

applications of a new design and screening paradigm, by Humana Press. 
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Gloss to Chapter 1 

 

The chapter that follows describes the development and testing of the Similarity 

Ensemble Approach (SEA) in the world of soi-disant perfect data. It considers SEA’s first 

applications to protein-protein relationships and its first extension to drug-target predictions. In 

doing so we ask, how related are drug targets? To what extent does chemical similarity reflect the 

biological and pharmacological relationships present among targets? Conversely, does a 

chemical-centric method like SEA actually tell us anything new? And what does it mean when 

we get results that we didn’t expect—are they indeed new, or merely wrong? 

To address these questions, we built networks of target-target similarity and also 

compared these SEA networks to BLAST alignments of the target sequences. We considered 

many approaches to the target networks and ultimately built maps from minimum spanning 

trees1 to simplify the tangle of inter-target relationships, as was particularly apparent among 

neurological receptors. To address the question of unexpected results, however, we needed 

predictions amenable to experimental testing. But this was problematic; although we had many 

anecdotal successes using SEA to rediscover relationships among drug targets that were 

otherwise hidden in the literature, it was not clear how we could validate a truly new relationship 

between two targets. Would two “related” targets bind some of the same ligands? If so, to which 

ligand, when established drug targets often have tens or hundreds to choose from? Methadone 

emerged as a serendipitous solution, both providing the foundation for our experimental results 

in Chapter 1, and by example setting the course for the entire research direction of Chapter 2. 

Methadone is a synthetic opioid agonist that also antagonizes the N-methyl-D-aspartic 

acid (NMDA) receptor and is thus a prime example of “polypharmacology” – the phenomenon 
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wherein a single drug binds multiple protein targets, often in a way that contributes to its 

function. Bryan Roth coined the term “magic shotguns” for drugs that hit multiple targets, in 

contrast to the traditional view of a drug as a “magic bullet” that should hit just one.2 Methadone 

was an apt example because the μ-opioid receptor is metabotropic (a G-protein coupled 

receptor, or GPCR) whereas the NMDA receptor is ionotropic (an ion channel). It is thus a 

single drug that binds two proteins of wildly different structure and, presumably, evolutionary 

history. This example illustrates how a chemo-centric view of drug-to-target relationships may 

find links that a sequence- or structure-centric view cannot. Of course, it would only illustrate 

this if SEA could actually predict it. But we had developed SEA as a means of comparing drug 

targets against each other—could we use it to compare single drugs against targets? 

Well, yes. If the set of known ligands for a particular target was large enough, the 

statistics would support a very small set—even one of “size 1,” which is to say, a single drug—

on the other side of the equation. This was, however, a substantial divergence from that way we 

had originally envisioned SEA, and thus its first application to a single drug was actually to the 

set of methadone plus its 20 closest neighbors‡ from the ZINC database. Reassuringly, SEA 

recapitulated methadone’s known binding to the opioid and NMDA receptors as I had expected. 

Less reassuringly, the expectation values (E-values) for these predictions were weak—especially 

when compared to the much stronger SEA prediction of methadone’s extraordinary similarity to 

the known muscarinic M3 antagonists. This was initially disheartening. On review, however, 

Brian and John confirmed that methadone’s chemical structure really did look like that of several 

of the antimuscarinics. On the recommendation of Mark von Zastrow, we contacted Bryan Roth 

                                                 

‡ The field is littered with cases of “a single methyl” whose lack throws off chemical-similarity predictions or, 

conversely, the self-same predictions not taking into account the catastrophic effect of an extra such methyl. In any 

case, for methadone’s SEA predictions, I later verified that it did not make a substantial difference whether we 

included the additional 20 derivatives or not. 
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at the Psychoactive Drug Screening Center, who ran the experimental tests that ultimately 

confirmed methadone’s antimuscarinic binding and functional activity. It was exciting; we’d 

found unreported and therapeutically-relevant off-target binding for a drug that has been in use 

for over seventy years. 

Could we do it again? We noticed that SEA predicted unexpected protein targets for two 

more drugs, emetine and loperamide (tradename Imodium). SEA found emetine had high 

structural similarity to α2 adrenergic receptor ligands, and that loperamide had high structural 

similarity to neurokinin NK2 receptor ligands. As emetine is associated with congestive heart 

failure and loperamide was thought to modulate only the NK3 receptor (albeit indirectly, via 

opioid receptors3), these targets seemed feasible. In collaboration with Bryan Roth, we 

confirmed both experimentally. 
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1.1 Abstract 

The identification of protein function based on biological information is an area of intense 

research. Here we consider a complementary technique that quantitatively groups and relates 

proteins based on the chemical similarity of their ligands. We begin with 65,000 ligands 

annotated into sets for hundreds of drug targets. The similarity score between each set is 

calculated using ligand topology. A statistical model was developed to rank the significance of 

the resulting similarity scores, which are expressed as a minimum spanning tree to map the sets 

together. Although these maps are connected solely by chemical similarity, biologically sensible 

clusters nevertheless emerged. Links among unexpected targets also emerged, among them that 

methadone, emetine, and loperamide may antagonize muscarinic M3, α2 adrenergic, and 

neurokinin NK2 receptors, respectively. These predictions were subsequently confirmed 

experimentally. Relating receptors by ligand chemistry organizes biology to reveal unexpected 

relationships that may be tested directly by the ligands themselves. 

1.2 Introduction 

It is a curious pharmacological fact that related drugs and biological messengers can bind to 

receptors that appear unrelated by many bioinformatics metrics. For instance, serotonin and 

serotonergic drugs bind to G-protein coupled receptors (GPCRs) such as the 5-

hydroxytryptamine subtypes 1, 2, and 4-7 (5-HT1,2,4-7), but also to an ion channel, the 5-HT3A 

receptor.1, 2 Ionotropic and metabotropic 5-HT receptors are unrelated by sequence and 

structure, yet both are involved in the pharmacological effects of serotonergic drugs. Similarly, 

the well-known opioid methadone binds not only to the μ-opioid receptor, a GPCR, but also to 

the NMDA receptor,3 an ion channel, and both are thought to be involved in the drug’s 
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biological activity.4 Benzodiazepines affect mitochondrial proteins in addition to their primary 

therapeutic actions on ion channels.5 The enzymes thymidylate synthase (TS), dihydrofolate 

reductase (DHFR), and glycinamide ribonucleotide formyltransferase (GART) all recognize folic 

acid derivatives and are inhibited by antifolate drugs. Despite this, the three enzymes have no 

substantial sequence identity and are structurally unrelated. This disregard for typical biological 

categories on the part of small molecules can lead to infamous side effects—although cisapride 

stimulates 5-HT4 receptors and astemizole inhibits histamine H1 receptors, both also inhibit the 

hERG ion channel, leading to unexpected cardiac pathologies.6 The ability of chemically similar 

drugs to bind proteins without obvious sequence or structural similarity can confound a purely 

biological logic to understanding and categorizing their action. 

A chemo-centric approach to this problem is to compare not the biological targets 

themselves but rather the chemistry of their ligands.7 The motivating hypothesis is that two 

similar molecules are likely to have similar properties,8 and will bind to the same group of 

proteins. Whereas this hypothesis may be violated in specific cases—a small change in chemical 

structure can dramatically change binding affinity—chemical similarity is often a good guide to 

the biological action of an organic molecule.9 Indeed, chemical similarity is a central principle in 

ligand design,10 and an extensive chemoinformatic literature explores many methods to compare 

pairs of ligands for such similarity.11 Recently, Hopkins and colleagues found that using the 

simplest form of chemical similarity, full chemical identity among ligands shared by two or more 

receptors, linkage maps can be calculated to relate targets.12 Vieth and colleagues, using a 

different approach, have used dendrograms of inhibitors to organize the selectivity relationships 

among kinases.13 Izrailev and Farnum have also linked ligand sets by focusing on the most 

similar molecules between them.14 These and recent efforts in predicting pharmacologic 
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profiles15-19 have led to the development of probabilistic models to predict polypharmacology 

and assess the “druggability” of protein targets. 

Here we investigate techniques to relate receptors quantitatively based on the chemical 

similarity among their ligands. In this method, which we call the Similarity Ensemble Approach 

(SEA), two sets of ligands are often judged similar even though no single identical ligand is 

shared between them. We use a collection of about 65,000 ligands annotated for drug targets, 

where most annotations contain hundreds of ligands. To compare sets without size or chemical 

composition bias, we introduce a technique that corrects for the chemical similarity we might 

expect between ligand sets at random, using a model resembling that of BLAST.20-22 This 

technique enables us to link hundreds of ligand sets—and correspondingly the protein targets—

together in minimal spanning trees. Whereas these trees are calculated by chemical similarity, 

recognizable clusters of biologically related proteins emerge from them. We consider the origins 

and possible significance of both the recognized and unexpected relationships, and their use for 

uncovering side effects and polypharmacology of individual chemical agents. We test several 

such unexpected relationships in biochemical and cell-based assays. 

1.3 Results 

I. Similarity scores between ligand sets 

We used a 246-receptor subset of the MDL Drug Data Report (MDDR), which annotates 

ligands according to the receptor whose function they modulate. Each ligand in each set was 

compared to each ligand in every other set. Overall, 246 versus 246 set comparisons were made, 

involving 65,241 unique ligands and 5.07x109 total ligand pairs. Tanimoto coefficients (Tc) of 

chemical similarity were calculated for each pair of ligands. For most ligand pairs the Tc was low, 
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in the 0.2 to 0.3 range, which is typically considered insubstantial similarity. This was true even 

when comparing a set to itself. For instance, when comparing the 216 ligands of the antifolate 

enzyme dihydrofolate reductase to themselves, 80.4% of the pairs had a Tc in the 0.1 to 0.4 

range, with only 4.7% having more substantial scores in the 0.6-1.0 range and only 0.5% having 

Tc of 1.0 (only 216 ligands are, after all, identical) (Figure 1). This pattern was also observed 

comparing the 253 ligands of the antifolate enzyme thymidylate synthase to the DHFR ligands. 

Here only 0.06% of ligand pairs were identical (Tc of 1.0), 1.6% of pairs had Tc values of 0.6 to 

1.0, and 85.5% had Tc values between 0.1 and 0.4. When the set of 1226 ligands for the protease 

thrombin was compared to that of DHFR, a peak containing 97.1% of all pairs was observed 

between Tc values of 0.1 to 0.4, but no identical pairs were observed nor were there any ligand 

pairs that had Tc values greater that 0.5. The raw similarity score, which is the sum of ligand pair 

Tc’s over all pairs with Tc≥0.57 (see Methods), between the DHFR and thrombin ligand sets 

was therefore 0; the raw score between DHFR and TS ligand sets was 772.25, whereas that of 

the DHFR set against itself was 1931.60. This is consistent with the lack of similarity between 

the ligand sets of thrombin and DHFR, but the considerable similarity between the sets of TS 

and DHFR, both of which contain related antifolate drugs and their analogs. 
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Figure 1.1 Comparing similar and dissimilar ligand sets to that of DHFR

Log-scale distributions of ligand-ligand 

similarity for different ligand sets: dihydrofolate 

reductase (DHFR) ligands compared to 

themselves (red), DHFR ligands compared to 

the related thymidylate synthase (TS) ligands 

(green), and DHFR ligands compared to the 

unrelated thrombin ligands (blue). The Tc 

ranges from 0 (complete dissimilarity) to 1 

(identity). The ligand sets were derived from 

MDDR annotations. 

 

II. Patterns of similarity 

Most pairs of ligand sets resembled the TS vs. thrombin comparison and had no raw score 

similarity. Of the 60,516 set pairs, 70.8% had raw scores of 0. As the size of the sets grew, 
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however, the likelihood that two would have pairs of ligands with Tc≥0.57 also grew. Indeed, 

there was a linear relation between the raw score and the number of ligands in the sets being 

compared (see Supplementary Figure 1). To compare the significance of the set similarity raw 

scores across sets of different sizes, we developed a statistical model of the similarity we would 

expect at random for sets drawn from the same large but finite database of ligands (see 

Methods). This allowed us to calculate Z-scores and expectation values for any raw score for 

ligand sets of any size, such that the background fit an extreme value distribution (see 

Supplementary Figure 1c). As far as we know, a statistical model for random set similarity has 

not been previously used in chemoinformatics (although Z-scores have been used for 

comparisons of individual compounds23, 24). As in sequence comparisons, the expectation values 

that such a model allows are critical for unbiased and quantitative comparison of multiple ligand 

sets. As would be expected, 95.2% of set-to-set comparisons had expectation values greater than 

one. The similarity of the overwhelming majority of ligand sets was thus no greater than what 

one would expect at random. Returning to the comparison of DHFR, TS, and thrombin, the 

DHFR set vs. itself had a Z-score of 333.4 and an expectation value of 7.07×10-182 (Table 1), 

suggesting very high similarity, whereas DHFR vs. TS had a Z-score of 117.6 and an E-value of 

1.11×10-61. As DHFR vs. thrombin did not yield a raw score >0, no Z-score was calculated and 

the comparison was unranked. 
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Table 1.1 MDDR activity classes resembling MDDR “Dihydrofolate Reductase Inhibitor” 

Rank Activity Class E-value Example Molecule 

1 Dihydrofolate Reductase Inhibitor 7.07×10-182 

 

2 
Glycinamide Ribonucleotide 

Formyltransferase Inhibitor 
3.97×10-100 

 

3 
Folylpolyglutamate Synthetase 

Inhibitor 
4.59×10-62 

 

4 Thymidylate Synthase Inhibitor 1.11×10-61 

 

 

With a model of random similarity we could compare statistically weighted versions of 

the raw scores for all pairs of sets. Even fewer sets had statistically significant similarity after 

correction for random expectation. On average, any given receptor was similar to only 5.8 other 

receptors with an expectation value better than 10-10. Further down the rank-ordered list, the 

expectation values among targets fell off steeply, and within a few targets the similarity typically 

fell to insignificance. For example, the set of α-amino-5-hydroxy-3-methyl-4-isoxazole propionic 

acid (AMPA) receptor antagonists was highly similar to two other ligand sets: Kainic acid 

antagonists and N-methyl-D-aspartic acid (NMDA) antagonists, with E-values of 5.28×10-80 and 

3.08×10-63, respectively. The third most significant ligand set was the anaphylatoxin receptor 

antagonists, with an E-value of 3.81×10-4, and by the sixth ranked target the similarity was 

insignificant (E-value 1.00×10-1, Table 2; for more detail see Supplementary Table 1). 

Correspondingly, few targets were unrelated to any others; only 18 such orphans were found 

(see Supplementary Table 2). A few targets were relatively promiscuous, with 14 being related 

to more than 10 other targets with expectation values better than 10-50. 
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Table 1.2 MDDR activity classes resembling five example MDDR activity classes 

Query Rank Size Similar Activity Classes E-value TC1.0 
Max 

TC 

1 569 AMPA Receptor Antagonist 2.45×10-219 577 1.00 

2 75 Kainic Acid Receptor Antagonist 5.28×10-80 74 1.00 

3 1485 NMDA Receptor Antagonist 3.08×10-63 181 1.00 

4 22 Anaphylatoxin Receptor Antagonist 3.81×10-4 0 0.70 

5 130 µ Agonist 1.69×10-3 0 0.83 

A
M

P
A
 R

e
c
e
p
to

r 

A
n
ta

g
o
n
is

t 

6 99 Ribonucleotide Reductase Inhibitor 1.00×10-1 0 0.73 

1 98 Carbacephem 0* 106 1.00 

2 1614 Cephalosporin 1.11×10-222 14 1.00 

3 35 Isocephem 2.30×10-17 0 0.64 

4 257 Penem 2.43×10-4 0 0.68 

5 13 Oxacephem 8.38×10-3 0 0.69 

6 39 Lactam (β) Antibiotic 2.62×10-2 0 0.62 

7 223 Lactamase (β) Inhibitor 6.58×10-1 1 1.00 

C
a
rb

a
c
e
p
h
e
m

 

8 116 Monocyclic β-Lactam 3.18×102 0 0.61 

1 50 Androgen 0* 138 1.00 

2 577 Aromatase Inhibitor 6.87×10-307 0 0.88 

3 43 Antiglucocorticoid 2.30×10-102 0 0.89 

4 6 Cytochrome P450 Oxidase Inhibitor 4.01×10-93 0 0.92 

5 179 Estrogen 9.97×10-89 0 0.91 

6 86 Antiestrogen 2.18×10-76 0 0.84 

7 936 Steroid (5α) Reductase Inhibitor 1.58×10-72 0 0.80 

8 103 Antiandrogen 1.14×10-70 0 0.99 

9 86 17α-Hydroxylase/C17-20 Lyase Inhibitor 7.88×10-66 0 0.76 

10 164 Progesterone Antagonist 3.26×10-44 0 0.89 

A
n
d
ro

g
e
n
 

11 62 Prostaglandin 1.93×10-38 0 0.75 

1 111 5 HT1F Agonist 6.72×10-187 113 1.00 

2 621 5 HT1D Agonist 8.08×10-38 0 0.95 

3 51 5 HT1B Agonist 2.96×10-10 0 0.95 

4 65 5 HT1 Agonist 3.03×10-8 0 0.81 

5 670 Dopamine (D4) Antagonist 1.90×10-6 0 0.79 

6 565 5 HT1A Antagonist 8.64×10-1 0 0.71 

7 33 5 HT2 Antagonist 8.78×10-1 0 0.65 

5
 H

T
1
F
 A

g
o
n
is

t 

8 705 5 HT2A Antagonist 1.47 0 0.73 

1 8 Adrenergic (β1) Agonist 3.85×10-241 10 1.00 

2 305 Adrenergic (β) Agonist 9.50×10-34 0 0.81 

3 67 Adrenergic (β1) Blocker 4.99×10-32 0 0.64 

4 563 Adrenoceptor (β3) Agonist 2.98×10-24 0 0.72 

5 212 Adrenergic (β) Blocker 3.96×10-13 0 0.78 

A
d
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1
) 
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6 13 Adrenergic, Ophthalmic 2.77×10-7 0 0.70 
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Query Rank Size Similar Activity Classes E-value TC1.0 
Max 

TC 

7 518 Adrenergic (α1) Blocker 6.84×10-5 0 0.73 

8 124 Melatonin Agonist 1.04×10-1 0 0.63 

9 76 Dopamine (D1) Agonist 2.18×10-1 0 0.71 

10 102 Adrenergic (α2) Agonist 4.72×10-1 0 0.66 

 

* E-value < 10-320 

 

The similarity of ligand sets to small archipelagos of other ligand sets allowed us to 

calculate maps connecting almost all sets together through sequential linkage (Figure 2a). In this 

map and in the sparser minimal spanning tree, where we connect only the most similar 

neighbors (Figure 2b), clusters of biologically related targets may be observed as an emergent 

property, as no explicit biological information, only ligand information, is used to calculate the 

cross-target similarity. Thus, the glutamate receptors group together (Figure 2b), and the 

steroids localize around androgen and estrogen receptor ligands (Figure 2b iv). Likewise, the 

folate, phosphodiesterase, and β-lactam sets each co-localize and intra-connect (Figure 2b). 

Conversely, whereas the serotonin metabotropic receptors cluster together, and ionotropic 

ligand receptors do so as well, the two receptor subtypes are distinct (Figure 2b ii, 2b iii). 

Similar clustering may be observed in other regions of the map. 
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Figure 1.2 Similarity maps for 246 enzymes and receptors 

A. Network view of pharmacological space, in 

which each node represents a particular target in 

the MDDR. The nodes are colored for several 

pharmacologically related targets: antifolates 

(red), phosphodiesterases (orange), opioids 

(blue), β-lactam antibiotics (dark green), 
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metabotropic serotonergics (violet), ionotropic 

serotonergics (pink), adrenergics (cyan), and 

estrogen modulators (light green). This network 

is a naïve threshold graph that only includes 

edges that have expectation values better than 

one. B. A tree view of pharmacological space. 

This is an alternate view of the same network as 

in part (A), over which we have calculated a 

minimal spanning tree. This approach connects 

all nodes (protein targets) using only the most 

significant connections. The node coloring is 

the same as that in part (A). i) Detailed view of 

adrenergics: β adrenergic agonists (1), β1 

adrenergic agonists (2), β1 adrenergic blockers 

(3), β adrenergic blockers (4), β3 adrenoceptor 

agonists (5), ophthalmic adrenergics (6), α2 

adrenergic agonists (7), and α1 adrenoceptor 

agonists (8).  ii) Detailed view of metabotropic 

serotonergics subset: 5-HT1F agonists (1), 5-

HT1D agonists (2), 5-HT1 agonists (3), 5-HT1B 

agonists (4), and 5-HT1D antagonists (5).  iii) 

Detailed view of ionotropic (5-HT3) 

serotonergics: 5-HT4 agonists (1), 5-HT4 

antagonists (2), 5-HT2 antagonists (3), 5-HT3 

antagonists (4), and 5-HT3 agonists (5). iv) 

Detailed view of steroids: estrogens (1), 

antiestrogens (2), estrone sulfatase inhibitors (3), 

estrogen receptor modulators (4), androgens (5), 

HMG-CoA reductase β inhibitors (6), 

antiandrogens (7), aromatase inhibitors (8), and 

glucocorticoids (9). 

 

For this method to have wide utility, it is important that sets of ligands from different 

sources – for instance, not just from within the MDDR – can be compared. To test this, we built 

23 ligand sets from 1,421 compounds in PubChem Compound 

(http://pubchem.ncbi.nlm.nih.gov/) that were not in the MDDR, organized by their MeSH 

Pharmacological Actions. We then queried these sets against our collection of 246 MDDR 

activity classes and ranked them by ligand-set pharmacological similarity (Table 3). Of the 23 

PubChem query sets, 17 found a matching MDDR activity class as the top-ranked hit. When 

repeated using the mean pair-wise similarity (MPS)14, 25, 26 of the sets instead of the statistically-

corrected expectation values, only 9 of the queries found a matching top-ranked hit. On average, 

a matching MDDR hit was found within the top 1.4 ranks of the PubChem queries’ hit lists 

using pharmacological similarity (SEA), compared to within the top 8.2 ranks when ranked by 
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MPS (see Supplementary Table 3). This attests to the importance of a statistical control for 

similarities expected at random. 

III. Comparison to sequence similarity 

The statistical model for ligand set similarity allowed us to directly compare the resulting E-

values with those derived from sequence comparison. We mapped 193 MDDR activity classes to 

their protein target sequences and determined the sequence similarity among them using PSI-

BLAST.27 We then computed a heat map highlighting the differences between pharmacological 

similarity and sequence similarity among these targets (Figure 3a). In this heat map, many ligand 

sets with enzyme targets were pharmacologically similar but sequence-dissimilar. Examples 

include folate recognition enzymes and adenosine binding enzymes (Figure 3b). By comparison, 

many neurological receptors had stronger sequence than pharmacological similarity (Figure 3c). 

 



 27

Table 1.3 Out‐group comparison of 1,421 PubChem compounds organized into 23 MeSH 
pharmacological actions vs. 246 MDDR activity classes 

Pharmacological similarity Mean pair-wise similarity 
 Size 

MeSH Pharmacological 

Action MDDR Activity Class E-value MDDR Activity Class MPS 

1 131 Adrenergic α-Antagonists Adrenergic (α) Blocker 1.18×10-22 Somatostatin Analog 0.287 

2 138 Adrenergic β-Agonists 
Adrenergic (β1) 

Agonist 
1.54×10-203 

Adrenergic (β1) 

Agonist 
0.395 

3 132 Adrenergic β-Antagonists 
Adrenergic (β1) 

Blocker 
6.65×10-77 

Adrenergic (β1) 

Agonist 
0.370 

4 30 Androgen Antagonists Androgen 4.54×10-125 Androgen 0.300 

5 21 Androgens Androgen 0 Androgen 0.551 

6 10 Aromatase Inhibitors Androgen 4.36×10-108 Androgen 0.226 

7 29 
Carbonic Anhydrase 

Inhibitors 

Carbonic Anhydrase 

Inhibitor 
1.24×10-152 

Carbonic Anhydrase 

Inhibitor 
0.269 

8 11 Cholinergic Antagonists Anticholinergic 4.80×10-155 Anticholinergic 0.396 

9 91 Cholinesterase Inhibitors 
Acetylcholinesterase 

Inhibitor 
1.87×10-70 Melatonin Agonist 0.207 

10 98 
Cyclooxygenase 

Inhibitors 
Androgen 4.50×10-58 

3-Hydroxyanthranilate 

Oxygenase Inhibitor 
0.249 

11 111 Dopamine Agonists Dopamine Agonist 5.50×10-120 
Adrenoceptor (α2) 

Antagonist 
0.306 

12 52 Estrogen Antagonists Antiestrogen 3.56×10-112 Antiestrogen 0.281 

13 20 Estrogens Estrogen 0 Estrogen 0.401 

14 80 Glucocorticoids Glucocorticoid 0 Glucocorticoid 0.506 

15 34 Histamine H2 Antagonists H2 Antagonist 1.47×10-53 H2 Antagonist 0.248 

16 20 HIV Protease Inhibitors 
HIV-1 Protease 

Inhibitor 
8.41×10-108 Somatostatin Analog 0.378 

17 28 Lipoxygenase Inhibitors 
Lipoxygenase 

Inhibitor 
2.05×10-16 Melatonin Agonist 0.245 

18 106 Muscarinic Antagonists Anticholinergic 2.67×10-151 Anticholinergic 0.343 

19 22 Nicotinic Agonists Nicotinic Agonist 3.00×10-22 
Anaphylatoxin 

Receptor Antagonist 
0.297 

20 94 
Phosphodiesterase 

Inhibitors 

Phosphodiesterase I 

Inhibitor 
8.33×10-25 

Anticholinergic, 

Ophthalmic 
0.227 

21 86 Protease Inhibitors Renin Inhibitor 2.25×10-78 
Anaphylatoxin 

Receptor Antagonist 
0.334 

22 65 
Reverse Transcriptase 

Inhibitors 

Thymidine Kinase 

Inhibitor 
1.63×10-145 

Thymidine Kinase 

Inhibitor 
0.333 

23 12 Trypsin Inhibitors Trypsin Inhibitor 3.14×10-19 
3-Hydroxyanthranilate 

Oxygenase Inhibitor 
0.346 
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Figure 1.3 Comparison of sequence and ligand‐based protein similarity 

In this difference heat map, red ellipses mark 

activity class pairs with strong ligand-set 

similarity but weaker sequence similarity. 

Activity classes that map to EC numbers often 

fall into this category. Dark gray regions mark 

target pairs with strong sequence similarity but 

comparatively lower ligand-set similarity. This 

region includes many GPCRs, ion channels, and 

nuclear hormone receptors; such receptors may 

share evolutionary history but have often 

diverged in terms of pharmacological function. 

The white regions mark cases where 

pharmacological and sequence similarity 

approaches agree. This heat map was calculated 

by taking the difference of the two log-space 

heat maps available in the supplementary 

materials (see Supplementary Figure 6 and 

Supplementary Figure 7). 
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IV. Predicting and testing drug promiscuity 

We were interested in exploring the behavior of single agents that were known to have either 

promiscuous or off-target actions. An example of the latter was methadone, known to have dual 

specificity for NMDA and μ-opioid receptors. Methadone is an unusual chemotype for μ-opioid 

agonists, one that is not represented in the MDDR, although it and several congeners can be 

found in PubChem. Because of this, when the methadone ligand set was queried against all 246 

MDDR targets, the μ-opioid ligands were only found as the third-ranking hit. Unexpectedly, the 

set of methadone and its analogs was found by this method to be far more similar to the 

antimuscarinics activity class, particularly the M3 receptor antagonists (Table 4). This attests to 

the MDDR’s known false-negative problem,28 but more provocative was the predicted M3 

antagonism, as methadone is not known to have muscarinic activity. To test this possibility 

experimentally, the affinity and activity of methadone on M3 muscarinic receptors was measured 

by direct binding and a cell-based functional assay. Methadone was observed to have a Ki of 1.0 

µM (Figure 4a) and to antagonize activation of M3 receptors, consistent with the prediction 

(Figure 4b). 
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Figure 1.4 Testing the off‐target activities of Methadone, Loperamide, and Emetine 

A. Antagonism of M3 muscarinic receptors by 

the µ opioid agonist methadone in a direct 

binding assay. Competition binding curves with 

[3H]quinuclidinyl benzilate in membrane 

fractions from CHO cells stably transfected 

with the human M3 muscarinic receptor. Each 
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data point represents the mean and standard 

error of 4 conducted in duplicate or 

quadruplicate. Competition curves represent the 

best fit to a single-component logistic equation 

(GraphPad Prism 4.0, San Diego, CA). Two-site 

models did not yield a better fit.  Membranes 

were incubated for 60 min at 25oC with 0.5 nM 

[3H]quinuclidinyl benzilate and increasing 

concentrations of competing drug. Incubations 

were terminated by rapid vacuum filtration. 

Nonspecific binding was defined in the presence 

of 1.0 µM atropine and represented less than 

10% of total binding. B. Methadone antagonism 

of M3 muscarinic receptors by functional assay. 

Either methadone (10 µM final concentration) 

or vehicle was added at T=20 sec (1st addition), 

and then at T=50 sec (2nd addition) 1 µM 

carbachol was added to CHO-M3 cells and 

intracellular Ca++ mobilization was measured, 

as previously described.34  Dose-response curves 

(not shown) indicated that methadone was a 

competitive antagonist at M3-muscarinic 

receptors. C. Loperamide antagonism of 

Neurokinin NK2 receptors. Dose responses of 

CHO cells expressing Neurokinin NK2 

receptors treated with [β-Ala8]-Neurokinin A 

were measured following administration of 

either DMSO vehicle or 10 μM loperamide. D 

and E. Emetine antagonism of adrenergic 

receptors. Dose response of clonidine treatment 

of MDCK cells expressing either D) alpha 2a 

adrenergic or E) alpha 2c adrenergic receptors 

after incubation with DMSO vehicle or 10 μM 

emetine. Shown are representative curves, mean 

values ± SEM, of intracellular calcium release 

experiments performed in quadruplicate for 

each drug concentration per pre-treatment 

condition as described in Methods. 

 



 32

Table 1.4 Novel target selectivity predictions for three existing drugs 

Query Rank Size Activity Class E-value Max TC 

     

1 188 Antimuscarinic 4.45×10-50 0.77 

2 266 Muscarinic M3 Antagonist 1.22×10-11 0.67 

3 68 Opioid Agonist 1.84 0.61 

4 1485 NMDA Receptor Antagonist 9.04 0.67 

5 975 Muscarinic (M1) Agonist 61.9 0.60 

Methadone* 

 

6 717 Cyclooxygenase Inhibitor 12.1 0.61 

     

1 277 Adrenergic (α2) Blocker 4.34×10-118 0.85 

2 564 Dipeptidyl Aminopeptidase IV 

Inhibitor 

6.50×10-17 0.94 

3 180 Dopamine (D1) Antagonist 1.23×10-10 0.74 

4 1820 Substance P Antagonist 25.8 0.64 

5 288 Dopamine (D3) Antagonist 179 0.61 

Emetine 

 6 212 Neurokinin NK3 Antagonist 2.76×104 0.60 

     

1 462 Neurokinin NK2 Antagonist 1.55×10-20 0.75 

2 1820 Substance P Antagonist 2.12×10-15 0.75 

3 212 Neurokinin NK3 Antagonist 2.63×10-14 0.66 

4 518 Adrenergic (α1) Blocker 1.64×10-10 0.72 

5 583 Protein Kinase C Inhibitor 1.45×10-1 0.63 

Loperamide 

 
6 266 Muscarinic M3 Antagonist 2.42 0.59 

 

Note: No query compound was already present 

in the reference 246 MDDR activity classes, and 

thus the TC1.0 (identity) column is omitted.  

* While methadone was compared as a set of 

analogs (see Methods), only the structure for 

methadone itself is displayed for clarity. 

 

Emboldened by this result, we looked for other single compounds with novel off-target 

effects. To increase the chance of novel action, we screened PubChem compounds—many of 

which are not in the MDDR database—against 246 MDDR targets. Over 12,000 PubChem 

compounds with annotated activities were compared to the MDDR ligand sets, using an 

automated procedure, looking for those where the target annotated in PubChem differed from 
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that of the highest scoring MDDR set, using SEA. For the vast majority of the resulting 6,000 

high-scoring hits, the annotations differed only trivially and could be rapidly excluded by post-

filtering (e.g., “androgen antagonist” is formally different from “steroid antagonist”, but not in 

an interesting way). There were, however, 30 PubChem compounds that had very low (good) 

expectation values against genuinely unrelated MDDR categories. Two stood out by visual 

examination of their structures and by our ability to actually acquire and test them in the 

appropriate assay. These were the drugs emetine and loperamide, which were predicted to 

antagonize adrenergic α2 and neurokinin NK2 receptors, respectively, based on set similarities 

(Table 4) (see also Methods). Both predictions were tested by functional assay: 10 μM emetine 

was observed to induce 10.6- and 27.5-fold increases in the EC50 of the α2-agonist clonidine for 

α2a and α2c adrenergic receptors, respectively, and 10 μM loperamide induced a 7.5-fold 

increase in the EC50 of the NK2 agonist [β-Ala8]-Neurokinin (Figure 4c,d,e, see 

Supplementary Table 4). Assuming competitive binding, these results put the affinity of 

emetine for the adrenergic receptors in the 400 nM to 1 μM range, and the affinity of loperamide 

for NK2 receptors in the 1-2 μM range. 

1.4 Discussion 

Protein targets may be quantitatively related by their ligands—a Similarity Ensemble Approach 

reveals both expected and unexpected similarities that may be tested by the ‘off-target’ activities 

of the ligands themselves. Three aspects of these similarities merit particular emphasis. First, 

most ligand sets are highly related to only a few others; the vast majority of ligand sets are 

unrelated. Second, there are nevertheless enough connections among them to link almost all sets 

together, through sequential linkages, in coherent maps of pharmacologically interesting 

chemical space. Third, biologically related targets cluster in these maps. No biological 
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information was used to make these connections, only ligand chemistry, and such clustering is an 

emergent property of this technique. It is also an imperfect property, in that the clusters of 

targets can differ from those expected from biological information alone. Both the expected and 

unexpected connections among the ligand sets have implications for understanding the effects 

of bioactive molecules, and lead to testable hypotheses. 

The similarity of the ligand sets to only a few others owes to the intrinsic chemical 

differences between most sets and to the statistical model’s discrimination between significant 

(e.g., E-value < 1×10-10) and insignificant (e.g., E-value > 1.0) similarity. In the case of 

dihydrofolate reductase inhibitors, for instance, the three most related target sets are the folate 

recognition enzymes glycinamide ribonucleotide formyltransferase, folylpolyglutamate synthetase 

(FPGS), and thymidylate synthase, with expectation values ranging from 3.97×10-100 to 1.11×10-

61; i.e., highly significant. The next most related set had no measurable similarity and the other 

241 are even less related (Table 1). Likewise, AMPA receptor antagonists score strongly against 

both kainic acid receptor and NMDA receptor antagonists (Table 2); all three are all ionotropic 

glutamate receptors traditionally subdivided into NMDA and non-NMDA types.29  A key point 

is that many related targets would be missed if ligand identity was substituted for chemical 

similarity between sets, i.e., if we only related sets that shared common ligands (the flip side of 

this is that many large ligand sets would be related artifactually if we did not control for similarity 

expected at random). For instance, the antiglucocorticoids, estrogen agonists, estrogen 

antagonists, progesterone antagonists, and prostaglandins all rank as highly similar to the 

androgen agonists, as is sensible (Table 2, Figure 2b iv). Yet not one of these sets shares a 

single ligand with the androgens (Table 2). Correspondingly, serotonergic 1F agonists closely 

resemble serotonergic 1B, 1D, and 5-HT1 agonists and D4-dopamine receptor antagonists 

without sharing a single ligand in common (Figure 2b ii, Table 2); the same is true for the 
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relationship of β1 adrenergic receptor agonists to other β-receptor agonists and antagonists 

(Figure 2b i).  

Related by chemical similarity, almost all of the 246 receptors may be mapped, through 

intermediate receptors, to all others. We found it convenient to interrogate this map 

interactively: clicking on any node displays a table of all nearest ligand set neighbors, including 

the molecules that comprise any given set (available at http://sea.docking.org). Thus, different 

classes of β-lactam antibiotics cluster together in this map, as do the several classes of 

phosphodiesterase inhibitors (Figure 2). The serotonergics form their own branch of the tree, 

with the ionotropic (5-HT3) agents isolated (Figure 2b iii), just as the androgens and estrogens 

group closely but separately (Figure 2b iv).  

Another way to view such clustering is through a heat map that compares ligand-set with 

sequence similarities between the same targets (Figure 3a). When the ligand-set and sequence 

similarities agree, as with µ receptor agonists vs. δ receptor agonists (Figure 3c) and neurokinin 

NK2 antagonists vs. NK3 antagonists, the matrix element in the heat map is white (it will also be 

white when there is neither sequence nor ligand-set similarity). Such correspondences are 

comforting, but more interesting are those targets for which the chemoinformatic and 

bioinformatics techniques disagree. Many target sequences are more similar than their ligand sets 

(dark gray matrix elements). For instance, the serotonin 5-HT1A-C subtypes are highly related by 

sequence but less so by ligand sets (Figure 3c), although the latter are not dissimilar. However, 

the serotonergics are also highly similar to the opioids by sequence, yet the ligands are different 

(Figure 3c); much of this similarity arises from non-ligand-binding regions. Conversely, some 

targets unrelated by sequence are closely related by ligand sets (red matrix elements in Figure 3). 

Thus, the antifolates cluster together even though DHFR, GART, TS, and FPGS are dissimilar 

by sequence (Figure 3b).  The differences between the chemoinformatic and bioinformatics 
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views have several bases, among them that sequence similarity arises from evolutionary history, 

but chemoinformatic similarity and dissimilarity arise from the state-of-the art of medicinal 

chemistry. Indeed, designing the specificity necessary to pharmacologically distinguish receptor 

subtypes, such as 5-HT1A, 1B, and 1C, is a longstanding goal of medicinal chemistry, one 

executed in the teeth of their evolutionary relationships. Both the similarities and dissimilarities 

between the chemoinformatic and bioinformatics views lead to testable hypotheses.     

Perhaps the most compelling result of this study is the experimental testing of three 

different drugs against targets to which they were not previously known to bind. We looked for 

candidate drugs based on known polypharmacology or on ligand-set similarities between targets 

with no clear precedence for cross-reactivity in the literature (see Methods). Methadone 

attracted us because of its well-known polypharmacology, modulating both NMDA and µ opioid 

receptors. Surprisingly, methadone most resembled the ligand-set of M3 muscarinic receptor 

antagonists (Table 4).  Both by direct binding and by functional assay, we find that methadone 

is a 1 µM antagonist of the M3 receptor, consistent with prediction (Figure 4a,b). As far as we 

know, methadone’s action on M3 muscarinic receptors is unprecedented, although a 

pharmacophore model that may be related to its promiscuity has very recently appeared.30 

Intriguingly, its affinity for the M3 receptor is consistent with some of the side-effects of this 

drug,29, 31 which reaches micromolar steady-state concentrations in patients.32 Emetine and 

loperamide are further examples of drugs that resemble, by the Similarity Ensemble Approach 

(SEA), target classes that they are not known to modulate. Emetine is an amebicide that inhibits 

polypeptide chain elongation in parasites.33 By SEA, it has striking similarities to the adrenergic 

α2-blocker ligand-set, with an expectation value of 4.3x10-118 (Table 4). Consistent with that 

similarity, we find that emetine antagonizes α2 receptors in the micromolar and possibly sub-

micromolar range (Figure 4d,e, see Supplementary Table 4). Although this activity has not, to 
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our knowledge, been previously reported, it is consistent with the known side-effects of this 

drug, which can lead to hypotension, tachycardia, dyspnea, myocarditis, and congestive heart 

failure. Loperamide (Imodium), is an opioid that is used for relief of diarrhea via action on µ-

opioid receptors in the gut29 (Table 4). The drug closely resembles the neurokinin NK2 

antagonist ligand-set, when compared by the SEA method (Table 4). Consistent with that 

prediction, we find that loperamide antagonizes NK2 receptors in the micromolar concentration 

range (Figure 4c, see Supplementary Table 4). Intriguingly, loperamide has been observed to 

modulate neurokinin NK3-receptor-triggered serotonin release, though this has been thought to 

be through its action on opioid receptors.34 The results of this study suggest that the drug also 

has a direct effect on neurokinin receptors. 

 

The polypharmacology of drugs and bioactive molecules emerges at the confluence of 

two channeled currents: medicinal chemistry’s elaboration of new molecules, and the molecular 

evolution of biological function. Fortuitously, this channeled elaboration relates receptors and 

enzymes frequently enough to link almost all targets together in a single map of chemically 

relevant biology, and when the background of random possibilities is controlled for, specifically 

enough to distinguish the significant links from a stochastic sea of possibilities. In the minimum 

spanning trees that are one result of this analysis, many proteins with related functions cluster 

together. Thus, ion channels and GPCRs that have no obvious sequence or structure similarity 

are linked quantitatively based on their bioactive ligands. An advantage of this way of relating 

biological receptors is that it is articulated through the very agents used to probe biology 

experimentally—drugs and related reagents. The hypotheses that emerge from this analysis thus 

may be subjected to experiment, and to this end we have made the relationships and linkage 

maps among the targets studied here publicly available (http://sea.docking.org). The predictions 
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and subsequent experimental observations that methadone, emetine, and loperamide act as 

muscarinic M3, adrenergic α2, and neurokinin NK2 antagonists suggest that at least some of the 

predicted relationships merit investigation. 
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1.5 Methods 

I. Ligand sets 

We extracted ligands from compound databases that annotate molecules by therapeutic or 

biological category. Multiple ligands in any annotation defined a set of functionally related 

molecules. As a source of ligands we used the 2006.1 MDL Drug Data Report (MDDR),35 a 

compilation of about 169,000 drug-like ligands in 688 activity classes. We focused on a subset of 

this database, based on an ontology36 that maps Enzyme Commission (EC)37 numbers, GPCRs, 

ion channels, and nuclear receptors to MDDR activity classes. Only sets containing five or more 

ligands were used. Salts and fragments were filtered, ligand protonation was normalized, and 

duplicate molecules were removed. Of the 688 targets in the MDDR, 97 were excluded as 

having too few ligands (<5), and another 345 targets were excluded as being non-molecular 

targets (e.g., the annotation “Anticancer” was not used). This left 246 targets, made up of a total 

of 65,241 unique ligands, with a median and mean of 124 and 289 ligands per target. The ligand 

set for methadone and 14 of its analogs was manually populated by querying “methadone” in 

PubChem Compound (http://pubchem.ncbi.nlm.nih.gov/). Ligand structures for emetine and 

loperamide were likewise acquired from PubChem Compound. All ligands were represented as 

SMILES38 strings. 

II. Quality of ligand set annotations 

The activity class annotations available from the MDDR do not include explicit ligand-target 

affinity values and were primarily derived from the patent literature. Any given set may thus 

contain compounds with a wide range of affinities to the intended target. While Hopkins and 

colleagues have recently found it useful to restrict the compounds annotated to a particular 
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target to a limited affinity range,12 we have found our methods robust to the number of analogs 

present and the particular identities of which analogs are used. We address this in two 

experiments, wherein we (1) pre-filter the MDDR for unique chemotypes at 0.90 and 0.85 Tc 

distances to test robustness against analog redundancy  (see Supplementary Figure 2), and (2) 

delete randomly-chosen subsets of the ligand sets to test robustness against the particular choice 

of analogs present (see Supplementary Figure 3). However, as noted by Sheridan et al., ‘false 

inactives’ remain a limitation of patent-based databases such as the MDDR, as any given 

compound may only be tested for one or two of its potential activities.28 

III. Set comparisons 

All pairs of ligands between any two sets were compared by a pair-wise similarity metric, which 

consists of a descriptor and a similarity criterion. For the similarity descriptor, we computed 

standard 2D topological Daylight fingerprints38 using default settings of 2048-bit array lengths 

and path lengths of 2-7 atoms. The similarity criterion was the widely-used Tanimoto 

coefficient.39-41 For set comparisons, all pair-wise Tanimoto coefficients between elements across 

sets were calculated (Figure 1), and those above a threshold were summed, giving a raw score 

for the two sets. The threshold was chosen so that the resulting statistics best fit an extreme 

value distribution (below). 

IV. Statistical model 

A model for the random chemical similarity of the raw scores, motivated by BLAST22 theory, 

was developed and empirically fit. We compared 300,000 pairs of molecule sets, randomly 

populated from the filtered full MDDR, across logarithmic set size intervals in the range of 10 to 

1,000 molecules. This range reflected the set sizes we expected to encounter, though the 

procedure appears robust over any reasonable range of set sizes. 
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The raw score for each set comparison was plotted against the total number of ligand 

pairs in the two sets being compared, and was observed to depend linearly on the product of the 

number of ligands in the two sets (see Supplementary Figure 1a). The standard deviation of 

the raw scores was fit nonlinearly against this product of the set sizes (see Supplementary 

Figure 1b, Supplementary Table 5). Both fits were determined with the SciPy42 linear least 

squares optimizer. 

Set comparison Z-scores were calculated as a function of the set raw scores, expected 

raw scores, and standard deviations. The histogram of Z-scores of the random sets conformed 

to an extreme value distribution (EVD) (see Supplementary Figure 1c). This distribution also 

underlies BLAST comparisons of protein and DNA sequences.21, 22 The probability of the score 

being achieved by random chance alone, given the Z-score, was converted to an expectation 

value (E-value), as further described in the Supplementary Methods. The combination of set 

comparisons with the described statistical model is referred to as the Similarity ensemble 

approach (SEA). The ability of SEA E-values to correctly discriminate matching MDDR activity 

classes was tested against three simpler scoring metrics in Supplementary Figure 4.  

There is no formal justification for choosing a cutoff for the Tc value between ligands. 

One criterion that had the virtue of consistency was to insist on a Tc value for which the 

background Z-scores were best fit by an extreme value distribution as in Supplementary 

Figure 1c. We calculated Z-score distributions for all Tc thresholds in the range 0.00 to 0.99, 

with step size 0.01. For each such distribution, we plotted the normalized chi-square of their 

best fit to both normal and EVD distributions (see Supplementary Figure 5). This led to a Tc 

threshold of 0.57 (see Supplementary Table 5), which is low compared to accepted cutoffs for 

comparing individual pairs of ligands, emphasizing our different goal here: comparing ligand sets 

to inform us on the targets. 
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V. Similarity maps 

All annotations in a given database were exhaustively compared against all others, resulting in a 

matrix of SEA E-values among the ligand sets. The full matrix is available in the online 

Supplementary Data. This matrix defined a strongly-connected graph. In one approach, we 

filtered the graph by removing all edges with significance less than an E-value cutoff of 1.0; this 

is a threshold graph. We also constructed a minimum spanning tree over the original strongly-

connected graph via Kruskal’s algorithm.43 We refer to this tree as a similarity map. The final 

images were rendered with Cytoscape.44 

VI. Difference heat map 

Protein sequences for the targets of 193 of the 246 activity classes were obtained, 77 of which 

were derived from the MDDR-to-EC number mapping provided by Schuffenhauer et al.36 The 

remaining 117 sequences were acquired from PubMed Protein searches. The resulting mapping 

of MDDR activity class to GI number is available in the online Supplementary Data. We 

computed the sequence comparison matrix with PSI-BLAST,27 as implemented in the blastpgp 

binary available from NCBI. The maximum final E-value displayed was 1×105, with low-

complexity region filtering enabled, and a maximum of 10 iterations computed before 

convergence. Supplementary Figure 6 shows a heat map of the 193x193 PSI-BLAST matrix, 

created with matrix2png.46 

The unfiltered SEA E-value matrix described in Similarity maps is shown as a heat map 

in Supplementary Figure 7. This matrix was compared against the sequence-comparison E-

value built above by taking the difference of the natural logarithms of each E-value pair. To 

avoid math range errors, both E-values were first confined within the range of 1×10-50 to 1×105. 

A smaller E-value cap would allow for greater resolution of high-end E-values (e.g., 1×10-250 vs. 
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1×10-200), however this would be at the expense of differentiating from insignificant similarity 

(e.g., 1×10-45 vs. 1×105). As a cutoff of 1×10-50 or better appears necessary for reliable transfer,45 

no larger E-value cap was used.  

VII. PubChem out‐group analysis 

All compounds with annotated MeSH (http://www.nlm.nih.gov/mesh/) “Pharmacological 

Actions” were downloaded from PubChem and filtered as previously described. Any compound 

already present in the MDDR was removed, resulting in 10,557 unique non-overlapping 

structures organized into 352 unique annotated “action sets.” Of these, 23 action sets could be 

specifically mapped to a MDDR “activity class,” with mean 62 and median 52 compounds per 

set. These sets were then ranked by SEA E-values against all 246 MDDR activity classes. 

VIII. Choice of compounds for novel selectivity prediction 

Methadone and 14 analog structures from PubChem Compound were compared as a set against 

the MDDR to recapitulate known polypharmacology. Instead, novel selectivity was predicted, 

deemed plausible, and ultimately tested. Subsequently, an automated system was developed to 

compare individual PubChem Compound molecules with annotated pharmacological actions 

against the MDDR. All activity class hits resembling known actions were discarded, leaving 30 

PubChem compounds with very low (good) expectation values against genuinely unrelated 

MDDR categories. Among these molecules, we targeted those that we could acquire and actually 

test, and that looked like sensible members of the novel target to which they were assigned by 

SEA (i.e., there was a human filter on the compounds before assays were developed and 

compounds tested). The drugs emetine and loperamide met both criteria. We note that neither 

compound was present in the MDDR, nor was any close congener. For emetine this reflects the 

lack of that family of amebecides in the MDDR, whereas loperamide is a non-classical µ-opioid 
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antagonist whose chemotype happens to be unrepresented among that MDDR ligand set. Thus 

neither of the classic targets of either drug was found by SEA, simply because the chemical 

structures were absent or unannotated or both. 

IX. Cell lines and functional calcium assay 

Radioligand and functional assays were performed as previously detailed using the resources of 

the National Institute of Mental Health’s Psychoactive Drug Screening Program47, 48 using 

cloned, human M3-muscarinic receptors expressed in CHO cells also, as previously described.49 

Neurokinin 2 receptor stably expressed in CHO cells50 and alpha 2a and alpha 2c adrenergic 

receptors stably expressed in MDCK II cells51 were carried in DMEM supplemented with 10% 

Fetal bovine serum (FBS), 1% penicillin-streptomycin, 1 mM sodium pyruvate and 600 μg/ml 

G418.  Cells were plated onto uncoated or poly-L-lysine coated in 96-well plates in DMEM 

supplemented with 5% dialyzed FBS and 1% penicillin-streptomycin.  The following day, media 

was replaced with 30 µl/well of Calcium Assay Kit Component A Dye (Molecular Devices) 

dissolved in 28 ml/bottle of assay buffer (2.5 mM probenecid, 20 mM Hepes, and 1x Hanks’ 

Balanced Salt Solution (Gibco) (138 mM NaCl, 5.3 mM KCl, 1.3 mM CaCl2, 0.49 mM MgCl2, 

0.41 mM MgSO4, 0.44 mM KH2PO4, 0.34 mM Na2HPO4) pH 7.4. Plates were incubated in the 

dye for 1 hr at 37ºC.  Drugs predicted to be antagonists were diluted in assay buffer to a 

concentration of 30 μM and 30 μl of solutions were added to 96-well plates for ~15 minutes 

prior to reading.  Fluorometric imaging was performed using a FlexStation II plate reader 

(Molecular Devices) reading the plate at 1.5 second intervals for 1 min. After establishing a 

fluorescent baseline (excitation at 485 nM and emission at 525 nM, using a 515 nM cutoff), 30 µl 

of agonist were transferred to assay plates at the 20 second time point with reading for another 

40 seconds.  Peak relative fluorescence units (RFU) were subtracted from baseline RFUs using 
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SoftMax® Pro (Molecular Devices) and data were then analyzed by non-linear regression to 

obtain pEC50 values using GraphPad Prism version 4.03 (GraphPad Software). Statistical 

significance between pEC50 values obtained from vehicle and predicted antagonist pre-treatment 

were analyzed by two-tailed t-test (P < 0.05) using GraphPad Prism.  
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1.7 Abbreviations 

5-HTx 5-Hydroxytryptamine (serotonin) type x 

AMPA α-amino-5-hydroxy-3-methyl-4-isoxazole propionic acid 

DHFR Dihydrofolate reductase 

FPGS Folylpolyglutamate synthetase 

GART Glycinamide ribonucleotide formyltransferase  

NMDA N-methyl-D-aspartic acid 

SEA Similarity Ensemble Approach 

Tc Tanimoto coefficient 

TS Thymidylate synthase 
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Gloss to Chapter 2 

 

The most exciting phrase to hear in science, the one that heralds new discoveries, 
is not “Eureka!” but “That’s funny...” 
 

Isaac Asimov, professor of Biochemistry 
 

A typical drug approved in the United States first undergoes fifteen years of lead 

discovery, medicinal chemistry optimization, cell-based and animal models, preclinical study, 

Phase I, Phase II, Phase III, and sometimes Phase IV clinical trials.1 The drug costs in excess of 

a billion dollars and requires the resources of an industrial behemoth to drive its development 

and to guide its path down a gauntlet of FDA regulatory steps.2 With this effort centered on one 

small molecule, the result should be a drug that is efficacious, safe within acceptable risk, and 

well-characterized in its actions. Yet in Chapter 1, we found that methadone, emetine, and 

Imodium all had uncharacterized activity at new and therapeutically relevant targets. The 

triumph of the unintended is a recurrent theme in the pages that follow. Either we had been 

extraordinarily lucky in our molecules of inquiry, or such “polypharmacology” among 

commercial drugs was unexpectedly prevalent. 

Chapter 2 is our attempt to quantify how prevalent such drug polypharmacology may be 

among the drugs that are currently used in humans. Harnessing SEA to this task, we discovered 

and experimentally validated 23 new drug-to-target associations among commercial drugs. 

Retrospectively, we also rediscovered hundreds of drug-target associations unknown to our 

starting databases (but known in others), and over forty drug-target associations unknown in any 

drug database (but, again, known from another source – manual searches of the literature). This 

work revealed a persistent theme; it practically seemed difficult to find a drug that did not bind 
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more than one protein target with at least mid-micromolar affinity. Lest this seem an argument 

for hopeless drug promiscuity, it is reassuring that these “off-target” associations were not 

arbitrary and often explained some aspect of each drug’s biological story. Thus Paxil 

discontinuation raises standing heart rate,3 and we discovered its affinity for the β1-adrenergic 

receptor, which is associated with the heart; Rescriptor use can cause severe skin rashes,4 and we 

discovered it binds the histamine H4 receptor, which has been implicated in atopic dermatitis.5 

For Doralese, we found a new target for which its Ki is a full order of magnitude stronger than 

that for its canonical target; such examples of “off”-target binding may contribute to drug 

efficacy. 

Others have also considered the question of drug polypharmacology;6-9 Bryan Roth has 

argued for its role in the efficacy of neurological and psychoactive drugs,10 and it is clear that 

among kinase inhibitors such as Gleevec, polypharmacology is far less the exception than the 

rule.11 A goal of this chapter, however, was to examine and take the first steps toward 

quantifying the role of polypharmacology across all of drug-target space. Many of our 

prospective results concern drugs that bind aminergic GPCRs, but they extend also to ligands of 

ion channels, transporters, nuclear hormone receptors, and enzymes. Furthermore, we have used 

SEA to find individual drugs that cross these protein-class boundaries, such as Vadilex, an ion 

channel inhibitor that was not previously known to bind either the serotonin reuptake 

transporter or the μ-opioid G-protein coupled receptor. 

In the following chapter, we consider several cases of newly-discovered off-target 

associations and present a global view of such associations. The chapter is somewhat briefer 

than the others, due to the page requirements of the journal at which it was accepted.  
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2.1 Summary 

Whereas drugs are intended to be selective, at least some bind to several physiologic targets, 

explaining both side effects and efficacy. As many drug-target combinations exist, it would be 

useful to explore possible interactions computationally. Here, we compared 3,665 FDA-

approved and investigational drugs against hundreds of targets, defining each target by its 

ligands. Chemical similarities between drugs and ligand sets predicted thousands of 

unanticipated associations. Thirty were tested experimentally, including the antagonism of the β1 

receptor by the transporter inhibitor Prozac, the inhibition of the 5-HT transporter by the ion 

channel drug Vadilex, and antagonism of the histamine H4 receptor by the enzyme inhibitor 

Rescriptor. Overall, 23 new drug-target associations were confirmed, five of which were potent 

(< 100 nM). The physiological relevance of one such, the drug DMT on serotonergic receptors, 

was confirmed in a knock-out mouse. The chemical similarity approach is systematic and 

comprehensive, and may suggest side-effects and new indications for many drugs. 

2.2 Results and Discussion 

The creation of target-specific “magic bullets” has been a therapeutic goal since Ehrlich1 and a 

pragmatic criterion in drug design for 30 years. Still, several lines of evidence suggest that drugs 

may have multiple physiologic targets.2-5 Psychiatric medications, for instance, notoriously act 

through multiple molecular targets and this “polypharmacology” is likely therapeutically 

essential.6 Recent kinase inhibitors, such as Gleevec and Sutent, though perhaps designed for 

specificity, modulate multiple targets at physiologic concentrations and, here too, these “off-

target” activities may be essential for efficacy.7,8 Conversely, anti-Parkinsonian drugs such as 
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Permax and Dostinex activate not only dopamine receptors but also 5-HT2B serotonin receptors, 

thereby causing valvular heart disease and severely restricting their use.9 

I. Predicting drug polypharmacology 

Drug polypharmacology has inspired efforts to predict and characterize drug-target 

associations.10-15 Several groups have used phenotypic and chemical similarities among molecules 

to identify those with multiple targets,16,17 and early drug candidates are screened against 

molecular target panels.18 To predict new targets for established drugs, Bork and colleagues 

looked for side-effects shared between two molecules,19 while Hopkins and colleagues linked 

targets by drugs that bind to more than one of them.20 Indeed, using easily accessible 

associations, one can map 332 targets by the 290 drugs that bind to at least two of them, 

resulting in a network with 972 connections (Figure 1a). It seemed interesting to calculate a 

related map that predicts new and unanticipated off-target effects. 
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Figure 2.1 Drug‐target networks, before and after predicting off‐targets 
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(A) Known drug-target network. Each drug 

(gold) is linked to its known protein targets 

(cyan) by a gray edge. Each edge denotes a 

binding affinity of 1 μM or better for that drug 

to its target. (B) Predicted drug-target network. 

Drugs and proteins are linked as per the known 

drug-target network, with the addition of red 

edges representing SEA off-target predictions 

with E-values ≤ 10-10. 

 

Accordingly, we used a statistics-based chemoinformatics approach to predict new off-

targets for 878 purchasable FDA-approved small-molecule drugs and 2,787 pharmaceutical 

compounds. Unlike bioinformatics methods, which might use the sequence or structural 

similarity among targets, this Similarity Ensemble Approach (SEA)21 compares targets by the 

similarity of the ligands that bind to them, expressed as expectation values, adapting the BLAST 

algorithms21-23 (other methods such as naïve Bayesian classifiers23,24 may also be used, see 

Supplementary Table 1). The approach thus captures ligand-based similarities among what 

would otherwise be considered disparate proteins. The 3,665 drugs were compared against 

65,241 ligands organized into 246 targets drawn from the MDDR database,25 yielding 901,590 

drug-target comparisons. 

Most drugs had no significant similarities to most ligand sets. However, 6,928 pairs of 

drugs and ligand sets were similar, with expectation values (E-values) better than 1×10-10. We 

analyzed these predictions retrospectively against known associations and prospectively for 

unreported drug polypharmacology.  

II. Retrospective tests of drug‐target predictions 

We first compared the predicted drug-target associations from the MDDR database against 

reported associations with affinities better than 1 µM in a second database, the World of 

Molecular Bioactivity (WOMBAT).26 For instance, the MDDR annotates Azopt (brinzolamide) 

only as an “antiglaucoma agent,” but WOMBAT reports that it has 3 nM affinity for carbonic 
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anhydrase II. Correspondingly, when screened internally against all MDDR molecular targets, 

SEA predicted that this drug is related to “Carbonic anhydrase inhibitors” with an E-value of 

8.32×10-139. For 184 of the 746 drugs in WOMBAT, the predicted MDDR target agreed with the 

annotated WOMBAT target with E-values of 1×10-10 or better (Supplementary Table 2). 

These predictions recapitulated 19% of the off-targets for these drugs missing from the MDDR. 

Another 257 drug-target predictions with E-values ≤ 1×10-10 were unannotated in either 

database, and may suggest new polypharmacology. 

A second retrospective test predicted targets for the 3,665 drugs uncharacterized in 

either database but known in the literature. Of the 6,928 drug off-targets predicted, we discarded 

430 as highly similar by structure to known target ligands, and another 2,666 due to trivial 

similarities in the reported and predicted activities. This left 3,832 predictions, of which we 

inspected 184 by literature search and by interrogating other databases. Of these, 42 turned out 

to be known associations (Supplementary Table 3). For instance, when we screened the drug 

Revanil (lisuride) against the MDDR ligand-target sets, its best E-value was as an α2 adrenergic 

antagonist, and when we screened the drug Permax (pergolide) it had an E-value of 8.70×10-29 as 

a 5-HT1D receptor agonist. Consistent with these predictions, Revanil has been reported to bind 

adrenergic α2 at 0.055 nM and Permax the 5-HT1D receptor at 13 nM (Supplementary Table 3), 

although neither activity was reported in the MDDR or WOMBAT databases. 

III. Prospective tests of new drug‐target predictions 

For many of these 184 predictions we found no literature precedent. We therefore tested 30 

predictions that were experimentally accessible to us. In radioligand competition binding assays, 

23 of these (77%) yielded binding affinities (Ki’s) less than 15 μM (Table 1, Table 2, 

Supplementary Figure 1). Fifteen of these 23 were to aminergic GPCRs (Table 1) and the 



 60 

remainder crossed major receptor classification boundaries (Table 2). For instance, the α1 

antagonist Doralese was predicted and observed to bind to the dopamine D4 receptor—both α1 

and D4 are aminergic GPCRs. Conversely, the HIV-1 reverse transcriptase (enzyme) inhibitor 

Rescriptor was predicted and observed to bind histamine H4; this prediction crosses major target 

boundaries. For several predictions, we tested multiple receptor subtypes because the MDDR 

left these unspecified; e.g., for a predicted “Adrenergic (α1) Blocker,” we tested the drug at α1A, 

α1B, and α1D subtypes; we count these as a single target. In total, 14 drugs bound 23 previously 

unknown targets, with 13 having sub-micromolar and five having sub-100 nM affinities (Table 

1, Table 2). In cases such as Doralese’s, the discovered off-target (dopamine D4) affinity (18 

nM) was substantially higher than that for its intended therapeutic target (611 nM for α1A and 

226 for α1B adrenergic receptors) (Figure 2a).27 
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Table 2.1 Prediction and testing of new aminergic GPCR targets for drugs 

Drug / MDDR Annotation E-value Predicted Target Ki (nM) 

8.3×10-136 Adrenergic (α1) Blocker † 

α1A 

α1B 

α1D 

1.2 

14 

7 
 

Sedalande 

Neuroleptic 

1.7×10-14 5-HT1D Antagonist 137 

1.6×10-129 Adrenergic (α1) Blocker † 

α1A 

α1B 

α1D 

70 

239 

171 

2.7×10-113 5-HT1A Antagonist 112  

Dimetholizine 

Antihistamine 

Antihypertensive 

7.4×10-56 Dopamine (D2) Antagonist 179 

 

Kalgut 

Cardiotonic 
3.1×10-79 Adrenergic (β3) Agonist 2090 

 

Fabahistin 

Antihistamine 
5.7×10-57 5-HT5A Antagonist 129 

 

Prantal 

Anticholinergic 

Antispasmodic 

5.5×10-32 δ Agonist 13610 

3.1×10-21 5-HT1B Agonist 129 

1.2×10-13 5-HT2A Agonist 127 

1.1×10-7 5-HT5A Antagonist 2135 

 

N,N-dimethyltryptamine 

Serotonergic Hallucinogen 

 
5.0×10-6 5-HT7 Modulator 206 

 

Doralese 

Adrenergic α1 Blocker 

Antihypertensive 

Antimigraine 

2.8×10-27 Dopamine (D4) Antagonist 18 

 

Prozac 

5-HT Reuptake Inhibitor 

Antidepressant 

3.9×10-15 Adrenergic (β) Blocker † β1 4385 

 

Motilium 

Antiemetic 

Peristaltic Stimulant 

4.8×10-11 Adrenergic (α1) Blocker † 

α1A 

α1B 

α1D 

71  

525  

705 

 

Paxil 

5-HT Reuptake Inhibitor 

Antidepressive Agent 

1.3×10-7 Adrenergic (β) Blocker † β1 10420 
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For those targets marked with a dagger (†), the 

dataset did not specify the receptor subtype, 

requiring a separate assay for each one. For 

instance, the MDDR contains an “Adrenergic 

(α1) Blocker” target, for which it was necessary 

to test the α1A, α1B, and α1D subtypes. Note that 

5-HT2A is a known target of DMT, but is shown 

here in gray with its retrospective SEA E-value 

for comparison purposes. 

 

Table 2.2 Prediction and testing of new cross‐boundary targets for drugs 

Drug / MDDR Annotation E-value Predicted Target Ki (nM) 

 

Xenazine 

VMAT2 (transporter) 
1.4×10-61 

Adrenergic (α2) receptor † 

(GPCR)  

α2A 

α2C 

959  

1318 

 

Rescriptor 

HIV-1 NNRTI (enzyme) 
1.05×10-30 Histamine H4 receptor (GPCR) 5334 

5.14×10-13 μ Opioid receptor (GPCR) 1423 

 

Vadilex 

NMDA Inhibitor (ion 

channel) 
1.98×10-4 

5-HTT; Serotonin transporter 

(transporter) 
77 

1.53×10-8 
5-HTT; Serotonin transporter 

(transporter) 
1417 

1.94×10-6 D4 Dopamine receptor (GPCR) 117 

3.61×10-6 
NET; Norepinephrine transporter 

(transporter) 
1248 

 

RO-25-6981  

NMDA Inhibitor (ion 

channel) 

9.08×10-5 κ Opioid receptor (GPCR) 3128 

 

For the target marked with a dagger (†), the 

MDDR database did not specify the adrenergic 

α2 receptor subtype, requiring a separate assay 

for each. 

 

How interesting and biologically relevant are these new off-targets? This can be 

evaluated by the following criteria: when the new targets contribute to the primary activity of the 

drug, when they may mediate important side effects, or when they are unrelated by sequence, 



 63 

structure and function to the known, canonical targets. Whereas not all of the newly predicted 

off-targets fall into these three categories, several fall into each. 

IV. Predicted targets as primary mechanism of action 

The new targets can improve our understanding of drug action. N,N-dimethyltryptamine (DMT) 

is an endogenous metabolite and a notorious hallucinogen. Recently the molecule was 

characterized as a σ1-receptor regulator at micromolar concentrations, an association implicated 

in its hallucinogenic properties.28,29 This surprised us because many drugs, including non-

hallucinogens, bind promiscuously to the σ1 receptor with higher affinity than DMT.30 Also, 

DMT’s hallucinogenic characteristics are consistent with other hallucinogens thought to act 

through serotonergic receptors, some of which the molecule is known to bind.31-33 We therefore 

screened DMT against the 1,133 WOMBAT targets. SEA predicted it to be similar against 

multiple serotonergic (5-HT) ligand sets, with expectation values ranging from 9.2×10-81 to 

7.4×10-6. Upon testing in radio-ligand binding assays, we find DMT binds 5-HT1A, 5-HT1B, 5-

HT1D, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT5A, 5-HT6, and 5-HT7 receptors with affinities from 39 nM 

to 2.1 μM (Supplementary Table 4, Supplementary Figure 2). Of these, three were 

previously unknown (Table 1), and all had affinities for DMT substantially higher than its 

reported 14.75 μM Kd for σ1.
28 To further investigate the role of serotonin receptors in DMT-

induced hallucination, we turned to a cell-based assay and an animal model that are predictive of 

hallucinatory actions.34 Consistent with SEA prediction, we find that DMT not only is a potent 

partial agonist at 5-HT2A (Figure 2g) as has been reported,31 but also that it induces head twitch 

response in wild type but not 5-HT2A knockout mice (Figure 2h), which is new to this study.  

The EC50 of DMT at 5-HT2A is 100-fold greater than that observed for σ1.
28 These observations 

support 5-HT2A as the primary target for DMT’s hallucinogenic effects. 
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Figure 2.2 Testing new off‐target activities 

(A-F) Radioligand competition binding assays: 

(A) Doralese at D4, (B) Sedalande and 

Dimetholizine at α1D, (C) Fabahistin at 5-HT5A, 

(D) Motilium at α1A, (E) Prozac at β1, and (F) 

Vadilex at the serotonin transporter. (G-H) 

Investigating 5-HT2A as the target of DMT-
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induced hallucination: (G) 5-HT2A-mediated 

Ca2+ response was measured after treating HEK 

293 cells stably expressing the human 5-HT2A 

receptor with DMT or 5-HT. DMT's EC50 was 

found to be 118±29 nM (vs. 5-HT's 6.6±0.4 nM 

baseline, n = 3), with an Emax of 23±0.4% (n = 

3), confirming that DMT is a potent partial 

agonist at 5-HT2A receptors. (H) DMT elicited 

head twitch behavior only in 5-HT2A wild-type 

mice, confirming that it is a hallucinogenic 5-

HT2A agonist. **, p < .01. 

 

Similarly, the new off-targets for Sedalande, a neuroleptic and anxiolytic derived from 

haloperidol, may illuminate this drug’s therapeutic effects. Although subjected to clinical trials 

with psychiatric patients as far back as the early 1960s,35 neither its mechanism of action in the 

central nervous system, nor that of the related Dimetholizine, is well understood. In addition to 

new activities against α1 adrenergic receptors (1.2 nM – 239 nM, Figure 2b, Table 1), 

Dimetholizine was found to bind the D2 and 5-HT1A receptors and Sedalande to bind the 5-

HT1D receptor (Table 1, Supplementary Figure 1). This likely contributes to the central 

nervous system activity of both drugs, given the association of the former with anxiety and 

aggression modulation, and the activity of many antipsychotics against the D2 receptor. We also 

found analogs of Sedalande that were active against 5-HT1D, often at affinities comparable to or 

greater than those of Sedalande itself (Supplementary Table 5, Supplementary Figure 3). 

This supports the possibility of optimizing these drugs for new indications.   

An example of a current drug now being investigated for a new indication is Fabahistin. 

This drug, used since the 1950s as a symptomatic antihistamine, is now being investigated for 

Alzheimer’s disease. When screened against the 1,133 targets in the WOMBAT database, SEA 

found an extraordinary similarity to 5-HT5A ligands, with an expectation value of 2.0×10-58.  

When we measured its binding to the 5-HT5A receptor, Fabahistin had an affinity of 129 nM 

(Figure 2c, Table 1). This is an example of a drug whose new, “off-target” affinity is 

substantially better than that for its canonical H1 receptor target, which is surprisingly low.36 Its 
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activity against 5-HT5A and related serotonergic receptors37 may have implications for 

Fabahistin’s role as an Alzheimer’s disease therapeutic. 

V. Off‐targets as side‐effect mediators 

Some of the new off-targets may contribute to a drug’s adverse reactions. Motilium is an 

antiemetic and dopamine D1/2 antagonist that achieves peak plasma concentrations of 2.8 μM38 

on intravenous administration. This formulation was withdrawn worldwide due to adverse 

cardiovascular effects, with the US FDA citing cardiac arrest, arrhythmias, and sudden death.39 

While Motilium binds the hERG potassium channel with an IC50 of 5 μM,40 the 71 - 705 nM 

affinities observed here against α1A, α1B, and α1D may also contribute to these cardiovascular 

effects (Figure 2d, Table 1, Supplementary Figure 1). 

Similarly, the micromolar activity against the β-adrenergic receptors of the widely used 

selective serotonin reuptake inhibitor (SSRI) antidepressants Prozac and Paxil (Figure 2e, Table 

1, Supplementary Figure 1) may explain several of the adverse effects of these drugs. Abrupt 

withdrawal of Paxil raises standing heart rate, a symptom of the SSRI discontinuation 

syndrome.41 This is counterintuitive, as relieving blockade of serotonin reuptake transporters 

should reduce the synaptic serotonin available for activation of post-synaptic receptors and such 

an effect cannot explain the cardiovascular syndrome.42 β-blockade by these SSRIs may partially 

explain this effect since β-blockers induce a similar rebound tachycardia upon abrupt withdrawal, 

due to β receptor up-regulation and sensitization. Despite its higher affinity for β receptors, 

Prozac has a longer half-life than Paxil, and its withdrawal does not induce SSRI discontinuation 

syndrome. Also, both SSRIs and many β-blockers can induce sexual dysfunction.43 Since both 

serotonergic and adrenergic signaling are involved in sexual response, the finding that both Paxil 
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and Prozac bind to the β-receptors may explain why they induce greater dysfunction than other 

SSRIs. 

VI. Drug binding across major protein boundaries 

Whereas many of the predicted off-targets occur among aminergic GPCRs, a target class for 

which cross-activity is well-known (see below),44 four of the drugs bound to targets in entirely 

different target classes; i.e., those unrelated by sequence or structure (Table 2). For instance, the 

reverse transcriptase (enzyme) inhibitor Rescriptor was predicted and shown to bind to the 

histamine H4 receptor, a GPCR. These two targets share no evolutionary history, functional role, 

or structural similarity whatsoever. As an aside, we note that while Rescriptor’s Ki for the H4 

receptor is high at 5.3 μM (Table 2, Supplementary Figure 1), this is within its steady-state 

plasma concentration (Cmin averages 15 μM) and is consistent with the painful rashes associated 

with Rescriptor use;45 likewise, H4 dysregulation has been associated with atopic dermatitis.46 

Similarly, the vesicular monoamine transporter (VMAT) inhibitor47 Xenazine binds two different 

GPCRs at sub-micromolar affinity (Table 2, Supplementary Figure 1). Despite this drug’s use 

over the last 50 years, it has not been reported to bind any GPCR. Finally, the selective ion 

channel inhibitors Vadilex and RO-25-6981 were predicted and found to bind to GPCRs and to 

transporters, in addition to their previously known activity against ion channels (Figure 2f, 

Table 2, Supplementary Figure 1). Whereas these ion channel drugs have known 

polypharmacology (Figure 3), a key point is that the new targets for these four drugs are 

unrelated to their main therapeutic targets except in the similarity of the ligands that modulate 

their activities. 
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Figure 2.3 Discovered off‐targets network 

Bipartite network where drugs (gold) are linked 

by gray edges to their known targets (violet) and 

by red arrows to their discovered off-targets 

(cyan). Gray edges denote binding at 1 μM or 

better, where these affinities are known. Node 

sizes increase with number of incident edges. 

Target abbreviations: 5-HTx, serotonin receptor 

type x; 5-HTT, serotonin transporter; β1+, β1 
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adrenergic agonist; β1-, β1 adrenergic 

antagonist; β3+, β3 adrenergic agonist; σ1, σ1-

receptor; CA, carbonic anhydrase; DAT, 

dopamine transporter; HIV1RT, HIV-1 reverse 

transcriptase; hERG, human Ether-a-go-go 

Related Gene channel; K+, Potassium channel; 

NET, norepinephrine transporter; NMDA, N-

methyl-D-aspartate receptor; VMAT2, vesicular 

monoamine transporter 2. 

 

More broadly, the protein target with highest sequence similarity to any of a drug’s 

known targets is rarely predicted by the SEA approach.  Rather, the target predicted by ligand 

similarity is typically well-down in the sequence similarity ranking. Thus for Xenazine, the off-

target α2 adrenergic receptor is 78th most similar to the known target VMAT2 and in fact has no 

significant similarity at all, with a BLAST E-value of 125 (Supplementary Table 6), while for 

Rescriptor, H4 is the 167th most similar receptor to HIV RT, and even for Prantal, the aminergic 

δ-opioid receptor is only 26th most similar to its known muscarinic M3 target. 

VII. Caveats 

Certain caveats merit mention. Not all of the new off-targets predicted here would surprise 

specialists. For instance, Dimetholizine has antihypertensive activity and so its affinity for 

adrenergic receptors is not wholly unanticipated. Similarly, Kalgut is classified as a “selective β1 

agonist,” thought to have little activity on other adrenergic receptors.48 Whereas the observation 

that it does bind to the β3 receptor goes against this classification, structurally this seems easy to 

credit (Table 1, Supplementary Figure 1). Indeed, ten of the fourteen drugs reported here are 

active against aminergic GPCRs (Figure 3), and so their cross-activities against other aminergic 

GPCRs has some precedent.44 Finally, whereas most of the drugs were active at their predicted 

off-targets, a third were not; these are examples of the false-positives to which this method is 

susceptible (Supplementary Table 7). Thus, the anxiolytics Valium and Centrax scored well 

against Cholecystokinin B ligand, the antipsychotic Emilace was predicted to bind 5-HT4, the 
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anesthetic Duocaine the κ-opioid receptor, the antihypertensive Doralese neurokinin receptors, 

and the narcotic Dromoran and the bradycardic Zatebradine scored well against the D2 and D1 

receptors. None of these bound their predicted off-targets with affinities better than 10 μM. 

SEA ignores pharmacophores in its predictions, comparing drugs to ligand sets based on all 

shared chemical patterns. This is at once a strength, in that it is model-free, and a weakness, in 

that it may predict activity for drugs that share many features with the ligands of a target, and yet 

miss a critical chemotype.  

VIII. Predicting polypharmacology on a large scale 

Notwithstanding these caveats, it is the model-free nature of these predictions that allows a 

comprehensive exploration of drug-target interactions, most of which remain unexplored. We 

have focused on a thin slice of pharmacological targets, one dominated by aminergic drugs 

(Figure 3). Stepping back to view the larger space, 364 additional off-targets for 158 drugs are 

predicted with E-values better than 1×10-50, while 1,853 new off-targets are predicted with E-

values better than 1×10-10 (Figure 1b). This compares to the only 972 off-target activities already 

annotated in the databases (Figure 1a). The Similarity Ensemble Approach and related 

chemoinformatics methods16-20 provide tools to explore these associations systematically, both to 

understand drug effects and explore new opportunities for therapeutic intervention. 
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2.3 Methods Summary 

I. Prediction of off‐targets 

A collection of 3,665 FDA-approved and investigational drug 2D structures was 

computationally screened against a panel of over 1,400 protein targets. The drug collection was 

extracted from the MDL Comprehensive Medicinal Chemistry database.  Each target was 

represented solely by its set of known ligands, which were extracted from three sources of 

annotated molecules: the MDL Drug Data Report, the World of Molecular Bioactivity 

(WOMBAT),26 and the StARlite databases. The structural similarity of each drug to each target’s 

ligand set was quantified as an expectation value (E-value) using the Similarity Ensemble 

Approach (SEA).21 

II. Experimental testing 

Predicted “off-targets” with strong SEA E-values were evaluated for novelty against orthogonal 

databases and the literature. Those off-targets without precedent were subjected to radioligand 

displacement assays using standard techniques49 at the NIMH Psychoactive Drug Screening 

Program. The role of 5-HT2A agonism in DMT-induced hallucination was examined in cell-based 

and in knock-out mouse models.34 Derivatives of Sedalande were identified in the ZINC50 

database by substructure search, and their affinities for 5-HT1D tested using standard techniques. 

III. Drug‐target networks and out‐group analysis 

Comprehensive networks of known drug-target associations (by WOMBAT) and predicted off-

targets (by SEA) were constructed. Additionally, SEA off-target predictions were compared to 
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those derived from Naïve Bayesian classifiers and from PSI-BLAST21-23 comparisons of a drug’s 

known protein target(s) against the panel of potential protein targets. 

2.4 Methods Detail 

I. Ligand sets 

We extracted ligands from compound databases that annotate molecules by therapeutic or 

biological category. Multiple ligands in each annotation defined a set of functionally-related 

molecules. For instance, the 2006.1 MDL Drug Data Report (MDDR) contains 518 compounds 

annotated as blockers of the α1 adrenergic receptor, which we grouped together as the 

“Adrenergic (α1) Blocker” set. 

As reference sources of drug-target ligands, we used three reference databases, as 

described in Supplementary Table 8. The first was a subset of the 2006.1 MDDR, prepared as 

previously described.21,23 The second was the 2006.2 World of Molecular Bioactivity 

(WOMBAT),26 whose ligands we processed in the same manner as the MDDR. We collapsed 

targets across species and organized them into inhibitory, activating, and simple binding classes. 

All compounds with affinity values worse than 1 μM to their targets were removed. This left 

1,133 classes built from 191,943 ligands with median and mean of 37 and 169 ligands per target 

class. The third was StARlite, which we also processed in the same manner as the MDDR. We 

extracted annotations with the two highest confidence levels (5 and 7), discarded annotations 

with affinities worse than 1 μM, and organized them into target classes. This yielded 1,158 

classes built from 111,329 ligands with median and mean of 43 and 186 ligands per target class. 

As a search database of ligand structures for drugs and bioactive molecules, we used the 

2004 MDL Comprehensive Medicinal Chemistry database (CMC), which contained 7,517 
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compounds. All ligands were prepared as above. We then filtered the CMC compounds by 

vendor availability (as reported in the MDL 2006.3 Available Chemical Directory (ACD), the 

MDL 2006.1 Screening Compounds Directory, and ZINC50), reducing their numbers to 3,665 

unique purchasable compounds. 

The structures of drugs linking targets in the bipartite drug-target networks (Figure 1) 

were extracted from the 2008 EPA Distributed Structure-Searchable Toxicity (DSSTox) 

Database at http://www.epa.gov/NCCT/dsstox/, and prepared as above. 

II. Ligand activity predictions 

We compared each drug individually against each set of reference ligands. All molecules were 

represented by two topological descriptors: 2048-bit Daylight51 and 1024-bit folded ECFP_4 

fingerprints.23 We ran the Similarity Ensemble Approach (SEA)21,23 on each descriptor as a 

separate screen and chose top-scoring hits (e.g., small E-values) from each screen independently. 

As narrated in the main text, our initial SEA screen of 3,665 CMC drugs against 246 

MDDR targets yielded 901,590 drug-target comparisons, and this was the screen we subjected to 

both retrospective literature analysis and prospective empirical testing. During the course of this 

work, however, we later extended our SEA screen to WOMBAT and StARlite databases, 

comprising some 4,152,445 and 4,244,070 drug-target comparisons, respectively. We have not as 

yet made an effort to mine these expanded SEA screens for retrospective literature validation, 

and instead conducted prospective empirical testing. Supplementary Table 8 delineates the 

particular screen (i.e., database) from which each prediction in Table 1 and Table 2 is derived. 

For comparison of SEA “off-target” predictions against those of naïve Bayesian 

classifiers (Supplementary Table 1), we implemented our own Laplacian-corrected naïve 

Bayesian classifier with Avidon weighting, as previously described.23 
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III. Drug‐target and target‐target networks 

The drug-target networks in Figure 1 are bipartite: Along any given path, the nodes alternate 

between drug targets and drugs. All targets are from WOMBAT, and all drugs from the EPA 

DSSTox collection. Red edges denote SEA predictions between drug and target nodes, with E-

value ≤ 10-10. Predictions already reported to have affinity ≤ 1 μM in WOMBAT comprise gray 

edges. All network figures were generated in Cytoscape 2.6.1.52 

The discovered off-targets network (Figure 3) is a bipartite graph linking drugs from 

Table 1 and Table 2 with their targets. Gray edges link drugs to their known targets, and were 

built by manual literature and database search. 

IV. WOMBAT out‐group analysis 

We mapped 204 MDDR activity classes to WOMBAT targets in two phases. In the first, we 

mapped 87 MDDR activity classes using EC numbers from the Schuffenhauer ontology25 to 

those present in WOMBAT. We then mapped a further 118 GPCR, ligand-gated ion channel, 

and nuclear hormone receptor MDDR activity classes by supervised sub-phrase matching 

(Supplementary Table 9, Supplementary Table 10). While this mapping is not guaranteed to 

be exhaustive, it is correct to the best of our knowledge. 

We extracted all compounds from WOMBAT where the “drug” field was set to “1” (746 

unique drugs). We then ran these 746 drugs blindly against the mapped MDDR classes, and 

discarded all trivial hits (e.g., those where the ligand is already known by the database to be a 

member of the predicted set). Of those that remained, we then asked how many of the “new” 

predictions (e.g., not so annotated in the MDDR) were in fact substantiated by existing 

WOMBAT annotations at affinities ≤ 1 μM. 
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V. Sequence similarity comparison 

For each drug in Figure 3, we associated each of its known and newly-discovered targets with 

human protein sequences in FASTA format from http://www.uniprot.org. We ran these 

sequences via PSI-BLAST (BLAST version 2.2.14)21-23 with default parameters against a database 

built from a subset of the targets in the MDDR, as previously described.21 For each novel SEA 

off-target prediction, we reported the best direct PSI-BLAST match (along with its E-value and 

ranking) from any of that drug’s previously known targets, with the predicted off-target 

(Supplementary Table 6). Our goal was to address the question, “Were we to start with the 

best choice from among a drug’s known protein targets, how likely would we be to recapitulate, 

solely by sequence similarity, each SEA ‘off-target’ prediction?” 

VI. Experimental testing 

Radioligand binding and functional assays were performed as previously described.49,53 Detailed 

experimental protocols are available on the NIMH PDSP website at 

http://pdsp.med.unc.edu/UNC-CH%20Protocol%20Book.pdf.  

VII. Mice 

All experiments were approved by the Institutional Animal Care and Use Committee at the 

University of North Carolina, Chapel Hill. Mice were housed under standard conditions – 12 

hour light/dark cycle and food and water ad libitum. 

VIII. Head Twitch 

Littermate pairs of 5-HT2A wild type and knockout mice were pretreated for two hours with 75 

mg/kg pargyline, i.p., prepared in sterile saline (.9% NaCl) (P8013, Sigma-Aldrich, St. Louis, 

MO). Mice were then injected with sterile saline or 1.0 mg/kg DMT, i.p., prepared in sterile 
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saline and moved to a new cage. Head twitch behavior, which consists of a rapid, rotational flick 

of the head about the axis of the neck, was counted over 15 minutes. We have determined that 

trained observers count the same number of head twitches whether blinded or unblinded to 

genotype (data not shown). We confirmed that this was the case with three littermate pairs, and 

the rest of the studies were performed by one unblinded observer.34 
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Gloss to Chapter 3 

 

One characteristic of small molecules that may not have been emphasized in prior 

chapters is precisely that they are not all drugs. The debate over the hallucinogen N,N-

dimethyltryptamine’s endogenous role in the human body, touched on in Chapter 2, is a case in 

which we indirectly address this realm. But what of venturing there directly? Endogenous 

signaling molecules course through our cells and swarm the extra-cellular matrix; cycles of 

energy exchange, amino acid biosynthesis, and protein salvage are driven by the turnover of 

small molecules down branching metabolic pathways. Instead of grouping drugs and drug-like 

ligands by their trans-membrane receptors or channels, what if we were to instead group small-

molecule substrates, cofactors, and products by the reactions in which they participated? 

Whereas this would narrow our scope to core metabolism, recent genomics efforts have 

provided both curated and putative metabolic reaction and pathway molecule data for hundreds 

of organisms. 

In Chapter 3, we mapped drug space to metabolic space using the Similarity Ensemble 

Approach. We primarily investigated within the interface between drug-like and metabolic 

molecules, from which several conclusions emerged. For the first, we found that we could 

identify meaningful similarity patterns between sets comprised of drug-like ligands and those of 

metabolites. While a necessary basis for this work, this was not a foregone conclusion—

especially as many metabolic reactions operate on molecules of typically smaller size than drugs. 

Secondly, we could identify reactions and pathway regions within an organism wherein the 

metabolites were most similar to the ligands of known drug targets (drug “effect space”), such as 

histidine biosynthesis in methicillin-resistant Staphylococcus aureus. Against pathogenic species, 
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these regions may be useful starting places for drug discovery efforts based on current drug 

chemotypes, but where they occur in human metabolism, these regions may suggest toxicity 

arising from off-target action at these essential enzymes. Chapter 3 thus concludes with 

consideration of “differential” effect spaces, which may help identify metabolic targets in 

pathogens that are both absent in humans and amenable to existing drugs. 

The remainder of this introduction provides a brief overview of our early observations 

of chemical similarity patterns within metabolic space. 

I. Compact metabolic space 

The most striking feature of the first SEA metabolic networks was the presence in each 

of a few massive hubs, formed by single reactions that demonstrated extraordinarily high 

similarity to a whole host of others (Figure 3.i.b). These “hub” reactions were not particularly 

central to metabolic pathways, but rather consisted primarily of molecules common to many 

metabolic reactions, typically cofactors. These so-called “common carriers,” such as ATP and 

GTP, while indeed present in many reactions and absolutely essential to their function, proved 

uninformative for differentiating among reactions. Just as BLAST filters out the “noise” of 

statistically overrepresented coil-coil regions during protein sequence alignment, we found that it 

was common practice to filter out common carriers in metabolism; we likewise follow this 

convention in Chapter 3. 
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Figure 3.i Preliminary metabolic similarity analyses 

(a) Comparative plot of uncorrected raw SEA 

scores from databases of drug-like ligands 

(MDDR and ZINC leadlike subset)1 

compared to those of metabolites (EcoCyc, 

YeastCyc, and KEGG).2, 3 The metabolites, 

even when corrected for common carriers, are 

1-2 orders of magnitude more similar to each 

other on average than are the drug-like 

ligands. Additionally, as is qualitatively 

apparent from this plot, each individual 

metabolite collection’s raw scores demonstrate 

smaller standard deviation than those from drug-

like collections. (b) Initial SEA metabolic network, 

wherein each node represents a reaction as 

comprised of its substrates, cofactors, and 

products; each edge is a significant SEA E-value 

present between reactions. These networks are 

Floyd-Warshall4, 5 graphs, which may be thought 

of as the consensus network built from successive 

overlays of all the shortest paths from any given 
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reaction to another across the strongly-

connected network built from the full matrix 

of SEA similarities among all reactions. This 

network was built from molecule data 

extracted from EcoCyc. (c-d) SEA metabolic 

networks built from reaction sets with the 

common carriers removed. While still more 

internally similar than drug networks (as 

demonstrated in panel (a)), these metabolic 

networks lack the massive hubs of (b). It is of 

note, however, that where hubs are present, they 

appear to be present across species; in this case, E. 

coli (from EcoCyc) and S. cerevisiae (from 

YeastCyc). 

 

Even after the removal of common carriers (Figure 3.i.c-d), we found that metabolic 

space remained both “smaller” and “denser” than drug space. This is qualitatively apparent from 

Figure 3.i.a, wherein the inter-molecule similarity scores within metabolic collections (each 

represented by its own color) are both higher (therefore at smaller distances from each other) 

and narrower (therefore denser). Table 3.i quantifies these differences, showing that drugs yield 

SEA chemical backgrounds with higher mean similarity among ligands and lower standard 

deviation exponents than metabolism does—again suggesting that metabolites sample less space, 

but do so more densely. This may make intuitive sense, as the cost of sampling new chemotypes 

is presumably greater for an organism, which must provide and subsequently maintain the 

enzymatic machinery to do so, than it is for the medicinal chemist, whose choices are driven by 

other concerns. 

 

Table 3.i Internal chemical similarity patterns of metabolic vs. drug collections 

Type Collection μ σ σ’ 

MDDR 9.60×10-4 0.014 0.61 
Drug 

ZINC 7.60×10-4 0.012 0.58 

KEGG 0.049 0.14 0.67 

EcoCyc (-) 0.064 0.16 0.67 Metabolic (sans common carriers) 

YeastCyc (-) 0.074 0.19 0.68 

YeastCyc 0.14 0.34 0.69 
Metabolic (with common carriers) 

EcoCyc 0.14 0.35 0.69 
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The μ, σ, and σ’ columns are with respect to the 

random chemical backgrounds that SEA 

automatically calculates for each molecule 

collection. For each background, SEA fits an 

equation of the form “y = μ × x + b” to 

determine the mean chemical similarity expected 

at any particular value x, where x corresponds 

to the total number of random molecules being 

compared, e.g., the x-axis of Figure 3.i.a. 

Similarly, SEA fits the standard deviation of the 

random chemical similarity expected at x to an 

equation of the form “y = σ × x σ’ + b” (note 

that the exponent of x is no longer 1, but rather 

σ’). For a more detailed treatment of SEA 

random background calculations, see Appendix 

B. 
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3.1 Abstract 

Small molecule drugs target many core metabolic enzymes in humans and pathogens, often 

mimicking endogenous ligands. The effects may be therapeutic or toxic, but are frequently 

unexpected. A large-scale mapping of the intersection between drugs and metabolism is needed 

to better guide drug discovery. To map the intersection between drugs and metabolism, we have 

grouped drugs and metabolites by their associated targets and enzymes using ligand-based set 

signatures created to quantify their degree of similarity in chemical space. The results reveal the 

chemical space that has been explored for metabolic targets, where successful drugs have been 

found, and what novel territory remains. To aid other researchers in their drug discovery efforts, 

we have created an online resource of interactive maps linking drugs to metabolism. These maps 

predict the “effect space” comprising likely target enzymes for each of the 246 MDDR drug 

classes in humans. The online resource also provides species-specific interactive drug-

metabolism maps for each of the 385 model organisms and pathogens in the BioCyc database 

collection. Chemical similarity links between drugs and metabolites predict potential toxicity, 

suggest routes of metabolism, and reveal drug polypharmacology. The metabolic maps enable 

interactive navigation of the vast biological data on potential metabolic drug targets and the drug 

chemistry currently available to prosecute those targets. Thus, this work provides a large-scale 

approach to ligand-based prediction of drug action in small molecule metabolism. 

3.2 Author Summary 

All humans, plants, and animals use enzymes to metabolize food for energy, build and maintain 

the body, and get rid of toxins. Drugs used to clear infections or cure cancer often target 

enzymes in bacteria or cancer cells, but the drugs can interfere with the proper function of 
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human enzymes as well. Recent studies have mapped drugs to enzymes and many other targets 

in humans and other organisms, but have not focused on metabolism. In this study, we present a 

new method to predict what enzymes drugs might affect based on the chemical similarity 

between classes of drugs and the natural chemicals used by enzymes. We have applied the 

method to 246 known drug classes and a collection of 385 organisms (including 65 National 

Institutes of Health Priority Pathogens) to create maps of potential drug action in metabolism. 

We also show how the predicted connections can be used to find new ways to kill pathogens 

and to avoid unintentionally interfering with human enzymes. 

3.3 Introduction 

Drug developers have long mined small molecule metabolism for new drug targets and chemical 

strategies for inhibition. The approach leverages the “chemical similarity principle”1 which states 

that similar molecules likely have similar properties. Applied to small molecule metabolism, this 

principle has motivated the search for enzyme inhibitors chemically similar to their endogenous 

substrates. The approach has yielded many successes, including antimetabolites such as the 

folate derivatives used in cancer therapy and the nucleoside analog pro-drugs used for antiviral 

therapy. However, drug discovery efforts also frequently falter due to unacceptable metabolic 

side-effect profiles or incomplete genomic information for poorly characterized pathogens.2-4 

With the recent availability of large datasets of drugs and drug-like molecules, 

computational profiling of small molecules has been performed to create global maps of 

pharmacological activity. This in turn provides a larger context for evaluation of metabolic 

targets. For example, Paolini et al.5 identified 727 human drug targets associated with ligands 

exhibiting potency at concentrations below 10 μM, thereby creating a polypharmacology 

interaction network organized by the similarity between ligand binding profiles. Keiser et al.6 
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organized known drug targets into biologically sensible clusters based solely upon the bond 

topology of 65,000 biologically active ligands. The results revealed new and unexpected 

pharmacological relationships, three of which involved GPCRs and their predicted ligands that 

were subsequently confirmed in vitro. Cleves et al.7 also rationalized several known drug side 

effects and drug-drug interactions based upon three-dimensional modeling of 979 approved 

drugs. However, despite the clear rationale and past successes in applying ligand-based 

approaches to drug discovery, global mapping between drugs and small molecule metabolism, 

the goal of this study, has been hindered by both methodological challenges and incomplete 

genomic information. The relatively recent availability of metabolomes for numerous organisms 

allows a fresh look on a large scale.8-13 

In this work, we link the chemistry of drugs to the chemistry of small molecule 

metabolites to investigate the intersection between small molecule metabolism and drugs. The 

Similarity Ensemble Approach (SEA)6 was used to link metabolic reactions and drug classes by 

their chemical similarity, measured by comparing bond topology patterns between sets of 

molecules. Two types of molecule sets are used in this work. The first comprises drug-like 

molecules known to act at a specific protein target, and the second comprises the known 

substrates and products of an enzymatic reaction. While this approach is complementary to 

target and disease focused methods,5, 14-23 neither protein structure nor sequence information is 

used in the comparisons. Thus, these links provide an orthogonal view of metabolism based only 

upon the chemical similarity between existing drug classes and endogenous metabolites. 

To provide the results in the context of metabolism, drug “effect-space” maps were also 

created. For each of the 246 drug classes investigated in this work, effect-space maps enable 

visualization of the chemical similarities between drugs and metabolites painted onto human 

metabolic pathways, allowing a unique assessment of potential drug action in humans. In 
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addition, to aid target discovery in pathogens, 385 species-specific effect-space maps were 

created to show the predicted effect-space of currently marketed drugs, painted onto metabolic 

pathways representing target reactions in model organisms and pathogens. Examples of these 

maps are provided below and their applications in predicting drug action, toxicity, and routes of 

metabolism are discussed. To enable facile exploration of the drug-metabolite links established 

by this analysis, interactive versions of both sets of maps are available at 

http://sea.docking.org/metabolism.  

Finally, using methicillin-resistant Staphylococcus aureus (MRSA), a major pathogen causing 

both hospital- and community-acquired infections that is resistant to at least one of the 

antibiotics most commonly used for treatment24-28 as an example, we show by retrospective 

analysis the use of species-specific maps for discovery and evaluation of drug targets. This also 

illustrates how additional types of biological information can be incorporated to enhance the 

value of these analyses.  

3.4 Results 

I. Drug‐metabolite links reproduce known drug‐target interactions 

To evaluate the chemical similarity between drug classes and metabolic reactions, links between 

sets of metabolic ligands and sets of drugs were generated according to SEA (Figure 1).6 The 

similarity metric consists of a descriptor, represented by standard two-dimensional topological 

fingerprints, and a similarity criterion, the Tanimoto coefficient (Tc). Expectation (E) values 

were calculated for each set pair by comparing the raw scores to a background distribution 

generated using sets of randomly selected molecules (see Methods for further details). To 

represent metabolic ligand sets, the MetaCyc database, which includes enzymes from more than 
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900 different organisms catalyzing over 6,000 reactions, was used.12 The substrates and products 

of each enzymatic reaction were combined to form a reaction set, each of which was required to 

contain at least two unique compounds (Datasets S1 and S2). Ubiquitous molecules called 

common carriers, which frequently play critical roles in reaction chemistry but do not distinguish 

the function of a specific enzyme, were removed, leaving a total of 5,056 reactions involving 

4,998 unique compounds. To represent drugs, a subset of 246 targets of the MDL Drug Data 

Report (MDDR) collection, which annotates ligands according to the targets they modulate, was 

used.29 These sets contain 65,241 unique ligands with a median and mean of 124 and 289 ligands 

per target, respectively. Overall, 246 drug versus 5,056 reaction set comparisons involving 1.39 x 

109 pairwise comparisons were made.  
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Figure 3.1 Similarity Ensemble Approach (SEA)

SEA compares groups of ligands based upon 

bond topology. Example ligand sets include the 

thymidylate synthase reaction set, composed of 

the reaction substrates and products, and the 

nucleotide reverse transcriptase inhibitor 

(NRTI) drug set, which includes known 
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inhibitors of the nucleoside reverse transcriptase 

enzyme. Fingerprints representing the bond 

topology of each molecule are generated. Raw 

scores between sets are calculated based upon 

Tanimoto coefficients between fingerprints for 

all molecule pairs. Finally, the raw scores are 

compared to a background distribution to 

determine the expectation value (E) 

representing the chemical similarity between 

sets. See Methods for further details. 

 

Although drugs and metabolites typically differ in their physiochemical properties, 

significant and specific similarity links nonetheless emerged. Using SEA at an expectation value 

cutoff of E = 1.0 x 10-10, a previously reported cutoff for significance,6 54% (132 of 246) of drug 

sets link to an average of 43.7 (median = 10) or 0.9% of metabolic reactions. None of the 

remaining 46% (114 of 246) of drug sets link to any metabolic reaction sets. For instance, while 

the α-glucosidase drug set links to the α-glucosidase reaction (E = 1.00 x 10-51), the thrombin 

inhibitor drug set does not link significantly with any metabolic reaction. The thrombin inhibitor 

drug set targets the serine protease thrombin, which does not participate in small molecule 

metabolism, but rather plays a role in the coagulation signaling cascade. Likewise, 40% (2,044 of 

5,056) of metabolic reactions hit an average of 2.8 (median = 2) or 1.1% of drug sets at 

expectation value E = 1.0 x 10-10 or better. For instance, the metabolite set for retinal 

dehydrogenase reaction set links, as expected, to the retinoid drugs at E = 3.05 x E-98, but the 

valine decarboxylase reaction, which is not an MDDR drug target, does not link significantly to 

any drug sets. These strikingly similar results suggest both broad coverage (54% of drug sets and 

40% of metabolite sets) and specificity (single sets link to just 0.9% of metabolite sets and 1.1% 

of drug sets, respectively). For full results, see Dataset S3. 

To determine the utility of the method for recovery of known drug-target interactions, it 

was hypothesized that chemical similarity between MetaCyc reaction sets and corresponding 

MDDR drug sets could specifically recover the known drug-target interactions. The 246 MDDR 

drug set targets include 62 enzymes that could be mapped to MetaCyc via the Enzyme 
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Commission (EC) number30 describing the overall reaction catalyzed.31 The results show that all 

62 reaction sets for these targets link to at least one MDDR drug set. The majority of best hits 

(42 out of 62) were found at expectation values of E = 1.0 x 10-10 or better (Table 1). At 

expectation values better than E = 1.0 x 10-25, 61% (19 of 31) of best hits recover either the 

specific known target or another enzyme in the same pathway. Examples of specific compounds 

linked by this analysis are given in Figure 2 for a selected group of these best-scoring hits. 

 

Table 3.1 Metabolic enzyme targets and their best links to MDDR 

Enzyme Targeta EC# Best Hit MDDR Drug Set 
Best Hit E-

value 

Adenosine kinase 2.7.1.20 
S-Adenosyl-L-Homocysteine Hydrolase 

Inhibitor 
4.38E-288 

Adenosylmethionine 

decarboxylase 
4.1.1.50 

S-Adenosyl-L-Homocysteine Hydrolase 

Inhibitor 
2.71E-216 

Thromboxane-A synthase 5.3.99.5 Prostaglandin 1.66E-204 

Adenosylhomocysteinase 3.3.1.1 
S-Adenosyl-L-Homocysteine 

Hydrolase Inhibitor 
4.73E-203 

Adenosine deaminase 3.5.4.4 Adenosine (A1) Agonist 7.69E-159 

Thymidine kinase 2.7.1.21 Thymidine Kinase Inhibitor 3.19E-151 

Dihydrofolate reductase 1.5.1.3 
Glycinamide Ribonucleotide 

Formyltransferase Inhibitor 
1.02E-134 

Catechol O-methyltransferase 2.1.1.6 
S-Adenosyl-L-Homocysteine Hydrolase 

Inhibitor 
4.67E-127 

Prostaglandin-endoperoxide 

synthase 
1.14.99.1 Prostaglandin 8.57E-110 

Purine-nucleoside phosphorylase 2.4.2.1 Adenosine (A1) Agonist 8.35E-105 

Ribose-phosphate 

pyrophosphokinase 
2.7.6.1 

S-Adenosyl-L-Homocysteine Hydrolase 

Inhibitor 
4.33E-91 

Phosphoribosylglycinamide 

formyltransferase 
2.1.2.2 

Glycinamide Ribonucleotide 

Formyltransferase Inhibitor 
1.55E-82 

Phosphoribosylaminoimidazolecar

boxamide formyltransferase 
2.1.2.3 

Glycinamide Ribonucleotide 

Formyltransferase Inhibitor 
9.12E-80 

3',5'-cyclic-nucleotide 

phosphodiesterase 
3.1.4.17 

S-Adenosyl-L-Homocysteine Hydrolase 

Inhibitor 
1.23E-77 

Thymidylate synthase 2.1.1.45 Thymidylate Synthetase Inhibitor 2.54E-75 

Steryl-sulfatase 3.1.6.2 Aromatase Inhibitor 4.90E-62 
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Enzyme Targeta EC# Best Hit MDDR Drug Set 
Best Hit E-

value 

Guanylate cyclase 4.6.1.2 
Purine Nucleoside Phosphorylase 

Inhibitor 
2.68E-60 

Cholestenone 5-alpha-

reductase 
1.3.1.22 

Steroid (5alpha) Reductase 

Inhibitor 
3.63E-60 

Steroid 17-alpha-monooxygenase 1.14.99.9 Steroid (5alpha) Reductase Inhibitor 1.37E-58 

RNA-directed DNA polymerase 2.7.7.49 
S-Adenosyl-L-Homocysteine Hydrolase 

Inhibitor 
1.06E-52 

Alpha-glucosidase 3.2.1.20 Glucosidase (alpha) Inhibitor 1.00E-51 

Farnesyl-diphosphate 

farnesyltransferase 
2.5.1.21 Squalene Synthase Inhibitor 2.12E-46 

Beta-galactosidase 3.2.1.23 Glucosidase (alpha) Inhibitor 4.04E-46 

Sterol esterase 3.1.1.13 Phospholipase A2 Inhibitor 3.18E-44 

Leukotriene-A4 hydrolase 3.3.2.6 Prostaglandin 5.16E-40 

Squalene monooxygenase 1.14.99.7 Squalene Synthase Inhibitor 7.59E-40 

Ribonucleoside-diphosphate 

reductase 
1.17.4.1 

S-Adenosyl-L-Homocysteine Hydrolase 

Inhibitor 
2.47E-38 

3-hydroxyanthranilate 3,4-

dioxygenase 
1.13.11.6 

3-Hydroxyanthranilate Oxygenase 

Inhibitor 
1.14E-33 

Dihydroorotase 3.5.2.3 Dihydroorotase Inhibitor 2.25E-32 

Nitric-oxide synthase 1.14.13.39 Nitric Oxide Synthase Inhibitor 8.86E-28 

Phospholipase A2 3.1.1.4 Phospholipase A2 Inhibitor 9.82E-26 

Diaminopimelate epimerase 5.1.1.7 Nitric Oxide Synthase Inhibitor 2.43E-24 

Membrane dipeptidase 3.4.13.19 Nitric Oxide Synthase Inhibitor 2.81E-23 

3-alpha(or 20-beta)-

hydroxysteroid dehydrogenase 
1.1.1.53 Aromatase Inhibitor 1.51E-22 

Sterol O-acyltransferase 2.3.1.26 Adenosine (A2) Agonist 4.95E-22 

Hydroxymethylglutaryl-CoA 

reductase (NADPH) 
1.1.1.34 Adenosine (A2) Agonist 4.95E-22 

IMP dehydrogenase 1.1.1.205 Adenosine (A1) Agonist 8.98E-17 

ATP-citrate (pro-S-)-lyase 4.1.3.8 Adenosine (A2) Agonist 1.83E-15 

Glutamate--cysteine ligase 6.3.2.2 Nitric Oxide Synthase Inhibitor 2.71E-11 

Dopamine-beta-monooxygenase 1.14.17.1 Adrenergic (beta1) Agonist 3.81E-11 

Lanosterol synthase 5.4.99.7 Squalene Synthase Inhibitor 1.38E-10 

Nucleoside-diphosphate kinase 2.7.4.6 P2T Purinoreceptor Antagonist 2.76E-10 

 

aExact matches (the enzyme is the canonical 

target of the best MDDR hit) are shown in bold 

type, pathway matches (the enzyme shares the 

same pathway as the canonical target of the best 

MDDR hit) are shown in italic type, and 

enzymes not in the same pathway as the 

canonical target are shown in regular type. 

 



 97 

 

Figure 3.2 Selected best hits between MetaCyc reaction sets and MDDR drug sets 

 

Other links recovered off-pathway hits, which often reflect known polypharmacology 

that is well-documented. For example, the glycinamide ribonucleotide formyltransferase (GART) 

inhibitor drug set hits both the GART reaction set (E = 1.55 x 10-82) and the off-pathway but 

pharmacologically related antifolate target dihydrofolate reductase (DHFR) (E = 1.02 x 10-134). 

Other off-pathway hits reflect biological connections, or physical connections, between targets. 

For example, the adenosine deaminase reaction set links to the A1 adenosine receptor agonist 

drug set (E = 7.69 x 10-159) (Table 1) capturing the known interaction between A1 adenosine 

receptors and adenosine deaminase on the cell surface of smooth muscle cells.32 Considering 

only the stringent case of exact matches based on EC numbers, a Mann-Whitney rank-sum test 
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(also referred to as the U-test) shows that the expectation values for links between reaction sets 

and drug sets of known drug target enzymes were significantly better than the expectation values 

for links to reaction sets of non-target enzymes, i.e., 62 known enzyme targets were recovered in 

a background of 4,920 non-target “other” enzymes at a statistical significance of P = 2.01 x 10-6.  

In addition to recapitulating many known drug-target interactions, the links identified by 

these comparisons also suggest new hypotheses about drug-target interactions. One such new 

prediction involves the phospholipase A2 (PLA2) inhibitor drug class. The substrates and 

products of PLA2 recapitulate its known link to the PLA2 inhibitor drug set (E = 9.82 x 10-26), 

however, the sterol esterase reaction returns an even better score against the PLA2 inhibitor set 

(E = 3.18 x 10-44) (Table 1). Although this predicted pharmacological relationship has, to our 

knowledge, not been previously documented, the result is consistent with the known biological 

relationship between PLA2 and sterol esterase. Both enzymes are secreted by the pancreas and 

require phosphatidylcholine hydrolysis to facilitate intestinal cholesterol uptake.33 Thus, this link 

suggests that therapeutic agents directed against PLA2 may also inhibit sterol esterase, perhaps 

even more strongly than their intended target.  

II. Human drug “effect‐space” maps detail interactions between drug classes and 

enzyme targets  

To present links between small molecule metabolites and drugs in the context of their known 

(and potential) metabolic targets, metabolic “effect-space” maps for currently marketed drugs 

were generated for each of the 246 drug classes investigated in this work. These maps enable 

visualization of the chemical similarities between drugs and metabolites painted onto human 

metabolic pathways, illustrating potential interactions between an individual drug class and 

specific metabolic enzymes in humans. Examples include the nucleoside reverse transcriptase, 
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dihydrofolate reductase, and thymidylate synthase inhibitors which target pyrimidine nucleotide 

metabolism and biosynthesis of the essential coenzyme folate (Figure 3 and Table 2). Using 

the canonical human metabolic pathways from HumanCyc,34 a subset of the BioCyc12 database 

collection, reactions in each metabolic network have been colored according to their similarity to 

known drug classes (Figure 3). While Table 1 presents only the top link for each of 62 enzyme 

targets in MetaCyc against the 246 MDDR drug classes, the networks in Figure 3 detail all 

significant hits for selected drug classes against the pyrimidine and folate pathways. Interactive 

versions of these maps, one for each of the 246 drug classes included in our analysis, are 

available online (see below). 

 

Table 3.2 Links between selected drug classes and top ranked metabolic reactions 

Rank Thymidylate Synthetase (TS) Inhibitor E-value 

1 Dihydrofolate reductase (DHFR) 1.96E-123 

2 Methyltetrahydrofolate-corrinoid-iron-sulfur protein methyltransferase 3.58E-102 

3 Methionyl-tRNA formyltransferase 1.97E-99 

4 Methylenetetrahydrofolate reductase 2.67E-86 

5 Thymidylate synthase (TS) 2.54E-75 

6 Formate-tetrahydrofolate ligase 1.44E-74 

7 Dihydrofolate synthetase 1.35E-70 

8 Aminomethyltransferase 7.13E-63 

9 5-methyltetrahydrofolate-homocysteine S-methyltransferase 2.80E-62 

10 Phosphoribosylaminoimidazolecarboxamide (AICAR) formyltransferase 1.50E-60 

11 Phosphoribosylglycinamide formyltransferase (GART) 1.50E-60 

Rank Dihydrofolate Reductase (DHFR) Inhibitor E-value 

1 Dihydrofolate reductase (DHFR) 1.46E-82 

2 Methyltetrahydrofolate-corrinoid-iron-sulfur protein methyltransferase 2.84E-75 

3 Methylenetetrahydrofolate reductase 6.01E-73 

4 Methionyl-tRNA formyltransferase 7.00E-66 

5 Aminomethyltransferase 6.90E-55 

6 Formate-tetrahydrofolate ligase 6.15E-49 

7 Thymidylate synthase (TS) 1.91E-48 

8 5-methyltetrahydrofolate-homocysteine S-methyltransferase 2.60E-45 
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9 3-methyl-2-oxobutanoate hydroxymethyltransferase 2.68E-44 

10 Glycine decarboxylase 2.68E-44 

11 Glycine hydroxymethyltransferase (SHMT) 2.68E-44 

12 Dihydrofolate synthetase 9.65E-42 

13 Phosphoribosylaminoimidazolecarboxamide (AICAR) formyltransferase 2.21E-39 

14 Phosphoribosylglycinamide formyltransferase (GART) 2.21E-39 

Rank Nucleoside Reverse Transcriptase Inhibitor (NRTI) E-value 

1 Thymidylate kinase 7.48E-28 

2 Thymidine kinase 3.48E-26 

3 Deoxythymidine diphosphate kinase 1.54E-24 

4 Ribonucleoside-triphosphate reductase 2.88E-14 

5 Deoxyuridine triphosphate pyrophosphatase 5.60E-12 

6 Deoxyuridine kinase 1.14E-11 

7 Deoxyuridine diphosphate kinase 1.45E-11 

8 Thymidylate synthase (TS) 5.68E-11 
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Figure 3.3 Effect‐space map showing chemical similarity between specific drug classes and 

metabolites in human folate and pyrimidine biosynthesis

Each node represents one reaction set – the 

substrates and products of a single human 

metabolic reaction. Edges connect the reactions 

in the canonical pathway as annotated in 

HumanCyc34. As given in the color key, each 

reaction is colored according to the expectation 

value indicating the strength of similarity 

between that target reaction set and the 

respective MDDR drug set. Diamond shaped 

nodes indicate reactions catalyzed by enzymes 

annotated as known drug targets in the MDDR; 

circles indicate reactions catalyzed by enzymes 

not annotated as targets. Reaction key: 1. 

Deoxyuridine kinase 2. Thymidine kinase 3. 

Thymidylate kinase 4. Deoxythymidine 

diphosphate kinase 5. Thymidylate synthase 

(TS) 6. Methylene tetrahydrofolate reductase 7. 

Dihydrofolate reductase (DHFR) 8. 

Deoxyuridine diphosphate kinase 9. 

Deoxyuridine triphosphate diphosphatase. 
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It has previously been shown that chemical similarity between known drugs often 

suggests novel drug-target interactions.5-7, 14 Consistent with these observations, effect-space 

maps such as those shown in Figure 3 can also be used to exploit chemical similarities between 

drugs and metabolites to indicate potential routes of drug metabolism and toxicity.3, 11, 35, 36 For 

example, the nucleotide reverse transcriptase inhibitors (NRTIs) used in HIV therapy are 

administered as pro-drugs. The effect-space map reflects this route of NRTI metabolism leading 

to viral inhibition. The top three hits yielded by the NRTI drug set queried against human 

metabolism – thymidine kinase (E = 3.48 x 10-26), thymidylate kinase (E = 7.48 x 10-28), and 

deoxythymidine diphosphate kinase (E = 1.54 x 10-24) (Figure 3 reaction numbers 2, 3, and 4; 

additional results in Table 2) – successively phosphorylate the NRTI pro-drugs into the 

pharmacologically active NRTI triphosphates.37, 38 The viral reverse transcriptase enzyme then 

incorporates the fully phosphorylated NRTIs into the growing DNA strand, thereby terminating 

transcription of the viral DNA. In this example, considerable toxicity mitigates the therapeutic 

value of inhibiting viral DNA transcription since the phosphorylated NRTIs directly inhibit 

human nucleotide kinases and mitochondrial DNA pol-γ. They also may be incorporated by pol-

γ into the growing human mitochondrial DNA strand, and once incorporated are inefficiently 

excised by DNA pol-γ exonuclease.39 Thus, the effect-space map illustrates both the route of 

metabolism and a mechanism of toxicity for NRTIs in humans. 

Drug effect-space maps also offer a broad glimpse of potential human metabolic 

interactions predicting new “polypharmacology”. From the ligand perspective, “drug 

polypharmacology” refers to a single drug or drug class that hits multiple targets. For example, 

dihydrofolate reductase (DHFR, reaction number 7 in Figure 3) uses NADPH to reduce 7,8-

dihydrofolate to tetrahydrofolate. Antifolate drugs inhibit DHFR, and, as expected, the DHFR 

drug set recovers the DHFR reaction substrates and products as the top similarity hit in human 
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metabolism (E = 1.46 x 10-82) (Figure 3, Table 2, Figure 4). However, at least 20 other 

reactions also use folate coenzymes in human metabolism.40-42 Accordingly, SEA finds additional 

links between the DHFR drug set and established antifolate targets outside the pyrimidine and 

folate biosynthesis pathways such as serine hydroxymethyltransferase (SHMT, E = 2.68 x 10-44), 

phosphoribosyl-aminoimidazole-carboxamide formyltransferase (AICAR transformylase, E = 

2.21 x 10-39), and phosphoribosyl-glycinamide formyltransferase (GART, E = 2.21 x 10-39) 

(Table 2). The effect-space maps in Figure 3 illustrate the results from Table 2 and Figure 4 in 

a single view, illustrating drug polypharmacology with respect to critical metabolic pathways. 
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Figure 3.4 Selected links between MDDR drug classes and human folate and pyrimidine 

metabolism 

  

Alternatively, from the target perspective, “target polypharmacology” may refer to a 

single target being modulated by multiple classes of drugs. For instance, thymidylate synthase 

(TS) is another classic antifolate target that uses a folate coenzyme to methylate deoxyuridine 

phosphate, generating deoxythymidine phosphate.43-46 As expected, the TS reaction links to 

known antifolate drug classes such as GART inhibitors (E = 4.76 x 10-73) and DHFR inhibitors 

(E = 1.91 x 10-48) (Table 3 and Figure 4). However, TS is also effectively inhibited by uracil 

analogs such as fluoropropynyl deoxyuridine, which is not a folate, but rather a pyrimidine 

analog. Accordingly, the TS reaction also links to reverse transcriptase inhibitors, which include 
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fluoropropynyl deoxyuridine and additional pyrimidine analogs such as azidothymidine (AZT) 

(E = 5.68 x 10-11) (Figure 4). The target polypharmacology of the thymidylate synthase enzyme 

is mirrored by the drug polypharmacology of the thymidylate synthase inhibitors. The TS 

inhibitors link not only to the reactions of deoxyribonucleotide biosynthesis including 

thymidylate synthase (E = 2.54 x 10-75), but also the GART (E = 1.50 x 10-60) and DHFR (E = 

1.96 x 10-123) reactions (Figure 3 and Table 2). Thus, SEA recapitulates the known 

polypharmacology of TS. Effect-space maps illustrate and clarify these pharmacological 

relationships. 

 

Table 3.3 Links between selected metabolic reactions and top ranked drug classes 

Rank Thymidylate Synthetase (TS) Reaction E-value 

1 Thymidylate synthase inhibitor (TS) 2.54E-75 

2 Glycinamide ribonucleotide formyltransferase inhibitor (GART) 4.76E-73 

3 Thymidine kinase inhibitor (TK) 1.18E-62 

4 Dihydrofolate reductase inhibitor (DHFR) 1.91E-48 

5 Folylpolyglutamate synthetase inhibitor 2.27E-31 

6 Nucleoside reverse transcriptase inhibitor (NRTI) 5.68E-11 

Rank Dihydrofolate Reductase (DHFR) Reaction E-value 

1 Glycinamide Ribonucleotide Formyltransferase Inhibitor 1.02E-134 

2 Thymidylate Synthetase Inhibitor 1.96E-123 

3 Dihydrofolate Reductase Inhibitor 1.46E-82 

4 Folylpolyglutamate Synthetase Inhibitor 3.15E-62 

 

III. Species‐specific effect‐space maps for pathogens and model organisms 

The great diversity of metabolic strategies, pathways, and enzymes present in humans, model 

organisms, and pathogenic species presents both opportunities and significant barriers to drug 

discovery. To address these issues, species-specific effect-space maps were created for each of 

385 organisms from the BioCyc Database Collection. Target reactions existing in common and 
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differentially between each of these species and humans are shown in these metabolic maps. As 

with the human effect-space maps, this set of maps is available in interactive form online. To 

show how these maps may be used to provide a context for drug discovery, MRSA is used as an 

example (Figure 5). The global view of drugs and metabolism provided by this species-specific 

map illustrates some of the daunting challenges to the selection of tractable metabolic drug 

targets in this organism. 

 

 

Figure 3.5 Effect‐space map showing chemical similarity between drugs and metabolites 

in MRSA

Canonical pathway representation of methicillin-

resistant Staphylococcus aureus (MRSA) 12 small 

molecule metabolism colored by expectation 

value of the best hit against MDDR. Reactions 

that are also present in humans have been 

faded. Layout based upon the Cytoscape 2.5 y-
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files hierarchical layout. Edge lengths are not 

significant. For ease of viewing, reactions are 

not labeled but can be identified in the 

interactive versions of the maps available at the 

online resource. 

 

As described for Figure 3, each node in the MRSA network in Figure 5 represents one 

reaction set, the substrates and products of a single metabolic reaction. Edges connect the 

reactions according to canonical BioCyc MRSA pathways. Each reaction in the network has 

been colored according the expectation value of the best link between the reaction set and any 

of the 246 MDDR drug sets. Lighter colored nodes have higher expectation values indicating 

less drug-like reaction sets, while darker colored nodes indicate more drug-like reaction sets. To 

provide therapeutic context, reactions that are also present in human metabolism have been 

faded, indicating that drug sets targeting these enzymes in MRSA may have the undesirable 

potential to inhibit the human enzymes as well. As with the other organisms represented in our 

online maps, most reactions in the MRSA subset have little chemical similarity to any MDDR 

drug set. Although 74% of the 469 MRSA metabolic reactions have measurable similarity to at 

least one MDDR drug set, only 36% of these links had expectation values of E = 1.0 x 10-10 or 

better. Several complete pathways of diverse chemical classes, including shikimic acid, 

phospholipid, peptidoglycan, teichoic acid, and molybdenum cofactor biosynthesis, lack links to 

any drug set at all. Only 18 of the 469 MRSA metabolic reactions are already known to be drug 

targets in MDDR. Fourteen of these are represented in Figure 5 (as diamonds), but all 18 of 

these also appear in humans. Enzymes that catalyze these reactions in humans would likely be 

vulnerable to inhibitors developed against these MRSA targets, putting those drugs at risk for 

toxicity. 

Figure 6 illustrates how additional information can be used to further filter potential 

metabolic targets by painting additional biological or genomic data onto a species-specific map. 
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Since successful modulation of a target may not alone be sufficient to kill a pathogen due to the 

presence of redundant pathways for the formation of critical metabolites, integration of such 

additional information into a metabolic map may provide added value in addressing the multi-

dimensional challenges of drug discovery. Flux balance analysis of metabolic networks was used 

by several of the authors of this work to identify essential enzymes and metabolites required for 

the formation of all necessary biomass components for 13 strains of Staphylococcus aureus¸ 

including the methicillin-resistant N315 strain (MRSA).47 Using these results, 39 essential 

reactions and 19 synthetic lethal reaction pairs could be mapped to our dataset (Figure 6), 

highlighting those reactions for which inhibition is most likely to result in the death of the 

organism. Several of these reactions have been successfully targeted by currently marketed drugs, 

such as the previously discussed antifolate targets DHFR (E = 1.02 x 10-134), thymidylate 

synthase (E = 2.54 x 10-75), and dihydrofolate synthase (E = 1.35 x 10-70). This retrospective 

result illustrates the potential of such additional information in enriching for targets and drug 

chemistry that have been proven accessible. Other targets and pathways have not yet yielded 

successful drugs but are under investigation in MRSA or other pathogens, such as the shikimate 

pathway48 in aromatic amino acid biosynthesis and the histidine biosynthesis pathway.49 
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Figure 3.6 Essential and synthetic lethal map of MRSA metabolism

Canonical pathway representation of methicillin-

resistant Staphylococcus aureus (MRSA) small 

molecule metabolism colored by essentiality and 

synthetic lethality of reactions. Key: black = 

essential reaction; other colors = synthetic lethal 

reaction pairs; node size = similarity to top 

MDDR hit (bigger is more drug-like); diamond 

shape = MDDR drug target; faded border = 

human reaction. 

 

The combination of the essentiality data with the drug space mapping emphasizes the 

challenges to drug discovery against MRSA. Thus, while species-specific antifolates do exist, 

many antifolates such as methotrexate used in cancer therapy cause severe toxicity.42 To avoid 

such toxicity, 14 of the 39 essential MRSA reactions that are also present in humans can be 

excluded from further consideration as drug targets in MRSA.  

A compilation of all of the metabolic network maps generated in this study is available at 

http://sea.docking.org/metabolism. These include interactive versions of the human effect-
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space maps shown in Figure 3, one for each of the 246 MDDR drug classes analyzed in this 

work, and 385 species-specific maps such as that shown in Figure 5. The species-specific maps 

were generated from the BioCyc database public collection, a compendium of 385 model 

organisms and pathogens whose genomes have been sequenced and their metabolomes 

deciphered. Of these, 65 have been designated as Priority Pathogens by the National Institute of 

Allergy and Infectious Diseases (NIAID) and include Bacillus anthracis, Brucella melitensis, 

Cryptosporidium parvum, Salmonella, SARS, Toxoplasma gondii, Vibrio cholerae, and Yersinia pestis.50 

Browse and similarity search tools are also provided, allowing exploration of the metabolic 

reaction sets and current drug classes used in this work, as well as comparison to user-defined 

custom ligand sets. These interactive tools enable facile exploration between the vast biological 

data on potential metabolic drug targets in these organisms and the drug chemistry currently 

available to prosecute those targets.  

3.5 Discussion 

A key product of this study is the construction of drug-metabolite correspondence maps that 

provide both a global view and a more contextual picture of predicted drug action in human 

metabolism than has been previously available. Several aspects of these maps deserve particular 

emphasis. First, despite the differences in physiochemical properties of most drugs and small 

molecule metabolites, numerous links arise between drugs and metabolism. Viewed in the 

context of metabolic networks, the pharmacological relationships predicted by these links can be 

readily interpreted in a way that is biologically sensible. Moreover, as shown by both the drug 

effect space maps and species-specific maps, our retrospective analyses confirm that biologically 

and pharmacologically significant connections can be recovered, capturing known 

polypharmacology and revealing the relevant chemotypes previously explored in drug 
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development. The metabolome-wide exploratory tools provided with these map sets also enable 

a new way to interrogate the links between drugs and metabolism that will likely be useful for 

prediction of new targets and to indicate routes of drug metabolism and toxicity. Further, by 

integrating biological information such as essentiality and synthetic lethal analyses with the 

metabolic context, our approach allows users to focus evaluation of potential targets around 

specific types of data simply by painting the results on to metabolic maps.  

With respect to the coverage of drug links across small molecule metabolism that this 

study provides, we note that the SEA method relies solely upon the chemical similarity of 

ligands to establish links between drug sets and reaction sets. Based on these links, and the 

biologically sensible connections shown in the results, we infer that a particular drug class may 

act on a certain target. However, drugs may also act against an enzyme active site without 

resembling the endogenous substrate, or by allosteric regulation at an entirely different site. The 

SEA method, as applied here to the substrates and products of metabolic reactions, does not 

capture these additional drug-target links. Other viable strategies are available for targeting 

metabolic enzyme active sites that use principles unrelated to the ligand-drug similarities that are 

the focus of our approach.51-54 For instance, Tondi et al. designed novel inhibitors of thymidylate 

synthase that complemented the three dimensional structure of the active site. Five high-scoring 

compounds selected for testing were dissimilar to the substrate but bound competitively with 

it.54 While many classical kinase inhibitors interact directly with the ATP binding site, imatinib 

(tradename Gleevec) represents a new generation of allosteric protein kinase inhibitors that alter 

the kinase conformation to prevent ATP binding. Other allosteric kinase inhibitors prevent the 

protein substrate from loading.51 

While a quantitative determination of the proportion of drug-target links that cannot be 

accessed by our approach is beyond the scope of this study, we can provide a rough estimate for 
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the frequency of such cases based on the results reported in Table 1. Of the 62 known enzyme 

targets in MetaCyc, 42 (68%) the substrate/product metabolite sets show significant chemical 

similarity to at least one MDDR drug set, establishing a reasonable first pass estimate for the 

percentage of current enzyme targets accessible to this approach. Furthermore, 40% (2,044 of 

5,056) of all MetaCyc reaction sets linked at E = 1.0 x 10-10 or better to MDDR, with each 

reaction linking to an average of just 2.8 MDDR drug sets. These results indicate broad and 

specific coverage of metabolism, and suggest that numerous additional enzyme targets may be 

accessible by the method presented here. 

3.6 Conclusion 

Using the SEA method, we have shown that comparison between ligand sets representing 

MDDR drug classes and ligand sets representing the substrates and products of metabolic 

reactions yields statistically significant links between known drugs and enzyme targets. Because 

the method is based on chemical similarity and requires only information from these molecule 

sets rather than the sequence, structure or physiochemistry of the targets, this ligand-based 

approach is independent from, and complementary to, protein structure and sequence based 

methods. Our results also suggest the potential of this method for predicting previously 

unknown interactions between drug classes and metabolic targets, recovering routes of 

metabolism and toxicity in humans, and identifying potential drug targets (as well as challenges 

for target discovery) in emerging pathogens. Thus, by mapping the chemical diversity of drugs to 

small molecule metabolism using ligand topology, this work establishes a computational 

framework for ligand-based prediction of drug class action, metabolism, and toxicity.  
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3.7 Methods 

I. Compound sets 

All compounds, both drugs and metabolites, are represented using Daylight SMILES strings.55 

Sets comprised of isomers with unique compound names were retained, even though 

stereochemistry was later removed as part of the molecule fingerprinting process.  

II. Ligand sets 

Reaction sets were extracted from the 8.15.2007 release of MetaCyc based upon the substrates 

and products annotated to each reaction. Two filters were applied. First, the ten most common 

metabolites based on the number of occurrences in the MetaCyc metabolic network were 

removed: water, ATP, ADP, NAD, pyrophosphate, NADH, carbon dioxide, AMP, glutamate, 

and pyruvate. Second, each reaction set was required to include at least two unique compounds, 

as indicated by a MetaCyc or a MDDR unique compound id.  

III. Drug sets 

Drug sets were extracted from the MDDR, a compilation of about 169,000 drug-like ligands in 

688 activity classes, each targeting a specific enzyme (designated by the Enzyme Commission 

(E.C.) number). The subset of this database for which mappings between enzymes and the 

MDDR drug classes were available was used. These mappings were based on a previous study 

that maps E.C. numbers, GPCRs, ion channels and nuclear receptors to MDDR activity 

classes.31 Only sets containing five or more ligands were used. Salts and fragments were 

removed, ligand protonation was normalized and duplicate molecules were removed. Of the 688 

targets in the MDDR, 97 were excluded as having too few ligands (<5), and another 345 targets 
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were excluded because their definitions did not describe a molecular target, e.g., drugs associated 

only with an annotation such as "Anticancer" were not used. The remaining 246 enzyme targets 

were together associated with a total of 65,241 unique ligands, with a median and mean of 124 

and 289 drug ligands per target. For further details, see Keiser et al.6  

IV. Set comparisons 

All pairs of ligands between any two sets were compared using a pair-wise similarity metric, 

which consists of a descriptor and a similarity criterion. For the similarity descriptor, standard 

two-dimensional topological fingerprints were computed using the Scitegic ECFP4 fingerprint.56 

The similarity criterion was the widely used Tanimoto coefficient (Tc).57 For set comparisons, all 

pair-wise Tcs between elements across sets were calculated, and those scoring above a threshold 

were summed, giving a raw score relating the two sets. The Tanimoto coefficient threshold of 

0.32 was determined according to a previously published method based upon fit to an extreme 

value distribution.6 A model for random similarity similar to that used by BLAST58 was used to 

generate expectation values (E) which are used to describe the strengths of relationships 

discovered using this protocol.6 All scores reported here are based upon the background 

distribution and cutoff scores generated using the drug sets extracted from the MDDR 

collection. For further details, see Keiser et al.6 Network visualization was performed in 

Cytoscape 2.6.259 using the γ-files hierarchical layout algorithm. 

V. MRSA essentiality and synthetic lethal analysis 

Essentiality and synthetic lethal data generated as described earlier.47 Briefly, the metabolic 

network was reconstructed from the genome to include all reactions that have an active flux The 

essentiality of a given enzyme was then assessed by the effect of the removal of that enzyme on 
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biomass production. Similarly, synthetic lethal pairs can be identified by systematic pairwise 

deletion of enzymes and recalculation of biomass production in an ideally rich medium. 
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Chapter 4: 

Future Directions 

 

Whither SEA? More broadly, to what uses will we put statistical chemical similarity as 

both processing power and bioactivity data become ever more available? I touch here on three 

directions for current and future exploration. Lacking claim to Delphic foresight, I have chosen 

these by scientific criteria of impact, feasibility, and the extent to which the prospect of their 

continued existence as “directions” instead of “Chapters” exasperates me. 

In the first direction (4.1), I revisit the protein function identification engine alluded to in 

the Introduction. In the second (4.2-4.3), I argue that similarity need not exclude novelty and 

illustrate this by example. In the last (4.4-4.5), I highlight several baffling patterns of chemical 

similarity that, like mice in the night, have left little more than their paw-print tracks of 

implication across the pages of my lab books. I suspect that, cornered, some such mice may roar. 
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4.1 From DOCK hits to protein function 

“Form finds function” – so went the tagline on the cover of Nature in August 2007 when 

Johannes Hermann, in collaboration with Dr. Raushel’s group, demonstrated the use of a 

DOCK1 hit list§ to deduce a protein’s function.2 What if we could find patterns in these lists 

automatically, and annotate structural genomics proteins on a broad scale? This “future” 

direction was in fact my primary motivation for developing SEA, and Brian Shoichet sketched 

out its general form when we discussed my rotation project five years ago. If the Similarity 

Ensemble Approach is now the core of the “protein identification engine” described in the 

Introduction, then DOCK was to be its fuel. After all, why apply SEA to the high challenge of 

protein function, when doing so presupposes that many ligands already be known for each 

“uncharacterized” protein? Wouldn’t we already have a good idea of what that protein does by 

the time we had so many ligands for it, thereby defeating our own purpose? But on the other 

hand—do we actually need to the true ligands, or would putative ones be enough? Docking1, 3 

could certainly provide these. 

I hypothesize that sets of putative ligands will inform on their targets’ pharmacology, even when any 

given ligand prediction itself is unreliable. For putative ligands we turn to virtual screening, in which we 

dock libraries of candidate small molecules against target protein structures.1, 3 Whereas the “hit 

lists” that result are prone to error in their individual predictions, the molecules that rank highly 

are typically sensible overall. Indeed the hit list as a whole may be more reliable than its 

individual components. This in itself would be a novel use of virtual screening and would 

provide valuable starting points for structure-based protein annotation. 

                                                 

§ A target’s “hit list” is the list of molecules predicted by a virtual screening program such as DOCK to bind to that 

protein target. It consists only of putative ligands, many of which will not actually bind. 
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I envision two main ways to exploit virtual screening against proteins of uncharacterized 

pharmacology. Both ways, however, share the following common framework: 

1. The input is the docking hit list for the uncharacterized protein. 

2. The output is that hit list’s similarity to ligand sets for characterized proteins. 

I. Approach 1: Hit lists vs. hit lists 

Hypothesis: The docking hit lists for two pharmacologically similar proteins are similar by SEA. 

 

The glucocorticoid and progesterone nuclear receptors both bind hormones, and indeed 

progesterone acts an antagonist at the glucocorticoid receptor. It may be no surprise, then, that 

the docking hit lists for each would have some overlap in their predicted ligands, and that the 

one list would, on the whole, resemble the other. Initial results suggest that the docking hit lists 

for these two receptors have strong similarity to each other by SEA (Figure 4.1). This is 

consistent with the hypothesis that DOCK hit lists may serve in lieu of known-ligand sets as a 

means to represent a protein target—and that the similarity among such targets may likewise be 

amenable to quantification by SEA.  
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Figure 4.1 SEA similarity matrix for forty docking hit lists 
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Initial foray into using SEA to quantify the 

similarities among docking hit lists, circa May 

2008. Each target was represented by its top 500 

hits from DOCK, as run previously by Niu 

Huang.4 In the matrix (which is symmetric 

about the diagonal), darker blue cells indicate 

stronger SEA E-values between docking hit 

lists, and white indicates no appreciable 

similarity. Caveat lector—while these data were 

convenient for initial proof of concept testing, 

they are likely not the most appropriate 

collection of docking hit lists to use, as they are 

from an early version of the Directory of Useful 

Decoys (DUD, http://dud.docking.org). DUD 

was designed as a DOCK benchmarking tool, 

and the consequences for its use in 2D similarity 

searches with SEA are unclear. 

 

Nevertheless, this work is only beginning and significant questions remain. In Figure 

4.1’s matrix, a large number of targets show at least weak similarity to each other; is this 

informative or just noise? What database of DOCK molecules would be optimal, for use on a 

truly broad scale irrespective of protein class? Fragments may be appropriate (and would be 

quick to dock), but focused libraries may give better discrimination, where functional starting 

points could be inferred from the protein’s sequence or fold. In terms of focused libraries, 

Johannes Hermann docked high-energy intermediates (HEI) rather than ground states, but we 

cannot expect to exhaustively compute such intermediates across a fragment library in any 

general purpose manner.  

Perhaps a broader question is whether this approach should work at all, when we expect 

the majority of putative ligands selected by docking to fail the ultimate test of binding. I would 

argue, however, that whether or not DOCK is actually correct in its prediction of ligand binding is 

irrelevant. As a component of the “protein function identification engine” proposed here, 

DOCK need only be consistent in its predictions. For this use, docking hit lists are merely 

computational “signatures” for entire protein active sites—ones that are motivated by binding. 

In such signatures, even pathological errors are statistical signal, as long as they are deterministic. 
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II. Approach 2: Hit lists vs. known ligands 

Hypothesis: For two pharmacologically similar proteins, the first protein’s docking hit list is similar by SEA to 

the second protein’s set of known binders. 

 

This second approach to protein function prediction differs from the first in only one 

respect: Rather than comparing docking hit lists entirely among themselves, we would compare 

each to sets of “ideal” data; namely, to sets of well-defined, validated, known ligands for each 

reference protein, such as were used in earlier Chapters. Those concerned with the fidelity of 

virtual screening’s binding predictions may find reassurance in this refuge to a “gold standard” 

dataset. Those considering the proposal in terms of information signal may take pause. While we 

would expect this approach to increase the signal-to-noise ratio in an absolute sense, i.e., with 

respect to each target’s true ligands, it can no longer benefit from the presence of consistent error 

in DOCK—and we know that such error exists.** 

Preliminary results comparing docking hit lists to MDDR activity classes reveal strong 

SEA similarities in only a limited number of cases (Figure 4.2). These successes may be where 

DOCK runs achieved greater enrichment for that target’s true ligands. Alternatively, the ligand 

type characteristic of these targets may simply have contained more structural signal—such as 

the presence of an adenosine scaffold, which is a strong topology signal by SEA. This remains 

an open question. 

 

                                                 

** Although the reader may note that we do not know that such error is in fact consistent, and this I concede. 
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Figure 4.2 SEA similarities between docking hit lists and matching MDDR ligand sets 

First attempts at using SEA to quantify the 

similarity between a docking hit list and its 

corresponding MDDR target(s). Docking hit 

lists are arranged horizontally and MDDR 

activity classes vertically. The matrix is clustered 

by SEA similarity, where darker red cells denote 

stronger SEA E-values. Targets with strong 

patterns in their ligands, such as those 

containing adenosine substructures or folates 

are predicted well by this approach. Many others 

are not. 
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4.2 Should similarity negate novelty? 

Chemical similarity as a technique seems shackled to the past. It is powerful because it largely 

circumvents the need for a full understanding of the physical principles of macromolecular 

binding—in fact, one could imagine successful chemical similarity campaigns prosecuted in the 

complete absence of any information about the actual protein target. It is weak for the same 

reason: It does not encode a full understanding. Indeed, how could a similarity method infer a 

truly novel chemical scaffold for a target or disease class? 

A challenge for similarity methods has long been the choice of the “similar-enough” 

cutoff5—set it too low and predictions are too noisy, too high and they are trivial. This puts 

pragmatism and novelty at odds. SEA may offer two advances here; in the first, the similarity 

cutoffs that it uses are more inclusive than would be practical for direct ligand-ligand similarity. 

For Daylight and Tanimoto coefficients, we find 0.5-0.6 Tc to be optimal, compared to the 0.85-

0.9 Tc industry standard.5 The second is more abstract. As a strong SEA E-value denotes only 

the presence of set-wise similarity that would be unlikely by random chance alone, it does not 

require that any particular ligand pair be very similar to another. A weak-but-prevalent similarity 

between sets is sufficient for a strong E-value. This may allow for semi-random recombination 

of recurrent ligand topology patterns, and make the method more robust to minor 

perturbations. This gives us a chance at novelty after all. 

One way to leverage this property systematically would be to focus on strong SEA 

predictions where the very best ligand-ligand match between sets is poor; these cases necessarily 

demonstrate weak yet broad-based similarities. We have not comprehensively attempted this. 

However, the following case study demonstrates how we have used SEA to find a novel ligand 

scaffold. Along with Amanda DeGraw in Dr. Mark Distefano’s group, we are preparing this 
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study for submission. I provide here a narration of the computational side of the story, along 

with some preliminary results from Amanda to illustrate its biological motivations. 
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4.3 Case study: Prediction and evaluation of protein farnesyltransferase 

inhibition by commercial drugs 

Amanda J. DeGraw1, Michael J. Keiser2, Brian K. Shoichet2, Mark D. Distefano1 

(1. Department of Chemistry, University of Minnesota, Minneapolis, MN 55455; 2. Department of 

Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143-2550.) 

I. Abstract 

One of the major obstacles to overcome in pharmaceutical development is predicting compound 

activity in vivo. Often drugs have unexpected effects due to their undesirable interaction with 

other receptors or biochemical pathways. These unexpected activities can be harmful, leading to 

toxicity, or beneficial, suggesting new therapeutic indications. The Similarity Ensemble 

Approach (SEA) is a program that relates proteins based on the set-wise chemical similarity 

among their ligands.6 It can be used to rapidly search large compound databases and to build 

cross-target similarity maps. The emerging maps relate targets in ways that reveal relationships 

one might not recognize based on sequence or structural similarities alone. SEA was used to 

look for potential off-target activity of commercially available drugs. Two families of compounds 

emerged as potential inhibitors of protein farnesyltransferase (PFTase): Desloratadine-based H1 

receptor antagonists and azole antifungals. Here we present the evaluation of two common 

drugs, Loratadine and Miconazole, and their structural analogues for off-target PFTase 

inhibition activity.  
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II. Preliminary results 

One startling result of this work is that even commercially marketed drugs may have unexpected 

but biologically relevant activity at human enzymes—and that these “off-target” activities can be 

predicted computationally. Protein farnesyltransferase (PFTase) catalyzes protein prenylation, 

and has emerged as a cancer target due to the high prevalence of mutated Ras oncogenes in 

human tumors. The Similarity Ensemble Approach (SEA) has previously uncovered novel off-

target drug activity among drugs that target aminergic G-protein coupled receptors (GPCRs),6 

and we ask here how prevalent such off-target activity may be among drugs that target enzymes. 

In this work, we have focused on PFTase, using SEA to compare 746 commercial drugs against 

ligand sets built from the 1,640 known non-peptide PFTase ligands reported in the literature. 

But to do so, we must first ask what affinity constitutes relevant off-target activity at 

human PFTase. Many known inhibitors have 10-20 μM affinity for this enzyme. To be 

comprehensive, we considered three thresholds of PFTase inhibitor (FTI) affinity, each at 

increasingly greater stringency. In the first instance, we considered all those 1,692 FTIs known to 

have 100 μM or better affinity, reasoning that this would allow for the greatest breadth of 

predictions. We then narrowed our focus to include only those 1,423 FTIs with 10 μM or better 

affinity, and finally excluded all but the 1,188 FTIs with affinity ≤ 1 μM. We considered each 

threshold independently, and later extracted each commercial drug’s best SEA match with the 

set of known PFTase ligands at any of the three thresholds. For example, Loratadine matched 

most strongly against the FTIs known to have ≤ 10 μM for their target, with a SEA expectation 

value (E-value) of 1.07×10-81 (Table 4.1). On the other hand, Ubenimex was most similar to the 

≤ 100 μM FTIs, with an E-value of 1.53×10-16 for them (Table 4.1), compared to weaker E-

values of 4.97×10-13 and 7.23×10-9 for its similarity against the ≤ 10 μM and ≤ 1 μM FTIs, 

respectively (Table 4.2). An E-value, much like a p-value, denotes the likelihood that a particular 
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event—in this case the degree of chemical similarity for a commercial drug against the set of 

ligands for protein farnesyltransferase—would have been found that strong or better by random 

chance alone. When applied across all 746 commercial drugs, this analysis found 13 of them 

(comprising 1.9% of the total drugs screened) to have measurable similarity to at least one of the 

three FTI sets (Table 4.1). 

 

Table 4.1 Top SEA predictions of off‐target PFTase binding for commercial drugs 

 Drug Best SEA E-value Best FTI Match 

1 Loratadine 1.07×10-81 10 μM 

2 Rupatadine 1.10×10-49 10 μM 

3 Desloratadine 1.22×10-30 10 μM 

4 Ubenimex 1.53×10-16 100 μM 

5 Azatadine 2.68×10-11 100 μM 

6 Phenylalanine S 1.70×10-4 100 μM 

7 Miconazole 2.00×10-4 100 μM 

8 Diazepam 5.52×10-4 1 μM 

9 Temazepam 1.21×10-3 1 μM 

10 Thymopentin 2.10×10-3 100 μM 

11 Cortisone acetate 6.57×10-3 100 μM 

12 Prednisone 3.81×10-2 100 μM 

 

Drugs in blue have PFTase activity already reported in the literature. Drugs in gray were either peptides 

or unavailable for purchase. 

 

Of the thirteen commercial drugs predicted to have off-target PFTase binding by SEA 

(Table 4.1), eight already had literature precedent or could not be tested (see Methods). Three 

of the five remaining predicted FTIs had low-to-mid micromolar affinity for PFTase in our 

binding assays (Table 4.2). The five commercial drugs comprised three histamine H1 antagonists 

(Loratadine, Desloratadine, and Rupatadine), an antineoplastic (Ubenimex), and an azole 

antifungal (Miconazole). Of these, a subset of the antihistamines bound PFTase, as did the 
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antifungal (Table 4.2). For all but Ubenimex, the 100 μM and 10 μM FTI sets yielded the 

strongest SEA predictions, with little difference in prediction strength between the two affinity 

classes (Table 4.2). This was consistent with their PFTase IC50 values, which we found to be 

between 20-80 μM—with the exception of Desloratadine and Ubenimex, which did not bind 

PFTase up to 100 μM and 200 μM, respectively. 

 

Table 4.2 Predicting and testing PFTase binding against known FTIs  

FTIs by affinity threshold 
 Drug 

1 μM 10 μM 100 μM 
IC50 (μM) 

1 

Loratadine 

 

7.87×10-53 1.07×10-81 1.53×10-81 13.3 ± 1.8 

2 

Rupatadine 

 

5.90×10-41 1.10×10-49 8.15×10-49 76 ± 18 

3 

Desloratadine 

 

3.45×10-27 1.22×10-30 1.83×10-30 > 100 

4 

Ubenimex 

 

7.23×10-9 4.97×10-13 1.53×10-16 > 200 
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5 

Miconazole 

 

8.26×10+2 2.86×10-3 2.00×10-4 18.9 ± 3.6 

6 

Econazole 

 

N/A N/A N/A 23.3 ± 2.0 

 

Listing of SEA E-values denoting the statistical 

significance of each drug’s similarity to known 

protein farnesyltransferase inhibitors (FTIs). 

The closer the E-value approaches to zero, the 

more significant the similarity; the strongest 

prediction for each drug is bold. Each drug was 

compared against three different sets of known 

FTIs. For instance, for the “1 μM FTIs” set, we 

only considered those FTIs known to have 1 

μM affinity or greater for PFTase. For the “10 

μM FTIs” set, we considered all FTIs known to 

have 10 μM or greater affinity for FT, etc. 

Where a drug’s PFTase predictions by SEA are 

very close (within approx a single order of 

magnitude), both E-values are bolded. Note also 

that fluconazole, ketoconazole, clotrimazole, & 

TIPT did not inhibit PFTase up to 200 μM, and 

none of these were predicted to do so by SEA. 

 

III. Discussion 

Whereas much of the previous drug cross-talk predicted by SEA focuses on drugs that target 

aminergic GPCRs,6 Loratadine and Miconazole were predicted to bind PFTase in defiance of 

these traditional target-class boundaries. Loratadine represents one of the first uses of this 

approach to demonstrate that a commercial drug thought to bind only a GPCR also binds an 

enzyme, and Miconazole represents the approach’s first enzyme-enzyme cross-talk prediction in 

commercial drugs. Both of these drugs not only inhibit PFTase in vitro (Table 4.2, assay data not 
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shown), but also disrupt localization of H-Ras to the cell membrane (Figure 4.3), consistent 

with inhibition of PFTase in vivo. 

 

 

Figure 4.3 Claritin and Miconazole as inhibitors of PFTase in vivo 
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Mark Distefano’s group has a MDCK cell line 

that expresses a GFP-H-Ras chimera, which is 

used here to visualize H-Ras processing. H-

Ras’s normal localization to the cell membrane 

is dependent on its prenylation by PFTase. 

These images are preliminary results from 

Amanda DeGraw, demonstrating that (b) 

Loratadine (Claritin) and (c-d) Miconazole 

markedly disrupt normal localization (a) of the 

GFP-H-Ras chimera to the cellular 

membrane—consistent with their inhibition of 

PFTase observed in vitro by Amanda by 

fluorescent and HPLC assay (not shown). Note 

that Miconazole only successfully does so after 

48 hours, and this is accompanied by some cell 

death. 

 

Miconazole (Monistat) and Econazole (Spectazole) are topical imidazole antifungals that 

increase cell membrane permeability in fungi, resulting in leakage of cellular contents. Both of 

these anti-fungals interact with 14-α demethylase, a cytochrome P-450 enzyme necessary to 

convert lanosterol to ergosterol, which is an essential component of cell membranes.7 By SEA, 

we found that Miconazole had weak yet significant similarity to the set of 100 µM PFTase 

inhibitors, with an E-value of 2.00×10-4 (Table 4.1). Upon validating Miconazole’s 19 µM IC50 

for PFTase, we also tested Econazole, which has a highly similar chemical structure, and found it 

to have 23 µM IC50 for this target (Table 4.2). It is intriguing to consider that these interactions 

with protein farnesyltransferase may complement the drugs’ anti-fungal activity, as farnesyl is 

necessary to secure Ras to cell membranes (Figure 4.3.d). This cross-talk may suggest new 

directions for anti-fungal development.  

Loratadine (Claritin) is a second-generation anti-histamine that binds the H1 receptor—a 

cross-membrane target that shares no evolutionary history, functional role, or structural 

similarity with the enzyme PFTase. We found Loratadine to have an exceptionally strong E-

value of 1.07×10-81 for PFTase ligands in the 10 µM – 100 µM range (Table 4.2), and SEA also 

predicted strong scores for two of its analogs, Rupatadine and Desloratadine (1.10×10-49 and 

1.22×10-30, respectively, Table 4.2). These off-target predictions were confirmed for Loratadine 

and Rupatadine, at 13 µM and 76 µM affinities, whereas Desloratadine showed no binding up to 
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100 µM. We were subsequently able to further confirm Loratadine’s role in FTI development.8 

Rupatadine (Rupafin), however, is known to be active only at the histamine H1 and platelet-

activating factor (PAF) receptors, and has shown good safety profiles in prolonged treatment 

periods.9, 10 The presence of such off-target drug activity across GPCR and enzyme class 

boundaries even among well-studied commercial drugs suggests new opportunities for both drug 

development and side-effect management. 
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IV. Methods 

A. Sources of known protein farnesyltransferase ligands 

We used several subsets of the known protein farnesyltransferase (PFTase) inhibitors as our 

reference sets. To do so, we built the set of known ligands corresponding to each major drug 

target in the literature extracted from the World of Molecular BioAcTivity (WOMBAT) 2006.2 

database, as in previous work.11 After removal of duplicates, molecules that we could not 

process, and ligands with affinities worse than 100 μM for their protein targets, this database 

comprised 169,046 molecules annotated into 1,469 target-function sets (e.g., the PFTase inhibitors 

and the PFTase binders of unknown function comprised two distinct sets). 

We then extracted the 1,723 molecules from this collection that were annotated as 

PFTase inhibitors (1,648 molecules) or PFTase binders (75 molecules), and filtered out all 

molecules containing two sequential peptide bonds along a standard peptide backbone, using a 

SMARTS filter in Scitegic PipelinePilot. We further subdivided these PFTase binders 

(collectively termed “FTIs” or “FTI sets” in main text) by their affinities for PFTase, into 100 

μM, 10 μM, and 1 μM FTI sets, containing 1,692 molecules, 1,423 molecules, and 1,188 

molecules, respectively. The remaining 1,467 target-function sets from WOMBAT were not 

considered in this analysis. 

B. Collection of commercial drugs 

We extracted all molecules annotated as marketed drugs in the WOMBAT 2006.2 database, and 

processed them as above (excepting peptide and 100 μM affinity filtering). This yielded 746 

commercial drugs, each of which we screened individually against the FTI sets using SEA. 
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C. Choice of drugs for testing 

We excluded Diazepam and Temazepam because Diazepam’s weak PFTase activity is already 

reported,12 and the steroids because Cortisone’s and Prednisone’s PFTase activities are likewise 

known.13 We could not obtain Azatadine, and did not test Thymopentin or Phenylalanine-S 

because they are peptides. We excluded both the known peptide FTIs and the predicted peptide 

drugs because SEA’s statistical models were built using small-molecule drug chemical similarity 

descriptors. As peptides contain oft-repeated chemical patterns in their backbones—and thus 

strong opportunities for uninformative similarity—they may have the potential to skew small-

molecule similarity models if included. We nonetheless tested one peptide prediction, Ubenimex, 

because it appeared highly similar to a known FTI. 

D. Similarity measures 

We used 1024-bit folded Scitegic ECFP_4 topological fingerprints as previously described.11 

Although we later tested 2048-bit Daylight6, 11 fingerprints, these resulted in a narrower and 

weaker subset of the PFTase predictions found via ECFP_4, and are not reported here. As 

before, we used Tanimoto coefficients to calculate pair-wise similarity between fingerprints.6, 11 

E. Predictions of PFTase binding using the Similarity Ensemble Approach (SEA) 

We ran SEA as previously described.6 The query collection consisted of the 746 commercial 

drugs, each drug as its own “set” of one molecule. The reference collection comprised the three 

overlapping sets of PFTase ligands (“FTIs”), binned into each set at (a) 1 μM, (b) 10 μM, or (c) 

100 μM affinity thresholds. A FTI set with a weaker affinity threshold, such as 100 μM, 

comprised an all-inclusive superset of those sets at stronger affinity threshold (both the 1 μM 

and 10 μM sets, in this example). After each drug was compared independently against each of 
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the three FTI sets by SEA, their E-values were compared (e.g., see Table 4.2), and all 

commercial drugs with measurable best-match E-values across sets were reported (Table 4.1). 
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4.4 The chemical SEA analytical 

Substantial opportunity yet exists for improvement of SEA’s theoretical underpinnings. For 

instance, its current statistical model is entirely empirical. To define the random background of 

chemical similarity for any given molecule collection, SEA samples the distribution explicitly. 

While this is eminently tractable, thanks to excellent bitwise fingerprint-comparison libraries 

adapted years ago by Michael Mysinger, it also begs the question, what are the analytical 

principles underlying these distributions? Indeed, certain patterns always occur in these SEA 

models, regardless of choice of molecule collection, molecular representation, or comparison 

coefficient. I endeavor here to highlight some of these patterns and my thoughts as to their 

implications. I do not yet know why they occur—but perhaps you, gentle reader, may be more 

fortunate. 

I. Background distribution shapes and a Tc50 

SEA corrects for the “uninformative” random chemical similarity in any target-target or drug-

target chemical similarity comparison. It does so with respect to two parameters. For the first, 

recall that we calculate similarity with respect to a particular molecule collection such as the 

MDDR or WOMBAT (see Chapter 2 for descriptions of these databases). This collection 

defines the “chemical space” of our comparison, and is roughly analogous to the “non 

redundant” sequence collection in BLAST. The second parameter is our choice of Tanimoto 

coefficient threshold above which ligand-ligand scores are included in the “raw score” (see 

Appendix B for details). 

One way to choose a threshold is to determine how well the distribution of z-scores that 

results from it resembles an Extreme Value distribution (desired), as compared to how well it 
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resembles a Normal distribution (undesired). For instance, see Figure A.1.5 in Appendix A. 

Consider the goodness-of-fit chi-square values for the EVD in particular (red); it worsens at a 

threshold choice of 0.2 Tc, then undergoes slow improvement until it bottoms out near 0.55 Tc. 

We consequently chose a 0.56 Tc cutoff, based solely on the argument that the best fit to an 

EVD was ideal.†† Oddly, this general pattern for an EVD—initially poor fit, bump around 0.2 

Tc, improvement thereafter followed by slow worsening—is present in all such SEA goodness-

of-fit plots I have ever made. I do not think it is merely a property of the molecular fingerprint 

or comparison coefficient; I have encountered it across many fingerprints, and also with the 

Dice coefficient instead of Tanimoto (data not shown). 

What if we leave aside the distribution shapes, and instead consider only the simple fits 

to means and standard deviations of random chemical similarity (Figure 4.4.a)? Intriguingly, 

these fit parameters follow familiar patterns, and this is sensible because these fits underlie the z-

score distributions. Of particular note is a SEA threshold choice of 0.2 Tc, where both mean and 

standard deviation coefficients undergo a substantial shift (Figure 4.4.a). This correlates with 

the earlier observation that most random ligand-ligand pairs score in the 0.2 Tc region (as 

mentioned in the Introduction). Compare also the shape of either standard deviation coefficient 

curve (cyan or blue line) to the goodness-of-fit EVD distribution described above (Figure A.1.5, 

red line). These curves all experience substantial shifts in the 0.2 Tc region. 

 

                                                 

†† See following subsection (4.4.II) for subsequent empirical results consistent with this hypothesis. 
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Figure 4.4 Patterns in random background fits 
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(a) Summary plot of optimal coefficients and 

exponents for random background model fits, 

using Daylight fingerprints and Tanimoto 

coefficients. If the mean (“mu,” left y-axis) 

random chemical similarity is fit to the simple 

formula y = m × x + b, and the standard 

deviation (“sig,” right y-axis) to y = m × x e + b, 

then m is the coefficient (“coeff”) and e is the 

exponent (“exp”). See Appendix B for a 

description of background model calculation. 

The fits are shown for two different molecule 

collections, the MDDR (M) and WOMBAT 

(W). See Chapter 2 for descriptions of these 

collections. (b) Excerpt view of average random 

background raw scores for MDDR only, at 

product-set-size = 1 (red, left y-axis) and 

product-set-size = 100 (green, right y-axis). As 

the product of set sizes grows, the absolute 

value of the random expected chemical 

similarity grows too, while the proportionate 

standard deviations shrink. 

 

Likewise, the raw scores over which the background fits are defined also demonstrate 

the most interesting behavior at 0.2 Tc. In a striking shift visually analogous to an IC50 curve 

(Figure 4.4.b), average random chemical similarity scores transition from a stable baseline when 

Tc thresholds are below 0.2 Tc to a new one that approaches zero asymptotically. Again, 0.2 Tc 

is the inflection point of this shift; we could consider it to define a “Tc50” for this combination 

of molecule collection, representation, and comparison coefficient.‡‡ What would such a Tc50 tell 

us? Is it merely representative of the most over-represented scores for random molecule 

comparisons? But then why is it so consistent (Tc50 ≈ 0.2 Tc)? 

II. How well does background model theory correlate with empirical success? 

As alluded to in the previous subsection, SEA’s background model depends essentially on only 

two parameters: (1) the choice of molecular database to represent “chemical space,” and (2) the 

choice of Tanimoto coefficient (Tc) threshold, above which pair-wise scores contribute to the 

uncorrected “raw score.” In practice, we choose our Tc threshold to achieve the best fit of the 

                                                 

‡‡ Although the x-axis scale is linear, not logarithmic.  
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random chemical background to an EVD (Chapter 1, Appendix B). While conceptually 

satisfying, however, does this approach actually work in practice? 

The answer, in my experience, is yes. In extensive retrospective leave-one-out and k-fold 

cross-fold validation experiments across large datasets such as MDDR or WOMBAT, we find 

that the Tc threshold chosen solely by SEA’s ability to correctly assign ligands to their annotated target sets  

converges on the same threshold as that chosen by the background distribution’s best fit to an 

Extreme Value distribution (Figure 4.5). This seems a resounding validation of the random 

background model theory—the threshold derived from theory alone independently converges 

with that derived from empirical performance tests. 

 

 

Figure 4.5 Dependence of SEA’s ability to recapitulate known ligand annotations on the 

choice of raw score Tc threshold 
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Summary of experiment wherein a full random 

background model is built for SEA at each of 

the Tc thresholds shown, and SEA is subjected 

to rigorous k-fold validation testing on the 

MDDR using that background mode. In the k-

fold validation process, each MDDR activity 

class is randomly broken up into k slices, the 

first of which are fused into a single test set and 

the remainder of which become the training set. 

Each molecule in the test set is compared 

against the training set and also against all other 

244 MDDR “decoy” sets. The sensitivity and 

specificity rates for these SEA predictions (e.g., 

how often did it assign the molecule back to its 

correct activity class) are condensed into a single 

receiver-operating characteristic (ROC) area-

under-the-curve score (AUC). For this AUC, a 

score of 1.0 means all predictions were perfect, 

and 0.0 means none we perfect; a score of 0.5 

AUC is equivalent to a disgruntled monkey 

randomly choosing targets with its eyes closed. 

Each such experiment is then repeated in full 

for each of the k - 1 other slices for that 

annotation, and each AUC stored. This is then 

repeated over all 245 activity classes in the 

MDDR, for a total of 245 × k AUCs calculated 

per Tc threshold on the x-axis. In this plot, k = 10. 

Each data point thus represents the average and 

standard deviation of approximately 2,500 

retrospective AUCs, comprised of > 65,000 

SEA predictions, or more than 3 million 

predictions in total. 

 

Note that this experiment was run using ECFP4 

instead of Daylight fingerprints, and thus the 

optimal threshold choice (higher AUC) is closer 

to 0.44 Tc than the 0.56 Tc optimal threshold of 

Figure A.1.5, which used Daylight. 

 

One future direction arising from this may be to determine and prove how optimization 

for EVD background distributions results in this better discrimination ability. Secondly, as we 

have two objective means of determining whether we are setting our parameters appropriately—

namely, the theoretical goodness-of-fits and the quantifiable retrospective testing—could we 

benefit from introducing and evaluating additional parameters into the SEA background 

models? After all, it is not strictly true to say SEA’s background depends only on the two 

parameters already mentioned; rather, certain “parameters” are set implicitly by design decisions 

we have made in SEA’s development. The description and early exploration of one such 

reconsidered design decision follows below. 
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III. How should we weight Tanimoto coefficients? 

In all prior uses of SEA described in this thesis or published elsewhere, we have made the 

implicit decision to weight each Tanimoto coefficient linearly. In each raw score, then, a ligand-

ligand score of 0.25 Tc is worth half of one that is worth 0.5 Tc. But is this sensible? Or should 

we give higher scores extra emphasis? One way to do this would be to consider raising the 

Tanimoto coefficients to some power, such as squaring them, so that higher scores would count 

for more. In fact, if we could find the right formula to do this, perhaps we could dispense with 

step-function Tc thresholds entirely; after all, why should a Daylight ligand-ligand pair-wise 

score of 0.56 Tc count towards the raw score in full, when a 0.54 Tc counts not at all? Of 

course, it is not clear what this formula, or weighting function, should be—and this remains a 

challenge. 

One simple approach to test this hypothesis is to test it with several simple functions 

that make some intuitive sense. To this end, we tested a power-based Tanimoto weighting 

function; i.e., “weighted Tc” = Tcx, where 2 ≤ x ≤ 6. Results for 4 ≤ x ≤ 6 background model 

fits (Figure 4.6.a) and their retrospective cross-fold testing (Figure 4.6.b) are shown here. 

Again, theoretical and empirical results reliably converge; both find x = 4.5 to be the most 

optimal choice of power-weighting (compared to the implicit default of x = 1, when Tc 

weighting is linear). This may imply that the choice of Tanimoto weighting merits further 

investigation.§§ 

 

                                                 

§§ Caveat lector—any attempt to add new parameters to an existing model must ultimately take the data’s existing 

degrees of freedom into account, but I do not fully address this here. 
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Figure 4.6 Evaluation of power‐weighting in SEA raw scores 
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(a) SEA random chemical background 

distributions are calculated against the MDDR, 

using Daylight fingerprints, at four different 

choices of power weighting. E.g., “evd ^ 4” is 

the goodness-of-fit for an extreme value 

distribution, where each Tc score is first raised 

to the 4th power before being summed into the 

raw score. Note that power = 4.5 (i.e., Tc4.5) 

yields the best (lowest chi-square) EVD fit. (b) 

Empirical k-fold testing (k = 3) of the same Tc-

power choices, again confirming that the Tc4.5 

weighting is optimal for Daylight, as measured 

by its high average AUC. The red dots show 

several individual datapoints for AUCs 

automatically calculated to sample this 4.5-5.0 

power region in greater detail. 
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4.5 Prediction is very hard, especially about the future 

With a nod to Yogi Berra, this closing section comprises a brief overview of several immediate 

challenges and opportunities that remain, to my mind, incompletely addressed. It is likely that 

SEA’s most intriguing implications and future developments will be precisely those that I do not 

expect, and hence have found no place in these pages—but I present the following directions 

nonetheless. 

I. Weighted set membership and Ki 

In a SEA set, all ligands are given equal importance. But clearly this is not the case; perhaps we 

could weight ligand-ligand scores by the logs of their Ki’s. But then what is the appropriate 

random background? 

II. Molecule representations 

SEA typically uses standard fingerprints (Daylight or ECFP4) and similarity coefficients 

(Tanimoto, and a few tests of Dice coefficients). Jérôme Hert has compared the performance of 

several such fingerprints for SEA,11 but many more molecular representations remain untested. 

For instance, what of a fingerprint that encodes a DOCK pose? 

III. Toxicity, transport, and metabolism 

We have used SEA to uncover potential side effect mechanisms, where these are mediated by 

particular protein targets, in Chapters 1 and 2. But can we use it to identify chemical topology 

patterns for toxicities? Or would these be better addressed by explicit pharmacophores? What of 

a ligand’s susceptibility to active transport, when this may be subject to general physical 
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properties? Additionally, could we use SEA to determine a drug’s susceptibility to enzymatic 

metabolism? 

IV. A foolish consistency 

Not all ligand sets have the same self-similarity by SEA; some have greater internal 

“consistency.” Could we deconvolute mere historical bias, such as that from medicinal chemistry 

optimization, from fundamental conclusions about a protein target’s binding patterns? Would 

greater consistency also reflect greater success in ligand prediction, in a docking hit list for 

instance? Previous efforts in this direction have failed; perhaps indeed “A foolish consistency is 

the hobgoblin of little minds” (Ralph Waldo Emerson). 

V. Targets of phenotypic screens 

Can we use SEA to identify the targets of promising molecules identified in phenotypic screens? 

Early results suggest so. How applicable are these successes, however, to the broad scale, and to 

what extent could we automate the process? 

VI. Sequence and structure and SEA 

We often highlight the difference between SEA’s ability to link protein targets by a pharmacological 

logic compared to the evolutionary logic that motivates protein sequence comparisons. Yet 

clearly these forms of orthogonal information could be combined to mutual benefit. Where the 

approaches disagree, is it because one method achieves an informative discrimination or rather 

because it fails to make a true association that the other finds? How could we combine them? 
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Appendix A:  

Supplementary figures and tables 

 

A.1 Supplementary material for Chapter 1 

I. Supplementary methods 

I.A Transformation of Raw scores to Z‐scores 

A raw score was transformed into a z-score by taking its difference to the raw score expected at 

random for that combination of set sizes and dividing the result by the random standard 

deviation: 

 

Given, 

 

 rs(S1,S2) = raw score of set S1 vs. set S2 

 n(S1,S2) = size(S1) × size(S2) 

 µ(x)  ≈ (4.24×10-4) x  [Expected raw score mean, Supp. Table 5] 

 σ(x)  ≈ (4.49×10-3) x 0.665 [Expected raw score std. dev., Supp. Table 5] 

 

Then, 

 

z = (rs(S1,S2) - µ(n(S1,S2))) / σ(n(S1,S2)) 

 

For the comparison of the sets Dihydrofolate reductase inhibitor (DHFR) vs. thymidylate 

synthase inhibitor (TS): 
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 rs(SDHFR,STS) = 772.25 

 n(SDHFR,STS) = 216 × 253 = 54,648 

 z = (772.3-12.241)/6.349 ≈ 119 

I.B Transformation of Z‐scores to E‐values 

The background distribution of random-set raw scores of MDDR compounds conformed to an 

extreme value distribution (Supplementary Figure 1, see also Methods). Given this 

observation, the probability of obtaining the same or better raw score by random chance alone 

can be calculated by:9 

 

P(Z > z) = 1 – exp(-e-zπ/sqrt(6)–Г’(1)) 

 

Where Г’(1) is the Euler-Mascheroni constant (≈ 0.577215665). 

Then it follows that: 

 

E(z) = P(z)Ndb 

 

Where Ndb is the number of set comparisons made in the database search. 

Note, however, that for Z-scores > 28, P(Z > z) exceeds the numerical precision of most 

computing languages (e.g., Python), and the following numerical approximation following a 

Taylor expansion may be used instead:10 

 

x = -exp(-zπ / sqrt(6) – Г’(1)) 

                                                 

9 Pearson, W.R. Empirical statistical estimates for sequence similarity searches. J Mol Biol 276, 71-84 (1998). 

10 Valiant, P. Personal communication. 2004. 
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P(Z > z) = -(x + (x2)/2 + (x3)/6) 

 

For the comparison of the sets Dihydrofolate reductase inhibitor (DHFR) vs. thymidylate 

synthase inhibitor (TS), z ≈ 119, so: 

 

P(Z > 119) ≈ 2.92×10-67 

E(119) = (2.92×10-67)(2462) ≈ 1.77×10-62 

 

The astute reader will note that this value does not perfectly match that reported in the Results 

for this comparison (1.11×10-61) as the calculations in this example use fewer significant digits 

and the approximation error has accumulated. 
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II. Supplementary figures 

A)      B) 

 
C) 

 
 

Figure A.1.1 Statistical model fits for MDDR 

Plots and fits for (a) mean, (b) standard 

deviation, and (c) z-score distribution of the 

random background statistical model calculated 

from the filtered MDDR database. N = 1,421 

for all plots. 
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Figure A.1.2 Set recovery in database search after TC‐chemotype filtering 

We were interested to determine the effect of 

redundancy in medicinal chemistry and drug 

databases on SEA. Compounds from the 246 

MDDR activity classes were placed in a 

randomly-ordered list. Starting with the first 

compound, any other within 0.90 Tc was 

removed. This procedure was also repeated at a 

more stringent 0.85 Tc radius. These procedures 

were repeated three times at each radius, and the 

resulting collections of filtered sets were 

compared and plotted. The ROC plot measures 

the ability of the scoring technique to recover 

the correct match of the query activity class to 

itself in the reference collection, over a sliding 

threshold. Note that the x-axis is displayed on 

the log scale, as no visual differentiation of the 

curves was otherwise possible. The comparison 

of the filtered collection versus the unfiltered 

MDDR also yields a slight performance increase 

(data not shown). We conclude that Tc-based 

chemotype filtering slightly improves MDDR 

activity class recall and thus SEA does not 

depend on redundancy, as one would expect 

decreased performance with the removal of 

redundant compounds, were this the case. 
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Figure A.1.3 Set recovery in database search with progressive random removal of 

compounds from query set 

As an additional check on the dependence of 

SEA on redundancy or particular component 

compounds, a second experiment was 

performed, in which increasingly large 

percentages of ligand sets were randomly 

removed. In this procedure, each set had a 

random 10% of its ligands for the first run, a 

different random 20% for the next, and so on. 

These depleted set collections were compared 

against the unmodified MDDR set collection (as 

sets with 90% of compounds removed, for 

instance, became prohibitively small to compare 

against each other statistically). The data for one 

such representative run, from 10% removed to 

90% removed is plotted as a ROC curve with a 

log-scale x-axis, showing no appreciable 

performance decrease, and this was the case 

with all runs computed (data not shown). We 

conclude that SEA signal is robust to random 

and extensive removal of individual compounds 

from the sets. 
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Figure A.1.4 Set recovery in database search over 246 MDDR classes 

Each MDDR activity class was queried against 

all 246 activity classes in the collection, and the 

results ranked by score for each of four 

methods: SEA E-values (red), raw SEA scores 

(green), mean pair-wise similarity (blue), and a 

simple sum of Tanimoto coefficients between 

sets (violet). The ROC plot measures the ability 

of the scoring technique to recover the correct 

match of the query activity class to itself in the 

reference collection, over a sliding threshold. 
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Figure A.1.5 Choice of threshold parameter 

For each possible Tc threshold from 0 to 0.99, 

the best fit of the background Z-score 

distribution (as in Supplementary Figure 1c) 

to a normal distribution (green) and to an 

extreme value (red) distribution was calculated.  

The goodness-of-fit criterion used was a 

normalized chi-square measure, as described in 

Supplementary Table 5. Any threshold above 

0.35 Tc favors an EVD over a normal 

distribution, and this appears to be an inflection 

point for both distributions. The 0.55-0.65 Tc 

threshold region achieves the best EVD fits, 

with a 0.57 Tc threshold being optimal. 

 



 160 

 

Figure A.1.6 PSI‐BLAST heat map of MDDR activity class target protein sequences 

compared against themselves 

Matrix of sequence similarity for 194 MDDR 

activity classes. The 194 classes form the x- and 

y-axis, and any given cell is colored by the 

natural log of the PSI-BLAST E-value of the 

comparison between the two relevant activity 

classes. White represents weak or no similarity 

(E-value of 1×105 and above), and dark blue 

high similarity (E-value of 1×10-50 or better). 
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Figure A.1.7 SEA heat map of MDDR activity classes compared against themselves 

This heat map is an alternate representation of 

the same SEA E-value matrix data used to build 

the naïve network graph and similarity maps of 

Figure 2. The 246 MDDR activity classes under 

consideration form the x- and y-axis, and any 

given cell is colored by the natural log of the 

SEA E-value of the comparison between the 

two relevant activity classes. White represents 

weak or no similarity (E-value of 1×105 and 

above), and dark blue high similarity (E-value of 

1×10-50 or better). This heat map was subtracted 

from that in Supplementary Figure 6 to create 

Figure 3, as described in Methods. 
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III. Supplementary tables 

 

Table A.1.1 Expanded statistics for Table 1.1 and Table 1.2 

Qu-

ery 

Ra-

nk 
Size 

Similar 

Activity 

Classes 

E-value MPS TC Sum 
TC> 

0.85 

TC

1.0 

Min 

TC 

Max 

TC 

1 569 
AMPA Receptor 

Antagonist 
2.45×10-219 0.236 76429.8 1833 577 0.067 1.00 

2 75 

Kainic Acid 

Receptor 

Antagonist 

5.28×10-80 0.222 9473.3 210 74 0.012 1.00 

3 1485 

NMDA 

Receptor 

Antagonist 

3.08×10-63 0.195 164377.0 729 181 0.004 1.00 

4 22 

Anaphylatoxin 

Receptor 

Antagonist 

3.81×10-4 0.188 2355.4 0 0 0.080 0.70 

5 130 mu Agonist 1.69×10-3 0.190 14075.3 0 0 0.067 0.83 

A
M

P
A
 R

e
c
e
p
to

r 
A
n
ta

g
o
n
is

t 

6 99 

Ribonucleotide 

Reductase 

Inhibitor 

1.00×10-1 0.166 9330.1 0 0 0.017 0.73 

1 98 Carbacephem 0* 0.573 5504.9 518 106 0.260 1.00 

2 1614 Cephalosporin 1.11×10-222 0.390 61624.0 155 14 0.098 1.00 

3 35 Isocephem 2.30×10-17 0.413 1416.2 0 0 0.258 0.64 

4 257 Penem 2.43×10-4 0.286 7192.3 0 0 0.191 0.68 

5 13 Oxacephem 8.38×10-3 0.352 448.5 0 0 0.262 0.69 

6 39 
Lactam (beta) 

Antibiotic 
2.62×10-2 0.306 1168.1 0 0 0.159 0.62 

7 223 

Lactamase 

(beta) 

Inhibitor 

6.58×10-1 0.248 5420.7 1 1 0.064 1.00 

C
a
rb

a
c
e
p
h
e
m

 

8 116 
Monocyclic 

beta-Lactam 
3.18×102 0.370 4203.3 0 0 0.144 0.61 

1 50 Androgen 0* 0.668 1670.2 514 138 0.083 1.00 

2 577 
Aromatase 

Inhibitor 
6.87×10-307 0.256 7375.7 30 0 0.025 0.88 

3 43 
Antiglucocortic

oid 
2.30×10-102 0.255 548.2 11 0 0.036 0.89 A

n
d
ro

g
e
n
 

4 6 Cytochrome 4.01×10-93 0.229 68.7 20 0 0.091 0.92 
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Qu-

ery 

Ra-

nk 
Size 

Similar 

Activity 

Classes 

E-value MPS TC Sum 
TC> 

0.85 

TC

1.0 

Min 

TC 

Max 

TC 

P450 Oxidase 

Inhibitor 

5 179 Estrogen 9.97×10-89 0.207 1852.5 24 0 0.025 0.91 

6 86 Antiestrogen 2.18×10-76 0.208 895.5 0 0 0.033 0.84 

7 936 

Steroid 

(5alpha) 

Reductase 

Inhibitor 

1.58×10-72 0.258 12094.3 0 0 0.024 0.80 

8 103 Antiandrogen 1.14×10-70 0.157 808.4 24 0 0.033 0.99 

9 86 

17alpha-

Hydroxylase/C

17-20 Lyase 

Inhibitor 

7.88×10-66 0.162 697.3 0 0 0.015 0.76 

10 164 
Progesterone 

Antagonist 
3.26×10-44 0.321 2634.2 11 0 0.066 0.89 

11 62 Prostaglandin 1.93×10-38 0.310 961.0 0 0 0.078 0.75 

1 111 
5 HT1F 

Agonist 
6.72×10-187 0.376 4627.1 257 113 0.139 1.00 

2 621 
5 HT1D 

Agonist 
8.08×10-38 0.317 21841.9 40 0 0.126 0.95 

3 51 
5 HT1B 

Agonist 
2.96×10-10 0.310 1756.2 5 0 0.160 0.95 

4 65 5 HT1 Agonist 3.03×10-8 0.301 2175.2 0 0 0.138 0.81 

5 670 

Dopamine 

(D4) 

Antagonist 

1.90×10-6 0.266 19777.1 0 0 0.108 0.79 

6 565 
5 HT1A 

Antagonist 
8.64×10-1 0.283 17733.1 0 0 0.086 0.71 

7 33 
5 HT2 

Antagonist 
8.78×10-1 0.259 949.3 0 0 0.136 0.65 

5
 H

T
1
F
 A

g
o
n
is

t 

8 705 
5 HT2A 

Antagonist 
1.47 0.275 21529.6 0 0 0.089 0.73 

1 8 

Adrenergic 

(beta1) 

Agonist 

3.85×10-241 0.621 39.7 28 10 0.260 1.00 

2 305 
Adrenergic 

(beta) Agonist 
9.50×10-34 0.311 759.9 0 0 0.165 0.81 

A
d
re

n
e
rg

ic
 (

b
e
ta

1
) 

A
g
o
n
is

t 

3 67 

Adrenergic 

(beta1) 

Blocker 

4.99×10-32 0.360 193.0 0 0 0.126 0.64 
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Qu-

ery 

Ra-

nk 
Size 

Similar 

Activity 

Classes 

E-value MPS TC Sum 
TC> 

0.85 

TC

1.0 

Min 

TC 

Max 

TC 

4 563 

Adrenoceptor 

(beta3) 

Agonist 

2.98×10-24 0.304 1369.3 0 0 0.125 0.72 

5 212 
Adrenergic 

(beta) Blocker 
3.96×10-13 0.159 16.5 0 0 0.113 0.78 

6 13 
Adrenergic, 

Ophthalmic 
2.77×10-7 0.247 25.7 0 0 0.134 0.70 

7 518 

Adrenergic 

(alpha1) 

Blocker 

6.84×10-5 0.239 990.0 0 0 0.121 0.73 

8 124 
Melatonin 

Agonist 
1.04×10-1 0.322 319.1 0 0 0.184 0.63 

9 76 
Dopamine 

(D1) Agonist 
2.18×10-1 0.258 157.2 0 0 0.117 0.71 

10 102 

Adrenergic 

(alpha2) 

Agonist 

4.72×10-1 0.191 156.1 0 0 0.086 0.66 

1 216 

Dihydrofolate 

Reductase 

Inhibitor 

7.07×10-182 0.340 15898.7 736 218 0.104 1.00 

2 53 

Glycinamide 

Ribonucleotide 

Formyltransfer

ase Inhibitor 

3.97×10-100 0.330 3787.1 36 16 0.110 1.00 

3 6 

Folylpolygluta

mate 

Synthetase 

Inhibitor  

4.59×10-62 0.372 482.5 36 6 0.140 1.00 

D
ih

y
d
ro

fo
la

te
 R

e
d
u
c
ta

s
e
 I

n
h
ib

it
o
r 

4 253 

Thymidylate 

Synthase 

Inhibitor  

1.11×10-61 0.309 16864.7 108 30 0.089 1.00 

 

Note on E-values vs. MPS: 

It is often the case that MPS scores decrease 

with SEA E-values in the table above. However, 

MPS does not result in the same ranking as 

SEA. Consider the top six “AMPA Receptor 

Antagonist” hits by E-value (above) as opposed 

to those by MPS (see following example table): 

 

Ra

nk 

Siz

e 

Activity Class E-value MPS TC Sum Min TC TC>

0.85 

TC1.0 Max TC 
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1 6 Folylpolyglutamate 

Synthetase Inhibitor 

** 0.237 808.9 0.131 0 0 0.39 

2 569 AMPA Receptor 

Antagonist 

2.45×10-219 0.236 76429.8 0.067 183

3 

577 1.00 

3 25 LHRH Agonist 6.05×104 0.231 3291.1 0.092 0 0 0.68 

4 18 Anticholinergic, 

Ophthalmic 

** 0.227 2328.3 0.133 0 0 0.46 

5 33 Somatostatin Analog 3.33×104 0.227 4256.2 0.114 0 0 0.61 

6 253 Thymidylate 

Synthetase Inhibitor 

** 0.227 32627.0 0.077 0 0 0.50 

 

MPS incorrectly ranks the antifolate 

Folylpolyglutamate Synthetase Inhibitor class 

above the actual query, and fails to rank the 

highly-related Kainic Acid Receptor Antagonist 

and NMDA Receptor Antagonist classes 

(AMPA, KA, and NMDA are related glutamate 

receptors) within the top hits. As is evident 

from this example, MPS scores do not identify 

critical high-similarity subsets between two sets, 

and can rank sets that are completely unrelated 

in biological function to the query more highly 

than the query itself. MPS scores often decrease 

with SEA scores, but they can be a poor filter as 

they do not enrich for similarity of similar sub-

clusters across sets. 

 

** No E-value calculated, as raw score 

was not >0. These sets did not share a single 

ligand pair above the 0.57 TC raw score 

threshold. 
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Table A.1.2 MDDR unrelated orphans 

Activity Class Self E-value 

Acetyl-CoA Thiolase Inhibitor 0 

ATP Citrate Lyase Inhibitor 3.76×10-90 

Carbonic Anhydrase Inhibitor 5.98×10-318 

COMT Inhibitor 2.59×10-171 

CRF Antagonist 2.93×10-121 

GABA B Agonist 6.08×10-174 

GABA-B Receptor Antagonist 9.80×10-153 

Glucose-6-phosphate Translocase Inhibitor 4.56×10-237 

Glucuronidase (beta) Inhibitor 9.29×10-95 

Guanylate Cyclase Activator 0 

Inosine Monophosphate Dehydrogenase Inhibitor 8.70×10-250 

mGlu1 Antagonist 1.22×10-129 

Muscarinic (M1) Agonist 1.70×10-151 

Nitric Oxide Synthase Inhibitor 4.64×10-105 

Phosphatidylinositol Kinase Inhibitor 1.31×10-251 

Poly(ADP-ribose)synthethase Inhibitor 3.44×10-111 

Thyroid Inhibitor 1.19×10-213 

Uridine Phosphorylase Inhibitor 3.31×10-199 

 

The above table lists all specific MDDR activity classes with best E-values > 1.0 to any other class. 
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Table A.1.3 Rankings of the correct MDDR activity class for each PubChem MeSH 
pharmacological action set by SEA and by MPS 

 Rank of top matching MDDR activity class 

 
MeSH Pharmacological Action 

SEA MPS 

1 Adrenergic α-Antagonists 1 10 

2 Adrenergic β-Agonists 1 1 

3 Adrenergic β-Antagonists 1 2 

4 Androgen Antagonists 3 13 

5 Androgens 1 1 

6 Aromatase Inhibitors 2 2 

7 Carbonic Anhydrase Inhibitors 1 1 

8 Cholinergic Antagonists 1 1 

9 Cholinesterase Inhibitors 1 8 

10 Cyclooxygenase Inhibitors 2 57 

11 Dopamine Agonists 1 5 

12 Estrogen Antagonists 1 1 

13 Estrogens 1 1 

14 Glucocorticoids 1 1 

15 Histamine H2 Antagonists 1 1 

16 HIV Protease Inhibitors 1 6 

17 Lipoxygenase Inhibitors 1 42 

18 Muscarinic Antagonists 2 1 

19 Nicotinic Agonists 1 6 

20 Phosphodiesterase Inhibitors 1 4 

21 Protease Inhibitors 4 11 

22 Reverse Transcriptase Inhibitors 2 18 

23 Trypsin Inhibitors 1 10 

 Average 1.4 8.2 
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Table A.1.4 Loperamide and emetine functional assay data 

pEC50±SEM (EC50, nM) 

N Receptor Agonist 
Predicted 

antagonist 
Vehicle + 

agonist 

Predicted 

antagonist + 

agonist 

Fold 

change 

in 

EC50 

Two-

tail T-

test 

(<0.05) 

3 NK2 

[β-Ala8]-

Neurokinin A 

Fragment 4-

10 

Loperamide 

HCl 

9.24±0.05 

(0.57) 

8.37±0.05 

(4.3) 
7.5 0.0002 

3 alpha2a clonidine Emetine 
8.16±0.09 

(6.9) 

7.14±0.11 

(73) 
10.6 0.0019 

3 alpha2c clonidine Emetine 
7.40±0.09 

(40) 

5.96±0.11 

(1094) 
27.5 0.0005 
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Table A.1.5 SEA statistical model fits 

 

A) Raw score fits at threshold Tc=0.57 (N = 1,421). 

Raw Score Fits Value Pearson r2 

Mean coefficient 4.24×10-4 

Mean exponent 1 (const.) 
0.9998 

Std. dev. coefficient 4.49×10-3 

Std. dev. exponent 6.65×10-1 
0.9882 

 

B) Distribution fits of background Z-scores at threshold Tc=0.57 (N = 1,421). 

Distribution Normalized Chi-Square* Pearson r2 

Extreme value 6.89×10-3 0.9969 

Normal 5.77×10-2 0.9830 

 

* Normalized chi-square (XN) computed as: 

 XN = SUM { (observed – expected)2 / (observed + expected) } 

 

C) EVD and Normal distribution parameters at threshold 0.57 Tc. 

Distribution Loc Scale Height 

Extreme value -2.88×10-1 9.45×10-1 1.69×10-2 

Normal -4.50×10-2 1.00 1.63×10-2 
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A.2 Supplementary material for Chapter 2 

I. Supplementary figures 
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Radioligand displacement assays 
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Radioligand displacement assays 
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Radioligand displacement assays 
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Radioligand displacement assays 

AA 

SERT 

 

AB 

NET 

 

AC 

Dopamine D4 Receptor 

 

AD 

κ Opioid Receptor 

 

Figure A.2.1 Testing off‐target activities 

Testing off-target activities via drug-target 

binding assays. (A) Sedalande and Dimetholizine 

at 5-HT1A, (B) Sedalande at 5-HT1D, (C) 

Motilium at α1A, (D) Sedalande at α1B, (E) 

Dimetholizine at α1B, (F) Motilium at α1B, (G) 

Sedalande and Dimetholizine at α1D, (H), 

Motilium at α1D, (I) Xenazine at α2A, (J) 

Xenazine at α2C, (K) Prantal at δ-opioid, (L) 

Dimetholizine at D2, (M) Doralese at D4, (N) 

Sedalande and Xenazine at α1A, (O) Kalgut at β3, 

(P) Kalgut at β1, (Q) Kalgut at β2, (R) 

Dimetholizine at α1A, (S) Paxil at β1, and (T) 

Paxil at β2, (U) Prozac at β1, (V) Prozac at β2, 

(W) Fabahistin at 5-HT5A, (X) Rescriptor at H4, 

(Y) Vadilex at μ-opioid, (Z) Vadilex at SERT, 

(AA) RO-25-6981 at SERT, (AB) RO-25-6981 

at NET, (AC) RO-25-6981 at D4, (AD) RO-25-

6981 at κ-opioid. 

 

Drug name synonyms for Figure A.2.1: 

Trade  Generic name PDSP ID 

- Dimetholizine 9363 

DMT N,N-dimethyltryptamine - 

Doralese Indoramin - 

Fabahistin Mebhydrolin - 

Kalgut Denopamine 10711 

Motilium Domperidone 9474 

Paxil Paroxetine - 

Prantal Diphemanil 10571 

Prozac Fluoxetine - 

Rescriptor Delavirdine - 

- RO-25-6981 9421 

Sedalande Fluanisone 9414 

Vadilex Ifenprodil - 

Xenazine Tetrabenazine 9415 

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4
0

20

40

60

80

100

120

140
Salvinorin A

Ki = 0.9 nM

RO-25-6981

Ki = 3,128 nM

log [drug]

[3
H

]U
6
9
5
9
3
 b

in
d

in
g

(%
 r

e
m

a
in

in
g

)

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4
0

20

40

60

80

100

120
Chlorpromazine

Ki = 77 nM

9421

Ki = 117 nM

log [drug]

[3
H

]N
-m

e
th

y
ls

p
ip

e
ro

n
e

b
in

d
in

g

(%
 r

e
m

a
in

in
g

)

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4
0

20

40

60

80

100

120

140
Desipramine

Ki = 5.9 nM

RO-25-6981

Ki = 1,248 nM

log [drug]

[3
H

]N
is

o
x
e
ti

n
e
 b

in
d

in
g

(%
 r

e
m

a
in

in
g

)

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4
0

20

40

60

80

100

120

140
Amitriptyline

Ki = 10 nM

Ki = 1,417 nM

RO-25-6981

log [drug]

[3
H

]C
it

a
lo

p
ra

m
 b

in
d

in
g

(%
 r

e
m

a
in

in
g

)



 175 

 

Figure A.2.2 Testing DMT’s affinity for serotonergic receptors 

5-HT1A Receptor

[3H]8-OH-DPAT (0.36 nM)
Standard Binding Buffer
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Figure A.2.3 Testing Sedalande‐derivative affinities at 5‐HT1D 

(A-E) All seven Sedalande derivatives assayed 

against 5-HT1D and identified by their PDSP 

number. See key for PDSP-numbered 

compounds in Table A.2.5. 
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II. Supplementary tables 

Table A.2.1 Comparison of novel SEA predictions vs. Naïve Bayesian Classifier predictions, 
on the same dataset 

Drug 
Bayes 

Rank 
Bayes Score Off-targets predicted by Naïve Bayesian Classifier 

Vadilex 1 6.0114 AgrC 

 2 4.6029 
Glutamate [NMDA] receptor subunit zeta 1 precursor (N-methyl-

D-aspartate receptor subunit NR1) 

 3 4.5886 Somatostatin receptor type 1 (SS1R) (SRIF-2) 

 4 4.205 
Mu-type opioid receptor (MOR-1) (Opioid receptor B) 

(MUOR1) 

 5 4.1422 Delta-type opioid receptor (DOR-1) (Opioid receptor A) 

 6 4.0124 Motilin receptor (G protein-coupled receptor 38) 

 7 3.833 
Sortilin precursor (Glycoprotein 95) (Gp95) (Neurotensin 

receptor 3) (NT3) (100 kDa NT receptor) 

 8 3.7178 Microbial collagenase precursor (120 kDa collagenase) 

 9 3.1589 
Neurotensin receptor type 1 (NT-R-1) (High-affinity 

levocabastine-insensitive neurotensin receptor) (NTRH) 

 10 2.9583 Pol polyprotein 

 ... ... ... 

 N/A No score > 0 
Sodium-dependent serotonin transporter (5HT 

transporter) (5HTT) 

RO-25-6981 1 4.9049 
Glutamate [NMDA] receptor subunit zeta 1 precursor (N-methyl-

D-aspartate receptor subunit NR1) 

 2 4.525 Somatostatin receptor type 1 (SS1R) (SRIF-2) 

 3 4.4263 
C-C chemokine receptor type 3 (C-C CKR-3) (CC-CKR-3) (CCR-3) 

(CCR3) (CKR3) (Eosinophil eotaxin receptor) 

 4 4.302 Microbial collagenase precursor (120 kDa collagenase) 

 5 3.9402 AgrC 

 6 3.8675 
retropepsin, aspartic peptidase [Human immunodeficiency virus 

1] 

 7 3.4463 Motilin receptor (G protein-coupled receptor 38) 

 8 3.3128 Kappa-type opioid receptor (KOR-1) 

 9 3.2941 

Sodium channel protein type II alpha subunit (Voltage-gated 

sodium channel alpha subunit Nav1.2) (Sodium channel protein, 

brain II alpha subunit) 

 10 3.174 
Sortilin precursor (Glycoprotein 95) (Gp95) (Neurotensin 

receptor 3) (NT3) (100 kDa NT receptor) 

 ... ... ... 

 N/A No score > 0 5-HTT 
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Drug 
Bayes 

Rank 
Bayes Score Off-targets predicted by Naïve Bayesian Classifier 

 N/A No score > 0 Dopamine (D4) 

 N/A No score > 0 NET 

Paxil 1 3.0678 Endothelin ETA Antagonist 

 2 2.3462 Endothelin Antagonist 

 3 1.9745 Bradykinin BK1 Antagonist 

 4 1.7655 5 HT2A Antagonist 

 5 1.5033 Cytochrome P450 Oxidase Inhibitor 

 6 1.0956 Endothelin ETB Antagonist 

 7 1.0634 Calcitonin Analog 

 8 0.9058 5 HT2 Antagonist 

 9 0.4644 Topoisomerase Inhibitor 

 10 0.37 Follicle-stimulating hormone 

 ... ... ... 

 N/A No score > 0 Adrenergic (beta) Blocker 

Rescriptor 1 17.515 hepatitis B virus reverse transcriptase [-] 

 2 6.7161 tyrosine-protein kinase receptor FLT3 [-] 

 3 5.8913 vanilloid receptor subtype 1 [-] 

 4 5.2463 
RNA-directed DNA polymerase, DNA nucleotidyltransferase, 

revertase [-] 

 5 4.0386 growth hormone-releasing hormone receptor [-] 

 6 3.9353 vanilloid receptor subtype 1 

 7 3.7865 delta-type opioid receptor [-] 

 8 3.7348 calcitonin receptor precursor [-] 

 9 3.7348 multidrug resistance-associated protein 1 

 10 3.6563 calcitonin gene-related peptide type 1 receptor 

 ... ... ... 

 N/A No score > 0 histamine H4 receptor [-] 

DMT 1 14.681 5-hydroxytryptamine 1D receptor, serotonergic receptor 

 2 14.149 5-hydroxytryptamine 1B receptor, serotonergic receptor 

 3 13.235 5-hydroxytryptamine 1D receptor, serotonergic receptor [-] 

 4 12.905 5-hydroxytryptamine 6 receptor, serotonergic receptor [-] 

 5 12.033 5-hydroxytryptamine 1B receptor, serotonergic receptor [-] 

 6 9.7713 somatostatin receptor type 4 [-] 

 7 9.7031 urotensin II receptor 

 8 9.5647 GRP-preffering bombesin receptor [-] 

 9 9.5587 somatostatin receptor type 2 

 10 9.5587 somatostatin receptor type 3 

 ... ... ... 

 112 0.7865 5-hydroxytryptamine 7 receptor, serotonergic receptor 

DMT 1 15.16 5-hydroxytryptamine 1D receptor, serotonergic receptor 
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Drug 
Bayes 

Rank 
Bayes Score Off-targets predicted by Naïve Bayesian Classifier 

 2 14.445 5-hydroxytryptamine 1B receptor, serotonergic receptor 

 3 13.341 5-hydroxytryptamine 1D receptor, serotonergic receptor [-] 

 4 12.647 5-hydroxytryptamine 6 receptor, serotonergic receptor [-] 

 5 12.172 5-hydroxytryptamine 2A receptor, serotonergic receptor 

 6 11.585 5-hydroxytryptamine 1B receptor, serotonergic receptor [-] 

 7 9.74 somatostatin receptor type 4 [-] 

 8 9.7269 urotensin II receptor 

 9 9.6387 5-hydroxytryptamine 1-like receptor 

 10 9.5849 somatostatin receptor type 2 

 ... ... ... 

 122 0.9117 
5-hydroxytryptamine 5A receptor, serotonergic receptor 

[-] 

Doralese 1 12.392 Neurokinin NK2 Antagonist 

 2 9.3756 5 HT1D Agonist 

 3 7.735 Neurokinin Antagonist 

 4 7.249 Follicle-stimulating hormone 

 5 6.5828 LHRH Agonist 

 6 5.2603 Substance P Antagonist 

 7 4.9672 Bradykinin BK2 Antagonist 

 8 4.8699 CCK Agonist 

 9 4.742 Somatostatin Analog 

 10 4.6065 CCK B Agonist 

 ... ... ... 

 14 3.228 Dopamine (D4) Antagonist 

Sedalande 1 14.448 Adrenergic (alpha1) Blocker 

 2 10.676 5 HT1A Antagonist 

 3 9.6677 5 HT2A Antagonist 

 4 9.0628 Dopamine (D2) Antagonist 

 5 6.3506 Dopamine (D3) Antagonist 

 6 6.1541 5 HT1A Agonist 

 7 5.9937 5 HT2 Antagonist 

 8 5.2663 Antihistaminic 

 9 4.1768 Neurokinin Antagonist 

 10 3.846 Neurokinin NK2 Antagonist 

 ... ... ... 

 12 2.739 5 HT1D Antagonist 

Motilium 1 13.343 Adrenoceptor (beta3) Agonist 

 2 12.526 Adrenergic (beta) Agonist 

 3 11.512 Adrenergic (beta1) Agonist 

 4 9.5046 Adrenergic (beta1) Blocker 
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Drug 
Bayes 

Rank 
Bayes Score Off-targets predicted by Naïve Bayesian Classifier 

 5 7.4653 LHRH Antagonist 

 6 6.6349 Adrenergic (beta) Blocker 

 7 6.567 Gastrin-Releasing Peptide Antagonist 

 8 2.8824 Adrenergic (alpha1) Blocker 

 9 2.0723 Endothelin Antagonist 

 10 1.8653 Adrenoceptor (alpha2) Antagonist 

Prozac 1 4.4575 Substance P Antagonist 

 2 3.7865 Neurokinin Antagonist 

 3 3.0703 LHRH Antagonist 

 4 3.0284 Adrenergic (beta) Blocker 

 5 1.9373 Bradykinin Antagonist 

 6 1.7865 Glucagon Receptor Antagonist 

 7 1.677 Glutathione S-Transferase Inhibitor 

 8 1.5663 Bradykinin BK1 Antagonist 

 9 1.5551 Bradykinin BK2 Antagonist 

 10 1.5221 Phospholipase A2 Inhibitor 

Dimetholizine 1 14.055 Adrenergic (alpha1) Blocker 

 2 11.413 5 HT1A Antagonist 

 3 9.7703 Dopamine (D2) Antagonist 

 4 8.7188 5 HT1A Agonist 

 5 6.7689 Dopamine (D3) Antagonist 

 6 6.3947 Adrenergic (alpha) Blocker 

 7 5.4796 Neurokinin Antagonist 

 8 5.4706 5 HT2A Antagonist 

 9 5.1264 5 HT1D Antagonist 

 10 4.2757 Neurokinin NK2 Antagonist 

Xenazine 1 65.506 Opioid Mixed Agonist-Antagonist 

 2 54.313 Adrenergic (alpha2) Blocker 

 3 27.638 Dopamine (D1) Agonist 

 4 27.333 mu Agonist 

 5 24.465 Phosphodiesterase V Inhibitor 

 6 22.526 Opioid Agonist 

 7 21.351 Angiotensin II AT2 Antagonist 

 8 19.727 Oxytocin Antagonist 

 9 17.679 Substance P Antagonist 

 10 17.643 LHRH Antagonist 

Fabahistin 1 11.053 5-hydroxytryptamine 5A receptor, serotonergic receptor 

 2 9.3414 
5-hydroxytryptamine 5A receptor, serotonergic receptor 

[-] 

 3 4.413 delta-type opioid receptor [-] 
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Drug 
Bayes 

Rank 
Bayes Score Off-targets predicted by Naïve Bayesian Classifier 

 4 4.3632 delta-type opioid receptor [-] 

 5 3.3544 somatostatin receptor 

 6 3.2781 calcitonin gene-related peptide type 1 receptor 

 7 3.259 insulin receptor [-] 

 8 3.1125 
secreted aspartic protease 2, candidapepsin 2, aspartate 

protease 2 [-] 

 9 3.0665 mu-type opioid receptor 

 10 3.0023 multidrug resistance-associated protein 1 

Kalgut 1 13.343 Adrenergic (beta3) Agonist 

 2 12.526 Adrenergic (beta) Agonist 

 3 11.512 Adrenergic (beta1) Agonist 

 4 9.5046 Adrenergic (beta1) Blocker 

 5 7.4653 LHRH Antagonist 

 6 6.6349 Adrenergic (beta) Blocker 

 7 6.567 Gastrin-Releasing Peptide Antagonist 

 8 2.8824 Adrenergic (alpha1) Blocker 

 9 2.0723 Endothelin Antagonist 

 10 1.8653 Adrenoceptor (alpha2) Antagonist 

Prantal 1 29.593 delta Agonist 

 2 27.51 Antihistaminic 

 3 21.941 5 HT2 Antagonist 

 4 12.945 Carbapenem 

 5 11.189 Dopamine Agonist 

 6 11.026 Estrogen Receptor Modulator 

 7 9.2016 Muscarinic M3 Antagonist 

 8 6.8151 Oxytocin Antagonist 

 9 6.673 PAF Antagonist 

 10 6.6255 5 HT2A Antagonist 

 

SEA off-target predictions being compared are highlighted in bold. 
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Table A.2.2 MDDR drug binding predictions matching known WOMBAT targets 

Table A.2.3 Examples of drug off‐target predictions confirmed by literature sources but 
unknown to the databases 

Note: Due to size constraints, Tables A.2.2 and A.2.3 are not reproduced here. They can be found in the 

online Supplementary Materials for the published paper at http://www.nature.com. 

 

Table A.2.4 N,N‐dimethyltryptamine affinities serotonergic receptor panel 

Receptor Ki (nM) SEA E-value 

5ht1a 183 3.60E-17 

5ht1b 129 1.04E-28 

5ht1d 39 9.16E-81 

5ht1e 517 n/a 

5ht2a 127 3.63E-14 

5ht2b 184 1.55E-15 

5ht2c 360 6.87E-16 

5ht5a 2135 3.37E-08 

5ht6 464 3.91E-30 

5ht7 206 7.37E-06 
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Table A.2.5 Prediction and testing of Sedalande derivatives against 5‐HT1D 

Compound Name Ki (nM) Structure (SMILES) 

PDSP10815 

1-(4-methoxyphenyl)-3-[4-(2-

methoxyphenyl)-1-piperazinyl]-1-

propanone 

62 
COc1ccc(cc1)C(=O)CCN2CC

N(CC2)c3ccccc3OC 

PDSP10813 

1-(4-fluorophenyl)-4-(4-phenyl-1-

piperazinyl)-1-butanone 

dihydrochloride 

169 
Fc1ccc(cc1)C(=O)CCCN2CC

N(CC2)c3ccccc3 

PDSP10814 
3-[4-(2-fluorophenyl)-1-piperazinyl]-

1-(4-methoxyphenyl)-1-propanone 
185 

COc1ccc(cc1)C(=O)CCN2CC

N(CC2)c3ccccc3F 

PDSP10812 

3-{[4-(2-methoxyphenyl)-1-

piperazinyl]methyl}-6-methyl-4H-

chromen-4-one 

464 
COc1ccccc1N2CCN(CC3=CO

c4ccc(C)cc4C3=O)CC2 

PDSP10810 

6-chloro-3-{[4-(2,3-dimethylphenyl)-

1-piperazinyl]methyl}-4H-chromen-

4-one 

546 
Cc1cccc(N2CCN(CC3=COc4c

cc(Cl)cc4C3=O)CC2)c1C 

PDSP10809 

3-{[4-(2-ethoxyphenyl)-1-

piperazinyl]methyl}-4H-chromen-4-

one 

633 
CCOc1ccccc1N2CCN(CC3=C

Oc4ccccc4C3=O)CC2 

PDSP10811 

6,8-dichloro-3-{[4-(2-

methoxyphenyl)-1-

piperazinyl]methyl}-4H-chromen-4-

one 

2057 
COc1ccccc1N2CCN(CC3=CO

c4c(Cl)cc(Cl)cc4C3=O)CC2 
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Table A.2.6 Attempt to recapitulate SEA predictions via target sequence similarities alone 

Drug 
Known closest target to 

sequence match 

Top sequence similarity 

matches 

PSI-BLAST 

E-values 

Rescriptor HIV1 Reverse Transcriptase 

1 

2 

3 

… 

167 

HIV Integrase 

Renin 

Factor Xa 

… 

Histamine H4 

1×10-89 

0.11 

0.40 

… 

350 

RO-25-6981 

 

 

 

 

α1 (for κ opioid) 

 

α1 (for Dopamine D4) 

 

NMDAR (for 5-HTT) 

 

α1 (for NET) 

1 

2 

3 

... 

34 

… 

78 

… 

90 

... 

103 

Guanylate cyclase 

GABAB receptor 

5-HT1A 

... 

κ opioid 

... 

Dopamine D4 

... 

5-HTT 

... 

NET 

7×10-118 

1×10-108 

6×10-96 

... 

7×10-67 

... 

2×10-40 

... 

0.54 

... 

3.8 

Vadilex 

 

 

 

 

5-HT2A (for μ opioid) 

 

NMDAR (for 5HTT) 

1 

2 

3 

… 

32 

… 

92 

Muscarinic M2 

Muscarinic M3 

Adrenergic (α2) 

... 

μ opioid 

... 

5-HTT 

2×10-131 

5×10-127 

7×10-125 

... 

1×10-85 

... 

0.54 

Xenazine VMAT2 

1 

2 

3 

… 

78 

5-HT5A 

Angiotensin II AT1 

Adenosine (A2) 

… 

Adrenergic (α2) 

1.6 

2.1 

8.2 

… 

125 

Doralese 5-HT2A 

1 

2 

3 

… 

76 

5-HT1C 

5-HT2C 

5-HT2B 

… 

Dopamine (D4) 

6×10-113 

6×10-113 

2×10-101 

… 

3×10-44 

Prantal Muscarinic M3 

1 

2 

3 

… 

26 

Muscarinic M2 

Muscarinic M1 

Histamine H1 

… 

δ opioid 

3×10-144 

2×10-136 

2×10-134 

… 

3×10-65 
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Drug 
Known closest target to 

sequence match 

Top sequence similarity 

matches 

PSI-BLAST 

E-values 

DMT 

5-HT1D (for 5-HT1B match) 

 

 

 

5-HT2A (for 5-HT7 match) 

 

5-HT6 (for 5-HT5A match) 

1 

2 

3 

… 

11 

… 

24 

5-HT1B 

Adrenergic (α2) 

Adrenergic (α1) 

… 

5-HT7 

… 

5-HT5A 

3×10-126 

9×10-104 

7×10-103 

… 

2×10-97 

… 

1×10-88 

Fabahistin 5-HT6 

1 

2 

3 

… 

21 

Muscarinic M2 

Muscarinic M3 

Adrenergic (α2) 

… 

5-HT5A 

2×10-131 

5×10-127 

7×10-125 

… 

1×10-88 

Paxil Adrenergic (α1) 

1 

2 

3 

4 

… 

22 

Histamine H1 

Dopamine (D2) 

Adrenergic (α2) 

5-HT1A 

... 

Adrenergic (β1) 

2×10-134 

2×10-125 

7×10-124 

2×10-105 

… 

2×10-81 

Prozac 5-HT2A 

1 

2 

3 

4 

… 

22 

Muscarinic M2 

Muscarinic M3 

Adrenergic (α2) 

Dopamine (D2) 

… 

Adrenergic (β1) 

2×10-131 

5×10-127 

7×10-125 

1×10-123 

… 

1×10-92 

Sedalande 5-HT2A 

1 

2 

3 

4 

… 

7 

… 

19 

5-HT1C 

5-HT2C 

Adrenergic (α2) 

5-HT1B 

… 

Adrenergic (α1) 

… 

5-HT1D 

6×10-113 

6×10-113 

6×10-104 

5×10-103 

… 

7×10-103 

… 

7×10-94 

Dimetholizine Histamine H1 

1 

2 

3 

… 

6 

... 

8 

… 

18 

Muscarinic M2 

Muscarinic M3 

Adrenergic (α2) 

... 

Dopamine (D2) 

... 

5-HT1A  

... 

Adrenergic (α1) 

2×10-131 

5×10-127 

7×10-125 

… 

1×10-123 

... 

4×10-118 

… 

4×10-63 
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Drug 
Known closest target to 

sequence match 

Top sequence similarity 

matches 

PSI-BLAST 

E-values 

Motilium 5-HT2A 

1 

2 

3 

5-HT1C 

5-HT2C 

Adrenergic (α1) 

6×10-113 

6×10-113 

7×10-103 

Kalgut Adrenergic (β1) 

1 

2 

3 

Adrenergic (β3) 

5-HT4 

Dopamine D1 

2×10-96 

3×10-95 

1×10-94 

 

Novel off-targets predicted by SEA are highlighted in bold. 
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Table A.2.7 Off‐target predictions with observed binding affinities > 10 μM 

Drug Existing MDL Annotation SEA E-value Predicted target 

Emilace 
Antipsychotic 

Dopamine D2 Antagonist 
7.50E-103 5 HT4 Agonist 

Centrax 
Anti-Anxiety Agents 

GABA Modulators 
3.80E-59 CCK B Antagonist 

Valium 

Anticonvulsant 

Anxiolytic 

Benzodiazepine Agonist 

3.10E-47 CCK B Antagonist 

Dromoran 
Analgesics, Opioid 

Narcotics 
6.90E-46 Dopamine (D2) Agonist 

Zatebradine Bradycardic 2.80E-30 Dopamine (D1) Antagonist 

Doralese 

Adrenergic (alpha1) Blocker 

Antihypertensive 

Antimigraine 

Prostate Disorders, Agent for 

1.45E-29 

Neurokinin Antagonist 

(by functional assays vs. 

NK1 and NK2) 

Duocaine Anesthetic 6.40E-21 kappa agonist 

 



 188 

Table A.2.8 Datasets and descriptors used for each novel SEA prediction 

 Drug SEA Off-target predictions Database Used Descriptor Used 

1 Dimetholizine 5-HT1A Antagonist MDDR ECFP4 

2 Dimetholizine Adrenergic alpha1 blocker MDDR ECFP4 

3 Dimetholizine Dopamine (D2) Antagonist MDDR ECFP4 

4 DMT 5-HT1B Agonist WOMBAT 1uM ECFP4 

5 DMT 5-HT5A Antagonist WOMBAT 10uM ECFP4 

6 DMT 5-HT7 Modulator WOMBAT 1uM ECFP4 

7 Doralese Dopamine (D4) Antagonist MDDR ECFP4 

8 Fabahistin 5-HT5A Antagonist WOMBAT 10uM ECFP4 

9 Kalgut Adrenoceptor (beta3) Agonist MDDR ECFP4 

10 Motilium Adrenergic (alpha1) Blocker MDDR ECFP4 

11 Paxil Adrenergic (beta) blocker MDDR ECFP4 

12 Prantal delta Agonist MDDR DAYLIGHT 

13 Prozac Adrenergic (beta) blocker MDDR ECFP4 

14 Rescriptor Histamine H4 Antagonist WOMBAT 1uM ECFP4 

15 RO-25-6981 5-HTT STARLITE ECFP4 

16 RO-25-6981 Dopamine (D4) STARLITE ECFP4 

17 RO-25-6981 kappa Opioid STARLITE ECFP4 

18 RO-25-6981 NET STARLITE ECFP4 

19 Sedalande 5-HT1D Antagonist MDDR ECFP4 

20 Sedalande Adrenergic alpha1 blocker MDDR ECFP4 

21 Vadilex 5-HTT STARLITE ECFP4 

22 Vadilex mu Opioid Receptor STARLITE ECFP4 

23 Xenazine Adrenergic (alpha2) Blocker MDDR DAYLIGHT 

 

This table lists the particular reference database 

and descriptor used in each SEA off-target 

prediction from Table 2.1 and Table 2.2 of the 

main text. Over the course of this work, 

multiple reference databases became available at 

different times: First the MDDR, then 

WOMBAT, and finally StARlite. 

Whereas many of these predictions may 

be recapitulated regardless of database choice, 

some databases contain targets that others 

lack—for instance, the MDDR lacks ligands for 

Histamine H4. For our 5-HT5A ligand set, we 

accepted all ligands with ≤ 10 μM affinity 

(instead of our 1 μM default WOMBAT cutoff) 

because we have found this cutoff to yield 

better 5-HT5A SEA predictions, in unpublished 

work. 
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Table A.2.9 MDDR to WOMBAT mapping 

Note: Due to size constraints, Table A.2.9 is not reproduced here. It can be found in the online 

Supplementary Materials for the published paper at http://www.nature.com. 

 

Table A.2.10 Related phrases used in novelty filtering 

Phrase IsRelatedTo 

5ht serotonin;5-hydroxytryptamine 

adenosine metabolite 

adrenergic calcium;adrenoceptor 

androgen 

sterone;sterol;enol;estone;estrogen;estrel;contraceptive;cortico;choles

t;inflammatory;anabolic;aromatase;sterone;progest;steroid 

bacterial bactam;lactam;illin;ceph 

biotic penem;ceph;bactam 

bradykinin inflammatory 

cephalosporin bacterial;ceph;penicillin 

delta narcotic;analgesic 

dihydrofolate folic;neoplastic 

folyl folic 

folylpolyglutamate folic;neoplastic 

insulin tose 

kappa narcotic;analgesic 

mu narcotic;analgesic 

muscarinic parasympatholytic;cholinergic 

opioid narcotic;analgesic 

penicillin illin;bacterial 

prostaglandin anabolic;androgen;cortico;inflammatory;sterone 

serotonin 5ht1;5ht2;5ht3;5ht4;5ht5;5ht6;5ht7 

steroid 

contraceptive;cortico;inflammatory;sterone;estrogen;androgen;aromat

ase 

thymidine metabolite;antiviral 

thymidylate folic;neoplastic 
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A.3 Supplementary material for Chapter 3 

I. Supplementary datasets 

This chapter references three supplementary datasets, which provide the original data used for 

calculation of the target-target similarities, as well as the full matrix of SEA similarities calculated 

among then. These datasets are too large to include here, but are freely available online at 

http://www.ploscompbiol.org. 
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Appendix B: 

Off‐target networks derived from ligand set similarity 

 

Michael J Keiser11 and Jérôme Hert 

 

B.1 Abstract 

Chemically similar drugs often bind biologically diverse protein targets, and proteins with similar 

sequences or structures do not always recognize the same ligands. How can we uncover the 

pharmacological relationships among proteins, when drugs may bind them in defiance of 

bioinformatic criteria? Here we consider a technique that quantitatively relates proteins based on 

the chemical similarity of their ligands. Starting with tens of thousands of ligands organized into 

sets for hundreds of drug targets, we calculated the similarity among sets using ligand topology. 

We developed a statistical model to rank the resulting scores, which were then expressed in 

minimum spanning trees. We have shown that biologically sensible groups of targets emerged 

from these maps, as well as experimentally-validated predictions of drug off-target effects. 

 

Key Words: SEA, expectation value, target network, polypharmacology, off-targets 

B.2 Introduction 

How similar are two proteins? Typically, proteins are compared using bioinformatics approaches 

based on sequence or structure. While these methods quantify historical protein divergence, 

                                                 

11 Corresponding author: michael.james.keiser@ucsf.edu; Department of Pharmaceutical Chemistry, University of 

California San Francisco, 1700 4th St, San Francisco California 94143-2550, USA. 
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drugs and other small molecules often bind to targets that are unrelated from an evolutionary 

standpoint (1, 2). For example, the enzymes thymidylate synthase, dihydrofolate reductase and 

glycinamide ribonucleotide formyltransferase have no substantial sequence identity or structural 

similarity but they all recognize folic acid derivatives and are inhibited by antifolates. Similarly, 

the drug methadone binds both the μ-opioid receptor, a GPCR, and the structurally-unrelated 

N-methyl-D-aspartate receptor, an ion channel. Polypharmacology, the ability of chemically 

similar drugs to bind biologically diverse proteins, has inspired recent efforts to find protein 

relationships by means other than their sequence or structure (3-5). 

The Similarity Ensemble Approach (SEA) considers proteins from a chemo-centric 

point of view, relating them through the chemical similarity of their ligands (6). The idea is that 

similar molecules have similar biological profiles (7) and bind similar targets (8, 9). This 

technique links hundreds of ligand-sets—and correspondingly their protein targets—together in 

minimal spanning trees where biologically related proteins cluster together as an emergent 

property (see Figure 1). These networks are robust (10) and may be used to predict off-target 

effects (6). The similarities among ligand-sets may reveal the pharmacological relationships of 

the targets whose actions they modulate. 
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Figure B.1 Pharmacological network of the MDDR drug targets 

Each vertex represents a ligand-set, and hence a 

protein target. The vertices are linked together 

by their SEA E-values (edges) and organized 

into a minimum spanning tree. Several protein 

families are highlighted to emphasis the natural 

clustering that emerges. 

 

How does SEA work? An overview of the different stages is available in Figure 2. The 

similarity between two ligand-sets is first approximated by summing the similarity scores of 

molecule pairs across the sets (see Figure 2B). In itself, the resulting raw score is not a good 

estimate of the overall similarity of the sets, as it does not discriminate relevant similarities from 

random and depends on the number of ligands in each set. SEA corrects for these shortcomings 

via a statistically-determined threshold—pairs of molecules that score below it are discarded and 

do not contribute to the overall set similarity. We then convert the raw score to a size-bias-free 

z-score using the mean and standard deviation of raw scores modeled from sets of random 

molecules. Finally, we express the similarity score between two sets as an E-value, i.e., the 
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probability of a given z-score that high or better to be observed from random data. Small E-

values, then, reflect relationships between ligand-sets that are stronger than would be expected 

by random chance alone. 

 

 

Figure B.2 Method overview 

Ligand-sets derived from existing databases [A] 

are used in set-wise comparisons [B] against a 

query set, the result of which is quantified by 

the statistical model inferred from that reference 

database [C].  The generated probabilistic data 

can be used to construct chemical mappings of 

the ligand-sets and correspondingly the 

biological targets [D]. 

 

B.3 Materials 

3. A reference database of chemical structures, annotated by therapeutic indication or 

mechanism of action.  For the purpose of illustration, we used the MDL Drug Data 

Report (MDDR) (11) which contains 65,367 molecules organized in 249 sets (see Note 1). 
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4. A molecular descriptor generator to encode the structural information of the 

compounds.  We obtained the best results with 2-dimensional fingerprints based on 

topology of the molecules such as the 2048-bit default Daylight or 1024-bit folded 

Scitegic ECFP_4 descriptors (see Note 2).  

5. A similarity coefficient, such as the Tanimoto coefficient (see Note 3). 

B.3.1 Calculating the parameters of the reference database 

1. A fitter program to calculate nonlinear regressions (see Note 4). 

B.3.2 Calculating set‐wise similarity ensembles 

1. No additional materials are necessary. 

B.3.3 Building a similarity network 

1. A graph visualization program, such as Cytoscape (12). 

B.4 Methods 

SEA quantifies the similarity among sets of compounds which may be organized by the targets 

they modulate, the therapeutic indications they address, their activity in a high-throughput 

screening campaign, or a variety of other criteria. So far, we have focused on sets organized by 

targets, but SEA can be used with other annotations. 

Before comparing any sets with SEA, the parameters of the background database—

generally the one containing the sets one wishes to compare to—need to be calculated. While 

this step is computationally intensive, it is only required once for a given database, molecular 

descriptor and similarity coefficient (see Section B.4.1). Once the optimal threshold ti and the 

formulae of the mean yμ and standard deviation yσ as a function of the product of the sets’ sizes 
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(|a|×|b|) have been determined, SEA can be applied to quantify set similarity (see Section 

B.4.2). 

B.4.1 Calculating the parameters of the reference database 

In this section, we generate thousands of randomly-populated pairs of ligand sets, and determine 

the uncorrected similarity among them. We use these “random” similarities to build an empirical 

model of background chemical similarity. The particular choice of chemical database will 

determine the type of background: KEGG molecules will yield a metabolic background, whereas 

ZINC molecules will produce drug- or lead-like backgrounds (depending on the exact subset 

used). It is preferable to choose as large a database as possible; those in excess of 100,000 

molecules are often ideal. 

 

2. Choose minimum and maximum set sizes smin and smax for sampling, such that they will be 

representative of molecule sets annotated in the database (see Note 5). 

3. Sample at least 1,000 integers si from the range (smin×smin) to (smax×smax) (see Note 6). 

4. For each product of sets’ sizes si, calculate all of its integer factors fi, such that smin ≤ fi ≤ 

smax. 

5. For each si, choose 30 of its fi at random and construct two sets a and b, consisting of fi 

and si/fi molecules respectively, randomly selected from the background molecule 

database (see Note 7). 

6. For each pair of sets a and b, calculate standard chemical similarities ca,b for each pair of 

ligands across the sets using your previously chosen chemical similarity descriptor and 

coefficient. 
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7. For ti, where 0 ≤ ti < 1 with step size 0.01, calculate a “raw score” ra,b(ti) equal to the sum 

of all ca,b where ca,b > ti. Store all calculated ra,b(ti), along with the sizes of sets a and b (see 

Note 8). 

8. For each ti, plot all ra,b(ti) scores vs. the product of set sizes a and b, e.g., plot all points 

(|a|×|b|, ra,b). There should be 100 plots (see Note 9), each corresponding to a 

particular choice of ti. 

9. For each plot, use the nonlinear fitter to determine the mean expected random chemical 

similarity (see Figure 2C and Figure 3A). Typically, an equation of the formula yμ = 

mxn+p will be appropriate (see Note 10). 

10. For each plot, bin the data by the x-axis values, such that each bin ideally has no fewer 

than five data points. Given the previously fitted yμ, calculate the standard deviation of 

each bin with Laplacian correction, and fit the resulting standard deviation points 

nonlinearly (see Figure 2C and Figure 3B). Again, yσ = qxr+s will typically be 

appropriate. 

11. For each plot, use the fitted yμ and yσ to transform all original points (|a|×|b|, ra,b) to 

their z-scores za,b = (ra,b - yμ(|a|×|b|)) / yσ(|a|×|b|) (see Note 11). Construct a histogram 

of these z-scores. 

12. For each histogram, nonlinearly fit the data to Gaussian and extreme value type I (EVD) 

distributions (see Note 12, Figure 2C, and Figure 3C). 

13. Based on goodness-of-fit, such as each fit’s observed-vs.-expected χ2 value, select the 

threshold choice ti, such that the histogram best fits an EVD instead of a Gaussian 

distribution (see Note 13). 
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14. Record the chosen ti and that ti’s formulae for yμ and yσ. These values comprise the 

random background model. All other plots, histograms, and formulae may be discarded 

at this point. 

 

 

Figure B.3 Statistical models 

[A] Correlation between the product of sets’ 

sizes and the mean of the raw score.  The fitted 

function typically corresponds to an equation of 

the formula yμ = mxn+p with n = 1. [B] 

Correlation between the product of sets’ sizes 

and the standard deviation of the raw score.  

The fitted function typically corresponds to an 

equation of the formula yσ = qxr+s, with 0.6 < r 

< 0.7. [C] Distribution of the z-scores obtained 

from random data using ECFP_4 fingerprints, 

with a similarity score threshold (ti) of 0.57 and 

fitted to an extreme value distribution. 

 

B.4.2 Calculating set‐wise similarity ensembles 

To calculate the set-wise similarity among sets of ligands, we reuse much of the machinery 

developed to calculate background models, and extend it to calculate E-values. By exhaustively 

comparing all pairs of sets across two collections (databases), we can then rank the top hits for 

any particular ligand set.  

In practice, a ligand set should not comprise fewer than ten ligands, unless you intend to 

compare it against large sets only. For instance, it would not be statistically reliable to compare 

two sets of five ligands each, but a set of five ligands compared against a set of thirty should be 
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acceptable. Although the particular choice of set size should depend on the diversity of ligands 

within a set, a good rule of thumb is to build sets such that the product of the set sizes will be no 

less than 100 (e.g., the product of set sizes is 25 for the five-by-five case, and 150 for the five-by-

thirty case mentioned above). 

 

1. To calculate similarity ensembles, choose two collections of sets Ca and Cb to compare 

(see Note 14).  

2. For each set a and b from collections Ca and Cb, respectively, calculate ra,b(ti) as previously 

described using only the optimal threshold ti from the background model. Be sure to use 

the actual molecule structures annotated for each set.  

3. Transform each ra,b(ti) to z-score za,b as described in Section B.4.1.10. 

4. Transform each z = za,b to p-value P(Z > z) = 1 – exp(-e-zπ/sqrt(6)–Γ’(1)), where Γ’(1) is the 

Euler-Mascheroni constant (≈ 0.577215665) (see Note 15). 

5. Optionally, the p-value may be transformed to a BLAST-like E-value by calculating E(z) 

= P(Z > z)×ndb, where ndb = the number of set-vs.-set comparisons made when 

comparing all sets from collection Ca against all sets from collection Cb. Typically, ndb = 

|Ca|×|Cb|. 

6. For each set a, rank all sets bi from Cb by their E-value, where values approaching zero 

are the best scores (see Note 16). 

B.4.3 Building a similarity network 

A similarity network is a graphical view of the E-value relationships among all ligand sets in a 

particular database (see Note 17). If these ligand sets represent particular drug targets, for 

instance, it is a visualization of the significant chemical similarity present among these targets (see 

Figure 1).  
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1. Calculate the similarity ensemble E-values between all sets ai and aj from Ca versus itself 

(see Note 18), as previously described. 

2. The resulting matrix of E-values defines a strongly connected graph, where each node 

corresponds to a molecule set and each edge to the E-value between two sets (see Note 

19). 

3. We use Kruskal’s algorithm (13) to construct a minimum spanning tree (MST): 

a. Create a set Stree that initially contains all individual nodes, unconnected. We refer 

to elements of Stree as “trees.” 

b. Create a set Se that contains all possible edges ei (E-values). 

c. While Se is not empty 

i. Remove the minimum-weighted (best) edge emin from Se 

ii. If emin connects two existing trees ta and tb in Stree 

1. Remove ta and tb from Stree, connect them into a single new tree tab 

using emin, and add tab back into Stree. 

iii. Else, discard emin. 

d. When the algorithm finishes, Stree will contain only one tree, which is the graph’s 

MST. 

B.5 Notes 

1. Examples of other freely or commercially available annotated chemogenomics databases 

include WOMBAT, KEGG, and DrugBank. Note, however, that SEA can be used with 

any kind of annotation and is not limited to ligand—target association. 

2. For efficiency, the steps in Methods will be faster if fingerprints are pre-calculated and 

stored for each molecule. 
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3. While it is not technically necessary, we assume that the similarity coefficient is 

normalized from 0.0 to 1.0. If not, choose appropriate bounds for the range of ti 

thresholds discussed in Section B.4.1.6. 

4. The open-source Scientific Python (SciPy) package (14) provides a least-squares 

optimizer that can be used for fitting nonlinear regressions. 

5. If you are unsure of appropriate values, use smin = 10 and smax = 300. 

6. More than 1,000 points may be sampled, but in our experience this does not yield a 

substantial difference in the final model. 

7. If there are fewer than 30 distinct factors fi for a particular integer si, randomly sample 

from the available fi 30 times. Sampling more than 30 points is also acceptable, 

depending on the diversity of the background database and computational resources. 

8. These raw scores are the “random” similarities that form the background model. Besides 

the choice of similarity descriptor and coefficient, the threshold ti is the only settable 

major SEA parameter. By sampling across the range of ti choices, we will be able to 

determine an optimal choice of ti in later steps. 

9. For the steps plotting these data (and later, the histograms), you need not actually draw 

out the full plots. All that is strictly necessary is that your data is formatted appropriately 

for input into your chosen fitter. Using SciPy, for instance, it is enough to store these 

data points in internal arrays. 

10. In our experience, the mean raw score fit yμ has always been linear. 

11. The z-score is the number of standard deviations by which a particular raw score exceeds 

the expected mean. 

12. You may use the “norm” and “gumbel_r” SciPy data-types for Gaussian and extreme 

value type I distributions, respectively. 
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13. There is currently no formal justification for choosing the ti threshold, but this approach 

is consistent and enriches for a BLAST-like background probability distribution. Some 

experiments also suggest that this choice is reasonable, as thresholds derived from 

retrospective cross-fold analysis are identical or close to the threshold ti (unpublished). 

14. One such collection may be built from the annotated molecular structure database. The 

second may be the exact same collection (for symmetric comparisons), or derived from a 

different database of annotated molecules. 

15. This formula converts EVD z-scores to their p-values, where the p-value expresses the 

probability of finding a z-score that strong or better, by random chance alone. 

16. An E-value of 1 or higher is not statistically significant. The similarity between two sets 

becomes significant when it is at least one order of magnitude smaller than random 

chance alone, i.e., 10-1. Sets that are highly similar have E-values << 10-50, although there 

is no single cutoff for E-value significance. The SEA Search tool at 

http://sea.docking.org may also be used check the accuracy of the z-scores and E-values 

calculated in Section B.4.2. 

17. While there are many appropriate graph-theoretic approaches, we have chosen a 

minimum spanning tree (MST). A MST is a selection over all graph edges (E-values) 

such that the resulting tree links all nodes (ligand sets) at lowest “cost” to the network as 

a whole. For example, an edge with an E-value approaching zero has a lower cost to the 

tree than one with an E-value of 1. The resulting MST will preferentially include only 

those edges with the smallest E-values. It may be interpreted as a simplified view of 

higher-dimensional chemical similarity space. 

18. These instructions apply only to symmetric collection comparisons, e.g., Ca = Cb. 



 203 

19. You may either (a) use Cytoscape to filter out all edges above an E-value threshold of 

your choice, or (b) construct a global minimum spanning tree. 
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