
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Department of Medical Oncology Faculty 
Papers Department of Medical Oncology 

10-9-2019 

Relating the gut metagenome and metatranscriptome to Relating the gut metagenome and metatranscriptome to 

immunotherapy responses in melanoma patients. immunotherapy responses in melanoma patients. 

Brandilyn A. Peters 
NYU School of Medicine 

Melissa Wilson 
Thomas Jefferson University; NYU School of Medicine; NYU Perlmutter Cancer Center 

Una Moran 
NYU School of Medicine; NYU Perlmutter Cancer Center 

Anna Pavlick 
NYU School of Medicine; NYU Perlmutter Cancer Center 

Allison Izsak 
NYU School of Medicine 

See next page for additional authors 

Follow this and additional works at: https://jdc.jefferson.edu/medoncfp 

 Part of the Dermatology Commons, and the Oncology Commons 

Let us know how access to this document benefits you 

Recommended Citation Recommended Citation 

Peters, Brandilyn A.; Wilson, Melissa; Moran, Una; Pavlick, Anna; Izsak, Allison; Wechter, Todd; 

Weber, Jeffrey S.; Osman, Iman; and Ahn, Jiyoung, "Relating the gut metagenome and 

metatranscriptome to immunotherapy responses in melanoma patients." (2019). Department of 

Medical Oncology Faculty Papers. Paper 103. 

https://jdc.jefferson.edu/medoncfp/103 

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Department of Medical Oncology Faculty Papers by an authorized administrator of the 
Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu. 

https://jdc.jefferson.edu/
https://jdc.jefferson.edu/medoncfp
https://jdc.jefferson.edu/medoncfp
https://jdc.jefferson.edu/medonc
https://jdc.jefferson.edu/medoncfp?utm_source=jdc.jefferson.edu%2Fmedoncfp%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/684?utm_source=jdc.jefferson.edu%2Fmedoncfp%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/694?utm_source=jdc.jefferson.edu%2Fmedoncfp%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/


Authors Authors 
Brandilyn A. Peters, Melissa Wilson, Una Moran, Anna Pavlick, Allison Izsak, Todd Wechter, Jeffrey S. 
Weber, Iman Osman, and Jiyoung Ahn 

This article is available at Jefferson Digital Commons: https://jdc.jefferson.edu/medoncfp/103 

https://jdc.jefferson.edu/medoncfp/103


RESEARCH Open Access

Relating the gut metagenome and
metatranscriptome to immunotherapy
responses in melanoma patients
Brandilyn A. Peters1 , Melissa Wilson2,3,4, Una Moran3,5, Anna Pavlick2,3, Allison Izsak5, Todd Wechter5,

Jeffrey S. Weber2,3, Iman Osman2,3,5 and Jiyoung Ahn1,3*

Abstract

Background: Recent evidence suggests that immunotherapy efficacy in melanoma is modulated by gut microbiota.

Few studies have examined this phenomenon in humans, and none have incorporated metatranscriptomics, important

for determining expression of metagenomic functions in the microbial community.

Methods: In melanoma patients undergoing immunotherapy, gut microbiome was characterized in pre-treatment

stool using 16S rRNA gene and shotgun metagenome sequencing (n = 27). Transcriptional expression of metagenomic

pathways was confirmed with metatranscriptome sequencing in a subset of 17. We examined associations of taxa and

metagenomic pathways with progression-free survival (PFS) using 500 × 10-fold cross-validated elastic-net penalized

Cox regression.

Results: Higher microbial community richness was associated with longer PFS in 16S and shotgun data (p < 0.05).

Clustering based on overall microbiome composition divided patients into three groups with differing PFS; the low-risk

group had 99% lower risk of progression than the high-risk group at any time during follow-up (p = 0.002). Among the

species selected in regression, abundance of Bacteroides ovatus, Bacteroides dorei, Bacteroides massiliensis, Ruminococcus

gnavus, and Blautia producta were related to shorter PFS, and Faecalibacterium prausnitzii, Coprococcus eutactus,

Prevotella stercorea, Streptococcus sanguinis, Streptococcus anginosus, and Lachnospiraceae bacterium 3 1 46FAA to longer

PFS. Metagenomic functions related to PFS that had correlated metatranscriptomic expression included risk-associated

pathways of L-rhamnose degradation, guanosine nucleotide biosynthesis, and B vitamin biosynthesis.

Conclusions: This work adds to the growing evidence that gut microbiota are related to immunotherapy outcomes,

and identifies, for the first time, transcriptionally expressed metagenomic pathways related to PFS. Further research is

warranted on microbial therapeutic targets to improve immunotherapy outcomes.

Keywords: Melanoma, Immunotherapy, Microbiome, Metagenome, Metatranscriptome

Background
Treatment with immunotherapy targeting checkpoint in-

hibitors PD-1 or CTLA-4 significantly increases survival

in patients with metastatic melanoma over other stan-

dards of care [1, 2], with anti-PD-1 and anti-PD-1/

CTLA-4 combination therapy emerging as most effective

[3, 4]. However, responses to therapy are heterogeneous

and not durable in large patient subsets: 3-year overall

survival rates were 58%, 52%, and 34% in combination

therapy, anti-PD-1, and anti-CTLA-4 groups, respect-

ively [4]. Consequently, identification of host and tumor

factors modulating treatment response is an area of ac-

tive research to improve survival rates [5].

Recent evidence suggests that immunotherapy efficacy

may be impacted by the gut microbiota, which profoundly

shape the human immune system [6] and thus may play a

role in antitumor T cell responses. In mice receiving anti-

CTLA-4 immunotherapy, antitumor immunity was

dependent on the presence of specific Bacteroides species
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[7]. Likewise, Bifidobacterium enhanced the efficacy of anti-

PD-L1 immunotherapy in mice with melanoma [8]. In hu-

man melanoma patients undergoing immunotherapy, gut

microbiome composition has been significantly associated

with clinical response [9–12], and antitumor immunity was

enhanced in germ-free mice receiving fecal transfer from

the responding patients [9, 10]. However, results between

studies thus far have been inconsistent regarding which

species and metagenomic functions are related to immuno-

therapy response. Notably, most published studies have

dichotomized patients into responders and non-responders,

a practice which ignores time-to-event data and could

result in loss of precision [13]. Additionally, published stud-

ies have not incorporated metatranscriptomic data into

their analysis, which is crucial for understanding actual

expression levels of metagenomic functions in the microbial

community. Here, we robustly characterized the pre-

immunotherapy gut microbiome in a pilot study of melan-

oma patients using 16S rRNA gene sequencing, shotgun

metagenome sequencing, and shotgun metatranscriptome

sequencing. We tested whether gut microbiome overall

diversity and composition were related to progression-free

survival using Cox proportional hazards models, and identi-

fied specific microbial taxa and functional pathways that

were consistently related to progression-free survival in

repeated cross-validation analyses.

Methods
Patients

Patients (n = 27) with metastatic melanoma scheduled to

receive immunotherapy at NYU Langone Health were re-

cruited into this study from September 2016 to November

2017. Follow-up for the current analysis occurred through

September 2018. All patients pursuing treatment with im-

munotherapy were eligible for the study. The study was

discussed with patients prior to starting treatment with

immunotherapy, and all patients provided informed con-

sent. Patients were enrolled into an IRB-approved institu-

tional database and sample collection study (IRB#10362)

and had prospective-driven follow-up. In addition, pa-

tients were seen routinely for treatment, and follow-up

was performed at those visits as well. Stool kits were pro-

vided prior to starting treatment so as to obtain a pre-

treatment stool sample. All demographic and clinical/

pathological patient information was abstracted from elec-

tronic health records.

Samples

Patients collected stool with provided kits at home prior

to the start of immunotherapy. Kits included a stool col-

lection tube with 10 ml RNAlater, instructions for stool

collection, and a return addressed box with pre-paid

postage. Patients were instructed to mail samples back

within 1 day; upon receipt, samples were stored at −

80 °C until use.

Definitions

The primary endpoint was progression-free survival

(PFS), which included disease progression or death from

any cause as events. Person time is defined as time from

immunotherapy start date to event (first progression or

death) or loss to follow-up (censored). Covariates in-

cluded in statistical models (i.e., age, number of sites of

metastases, stage, BMI) were based on electronic med-

ical chart information prior to the start of immunother-

apy rather than initial diagnosis, to coincide best with

time of stool sample collection.

16S rRNA gene sequencing

Assay

Stool samples underwent 16S rRNA gene sequencing at

the Environmental Sample Preparation and Sequencing

Facility at Argonne National Laboratory, as previously

described [14]. DNA was extracted using the Mo Bio

PowerSoil DNA isolation kit, following the manufac-

turer’s protocol. The V4 region of the 16S rRNA gene

was PCR amplified with the 515F/806R primer pair,

which included sequencer adapter sequences used in the

Illumina flow cell and sample-specific barcodes [15, 16].

Each 25 μL PCR reaction contained 9.5 μL of Mo Bio

PCR Water (Certified DNA-Free), 12.5 μL of Quanta-

Bio’s AccuStart II PCR ToughMix (2× concentration, 1×

final), 1 μL Golay barcode tagged Forward Primer (5 μM

concentration, 200 pM final), 1 μL Reverse Primer (5 μM

concentration, 200 pM final), and 1 μL of template

DNA. The conditions for PCR were as follows: 94 °C for

3 min to denature the DNA, with 35 cycles at 94 °C for

45 s, 50 °C for 60 s, and 72 °C for 90 s, with a final exten-

sion of 10 min at 72 °C. PCR products were quantified

using PicoGreen (Invitrogen) and a plate reader (Infinite

200 PRO, Tecan). Sample PCR products were then

pooled in equimolar amounts, purified using AMPure

XP Beads (Beckman Coulter), and then quantified using

a fluorometer (Qubit, Invitrogen). Molarity was then di-

luted to 2 nM, denatured, and then diluted to a final

concentration of 6.75 pM with a 10% PhiX spike for se-

quencing on the Illumina MiSeq. Amplicons were se-

quenced on a 151 bp × 12 bp × 151 bp MiSeq run [16].

Sequence read processing

Sequence reads were processed using QIIME 2 [17].

Briefly, sequence reads were demultiplexed and paired-

end reads were joined, followed by quality filtering as de-

scribed in Bokulich et al. [18]. Next, the Deblur work-

flow was applied, which uses sequence error profiles to

obtain putative error-free sequences, referred to as

“sub”-operational taxonomic units (s-OTU) [19]. s-
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OTUs were assigned taxonomy using a naïve Bayes clas-

sifier pre-trained on the Greengenes [20] 13_8 99%

OTUs, where the sequences have been trimmed to only

include 250 bases from the 16S V4 region, bound by the

515F/806R primer pair. A phylogenetic tree was con-

structed via sequence alignment with MAFFT [21], fil-

tering the alignment and applying FastTree [22] to

generate the tree.

Shotgun metagenome sequencing

Assay

Stool samples underwent shotgun metagenome sequencing

at the Environmental Sample Preparation and Sequencing

Facility at Argonne National Laboratory. DNA was ex-

tracted as above and quantified using a fluorometer (Qubit,

Invitrogen). DNA was then mechanically sheared to the de-

sired insert size of the final library using the Covaris S-

series system, and products brought to 15 μL using Agen-

court AMPure XP beads (Beckman Coulter). The Apollo

324 system (Takara Bio) was then used for end-repair, A-

tailing, Illumina adaptor and barcode ligation, and size se-

lection to generate the libraries. Libraries are run through

10–15 cycles of PCR with Kapa Biosystems Library Amplifi-

cation kits, followed by further size selection with Blue Pip-

pin Prep (Sage Science). Final library quantification is

achieved using the Qubit Fluorometer (for concentration)

and the Agilent 2100 Bioanalyzer (for library insert size and

length). Libraries were sequenced on the Illumina HiSeq

2500 on a 2 × 101 bp paired-end run.

Sequence read processing

Reads were demultiplexed, and Trimmomatic [23] was

used for read length filtering, trimming of Illumina

adapter sequences, and trimming of low-quality read

ends. Reads mapping to the human genome were identi-

fied using Bowtie2 [24] and removed. Forward and re-

verse reads were concatenated for input into the

taxonomic and functional profiling tools, MetaPhlAn2

and HUMAnN2. MetaPhlAn2 [25] uses a set of ~ 1 mil-

lion clade-specific markers (average 184 marker genes

for each species) from > 7500 species to unequivocally

identify and quantify specific microbial clades at the spe-

cies level or higher. HUMAnN2 maps reads to function-

ally annotated microbial species genomes and uses a

translated search to align unmapped reads to UniRef90

protein clusters [26] (gene families). Gene families are

then grouped into MetaCyc pathways [27] using Min-

Path [28]. For a lower level of resolution, we also

regrouped UniRef90 gene families into MetaCyc reac-

tions using the “humann2_regroup_table” script. We re-

moved unintegrated/unmapped/unknown/ungrouped

pathways, reactions, and gene families prior to calculat-

ing relative abundance, using the “humann2_renorm_

table” script.

Shotgun metatranscriptome sequencing

Assay

Stool samples underwent shotgun metatranscriptome se-

quencing at the Environmental Sample Preparation and

Sequencing Facility at Argonne National Laboratory.

RNA was extracted using the Mo Bio PowerMicrobiome

RNA Isolation Kit and quantified using a Qubit

Fluorometer. RNA integrity and size distribution were

determined using the Agilent RNA 6000 Nano Kit on

the Agilent 2100 Bioanalyzer. Samples then underwent

DNase treatment using the Turbo DNA-free kit (Life

Technologies), and ribosomal depletion using the Ribo-

Zero rRNA Removal Kit (Bacteria) (Illumina). Bacterial

mRNA purification was achieved with AMPure RNA-

Clean XP Beads, and cDNA libraries were generated

using the ScriptSeq V2 RNA-Seq Library Preparation Kit

(Illumina). Libraries were sequenced on the Illumina

HiSeq 2500 on a 2 × 151 bp paired-end run. In this

study, metatranscriptomic library preparation failed for

10 samples due to poor RNA quality; thus, only a subset

of 17 patient samples underwent metatranscriptomic

sequencing.

Sequence read processing

Reads were processed in the same way as the shotgun

metagenome samples, with the exception of removing

reads with Bowtie2 mapping to the human transcrip-

tome, rather than human genome. Paired metagenomic

taxonomic profiles were used as taxonomic profile in-

puts for HUMANnN2. In addition to relative abundance

of gene families, reactions, and functional pathways

metatranscriptomic expression, we also derived relative

expression (i.e., independent of gene copy number) using

the “humann2_rna_dna_norm” script on these three

levels of data.

Statistical analysis

α-Diversity

α-diversity (within-sample microbiome diversity) was

assessed based on the 16S rRNA gene and shotgun

sequencing data, using richness (number of s-OTUs

[16S] or subspecies [shotgun]) and the Shannon diversity

index. For 16S, these indices were calculated in 100

iterations of s-OTU tables rarefied to 18,368 sequence

reads per sample, which was the lowest sequencing

depth among samples, using the QIIME 2 diversity plu-

gin. The final value for each sample was calculated by

averaging over the 100 iterations. For shotgun, these

indices were calculated on the subspecies-level data

without rarefaction. The subspecies level of the shotgun

data includes both strains and species (for species with

no strain classification). We used Cox proportional

hazards models to determine whether α-diversity was

associated with progression-free survival, adjusting for

Peters et al. Genome Medicine           (2019) 11:61 Page 3 of 14



age, sex, BMI, stage, number of sites of metastases, and

antibiotic use in the last 6 months.

β-Diversity

β-diversity (between-sample microbiome diversity) was

assessed based on the 16S rRNA gene and shotgun se-

quencing data using the weighted UniFrac distance [29]

(16S only) and the Jensen-Shannon Divergence (JSD)

[30]. Distances were calculated on the s-OTU (16S) or

subspecies (shotgun) level. Principal coordinate analysis

(PCoA) [31] was used for visualization. The community-

level test of association between the microbiota and sur-

vival times (MiRKAT-S) [32] and the optimal

microbiome-based survival analysis test (OMiSA) [33]

were used to test the association of overall bacterial

composition with progression-free survival, adjusting for

age, sex, BMI, stage, number of sites of metastases, and

antibiotic use in the last 6 months. We also assigned

samples to clusters by applying Ward’s Hierarchical Ag-

glomerative Clustering method [34] to the distance

matrices, and then tested whether these clusters were re-

lated progression-free survival using log-rank tests.

Identification of taxa

Genera, species, and subspecies (or sub-OTUs) associ-

ated with progression-free survival were assessed inde-

pendently in the 16S and shotgun metagenome datasets

using repeated cross-validated elastic-net penalized Cox

proportional hazards regression. 16S s-OTUs were ag-

glomerated into genus and species levels; this was not

necessary for MetaPhlAn2 (shotgun) output which is

already in a taxonomic level format. Taxonomic abun-

dance was transformed using the centered log ratio (clr)

transformation [35, 36] after adding a pseudocount, in

order to remove compositional constraints of sequen-

cing. 16S agglomerated genera or species missing genus-

or species-level classification, respectively, were removed

for this analysis. Likewise, shotgun taxa missing classifi-

cation at the genus, species, or subspecies levels were re-

moved from the respective levels. Additionally, we only

tested taxa present in at least 25% of samples and with

mean relative abundance greater than 0.01% in order to

minimize the number of tests. These exclusions resulted

in inclusion of 42 16S genera, 24 16S species, and 233

16S s-OTUs, and 43 shotgun genera, 110 shotgun spe-

cies, and 65 shotgun subspecies for testing. We con-

ducted 500 × 10-fold cross-validated elastic-net

penalized Cox regression using the “cv.glmnet” function

in the glmnet R package [37], with an α value of 0.5 to

allow groups of correlated predictors to be selected to-

gether. Non-penalized covariates (age, sex, BMI, stage,

number of sites of metastases, and antibiotic use in the

last 6 months) were included in each model. We

summed the number of times each taxon was selected

out of the 500 repetitions. For all tested taxa, we also fit

standard Cox proportional hazards models for

progression-free survival, adjusting for the covariates

listed above. p values for these models were adjusted for

the false discovery rate (FDR) [38]; FDR adjustment was

done at each taxonomic level (i.e., genus, species) separ-

ately. We focused further on taxa selected ≥ 25% of the

500 times (125 times or more) and with FDR-adjusted

q < 0.20 in either the 16S or shotgun data; for these, we

compared hazard ratios and examined correlations be-

tween the two data types to confirm findings and con-

firm taxonomic identities.

Identification of gene families, reactions, and functional

pathways

We assessed associations of metagenomic functional

pathways, reactions, and gene families’ relative abun-

dance with progression-free survival. Pathways, reac-

tions, and gene families were transformed using the

centered log ratio (clr) transformation [35, 36] after add-

ing a pseudocount, in order to remove compositional

constraints of sequencing. We only assessed pathways/

reactions/gene families present in at least 25% of sam-

ples, with mean relative abundance greater than 0.01%

(for gene families) or 0.03% (for pathways/reactions)

and, among these, with variance greater than the 25th

percentile of variances, in order to minimize the number

of tests that are unlikely to result in significant findings.

This resulted in inclusion of 177 metagenomic pathways,

662 reactions, and 146 gene families. 500 × 10-fold

cross-validated elastic-net penalized Cox regression, as

described above in “Identification of taxa”, was used to

identify functional pathways, reactions, and gene families

related to progression-free survival. We used Spearman’s

correlation to examine associations between relative

abundance of metagenomic features and their corre-

sponding relative abundance in the metatranscriptome,

and focused on metagenomic features with (a) selection

≥ 25% of the 500 times, (b) FDR-adjusted q < 0.20, and

(c) correlated metatranscriptomic expression (p < 0.05).

Using the same procedure, we also examined metatran-

scriptomic expression and relative expression of path-

ways/reactions/gene families related to progression-free

survival; we considered this analysis exploratory due to a

reduced sample size (n = 17).

Results
Among the patients included in the current study, 12

progressed over the course of follow-up, which ranged

from 10 to 25months. The majority of the patients were

male (78%) and white (96%), and 41% of the patients

were receiving adjuvant immunotherapy (i.e., complete

resection prior to therapy) (Table 1). Patients who pro-

gressed tended to be older and have lower BMI at
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baseline than patients who remained progression free

(Table 1).

Higher microbiome community richness was associated

with longer progression-free survival (number of 16S s-

OTUs: HR [95% CI] = 0.97 [0.95, 1.00], p = 0.02; number

of shotgun subspecies: HR [95% CI] = 0.89 [0.79, 0.99],

p = 0.03), adjusting for the covariates of age, sex, BMI,

stage, number of sites of metastases, and antibiotic use in

the last 6months. Higher community diversity, as mea-

sured by the Shannon index, was associated with longer

progression-free survival in the 16S data (p = 0.02) but not

in the shotgun data (p = 0.90) (Additional file 1: Table S1).

Results were similar with additional adjustment for im-

munotherapy regimen (monotherapy or combined ther-

apy) (Additional file 1: Table S1).

In both the 16S and shotgun data, hierarchical cluster-

ing based on the JSD clustered patients into two groups,

and these two groups significantly differed in their

progression-free survival (16S log-rank p = 0.005; shotgun

log-rank p = 0.02) (Additional file 2: Figure S1). We then

further grouped patients as follows: a “low-risk” group

comprised of patients concordantly in the low-risk 16S

and low-risk shotgun clusters; a “high-risk” group com-

prised of patients concordantly in the high-risk 16S and

high-risk shotgun clusters; and an “intermediate-risk”

group comprised of patients discordant between the 16S

and shotgun clusters (Fig. 1a). These groups differed sig-

nificantly in their progression-free survival (log-rank p =

0.006; Fig. 1b). Additionally, these groups were related to

progression-free survival in Cox proportional hazards

Table 1 Demographic and clinical characteristics of melanoma patients on immunotherapy

Characteristic All patients
(n = 27)

No progression
(n = 15)

Any progression (n = 12) pa

Age (years)b, mean ± SD 70.3 ± 11.9 66.6 ± 12.5 74.9 ± 9.6 < 0.0001

Male, % 77.8 73.3 83.3 0.66

White, % 96.3 100 91.7 0.44

BMI (kg/m2)b, mean ± SD 27.5 ± 4.8 28.4 ± 4.3 26.5 ± 5.3 < 0.0001

Melanoma type, % 0.02

Nodular 18.5 6.7 33.3

Acral lentiginous 3.7 0 8.3

Superficial spreading 3.7 0 8.3

Desmoplastic 3.7 0 8.3

NOS/missing 70.4 93.3 41.7

Driver mutation, % 0.83

NRAS 18.5 13.3 25

BRAF 25.9 33.3 16.7

None 29.6 26.7 33.3

Missing 25.9 26.7 25

Stageb, % 0.68

III 33.3 40 25

IV 66.7 60 75

LDH > 618 U/Lb, % 7.4 0 16.7 0.22

Sites of metastasisb,c, % 0.21

0 40.7 53.3 25

1–2 33.3 33.3 33.3

≥ 3 25.9 13.3 41.7

Immunotherapy type, % 0.44

Anti-PD-1 51.9 46.7 58.3

Anti-CTLA-4 3.7 0 8.3

Anti-PD-1/anti-CTLA-4 44.4 53.3 33.3

Antibiotics in prior 6 months, % 55.6 60 50 0.71

ap value for difference by progression status, from Wilcoxon rank-sum test for continuous variables or Fisher’s exact test for categorical variables
bCharacteristic prior to immunotherapy start (not at diagnosis)
cPatients with 0 sites of metastasis were resected with no evidence of disease and were being treated adjuvantly
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models adjusting for covariates: patients in the low-risk

group had 99% lower risk of progression than the high-

risk group at any time during follow-up (HR [95% CI] =

0.01 [0.001, 0.20], p = 0.002), while patients in the

intermediate-risk group had non-significantly lower risk

(HR [95% CI] = 0.10 [0.005, 2.17], p = 0.14) (Add-

itional file 1: Table S1).

In the MiRKAT-S test, overall microbiome community

composition as measured by the JSD was marginally re-

lated to progression-free survival for both the 16S (p =

0.09) and shotgun (p = 0.06) data, adjusting for covari-

ates (Additional file 1: Table S1). Measures relying on

the phylogenetic tree (weighted UniFrac, OMiSA) could

only be assessed in the 16S data; community compos-

ition as measured by the weighted UniFrac was margin-

ally associated with progression-free survival (p = 0.07),

while the OMiSA test was not significant (p = 0.17)

(Additional file 1: Table S1).

In 500 × 10-fold cross-validated elastic-net Cox regres-

sion models for progression-free survival adjusting for

covariates, 6 genera and 3 species were selected > 25% of

the time with q < 0.20 in the 16S data, and 8 species and

4 subspecies were selected > 25% of the time with q <

0.20 in the shotgun data (Fig. 2a, b; Additional file 1:

Table S2; Additional file 2: Figure S2). There were no

16S s-OTUs or shotgun genera which met the cut-off

criteria (Additional file 1: Table S2). Most of the genera

and species selected in either the 16S or shotgun data

that were present in both datasets were highly correlated

between the two datasets (Fig. 2c, d) and showed con-

sistent associations with progression-free survival in

both datasets. These included genera Bacteroides and

Bilophila, and species Bacteroides ovatus, Blautia

producta, and Ruminococcus gnavus, associated with

shorter progression-free survival, and genera Faecalibac-

terium and Parabacteroides and species Faecalibacter-

ium prausnitzii, associated with longer progression-free

survival. Genus Clostridium was not well correlated be-

tween the 16S and shotgun datasets and was only associ-

ated with longer progression-free survival in the 16S

data, while Coprococcus eutactus was associated with

longer progression-free survival in the 16S data but had

insufficient abundance to be tested in the shotgun data

(Fig. 2). As to be expected, many of the species selected

in the shotgun data were not detected, either at all or

with sufficient abundance, in the 16S data, including

Bacteroides dorei and Bacteroides massiliensis, associated

with shorter progression-free survival, and Prevotella

stercorea, Lachnospiraceae bacterium 3 1 46FAA,

Streptococcus anginosus, and Streptococcus sanguinis, as-

sociated with longer progression-free survival (Fig. 2b).

Relative abundance of the selected species and subspe-

cies (based on shotgun data) tended to differ between

the high-risk and low-risk JSD cluster groups (Fig. 3a, b).

Taxa associated with shorter progression-free survival,

such as species Bacteroides ovatus, Bacteroides dorei,

Bacteroides massiliensis, and Blautia producta, and sub-

species of Lachnospiraceae bacterium 5 1 57FAA, were

elevated in the high-risk group, while taxa associated

with longer progression-free survival, such as species

Streptococcus sanguinis and Streptococcus anginosus, and

subspecies of Prevotella stercorea, Faecalibacterium

prausnitzii, and Lachnospiraceae bacterium 3 1 46FAA,

were elevated in the low-risk group (Fig. 3a, b).

In repeated cross-validated Cox regression for metage-

nomic functional pathways, reactions, and gene families,

Fig. 1 Patient clusters based on overall microbiome composition in 16S and shotgun data are related to progression-free survival. Ward’s Hierarchical

Agglomerative Clustering method was used on the Jensen-Shannon Divergence (JSD) from the 16S s-OTU data and shotgun subspecies data to cluster

patients into groups. a The dendrograms from 16S and shotgun were compared, and patients were assigned to two concordant groups (orange and blue)

or a discordant group (purple). b The Kaplan-Meier curves of the patient groupings had significantly different progression-free survival (log-rank p= 0.0057)
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11 pathways, 26 reactions, and 16 gene families were se-

lected > 25% of the time with q < 0.20 (Additional file 1:

Table S3-S5). Among these, 8 pathways, 17 reactions,

and 7 gene families had significant positive correlations

(p < 0.05) with metatranscriptomic expression (Fig. 4,

Additional file 2: Figures S3-S4). Selected metagenomic

pathways with correlated metatranscriptomic expression

that were related to longer progression-free survival in-

cluded biosynthesis pathways for L-isoleucine and petro-

selinate. Those related to shorter progression-free survival

included biosynthesis pathways for 6-hydroxymethyl-

dihydropterin diphosphate, pantothenate and coenzyme

A, flavin, pyridoxal 5-phosphate, and guanosine nucleo-

tides, and the degradation pathway for L-rhamnose (Fig. 4a,

b; Additional file 1: Table S3). Within each of these path-

ways, abundance of specific biochemical reactions were

also related to progression-free survival, typically in the

same direction as the parent pathway (Fig. 4c). Selected

metagenomic reactions with correlated metatranscrip-

tomic expression that were related to shorter progression-

free survival included reactions involved in nucleotide

phosphorylation and biosynthesis, L-rhamnose degrad-

ation, pectin degradation, and aerobic respiration (Add-

itional file 1: Table S4, S6; Additional file 2: Figure S3).

Most of the selected gene families with correlated meta-

transcriptomic expression were uncharacterized proteins;

results for these gene families are shown in Add-

itional file 1: Table S5 and Additional file 2: Figure S4. In

repeated cross-validated Cox regression for metatranscrip-

tomic expression and relative expression of functional

pathways, reactions, and gene families, we did not identify

features meeting our selection criteria, likely due to the

smaller sample size (n = 17) available for this analysis

(Additional file 1: Table S3-S5).

Risk-associated metagenomic pathways tended to be

positively correlated with risk-associated species/subspe-

cies and negatively correlated with protective species

(Fig. 5a). For example, risk-associated Bacteroides dorei

and Bacteroides ovatus were positively associated with L-

rhamnose degradation and pantothenate and coenzyme

A biosynthesis. Protective metagenomic pathways did

not correlate strongly with protective species/subspecies.

Similar correlation patterns were observed for species/

subspecies with metatranscriptomic expression of these

pathways (Fig. 5a). We next explored average species

contributions to overall metagenome and metatranscrip-

tome pathway abundances in this patient population

(Fig. 5b); while multiple species are involved in each

Fig. 2 Genera and species related to progression-free survival. a, b For genera or species selected > 125 times in 500 × 10-fold cross-validated

elastic-net penalized Cox regression and with FDR-adjusted q < 0.20 in either the 16S or shotgun data, we show number of times selected and

the hazard ratio. Note: not all genera and species were detected in both the 16S and shotgun data. c, d Scatterplots of 16S vs. shotgun relative

abundance of genera and species, for genera and species selected in the regression and detected in both the 16S and shotgun data. Spearman’s

rho and p value are displayed on the plots
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pathway, we noted that Bacteroides ovatus was a signifi-

cant contributor to degradation of L-rhamnose and bio-

synthesis of pyridoxal 5-phosphate, 6-hydroxymethyl-

dihydropterin diphosphate, and pantothenate and coen-

zyme A, while Bacteroides dorei was a significant con-

tributor to guanosine nucleotides biosynthesis (Fig. 5b).

Analysis of per-species pathway abundances with

progression-free survival implied that degradation of L-

rhamnose and biosynthesis of pyridoxal 5-phosphate, 6-

hydroxymethyl-dihydropterin diphosphate, and panto-

thenate and coenzyme A by Bacteroides ovatus was re-

lated to shorter progression-free survival; that guanosine

nucleotides biosynthesis by Bacteroides dorei and Bacter-

oides massiliensis was related to shorter progression-free

survival; and that L-isoleucine biosynthesis by Coprococcus

eutactus was related to longer progression-free survival

(Fig. 5c).

Discussion
In this pilot study of melanoma patients treated with im-

munotherapy, we observed a relationship between over-

all microbiome composition and risk of progression

during follow-up. Clustering of patients based on the

underlying microbial composition in their stool revealed

patient groups with significantly different progression-

free survival, including a high-risk group enriched in

Bacteroides species, and a low-risk group enriched in

Faecalibacterium prausnitzii and other protective spe-

cies. Further, we observed metagenomic functions re-

lated to progression-free survival that had correlated

metatranscriptomic expression and may serve as mecha-

nisms for bacteria to influence immunotherapy response,

including protective pathways of amino acid biosynthesis

and risk-associated pathways of sugar degradation,

guanosine nucleotide biosynthesis, and B vitamin biosyn-

thesis. Finally, we observed that greater microbiome

community richness was significantly associated with

prolonged progression-free survival. Many of these re-

sults are consistent with previous literature, highlighting

emergent bacterial modulators of immunotherapy treat-

ment response.

While several studies now suggest that the gut micro-

biome is a critical player in immunotherapy response,

the mechanisms by which this may occur remains

unclear. The main principle of immunotherapy is to

block immunosuppressive T cell checkpoints, allowing

cytotoxic T cells to attack tumors [39]. Human gut

microbiota may modulate the effectiveness of immuno-

therapy, and anticancer immunosurveillance in general,

by shaping both effector and suppressor immune cell

populations through pathogen-associated molecular

patterns (PAMPs), antigens, and metabolites [40]. One

Fig. 3 Heatmap of shotgun species and subspecies relative abundance. Relative abundance of a species and b subspecies in the shotgun data;

only those selected > 125 times in 500 × 10-fold cross-validated elastic-net penalized Cox regression and with FDR-adjusted q < 0.20 in either the

16S or shotgun data are shown. Ward’s Hierarchical Agglomerative Clustering method was used, column (patient) distance was based on the

shotgun JSD (from Fig. 1), and row (species) distance on the Manhattan distance. Species and subspecies are annotated with the direction of

their hazard ratio with progression-free survival, and patients are annotated with their combined JSD cluster (from Fig. 1)
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Fig. 4 (See legend on next page.)
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hypothesis by which this occurs is via microbial proteins

that mimic tumor antigens, resulting in T cell cross-

reactivity; T cells may be primed by microbial antigens in

the gut and travel to tumor sites, or the gut microbes or

microbial antigens themselves may translocate to distant

sites to induce a local T cell response near the tumor [40].

A second hypothesis is that gut microbes or microbial

products activate pattern recognition receptors (PRRs),

which stimulate the production of cytokines and inter-

ferons, thus leading to immunostimulatory or immuno-

suppressive reactions in T cells; PRR activation may occur

in the gut and stimulate traveling innate immune cells, or

the microbes or microbial products themselves may trans-

locate [40]. Evidence for these hypothetical mechanisms

underlines the potential causal impact of the gut micro-

biota on immunotherapy response and supports the future

use of microbiome manipulation to increase the efficacy

of immunotherapy [40].

To our knowledge, four studies have examined the rela-

tionship of the gut microbiome to immunotherapy response

in human patients with melanoma. In 2018, Gopalakrishnan

et al. reported higher α-diversity, higher relative abundance

of Faecalibacterium prausnitzii, and lower relative abun-

dance of Bacteroidales, in anti-PD-1 immunotherapy re-

sponders (n= 30) compared to non-responders (n= 13) [9].

They quantified T cell densities in pre-treatment tumors and

peripheral blood and observed significant positive correla-

tions of gut Faecalibacterium relative abundance with tumor

CD8+ T cell infiltrate and peripheral CD8+ T cell and ef-

fector CD4+ T cell frequencies, while Bacteroidales was in-

versely related to these markers. Further, they found that gut

Faecalibacterium was positively related to a peripheral cyto-

kine profile favorable for response to anti-PD-1 immunother-

apy, while Bacteroidales was related to a blunted peripheral

cytokine response and to higher peripheral frequencies of

immunosuppressive regulatory T cells and myeloid-derived

suppressor cells [9]. Germ-free mice receiving fecal trans-

plant from responding patients had reduced tumor size and

enhanced antitumor T cell responses compared to mice re-

ceiving fecal transplant from non-responding patients [9].

Also in 2018, Matson et al. reported higher relative abun-

dance of Bifidobacterium longum, Collinsella aerofaciens,

and Enterococcus faecium and lower relative abundance of

Ruminococcus obeum and Roseburia intestinalis, in anti-PD-

1 immunotherapy responders (n= 16) compared to non-

responders (n= 26) [10]. They too administered fecal

material of responders and non-responders to germ-free

mice via gavage, and found improved tumor control and

enhanced T cell responses in the mice receiving fecal ma-

terial from responding compared to non-responding pa-

tients [10]. In 2017, Frankel et al. reported enrichment of

Bacteroides caccae in immunotherapy responders (n = 24)

compared to non-responders (n = 15); among ipilimumab

(anti-CTLA-4) + nivolumab (anti-PD-1) responders, they

observed enrichment of Faecalibacterium prausnitzii,

Bacteroides thetaiotamicron, and Holdemania filiformis,

while in pembrolizumab (anti-PD-1) responders they ob-

served enrichment of Dorea formicigenerans [11]. Finally,

in another 2017 report, Chaput et al. observed higher rela-

tive abundance of Faecalibacterium, Gemmiger, and Clos-

tridium XIVa and lower abundance of Bacteroides, in

anti-CTLA-4 responders (n = 9) compared to non-

responders (n = 17) [12]. Two of these studies have found

that Bacteroides is related to poor immunotherapy re-

sponse, while Faecalibacterium is related to improved re-

sponse, consistent with our findings here. However, some

of these previous studies have identified response-related

taxa that were not significant in our study, and vice versa,

we have identified response-related taxa that were not re-

lated to response in previous studies.

Inconsistent results between studies regarding the cen-

tral species involved in immunotherapy response could

be due to small sample sizes and differing populations

under study. However, it is possible that the functional

capacities of the microbiota (which can be redundant

across species) are the more key determinant of im-

munotherapy responses rather than individual species.

For this reason, we have characterized the metagenomes

and metatranscriptomes of the study patients, to identify

metagenomic functions expressed by the microbial com-

munity that may influence patient outcomes. We

observed that a sugar degradation pathway (L-rham-

nose), B vitamin biosynthesis pathways (pantothenate,

pyridoxal 5-phospate, flavin, and 6-hydroxymethyl-

dihydropterin diphosphate [folate precursor]), and

guanosine nucleotide biosynthesis pathways were associ-

ated with shorter progression-free survival. Lactate, a

product of sugar degradation, is known to drive tumor

progression via its use by cancer cells as a nutrient

source and by its promotion of tumor inflammation and

inhibitory effect on cytotoxic T cells [41, 42]. It is not

clear how microbial B vitamin biosynthesis may diminish

(See figure on previous page.)

Fig. 4 Metagenomic functional pathways related to progression-free survival. For metagenomic pathways selected > 125 times in 500 × 10-fold

cross-validated elastic-net penalized Cox regression, that also had FDR-adjusted q < 0.20 and correlated (p < 0.05) metatranscriptomic expression,

we show a number of times selected and the hazard ratio (alongside parallel data from the metatranscriptomic analysis in n= 17) and b correlations

between metagenomic and metratranscriptomic functional pathway relative abundance. Spearman’s rho and p value are displayed on the plots. c MetaCyc

pathway layouts for the pathways in (a, b). Each arrow represents one MetaCyc reaction, color-coded by its hazard ratio in the metagenomic analysis.

Arrows in black represent reactions not tested due to low carriage, abundance, or variance of the reaction
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immunotherapy response; yet interestingly, metage-

nomic pantothenate and riboflavin biosynthesis were

both associated with resistance to colitis in melanoma

patients on anti-CTLA-4 immunotherapy [43], perhaps

indicative of their effects on immunity. We also observed

that biosynthesis of the amino acid L-isoleucine was as-

sociated with longer progression-free survival. With

mechanisms again unclear, Gopalakrishnan et al. also

highlighted that metagenomic amino acid biosynthesis

predominated in melanoma patients who responded to

immunotherapy [9], though no specific amino acids were

identified. Biosynthesis of the fatty acid petroselinate

was also related to longer progression-free survival,

though reactions within this pathway were not, making

this a somewhat unstable finding. Finally, we observed

that pectin degradation reactions were associated with

shorter progression-free survival, leading us to infer that

anticancer properties of pectin [44] may be disrupted by

bacterial degradation.

Our study is strengthened by the robust assessment

of the gut microbiome via 16S rRNA gene, shotgun

metagenome, and for the first time, shotgun metatran-

scriptome sequencing. This allowed us to focus on

expressed metagenomic functions potentially related to

prognosis, which may be important for identifying adju-

vant therapeutic targets for metagenomic functions, ra-

ther than specific species. We were additionally able to

replicate our findings with the two primary flavors of

microbiome profiling—targeted 16S amplicon sequen-

cing and broad metagenomic shotgun sequencing. With

analysis of 16S rRNA gene and shotgun metagenome

data side by side, we were able to confirm the robust-

ness of our findings with two data types. Clustering of

patients based on 16S microbiome composition was

slightly more predictive of progression-free survival

than clusters based on shotgun microbiome compos-

ition, but species-level classification was much higher

in the shotgun data, permitting us to identify more

response-associated species than with 16S data alone. A

further strength of our study was the long follow-up of

patients and our use of survival analysis rather than di-

chotomization of patients into responders and non-

responders, a practice done in previous studies [9–11]

which may result in loss of precision [13].

Our study is limited by its small sample size, like other

studies which came before; yet our replication of some find-

ings from those previous studies, such as the relationship of

Faecalibacterium prausnitzii and Bacteroides with immuno-

therapy outcomes, is encouraging. A further limitation of our

study is that we had insufficient sample size to analyze adju-

vant and metastatic patient groups separately and thus

present a combined analysis of adjuvant and metastatic pa-

tients as one group. Though we did not observe differences

in pre-treatment gut microbiome composition between adju-

vant and metastatic patients (Additional file 2: Figure S6), we

were unable to examine heterogeneity of microbiome effects

on survival. Similarly, sample size was insufficient to analyze

patient groups separately by immunotherapy treatment regi-

men; this type of analysis will be important to determine

which immunotherapies could be enhanced most by an opti-

mal microbiome composition. Finally, metatranscriptome se-

quencing data was only available for a subset of 17 patients,

which limited our power to assess the relationship of meta-

transcriptomic expression and relative expression with

progression-free survival.

Conclusions
In conclusion, our pilot study results support the notion that

the gut microbiota modulate response to immunotherapy in

melanoma patients. Larger studies with robust microbiome

characterization are needed to validate the microbial species

and functions related to progression-free survival in melan-

oma patients on immunotherapy, and whether these rela-

tionships differ for adjuvant and metastatic patients or by

immunotherapy type. Ultimately, this research may provide

microbial therapeutic targets to improve immunotherapy

outcomes and increase survival in these patients.
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Fig. 5 Contribution of shotgun metagenome taxa to shotgun metagenome and metatranscriptome functional pathways. a Spearman’s

correlations are shown for shotgun species and subspecies vs. shotgun metagenome and metatranscriptome pathways. Only taxa selected

in repeated cross-validated elastic-net penalized Cox regression are shown, and only pathways selected in regression and that had

correlated metatranscriptomic expression are shown. Taxa and pathways relative abundance were used for correlation analysis. Taxa and

pathways are annotated with the direction of their hazard ratio with progression-free survival in the metagenomic analysis. *p < 0.05;

**p < 0.01. b Mean percent contribution of species to functional pathways in the metagenome and metatranscriptome data. Per-species

pathway abundance values were normalized to 100% for each pathway within each patient individually, and means were taken across

patients; here, we show the mean percent contribution for the top 5 contributing species to each pathway. c Hazard ratios for species-

specific pathway abundances; all species-by-pathway combinations existing in the data (for our selected species and pathways) are shown
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