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Electroless deposition on patterned silicon substrates enables the formation of metal nanomaterials with

tight control over their size and shape. In the technique, metal ions are transported by diffusion from

a solution to the active sites of an autocatalytic substrate where they are reduced as metals upon

contact. Here, using diffusion limited aggregation models and numerical simulations, we derived

relationships that correlate the cluster size distribution to the total mass of deposited particles. We found

that the ratio x between the rates of growth of two different metals

�

x ¼
kA

kB

�

depends on the ratio g

between the rates of growth of clusters formed by those metals

 

g ¼

�

QA
�

QB

!

through the linearity law x ¼

14(g � 1). We then validated the model using experiments. Different from other methods, the model

derives k using as input the geometry of metal nanoparticle clusters, decoded by SEM or AFM images of

samples, and a known reference.

1 Introduction

Electroless deposition is a chemical method of plating in which

ametal is deposited on a surface without the support of external

elds or driving voltages.1–5 In the technique, absorption of

metal ions at the surface is activated by catalytic and reducing

agents added in the solution with the ions. If the substrate is

made up of silicon, the substrate itself performs simultaneously

as a reducing and catalytic agent and the process of deposition

is greatly facilitated. Since silicon serves as a basis of the

majority of micro- and nano-fabrication processes and tech-

niques and can be easily integrated with other materials,6–9

electroless deposition on silicon displays potential to be used

for the synthesis of metal nanoparticles, metal nanomaterials or

other nanostructures.

The method enables the fabrication of nanostructures by

incrementally depositing smaller building blocks on a at

substrate. Pre-patterning of the substrate by optical or electron

beam lithography allows site selective formation of metal

nanoparticles with tight control over the nal aspects of the

nanoparticles.5 On the active sites of the silicon surface exposed

to growth, metal ions aggregate into clusters where the

geometrical characteristics of the aggregate will depend on

a ne-tuning of size and shape of preexisting patterns on the

substrate, and the parameters of electroless growth including

temperature, pH, and concentration of metal ions in solution.5

In the absence of stirring or other convective ows, ions are

transported towards the active sites of the substrate by pure

diffusion. Since the mechanisms of diffusion are very well

understood,10,11 electroless deposition can be simulated using

discrete models of transport in cellular spaces. In the models,

cells of a grid can take denite 0 or 1 states – 1 indicates the

presence of a particle (ion). A particle will move with time in

a continuous time probabilistic Brownian motion (Fig. 1a),

which is discretized in the space as a random walk (Fig. 1b).

Particles aggregate upon contact. Displacement of a great many

particles in a lattice (Fig. 1c) enables the formation of numerical

aggregates with a dendritic appearance that is typical of fractals

(Fig. 1d). Simulation of particle growth using iterative arrays is

called Diffusion Limited Aggregation (DLA).12–17 In previously

reported analyses, we have used DLA models to examine the

effects of pattern size4,5 and pattern distance18 on the charac-

teristics of metal nanoparticles in electroless growth. Here, we

revise DLA models of particle growth to consider the effects of

the sticking probability of an ion to the aggregate – p.
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On changing p between 0 and 1, one can modulate the

packing fraction and supercial aspect of the aggregates. Low

values of p generate aggregates with high atomic packing

densities (Fig. 1e), in contrast to low-density aggregates ob-

tained from high values of p (Fig. 1f). p regulates the adhesion of

ions to the substrate. If p is low (p / 0) the probability of

adhesion of a particle to the aggregate is low, meaning that

a particle may not immediately stick to the aggregate upon

contact. Under these conditions, a particle may penetrate more

deeply in the structure without being captured by the external

shells of the aggregate. Higher penetration depths imply, in

turn, higher nal densities of the numerical clusters of parti-

cles. Notice though that, even if for small p the surface density

of the aggregates is high, the growth of the aggregate is slow

compared to systems with larger sticking probabilities, as

demonstrated in the following sections of the paper. If p¼ 0, no

adhesion can occur on the surface.

Using data from the simulations, we developed models that

correlate the cluster size distributions and the mean cluster size

with p. Since p is related, in turn, to the kinetics of metal

deposition, these models enable extraction of the rate of growth

of nanoparticles from topographical maps of samples, obtained

by SEM, AFM or other similar techniques of imaging. We tested

the performance of the model analyzing the growth of gold and

silver aggregates in patterned silicon substrates. The model

predicted a difference of growth rate between the two metals of

a factor of 10. The growth kinetics of metal nanoparticles

measured by UV spectrophotometric techniques matched the

predictions of the models with a good level of accuracy.

Coupled to experimental SEM or AFM data, this scheme can

be used to derive the growth rate kinetics of metals plated on

a substrate by electroless methods.

2 Results
2.1 Generating numerical DLA aggregates

Using the numerical scheme described in the methods and in

Fig. 1, we generated numerical aggregates of metal particles on

patterned silicon substrates. Particles in the aggregate form

non-continuous dendritic structures with details over multiple

scales that are typical of fractals. For each imposed value of

sticking probability p, we extracted the local density at different

distances from the substrate r. Information on the density of

the aggregate at a local scale was used to derive the density–

density correlation function c(r).

Fig. 1 Diffusion of metal ions in a solution is described by a probabilistic continuous time Brownian motion, in which ions change arbitrarily the

direction of velocity upon collision with atoms in the solution (a). The process can be represented in a discrete grid (b). Multiple ions can be

placed in a domain to reproduce electroless deposition (c). Each ion obeys the laws of diffusion following a random walk – upon contact with

a line of nucleation sites, ions are incorporated into an aggregate of particles growing with time (d). The structure of occupied sites of the

aggregate has a dendritic appearance typical of fractals. The density of aggregates can be modulated by changing the probability of adhesion of

a particle to the aggregate p (e and f).
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The density–density correlation function c(r), also called pair

correlation function, is a distribution routinely used in statis-

tical mechanics to describe how density varies as a function of

distance from a reference point. In the present conguration,

we used as a reference point the lines of nucleation sites of the

aggregate, i.e. the base of the aggregate. c(r) is a measure of the

probability of nding a particle at a distance r from the refer-

ence. It describes the internal structure of an aggregate as

a function of continuous, smoothly varying spatial coordinates

– for this it can be used to link the microscopic to the macro-

scopic characteristics of a system: c(r) delivers the information

content of an aggregate as a function of the scale of the

aggregate.

In a log–log plot, c(r) is a line with a slope a (Fig. 2). Since the

fractal dimension Df of an aggregate is an index that quanties

the change in detail to a change of scale, Dfmay be derived from

a as Df¼ 2� a (Methods). The fractal dimension varies with the

sticking probability and rapidly undergoes transition from an

initial value Df� 1.9 for p¼ 0 to Df� 1.625 for p¼ 1. Notice that

for sufficiently high values of p, p > 0.2, the best t of Df attains

the steady state value Df � 1.625, similar to the theoretical limit

5/3 � 1.667.14 The purpose of calculating the fractal dimension

is deriving the cluster size distribution of an aggregate. Clusters

are dened as naturally separated trees – a collection of parti-

cles connected to the same nucleation site through nearest

neighbours forming the deposit16,17 (Fig. 2d). From ref. 16, the

average cluster size hSi of an aggregate with fractal dimension Df

and mass N is

hSi � NDf/(Df�1) (1)

the total number of clusters or branches Q in an aggregate is

therefore

Q ¼ N/hSi (2)

The cluster-size distribution I(S,N), i.e. the number of clus-

ters in an N-aggregate as a function of cluster size S, is:19

IðS;NÞ ¼

 

S

N1=Df

!�Df

(3)

The probability of nding an S-site tree on a nucleation site

is limited by N.

2.2 Structure of aggregates and cluster size distribution

The structure of occupied sites was characterized applying

relationships (1) to (3). The mean cluster size was estimated by

arithmetic average aer calculating the largest branch and

xing the smallest cluster containing 10 particles. Fig. 3a

reports the mass N of the aggregates as a function of the time of

deposition (i.e. the number of iterations) for different values of

the sticking probability p. For a xed p, the size of the aggregate

increases with a quadratic function of time, which is easily

explained considering that the larger the number of pixels in an

aggregate, the larger the number of docking sites to which

diffusing ions in solution can possibly bind. For a xed time,

the size of the aggregate increases linearly with the sticking

probability p. Thus, approximately i ¼ 6 M iterations from the

beginning of the simulations, the number of particles in the

aggregate is N � 500 for p ¼ 0.1, rises to N � 650 for p ¼ 0.6 and

reaches N � 800 for p ¼ 1 (Fig. 3b). Remarkably, the linear form

of the N(p) characteristic indicates that the kinetics of metal

deposition k is proportional to the sticking probability p

k ¼
vN

vt
¼ N

�

fp (4)

which in turn implies that p can be used to compare metal

growth rates across different simulations. Fig. 3c describes the

cluster size distribution of the aggregate for different values of

the sticking probability p, derived from the numerical analysis

of the aggregate and eqn (3). For a xed sticking probability, the

number of clusters I(S) with a certain size S decreases hyper-

bolically with S. Thus the probability of nding clusters with

a number of pixels that is lower or equal to 10 is above the mean

of the distribution and decreases below the mean of the

distribution for any S > 10. The number of clusters with a size

greater than 80 pixels is nearly 0 (p¼ 1, i¼ 20M, N¼ 5000). This

trend is maintained for values of p lower than 1, for which the

overall number of clusters and the average cluster size are

shied to the le of the diagram. From the distribution of

clusters in the aggregate and eqn (1) to (3), we derived the

number Q of clusters as a function of time for different values of

p (Fig. 3d). We observe that Q varies linearly with time and that

the slope of Q can be modulated by changing p – Q is indicative

of the number of separate clusters, i.e. macrograins or isolated

Fig. 2 Aggregates can be analyzed to derive the local density r(r) of

the aggregate at different lengths r from the line of nucleation sites (a).

The local density of the aggregate is used in turn to derive a density–

density correlation function C(r) following a power law dependency. In

a log–log plot, C(r) has the appearance of a line (b). The slope of C(r) is

used to derive the fractal dimension Df of the aggregates as a function

of the probability of adhesion p, Df attains a steady state value Df �

1.625 for p > 0.2 (c). The fractal dimension is correlated with the

number of clusters in a numerical aggregate (d).
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particles that are deposited on a substrate during an electroless

process. Fig. 3d suggests that the number of isolated particles

resulting from an electroless deposition, easily measured using

SEM or AFM techniques, can be correlated with p that in turn is

associated with the rate of metal growth k through eqn (4).

2.3 Connecting the rate of metal growth to the kinetics of

cluster deposition

Fig. 3d, reproduced in a separate Fig. 4a for the sake of clarity,

reunites in one unique diagram (i) the time evolution of the

number of clusters in an aggregate _Q and (ii) the sticking

probability p. The sticking probability is proportional to the

kinetics of metal deposition p/ k through relationship (4).
_Q is a measure of the number of separate particles that are

deposited on a substrate over time. This assertion is substan-

tiated by the following argument. A cluster is a structure, in the

aggregate, with some internal correlation. An operational de-

nition of a cluster is that it is a structure clearly distinguishable

as a subsystem – a self-contained system within the larger

system. For this, it is the analogue of an isolated particle in

a real process of chemical deposition. Therefore,
�

Q ¼
dQ

dt
can

be considered a good estimate of the number of separate

particles that are deposited on a substrate in the unit time.

k is a key parameter inmaterials science and nanotechnology

and is relevant for the rational design of processes or structures

that imply the deposition, growth and self-assembly of metal

nano-materials. On the other hand, _Q is experimentally

observable and can be readily determined through conventional

imaging techniques, including SEM and AFM. It may therefore

be convenient to express p as a function of _Q.

Since numerical simulations and Fig. 4a reect metal

deposition less quantitatively than qualitatively – calibration

standards may be required for matching the predictions of the

Fig. 3 Numerical aggregates were examined to extract the total numberN of particles in an aggregate as a function of time for different values of

the probability of adhesion p (a). For a fixed time i¼ 0.5 M iterations,N varies linearly with p (b). Numerical aggregates are formed by clusters with

different sizes S and numbers I, where I varies hyperbolically with S – cluster size distribution I(S) is determined as a function of the probability of

adhesion p (c). The total number of clusters Q in an aggregate is a linear function of time – iteration number – i and probability p (d).

Fig. 4 The cluster size distribution of numerical aggregates was used

to determine the ratio between the rates of growth of two materials x

as a function of the ratio between the rates of growth of the clusters g

formed by thosematerials over time, the form of the x(g) relationship is

linear (a). The model enables estimation of the rate of metal growth k

from SEM or AFM images of a sample and a known reference (b).

This journal is © The Royal Society of Chemistry 2019 Nanoscale Adv., 2019, 1, 228–240 | 231
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model with experimental data (see comments in the Discus-

sion) – in the following we will use ratios between variables

rather than the absolute values of variables to describe particle

growth.

We then dene the non-dimensional parameters x ¼ p2/p1, g

¼ _Q(p2)/ _Q(p1), the subscript i¼ 1, 2 indicates two different states

or materials with p2 > p1. Then, we derive from the diagram in

Fig. 4a x as a function of g: x(g). The best t of data and

graphical representation of x(g) (Fig. 4b) indicate that x varies

linearly with g as

x ¼ 14.34g � 13.7 (5)

we calculate a r-squared statistic r2 to test whether the data in

several different bands are consistent with the matching

template. Values of r2 near unity and of estimated variance s

near zero indicate that the signal is consistent with the model

(r2 ¼ 0.99, s ¼ 0.092).

In separate ESI 1,† we provide a full statistical report of the

linear regression, including values for the parameter table, r2,

adjusted r2, estimated variance and ANOVA table. We used at

least 25 simulations for each p to t data and evaluate the

model.

Eqn (5) puts in relation the growth kinetics of different

materials expressed in different forms. x is the ratio between

the kinetics of growth of two materials, g is the ratio

between the rates of growth of clusters emerging from the

deposited volume of those materials. The proportion

between x and g is �14. Say that we have two different metals

A and B, the kinetics of deposition of A is known, being kA.

Then kB can be readily derived using an approximate form of

eqn (5):

kB ¼ 14

 

�

QB
�

QA

� 1

!

kA (6)

where the velocity of cluster/particle deposition _Q may be

determined through direct optical inspection of samples.

2.4 Predicting the relative rates of growth of silver and gold

We used experimental data to benchmark the model. Using

electroless deposition techniques described in the methods, we

deposited clusters of (i) silver and (ii) gold nanoparticles on

patterned silicon substrates. Patterns on the silicon surface are

hexagonal arrays of disks penetrating into the positive resist

S1813 with a size d, spacing d and thickness h: d¼ 10 mm, d¼ 30

mm and h � 1 mm.

On comparing the experiments with the predictions of the

model, we propose that the aspect ratio of the patterns exposed

to growth is the same in the experiments and in the numerical

DLA scheme. In this conguration, the patterns are short

systems, with d > h and aspect ratio lower than one

�

h

d
\1

�

.

Since the model is a comparative method of analysis, it does not

necessitate a one-to-one correspondence between the geometry

of the real physical prototype and the model. More sophisti-

cated evolutions of the model that will be developed over time

will enable direct simulation of real systems and the determi-

nation of absolute values of growth. As regarding spacing

between patterns, d, we have used in the experiments spacing

between patterns three times larger than the pattern size, which

guarantees non-interference between patterns18 and justies

the use of a single-well numerical scheme and an isolated

system to simulate particle formation.

Then, we examined the structure of metal clusters at

different times t from immersion in the electroless solution, t¼

5, 20, 60, 120 s, using scanning electron microscopy (SEM) and

atomic force microscopy (AFM) imaging techniques. We fabri-

cated at least 5 different samples per time of deposition, and

acquired more than 25 SEM images and 2 AFM images for the

samples. We used SEM images for determining the rate of

growth of the nanoparticles, and AFM imaging to extract the

topographical details of the clusters.

For xed values of time, we observe that the number and

density of isolated particles on the silicon surface are greater for

silver compared to gold deposition (Fig. 5a). This trend is

maintained for all considered time frames of growth (Fig. 5b).

Using standard image analysis algorithms, we extracted the

number Q of isolated particles formed during silver and gold

deposition over time (Fig. 5c). Q varies linearly with time (r2 ¼

0.989 for gold, r2 ¼ 0.984 for silver; the statistical signicance of

the linear regression is reported in separate ESI 2†), in agree-

ment with the theoretical model and the simulations. We

elaborated information contained in Fig. 5c to derive how

rapidly the number of clusters in an image changes with time:

at any time deposition of silver is more rapid than that

observed for gold. Numerical analysis of data yields the

values Q
�
Ag

exp � 56:37 clusters per s for silver and

Q
�
Au

exp � 16:36 clusters per s for gold, and a ratio between the

two g
Ag/Au � 3.45. This value of g will be used in the model to

determine k.

From AFM imaging (Fig. 6a) one can observe that the

number of particles deposited during electroless growth of

silver is larger than the number of gold nanoparticles deposited

in the same time (60 s), in accordance with the results of the

model and SEM inspection of samples. Few clusters of gold

nanoparticles are particularly large, this is deceptive and may

suggest that the cluster growth rate of gold is larger than silver –

that it is not as proved by image analysis algorithms applied to

AFM images that yield an estimate of QAg � 106 clusters in

a square pattern of 2 mm for silver, and QAu � 29 clusters for

gold, with a ratio g ¼
QAg

QAu
� 3:65. While AFM imaging may be

as accurate as SEM in deriving the topographical characteristics

of a sample surface, we use here SEM results to benchmark the

model because SEM imaging of samples is faster compared to

AFM. SEM images are more in number, have larger formats,

include more particles, are more informative and statistically

signicant than AFM images. While AFM can achieve ultra-high

resolution and can examine sample topography at the sub

nanometer level, it is not high-throughput.

Post-processing of AFM topographic data enabled us to

derive the power spectrum density function for both silver and
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gold (Fig. 6b). From this, we derived the values of fractal

dimensions for the clusters of Ag (Df ¼ 2.7) and Au (Df ¼ 2.65).

Notice that, remarkably, the experimental values of fractal

dimension derived in the space are about one dimension higher

than the corresponding numerical values derived in the plane,

D3d
f � D2d

f + 1.

Fig. 5 We benchmarked the model using experiments. Using electroless deposition on patterned silicon substrates, we obtained silver and gold

nanoparticle clusters, with different topographies, cluster sizes and cluster size distribution between metals for a fixed time of analysis – the bar

length in the image is 100 nm (a). We derived the time evolution of the number of clustersQ in a pattern over time (d) for either silver (b) and gold

(c) from SEM images of samples taken at different time intervals t ¼ 5, 20, 60, 120 s – the bar length in the SEM images is 5 microns.

Fig. 6 AFM imaging was used to investigate the topography of the silver (a) and gold (b) clusters of nanoparticles. Fourier analysis of AFM data

enabled derivation of the power spectrum density function and the fractal dimension of the samples as Df � 2.65 (c and d).

This journal is © The Royal Society of Chemistry 2019 Nanoscale Adv., 2019, 1, 228–240 | 233
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Using the ratio between cluster growth dynamics (g) deter-

mined from experiments in the model of eqn (6), we estimate

that the ratio between the rates of growth of silver (kAg) and gold

(kAu) is about x(g) ¼ xmodel � 34.

2.5 Model validation

Using data from electroless deposited silver and gold nano-

particle clusters, we found that the ratio between the kinetics of

growth of these twometals is x� 34. We then veried the output

of the model using independent UV spectrophotometric

measurements (Methods). We produced nanoporous silicon

particles (NP-Si-NPs) using electrochemical porosication of

bulk silicon20,21 followed by ultrasonic disintegration of silicon

into nanoparticles.22 We then suspended NP-Si-NPs into two

separate aqueous solutions with (i) hydrouoric acid (HF) and

silver nitrate (AgNO3) and (ii) HF and gold chloride (AuCl3)

(Methods). Immersion of NP-Si-NPs in solution triggered

immediate reaction of deposition of gold and silver within the

porous silicon matrix of the particles. We used UV/Vis spectro-

photometry to analyze the resulting electroless reaction of

deposition. We determined the dynamics of Au and Ag nano-

particle formation as the onset of the variation of absorbance of

the solutions measured at l1 ¼ 560 nm for gold (Fig. 7a) and l2

¼ 460 nm for silver (Fig. 7b). Rate constants of growth were

determined as the reciprocal of the time constant s resulting

from the best t of data with a rst-order system model (Fig. 7c

and d) – the time constant is dened as the time necessary for

the system to reach 90% of its nal value. From the t, we

determined kAg� 0.02� 0.0034 (s�1) (s� 3.4� 0.57 s) and kAu�

0.00054 � 0.00007 (s�1) (s � 120 � 14 s), with an experimentally

derived value of xexp ¼
kAg

kAu
� 36:5. Data are reported as mean �

standard deviation. Analysis was carried out over a set of 10

measurements, another example of which is reported in sepa-

rate ESI 3.† The measured ratio of growth kinetics xexp matches

the predictions of the model xmodel with a good level of signif-

icance and �93% accuracy.

3 Discussion

The rate of growth k in electroless deposition is an index that

quanties how rapidly a metal is deposited on a surface. If n is

a certain measure of the bulk metal being deposited, then k is

the change of n to a change of time, k¼ dn/dt. n can be the mass,

volume, or thickness (extensive properties of a system), or

concentration or density (intensive properties of a system), thus

k is usually given in terms of the magnitude of n per s. In all

cases, measuring k implies estimating the magnitude or

intensity of some physical quantity as a function of time.

Consolidated methods for the determination of k are cyclic (CV)

or linear sweep (LSV) voltammetry, or methods concerning the

use of a quartz crystal microbalance (QCM). The rst CV or LSV

methods measure the shi of peak potentials DEp that develop

under conditions where an external voltage of increasing

intensity is cyclically (CV) or linearly (LSV) applied to the

system.23–25 Then, DEp is correlated with k. The second QCM

method measures a mass variation in the unit time by

measuring the change in frequency of a quartz crystal

Fig. 7 Independent techniques of analysis were used to derive the relative values of growth rates of gold and silver nanoparticles within porous

matrices in an electroless solution. UV/Vis spectra of samples were analyzed. Growth dynamics of Au (a) and Ag (b) were determined as the

variation of absorbance at wavelengths l1 ¼ 560 nm for gold and l2 ¼ 460 nm for silver, over time. Time evolution of absorbance values, fitted

using the output of a first order dynamic system (c and d), enabled us to derive the relative ratio of metal growth rates as xexp ¼
kAg

kAu
� 36:5.
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resonator.26–28 While they are accurate in determining the rate

constants of reactions involving reduction of metals, these

methods (a) require the acquisition, installation and set-up of

electrochemical workstations and electrodes in sometimes

complicated congurations (CV and LSV methods) – or of QCM

systems – that are not always available in nanotechnology or

materials science laboratories; (b) may be conducted under

conditions that deviate to a signicant extent from the real

conditions of metal deposition; (c) raise the problem of the

integration of different components or parts: using hydrouoric

acid in a QCM or connecting a patterned silicon substrate in

a three-electrode conguration in CV is not obvious; (d) neces-

sitate repeated measures in wide time or frequency intervals for

data tting and the identication of the parameters (i.e. k) from

those ts (denition of a calibration standard); (e) realize blind

estimates of a physical quantity (i.e. potential, current, or mass)

of a system that do not necessarily account for the geometrical

variables of that system, i.e. size, shape, distribution, topo-

graphical or topological properties of metal nanoparticle clus-

ters that are being formed over time.

The last point implies that, while in nanotechnology the

geometrical characteristics of metal nanomaterials are relevant

for their functions,29–33 traditional methods for the determina-

tion of k ignore the geometrical form of the material assembling

into nanostructures.

Here, we used mathematical modelling and numerical

simulations to correlate the topological properties ( _Q) of

a system grown by electroless deposition with the variation of its

volume ( _N / p) to determine k. Different from other existing

methods, our approach centers on geometry. The geometry of

target structures, in turn, can be easily reconstructed using

SEM, AFM, or other techniques of imaging that can be easily

found in a nanotechnology laboratory and that are, on the other

hand, routinely used to examine the aspects of the structures

and the efficiency of amethod of fabrication. Thus, incidentally,

much of the SEM, AFM, TEM material produced during ordi-

nary inspection of samples and reports can be redirected as the

input of the model – generating high volumes of data (big data)

that can contribute to reducing noise, reducing uncertainty,

and increasing the accuracy of the estimate of k. Moreover

(i) Our model uses as input the ratio between cluster multi-

plication velocity of two species, g ¼

�

QA
�

QB

. In the more general

case, _QA and _QB should be determined as the variation of Q over

time, which in turn implies determining the number of clusters

Q at different times through multiple measurements. Never-

theless, assuming linearity, g can bemore simply determined as

the ratio between one of the possible couples QA(ta) and QB(ta),

QAðtaÞ

QBðtaÞ
, measured at any time ta comprised between zero and the

nal time of growth, 0 < ta < tn. This reduces the search for k to

the estimate of the number of clusters (i.e. isolated metal

nanoparticles) in two different SEM or AFM images, and the

division between the two – that dramatically reduces the

number of measurements and the time necessary to nd k

compared to other experimental techniques of analysis. In

determining the number of clusters Q from SEM or AFM

imaging of samples, it is preferable that the nanoparticles do

not overlap (or overlap partially) on the substrate to assure

accuracy. Images may be analyzed using algorithms developed

over time,5,34,35 which deconvolute information using maximum

likelihood methods and Fourier transform decomposition/

reconstruction of images. Image analysis is accurate under

sparse and sub-conuent conditions. When particles on the

substrate overgrow, non-dense assumption breaks down and

the number of clusters/particles in the eld of view can be

under-estimated. To avoid miscalculations, one should limit

the analysis to the early time of particle deposition, or in any

case to the linear regime of particle growth, which is the case of

Fig. 5d and results presented in this work. When Q(t) deviates

from linearity, results of the analysis can be inaccurate.

(ii) Our model derives k using direct optical, SEM or AFM

inspection of samples. The method does not require sample

treatment, preparation or modication, it is not destructive,

does not hamper and has no adverse loading effects in the

process of growth. The measure of k is carried on the real

physical prototype and not on a simplied version of it. The size

and shape of the patterns on the silicon exposed to growth are

preserved and their effects are correctly incorporated in k, which

must not be therefore further adjusted.

(iii) Our model is general in nature. It simulates the assembly

of ions or atoms into supramolecular structures and can be

used to estimate the ratio between the rates of growth of several

materials, including non-metallic materials, provided that the

process of deposition is limited by diffusion and the process of

chemical reaction at the interface is fast compared to diffusion.

Under similar assumptions, a material can be examined using

DLA. As a rule of thumb, if a material exhibits a dendritic

structure, with some level of order and recursive patterns in the

structure – like crystals – it can be analyzed using this model.

In its current form, the model makes the following

assumptions and has the following limitations:

(1) In electroless deposition, motion of metal ions in a solu-

tion is much slower than the chemical reaction of reduction of

those ions into metal on a patterned silicon substrate (DLA

assumption).

(2) The diffusion lengths of different metals is the same –

assuming that the thermodynamics conditions of growth are

held constant, using the Stokes–Einstein relationship10 this is

equivalent to state that the sizes of different metals is the same.

(3) The differences between different species are lumped in

the sole chemical reaction of deposition, i.e. in p.

(4) It is a comparative method of analysis. This depends on

the fact that, in this current form, the model shows a very high

sensitivity to the geometry of the system. Since it may be

impractical and computationally intractable to reproduce the

entire physical system and simulate a real electroless process of

growth, we use ratios between variables rather than the absolute

values of variables to describe particle growth. In doing so, we

can examine exclusively and focus on the parameter of interest,

i.e. k, with the remaining conditions held constant. The effects

of an inaccurate representation of the systems would cancel

each other out when we compare two different metals. This in

This journal is © The Royal Society of Chemistry 2019 Nanoscale Adv., 2019, 1, 228–240 | 235
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turn reduces uncertainty and increases the precision of the

model. The cost of an augmented precision is the use of the

model as a comparative rather than absolute method of

analysis.

More sophisticated formulations of the model that will be

developed over time may potentially relax the above constraints

and be used for a more complete and precise description of

metal growth for applications in materials science.

4 Conclusions

We used DLA simulations to develop models that correlate the

ratio (g) between the rates of particle growth of different metals

with the ratio (x) between the rates of deposition of those metals

in the bulk form. The best t of numerical simulations yields

a linear relationship between g and x that reads x ¼ 14(g � 1).

Particle growth kinetics is more than a factor of 10 lower than

material growth kinetics. We validated the model using elec-

troless deposition of gold and silver nanoparticles on patterned

silicon substrates. Different from other existing methods,

including CV, LSV or QCM, the method enables determination

of the rates of growth (k) from the geometry of clusters of metal

nanoparticles and a known reference. SEM or AFM micro-

graphs, routinely taken in a laboratory during sample inspec-

tion and analysis, can be used as a source for the model, and the

yield and estimation of k even without dedicated equipment.

5 Materials and methods
5.1 Simulating metal nanoparticle growth

We used a diffusion limited aggregation (DLA) model to simu-

late metal nanoparticle growth. In DLA, randomly displaced

particles stick together to form the intended structures.4,5,12,14–16

The model assumes that the main mechanism of metal ion

transportation in a solution is Brownian diffusion. This

assumption implies that the metal reduction and deposition on

the silicon surface is instantaneous, which is true when diffu-

sion times are much larger than the time associated with

surface chemical reaction on the silicon surface.4,5,18 The

assumption also implies that convective ows are vanishingly

small everywhere in the domain. Brownian motion is a contin-

uous-time probabilistic process, it can be discretized in a grid

where each position of the grid can take 0 or 1 values, 0 (1)

indicating the absence (presence) of a particle or ion in that

position (Fig. 1a and b).

Brownian motion is a mechanism of ion transportation

implemented at the atomic level – it describes the process of

particle deposition using a discrete sequence of events in time,

and guarantees maximum accuracy in reproducing the struc-

ture of an aggregate. Fick's laws of diffusion are derived from

Brownian motion and molecular diffusion: they represent

a generalization of Brownian motion at the continuum limit.

Thus, direct numerical simulation using DLA is more appro-

priate for micro- and nano-scale systems, for which the conti-

nuity assumption breaks down, while continuous Fick diffusion

is more efficient when one considers macro-scale systems.

In what follows, the word particle is used interchangeably

with ion, they both indicate the smallest building blocks that

assemble together to form the nal aggregates. Ions dri in the

domain (grid) due to pure diffusion. Therefore, displacement of

ions in the grid obeys a random uniform distribution; at each

time of the process particles move from a position of the grid to

one of its nearest neighbors, each of those positions being

equally probable. We call Dx the size of the cells (pixels) of the

grid. It is the size of the smallest features in the grid and

corresponds to the resolution of the system. Since the motion of

a particle in a grid takes discrete steps, in a macroscopic

interpretation Dx is also the mean path length of the particles,

i.e. the average distance traveled by a particle between succes-

sive collisions. Cases in which the mean path length is different

from the resolution of the systems are discussed below. During

motion, particles have a xed velocity v. The mean time interval

between collisions is thus s ¼
Dx

v
. The nature of Dx, v and s is

determined by the energy of the system and its temperature.10

Consider the scheme in Fig. 1c.

5.1.1 Geometry. The portion of the silicon substrate (well)

exposed to electroless deposition is represented at the bottom

of the diagram as a line of nucleation sitesL. Its length is w. The

height of resist walls that delimit the well is h. The ratio
h

w
determines the aspect ratio of the well. If the aspect ratio is

lower than one, then we have a short geometry. In contrast, tall

geometries have aspect ratios greater than one. Short geometry

reproduces more accurately the real physical prototype and the

experimental set up, where the dimension of lithographed

patterns (10 mm) is larger than the thickness of the resist

(�1 mm). Here, we chose w and h asw¼ 100 pixels, h¼ 50 pixels,

such that
h

w
\1. Dimensions of the entire domain are 400 pixels

(length) and 500 pixels (height).

5.1.2 Initial and boundary conditions. At the le and right

boundaries of the domain, periodic boundary conditions are

imposed. At the upper boundary of the domain, we enforce

a bouncing boundary condition. Moreover, we assume that

particle deposition occurs in an excess of solute, i.e. the number

n of metal ions in the domain is generally high and it is

maintained constant as n ¼ 1000. At the initial time of growth,

metal ions are positioned in a region of the domain at

a distance l from the well.

5.1.3 Aggregation rules. Then, the system is le free to

evolve. At any iteration, particles move in the grid by one pixel.

Aer an iteration, a particle may nd itself in two separate,

mutually exclusive states: (i) isolated and (ii) contact state. In

the isolated state (s ¼ I) all sites surrounding the particle are

0 (the particle misses the aggregate). In the contact state (s ¼ C)

the minimum distance between the particle and the elements of

the seed L is 0 (the particle hits the aggregate). The algorithm

starts with the condition s ¼ I and proceeds until the test s ¼ C

for at least one particle in the domain yields true. When

a particle hits the aggregate, it is incorporated into the seed to

form an aggregate of particles b if a randomly generated number

q is such that q < p. In the simulations, the sticking probability p
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can be varied between 0 and 1. If p ¼ 0, particles would indef-

initely migrate in the domain never accumulating to the

aggregate. If p ¼ 1, particle deposition is deterministic, and

particles would be captured by the aggregate anytime that they

hit it. Aer a certain number of repetitions aggregates shall have

the aspect depicted in Fig. 1d. The multi-branched arrangement

of particles recalls the dendrite, fractal nature that electroless

systems reveal under certain growth conditions. On changing p,

one can modulate the size, shape and density of the aggregates.

5.1.4 Stop condition. Simulations are halted aer �1.2 �

107 iterations.

5.1.5 Considering the thermodynamic state of a system.

Thermodynamic variables are implicitly contained in the model.

Super-saturation, thermodynamic potentials and the tempera-

ture itself depend on the sole temperature eld T of the system,

assuming that pressure gradients are vanishingly small every-

where in the domain and that the number of ions n in the

system is maintained constant over time (i.e. particle deposition

proceeds in an excess of solute). Under these conditions, we can

express the spatial variables of the simulation in terms of the

sole T. Specically: the root mean square distance (i.e. the

variance) of a bolus of diffusing particles is

hr2i ¼ hx2i + hy2i ¼ 4Dt (7)

where x, y, r are the coordinates of the bolus, and D is the

molecular coefficient of diffusion

D ¼
kbT

6pma
(8)

with kb the Boltzmann constant, T the absolute temperature of

the system, m the viscosity, and a the diameter of the particles.

Moreover, using results from the kinetic theory of gases, we can

write

D ¼ dx2/2s (9)

where dx is the mean path length of an ion in solution and s is

the time between collisions. In molecular-scale systems, the

kinetic energy of a particle with mass m and velocity v is

Ek ¼
1

2
mv2 ¼ KbT : (10)

Combining these equations, one obtains:

dx ¼ 2D/v ¼ f(T) (11)

which is a function of time. Eqn (11) correlates the mean path

length of an ion with the thermodynamic variables of a system

and the temperature T. Since the mean path length is a variable

of the model, one can change the temperature of the system by

tuning dx: the thermodynamic variables of the system are

lumped in the term dx.

5.1.6 Additional remarks. The model is a numerical diffu-

sion limited aggregation simulation model – it reproduces

aggregation of smaller ions into larger particles under the

assumption of a process that is limited by diffusion, i.e.,

movement of ions is a random walk, and there are no prefer-

ential directions of motion in the domain. The model neglects

external driving forces or elds including convective elds,

electro-magnetic elds, the generation of mass in the domain

through internal chemical or nuclear reactions. Nevertheless,

assuming linearity, in a more sophisticated evolution of the

model these effects can be easily included by adding a constant

term to the analysis and considering superposition of indi-

vidual stimuli. Since ions add up to the aggregate immediately

upon contact, another assumption is that motion of ions is

much slower than the chemical reaction of reduction of ions

into metals at the liquid–solid interface, which is instanta-

neous. However, since different materials have different values

of reaction kinetics – that in turn inuences the rate k of growth

of the metal – we introduced in the model an additional vari-

able, p, comprised between 0 and 1, to account for this diversity.

The assumption that k depends on the sole p is heuristically

supported by the numerical diagram in Fig. 3b, where the mass

of the system (i.e. the size of the aggregate N) varies linearly with

p. Moreover, the model is 2D. The model accepts as inputs (i)

the geometry of the system, (ii) the resolution of the system, i.e.

discretization, (iii) the mean path length of ions (that depends

on the thermodynamic variables of the system), (iv) the

concentration of ions in solution, (v) the total length of the

simulation. The output of the simulation is an aggregate of

pixels, where the geometrical characteristics of the aggregate,

measured through mathematical variables including fractal

dimension, are indicative of the characteristics of the true

particle assemblies.

5.2 Deriving the fractal dimension of numerical aggregates

Fractals are irregular, broken geometries for which conven-

tional Euclidean metrics cannot provide a complete descrip-

tion.30 Fractal dimension quanties the complexity of a fractal

as a change of detail to a change of scale. A possible method to

calculate the fractal dimension of numerical aggregates is to

make use of a density–density correlation function

cðrÞ ¼
1

N

X

r
0

r
�

rþ r
0�
r
�

r
0�

(12)

where r(r) is a local density at the point r. It is equal to 1 if the

point belongs to the fractal object and 0 otherwise. N is the

number of particles forming the aggregate. In a discrete space

where the objects can occupy only lattice points, r(r) is the

density at the lattice site with coordinates r. One can think of

c(r) as a probability density of nding two points belonging to

a fractal at distance r between each other. The density–density

correlation function follows the power law dependency36 on r:

c(r) � r�a, from which the relationship between the usual

Euclidian dimension d, fractal dimension Df and the density–

density correlation function exponent a is Df ¼ d � a. In

a computer simulation Df is dened as the slope of linear t of

ln(c(r)) as a function of ln(r). In the implemented method,

a rectangle of height r was incremented by a quantity of one

lattice unit for each step starting from the base to reach the last

particle of the aggregate. The particles progressively included in

This journal is © The Royal Society of Chemistry 2019 Nanoscale Adv., 2019, 1, 228–240 | 237
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rectangles with height r were counted in order to estimate the

related density values. The obtained values were then correlated

in a log–log plot with dimension radius r and fractal dimension

is evaluated by the difference between Euclidean dimension

and graph slope as shown in Fig. 2.

5.3 Electroless deposition of metals on a substrate

In electroless deposition, metal ions in solution are transported

and deposited as metals on a substrate. We consider here the

case in which the substrate is silicon. Metal reduction on

a silicon surface is regulated by the general law:

Men+ + Red ¼ Me0 + Ox (13)

where Men+ are metal ions and Red represents the reducing

agent – the reaction uses n electrons necessary to produce the

atomic metal Me0. In the case of silver ions in solution, the

reaction takes the form

Si + 2H2O/ SiO2 + 4H+ + 4e� (14)

at the anode (silicon oxidation) and

Ag+ + e�/ Ag0 (15)

at the cathode (silver reduction). In the reaction, the redox

potentials are E01 ¼ �0.86 V, E02 ¼ 0.8 V.37 In the case of gold

ions in solution, the reaction takes the form

Si + 2H2O/ SiO2 + 4H+ + 4e� (16)

at the anode (silicon oxidation) and

Au3+ + 3e�/ Au0 (17)

at the cathode (gold reduction). Here the redox potentials are E03
¼ �0.86 V, E04 ¼ 1.52 V.38 Particle growth involves an initial

nucleation phase with the formation of metallic nuclei and

a steady state phase of growth. The shape and size of the nal

structures depend on the concentration of reducing agents,

temperature, time of reaction and type of metals. Typical values

of solute concentrations in solution are 0.15 M for hydrouoric

acid (HF), 0.1–5 mM for auric chloride (AuCl3), and 0.1–5 mM

for silver nitrate (AgNO3). Electroless deposition enables

production of nanoparticles, nanoparticle clusters and nano-

particle arrays where the mean size of the particles may be nely

adjusted in the 5–100 nm range.

5.4 Synthesis of metal nanoparticle clusters by electroless

deposition

The fabrication of aggregates of metal nanoparticles occurred in

two steps: (i) the realization of micropatterns by optical lithog-

raphy and (ii) the electroless deposition of silver nanoparticles

within the patterns. De-ionized (D.I.) water (Milli-Q Direct 3,

Millipore) was used for all experiments. Silver nitrate (AgNO3),

gold chloride (AuCl3) and hydrouoric acid (HF) were

purchased from Sigma. All chemicals, unless mentioned

otherwise, were of analytical grade and were used as received. P-

type (100) silicon wafers were used as substrates. Substrates

were accurately cleaned with acetone and ethanol to remove

possible contaminants and then etched with a 20% in weight

HF solution (hydrouoric acid 50% RPE ACS-ISO, Carlo Erba

Reagents) to eliminate the supercial native oxide and create

the dangling bonds necessary for metal reduction. Using optical

lithography (i) we obtained ordered arrays of holes in the

positive resist S1813, with a diameter d¼ 10 mmand a depth h�

1 mm. We then exposed patterned silicon surfaces to solutions

of gold chloride and hydrouoric acid for depositing gold

nanoparticles, and silver nitrate and hydrouoric acid for

depositing silver nanoparticles, for 5, 20, 60 and 120 s. In both

cases, the concentration j of metal salts in solution was chosen

to be j(AgNO3) ¼ j(AuCl3) ¼ 5 mM, the concentration of

hydrouoric acid was set as j(HF) ¼ 150 mM, and the

temperature of the system was maintained constant as T ¼

20 �C throughout the whole duration of the experiments.

Resulting nanostructures were imaged using scanning electron

microscopy (SEM) and atomic force microscopy (AFM).

5.5 SEM sample characterization

SEM images of metal nanoparticle clusters were captured using

a Dual Beam (SEM-FIB) – FEI Nova 600 NanoLab system. During

the acquisitions beam energies of 5 and 15 keV, and corre-

sponding electron currents of 0.98 pA and 0.14 nA, were used. In

some cases the mode 2 conguration was set, through which

images could be magnied over 2.5 � 106 times to achieve

ultrahigh resolution.

5.6 AFM sample characterization

Atomic force microscopy (integrated Raman AFM system, Alpha

300 RA, Witec) was used for sample characterization. All the

measurements were performed in a dry environment in inter-

mittent contact mode over a sampling area of 1 � 1 mm2. Room

temperature was held xed for all the acquisitions. Ultra-sharp

Si probes with a nominal tip radius less than 5 nmwere used for

achieving high resolution. Multiple measurements were done in

different scan directions to avoid artefacts. At least four images

in height mode (trace and retrace) were recorded for each

sample. The images had a resolution of 512 � 512 points and

were acquired at a scanning rate of 1 Hz. Images were processed

using either attening or plane t according to the relief char-

acteristics, with the minimal polynomial order needed. The

characteristic average surface roughness Sa was thus decon-

volved for each substrate. Fast Fourier Transform (FFT) algo-

rithms were used for data processing and fractal extraction of

the characteristic dimension of the sample surface.

5.7 Deriving the fractal dimension of metal nanoparticles

AFM proles of metal nanoparticle clusters were processed

using the algorithms developed and described in ref. 34. We

derived the characteristic power density function for gold and

silver nanoparticle clusters at 60 s aer immersion in the elec-

troless solution. In a log–log plot, the power spectrum density

appears as a line with a slope b. The slope b is related to the

Hurst parameters as b ¼ 2(H + 1). The fractal dimension Df of

238 | Nanoscale Adv., 2019, 1, 228–240 This journal is © The Royal Society of Chemistry 2019
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the surface can be equivalently derived as Df ¼
8� b

2
or Df ¼ 3

� H. The fractal dimension Df of a surface ranges from 2

(Euclidean dimension of a at surface) to 3 (representing an

extremely rough surface).

5.8 UV spectrophotometric measurement of metal

nanoparticle growth kinetics

We used indirect measurements to determine the growth

dynamics of Ag and Au nanoparticles. We put in an aqueous

solution nanoporous silicon submicrometric particles with (i)

silver (AgNO3) and (ii) gold (AuCl3) salts. The resulting electro-

less reactions were examined using UV/Vis spectrophotom-

etry.39–42 Metal ions in solution react with the silicon sub-

micrometric particles forming metal nanoparticles in the

porous matrix. We prepared two samples of HF (0.15 M) plus

either (i) AgNO3 1 mM or (ii) AuCl3 1 mM in one ml of DI water.

Addition of silicon particles in the solutions caused the start of

the electroless reaction of reduction. We added nearly �1017

silicon sub-micrometric particles in each milliliter sample.

Then, we used a LAMBDA 25 UV/Vis spectrophotometer to

determine the growth dynamics of Au and Ag nanoparticles as

the variation of absorbance of solutions at different times.

Absorbance was measured at wavelengths l1 ¼ 560 nm for gold

and l2 ¼ 460 nm for silver, which are the values of wavelength

for which spectral intensities are maximum in the considered

ranges of frequencies. Rate constants of metal nanoparticle

growth were determined as the slope of the absorbance versus

time diagrams at the initial time of metal deposition. Nano-

porous silicon sub-micrometric particles were fabricated

through electrochemical porosocation of silicon as described

in ref. 22.
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