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Abstract
Monitoring systems in sheet metal forming cannot rely on direct measurements of the physical condition of interest because
the space between the die component and the material is inaccessible. Therefore, in order to gain further insight into the
forming or stamping process, sensors must be used to detect auxiliary quantities such as acoustic emission and force that
relate to the physical quantities of interest. While it is known that changes in force data are related to physical parameters of
the process material, lubricant used, and geometry, the changes in data over large stroke series and their relationship to wear
are the subject of this paper. Previously, force data from different wear conditions (artificially introduced into the system and
not occurring in an industry-like environment) were used as input for clustering and classifying high and low wear force data.
This paper contributes to fill the current research gap by isolating structural properties of data as indicators of wear growth
to quantify the wear evolution during ongoing production in industry-like scenarios. The selected methods represent either
established methods in sheet metal forming force data analysis, dimensionality reduction for local structure separation or
generic feature extraction. The study is conducted on a set of four experiments with each containing about 3000 strokes.

Keywords Sheet metal forming · Fine-blanking · Condition monitoring · Unsupervised learning ·Wear

Introduction

Sheet metal forming comprises various processes in which a
force is applied to a piece of sheet metal to plastically deform
the material into the desired shape and change its geome-
try without removing material. They are typically used in
areas where high production rates and low costs are required
while maintaining stable quality, such as in the aerospace
and automotive industries (Klocke, 2014). Current trends
towards shorter production cycles, increased competition and
rising production rates superimpose increasing pressure on
the industry to innovate and further reduce costs by eliminat-
ing defects during production.

With the increasing availability of data in the industry,
the focus has shifted to research questions that focus on the
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processing and modeling of data and their relationship to
physical quantities of interest to provide powerful systems
that assist engineers and operators in the effective design
and operation of the process (Klocke et al., 2017). As a result,
data-driven monitoring of sheet metal forming processes, a
tool that canminimize unexpected production line downtime,
has become a major focus of recent research.

By design, sheet metal forming and stamping are per-
formed in large quantities with identical process settings and
therefore provide data sets with a large number of operations,
but without variation of the process or tooling, except for the
continuously increasing wear of the active tool components.
Constant and direct measurements of physical quantities of
interest, such as wear increase or product quality, are not pos-
sible in most scenarios. The resulting digital representation
of forming and stamping operations consists of multivariate,
nonlinear, and transient time series accompanied bymetadata
including process and system parameters.

Researchers have already proven that force signals from
punching operations are influenced by numerous disturbance
variables that affect the process (Jin&Shi, 1999), and that the
characteristics derived by domain-specific feature engineer-
ing as well as generic features are related to specific process
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and system parameters of the designed process (Kubik et al.,
2021). In addition, they have been shown to contain infor-
mation about the progression of wear (Voss et al., 2017),
quality characteristics of the resulting workpieces (Havinga
&VanDenBoogaard, 2017),machine errors, feed errors, and
thickness variations (Bassiuny et al., 2007). The high sensi-
tivity of force signals to changes in punch wear condition
has also recently been demonstrated by the use of classifica-
tion techniques to correctly evaluate thewear condition of the
tool (Kubik et al., 2022) at a given time, while also a continu-
ousmonitoring approach has been introduced through the use
of autoencoder (AE) (Niemietz et al., 2021). In most studies,
the extraction of meaningful features from high-dimensional
time series data has been shown to be a critical step in aggre-
gating information about the physical state of the process.
Compared to more generic feature extraction, the extraction
of features based on the expertise of process experts gen-
erally leads to improved interpretability of models derived
from these features. Nevertheless, generic features often lead
to less redundancy in the feature set and more accurate mod-
els (Zhang et al., 2018). The focus is set on the analysis
of sequences of time series data that contain characteristic
seasonal patterns, where each profile represents a forming
operation. Within these patterns, both stroke-to-stroke varia-
tions and long-term variations in large series of consecutive
forming operations can be identified (Bergs et al., 2020).

The summary of the research results suggests that force
signals can be used to provide adequate insight into the pro-
cess and to develop applications for monitoring and quality
prediction. However, while it was shown in (Kubik et al.,
2022) that force data can be attributed to various punch wear
states, nomodel could be found that links the continuouswear
evolution to quantifiable indicators such as trends, variations
or events in force data over large stroke series. This is of par-
ticular importance, as a monitoring system should not only
be able to distinguish different wear states, but also to relate
different wear states to each other in a certain metric. The
innovation of the presented approach is that the wear evolu-
tion is tracked in an industry-like setting and linked to the
discussed structural properties of the reduced feature spaces
calculated for large time series data sets. The present work
deals with the processing of successive punch stroke series
and the derivation of a continuous univariate wear estimator
to evaluate the wear increase in real time during production.
This is done by conducting experiments under industry-like
conditions, starting with an unworn punch and observing the
actual wear evolution over time.

The methodology extends the findings of domain-specific
feature engineering technique and extraction of feature tem-
plates introduced in (Kubik et al., 2021; Niemietz et al.,
2020) to large stroke series and incorporates not only
established dimensionality reduction methods such as prin-
ciple component analysis (PCA) (Jolliffe, 2005), but also

innovative approaches to highlight local structures in the
data with uniform manifold approximation and projection
(UMAP) (McInnes et al., 2018) and to automatically learn
features from time series data with autoencoder (AE). The
univariate wear estimators are derived from the reduced fea-
ture spaces computed in combinations of different feature
sets and four experiments. For a comprehensive study, the fol-
lowing aspects are investigated and discussed: (i) the effect of
spectral, statistical, and temporal feature sets, (ii) the effect of
domain-specific feature engineering, and (iii) the differences
in representation learning and dimensionality reduction tech-
niques and in the associated wear increases using field data
from experiments with approximately 12,000 strokes per-
formed on a fine-blanking press.

Problem statement

In this study, fine-blanking is considered as an exemplary
process for sheet metal forming in general. The process is
characterizedby the so-calledflowshear process,which leads
to a clean cut, and takes place in a compressive stress dom-
inated process area (Klocke, 2014). and uses triple-acting
presses in which the V-ring force and the counterforce are
generated hydraulically and the main punching force can be
either mechanical or hydraulic. The cutting force in fine-
blanking is shown schematically in Fig. 1 and visualizes
different characteristic process phases (Schmidt et al., 2006)

The fine-blanking process

Phase 1 or the elastic phase begins with the first occurrence
of a cutting force FS . The counter punch force FG , which
is (in theory) kept constant throughout the cutting process,

Fig. 1 Comparison of idealized cutting force-time curves of fine- and
shear-blanking with a visualization of the corresponding process phases
(fine-blanking 1–2, shear-blanking 1–4). FS,max indicates the maximal
cutting force. (Schmidt et al. 2006)
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has been present since the beginning of the cutting process
and is countered in phase 1 by the continuously increasing
cutting force FS . After the cutting force FS has exceeded
the counter punch force FG , the cutting punch and counter
punch begin to move downwards, causing elastic deforma-
tion of the sheet metal material. Phase 1 ends when the
maximum elastic deformation of the sheet material or its
shear flow limit is exceeded. Phase 2, also known as the
cutting phase, begins with the onset of plastic flow of the
sheet material. It is characterized by the penetration of the
cutting punch as a result of a further increase in the cutting
force FS . Two opposing mechanisms act on the cutting force
during this phase. As the forming process continues, sliding
dislocations accumulate at obstacles in the crystal lattice of
the sheet material and lead to work hardening in the cutting
gap (Klocke, 2014). As a result, the deformation resistance
and the required cutting force increase. As a second effect,
the force-transmitting residual material cross section in the
cutting area of the sheet material decreases continuously due
to the progressive cutting process until the material is com-
pletely penetrated (Schmidt et al., 2006). Until the maximum
cutting force FS,max is reached, the effect of work harden-
ing is dominant. After the maximum cutting force FS,max is
reached, the decrease of the remaining cross section is pre-
dominant and the cutting force decreases rapidly. Phase 2 is
finished when the maximum plastic deformation of the sheet
material is exceeded and the material breaks. The plateau
within the cutting force curve shown in Fig. 1 represents
the residual cutting force FS required to compensate for the
counter punch force FG after phase 2 has ended. Phase 3,
the fracture phase, and phase 4, the oscillating phase, are
characteristic for the shearing process, but do not occur in
the idealized cutting force-time curve of the fine-blanking
process (Schmidt et al., 2006).

Wear in fine-blanking

The wear of tool components does not proceed linearly with
time, but follows a non-linear pattern. It starts in the early
run-in phase with an unstable wear rate, continues in the
middle phase with a stable low wear rate and ends in the
third phase, which is characterized by accelerated wear lead-
ing to the failure of the punch (Behrens et al., 2016) (see
Fig. 2). Initially, the surfaces of the punch and the workpiece
are in contact. When a sliding motion begins, an enormous
stress is applied to the very small area of the interfering sur-
face asperities, causing them to fail and the abrasive wear
phase begins. This abrasive wear phase is the first phase, the
running-in phase, where the abrasion increases rapidly and
deteriorates the surface of the punch very quickly. Under heat
and pressure, these abrasive particles stick to the surface and
lead to the more stable phase of adhesive wear. The force and
the stresses during fine-blanking increase due to the strong

Fig. 2 The three stages of wear increase in sheet metal forming tool
components (Behrens et al. 2016)

adhesion and the altered tribology of the punch, resulting in
an accelerated wear rate in the third stage. The third phase is
usually accompanied by fatigue wear and can lead to crack-
ing and breakage of the punch (Lind et al., 2010).

Experimental setting and data
preprocessing

The data used in this paper are based on the stamping force
signal of the fine-blanking process. Stamping force is the
force that is applied on the sheet metal to start the plas-
tic deformation. In the current setup, the stamping force is
measured using a piezoelectric mechanism (Gautschi, 2002).
Additionally, scanning electron microscope (SEM) images
of the punch edges have to be processed to approximate the
current wear condition observed in the experiments.

Experimental setup

The analysis of the stamping system requires an industry-like
setup. Thus, a commercially available fine-blanking produc-
tion line Feintool XFT 2500 Speed is used for this research.
The fine-blanking process typically begins with a 1–20 mm
thick and 50–250 mm wide metal coil being unrolled by a
decoiler. To relieve the residual stresses, the metal sheet is
fed into a leveler (Klocke, 2014). A lubricant film is subse-
quently applied on the metal sheet, which is followed by the
actual blanking process. The press can be configured for up
to 140 strokes/min.

In this study, all experiments were performed with the
same speed of 50 strokes/min and lubrication setup, while
the used lubricant changed throughout the experimental sam-
ples. X5CrNi18-10 is used as semi-finished product. In total,
almost 12,000 strokes have been acquired with a sensor sam-
ple frequency of 10 kHz within individual experiments, see
Table 1 for details and (Niemietz, 2022) for the raw data.

Domain-specific signal preprocessing

Figure 3 illustrates the steps of data processing. For pre-
processing and artifact removal, drift and tilt correction is
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Table 1 List of data and stroke indices for which wear was observed

Data Set ID Strokes Tool Inspection

1. 2. 3. 4.

E1 3344 0 897 1907 3321

E2 3204 0 800 1704 3202

E3 2058 0 526 621 2057

E4 3340 0 998 1856 3339

Stainless steel was used in all experiments, using either lubricant with
chloride (E1, E3) or without chloride (E2, E4)

performed, assuming that the force should always be set to
0 at the beginning as well as at the end (drift correction) and
that no increase in force should be visible when the tool is
open (tilt correction), see Fig. 3.

To include domain knowledge in the feature extraction
process, the signal is divided into logical segments based
on the different phases of the forming process (see Fig. 3).
The clamping (C) segment is characterized by the first peak
and represents the time during which the sheet is clamped
between the tool components. The blanking (B) segment is
identified by the global maximum and refers to the actual
blanking process. Finally, the segments pre-stripping (P)
(minor vibrations that occur only to a limited extent dur-
ing fine-blanking) and stripping (S) represent the process of
stripping off the sheet from the punch and are characterized
by the global minimum of the signal.

Features are extracted from the entire signal as well
as from the individual segments using the Python library
TSFEL (Barandas et al., 2020). An overview can be found in
Table 2. In addition, six manually selected features that are
easy for humans to interpret and reasonable from a domain
perspective are examined. Namely, the maximum M+, the
minimum M−, the mean M , and the index t of the total
signal as well as the area under the curve of the blank and
stripping segments I b and I e, respectively, are selected (see
Fig. 4).

Wear quantification

For each test, the die components are examined at four char-
acteristic edges (see Fig. 5) after approximately 1000, 2000,

Table 2 Feature sets used in this paper and extracted with the TSFEL
Python library

Feature set Features Domain

Temp 18 Temporal domain

Stat 37 Statistical domain

Spec 230 Spectral domain

Comb 285 Combination of all domains

Fig. 4 Selected human-interpretable features alongside with the global
average of the signal (blue curve) and the timestamps of the blanking
segment (left) and stripping segment (right) (Color figure online)

and 3000 strokes using SEM images at× 100 magnification.
Standard image processing methods are used to identify the
damaged punch surface. Figure 6 shows the basic steps to
isolate the coating-free area from the rest of the image. The
first step is to increase the contrast of the SEM images and
blur the images using a simple median blur method. Then,
worn areas are detected by setting a global threshold for the
gray level to classify each pixel as either worn or not worn.
Due to geometric differences in the worn areas, some pixels
are still not classified correctly. This is solved with a contour
detection algorithm, and the detected area is filled in white.
The relative amount of pixels in each image is calculated
and set as a relative wear estimate in the last step. All image
processing steps are performed using the Python image pro-
cessing library OpenCV (Bradski, 2000). To obtain a wear
approximation for each stroke executed, the values of the
calculated wear estimate are linearly interpolated.

Fig. 3 Data preprocessing steps
of the unsupervised feature
extraction: segmentation of
continuous force data,
elimination of sensor errors by
tilt and drift corrections,
segmentation into logical
segments, feature extraction and
projection
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Fig. 5 Characteristic edges at which the tool components’ wear have
been assessed

Fig. 6 Processing of a SEM image to a wear approximation

Wear approximationmethodology

The method was developed to use structural properties of
feature (sub)spaces as estimators of wear progression in a
completely unsupervised scenario. Features of time series are
used to reduce the amount of data that must be processed by
computationally intensive algorithms. Features can be either
the raw signal itself, an aggregation of features computed
by a fixed set of rules, or features learned individually for
each time series. All approaches result in different feature
spaces with different structural properties. By selecting dif-
ferent techniques for computing features generated from the
time series, this study attempts to identify redundancies and
patterns that arise in and between each feature space. Finally,
a set of univariate wear estimators derived from the structural
properties of each feature space is calculated and compared
to the wear increase observed in the SEM images to identify
the most suitable approach.

As mentioned above, the methodology combines feature
extraction with domain-specific preprocessing of the sig-
nal to isolate each process phase by applying four different

feature templates using the TSFEL-library not only on the
complete signal but also on process specific segments. Next,
dimensionality reduction techniques are used to condense the
information of partially redundant large feature sets. Dimen-
sionality reduction in general is used to transform data from
a high-dimensional space to a low-dimensional space such
that the low-dimensional representation preserves most of
the important features of the input data.

In this study, three different dimensionality reduction
methods are selected, which all have different characteris-
tics. PCA is known to preserve the global properties of the
input feature space in the generated subspace while omitting
local structures in the input data, and has been widely used
for force data in manufacturing. In contrast, UMAP is known
to preserve local features while distorting global features of
the input space. Finally, AEs are able to learn features from
raw time series data and provide a generic way to compute
learned features fast, once the AE is trained. This is espe-
cially important since some feature templates are known to
be very computationally intensive.

Autoencoder

AEs are a type of artificial neural networks (ANN) that are
used for dimension reduction and denoising among various
other applications. They consist of a (commonly) nonlin-
ear transformation to a low-dimensional representation space
(encoding) and a back- transformation to the space of the data
set (decoding). AEs learn appropriate low-dimensional rep-
resentations.

Here, an AE is designed with three fully connected layers
with fifteen, two and fifteen units using the Python Keras
package. The hidden layer with two units results in the two-
dimensional representation for each input time series. The
ReLU activation function is used for the hidden layers and
hyperbolic tangent (tanh) for the output layer of the decoder.
The training of the AE is done through the optimizer adam
byminimizing themean squared error loss over 300 episodes
with a batch-size of 50 and the input is the cleaned force raw
data. In contrast to the PCA approach mentioned above, this
method uses the raw sensor signal as input instead of a feature
set to take advantage of the AEs’ ability to learn generic
features themselves. Because tanh takes values between− 1
and 1, all signal values are scaled accordingly.

Univariate wear estimation

The application of dimension reduction techniques based
either on feature sets (PCA, UMAP) or raw force data (AE)
results in a multivariate sequence that contains much of
the variation in the original data set. Next, the correlation
between structural properties of the subspaces with the wear
increase of the punch is computed to evaluate the suitability
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of each approach to estimate the wear state. In this study,
four different estimators are derived, each of which resem-
bles specific structural properties of the computed subspaces.

1. Distance to reference point The estimator is based on the
Euclidean distance of each stroke to the first stroke of a
series. Thus, the estimator reflects the amount of global
variation in each subspace with respect to the first stroke.

2. Cumulative stroke-wise The estimator is based on the
local change between subsequent strokes, based on the
Euclidean distance. The distance is smoothed with a
rolling average using a window length of five.

3. Cumulative rolling variance This estimator is based on
the changing local variance indicating stable processes.
The window length of the rolling variance is set to 20.

4. Combined estimation This estimator combines the first
two to incorporate the global amount of variation (1.) as
well as local changes in subsequent strokes (2.).

All of the estimators are computed separately for each
interval of tool-inspections listed in Table 1 and concatenated
afterwards, while the transition between these distances is
accounted for. The complete methodology is visualized in
Fig. 7.

Results

While evaluating the results of the proposed methodology,
the following set of questions is considered:

1. How do the considered feature spaces relate to each
other?

2. Is a similar behavior observable for all four conducted
experiments?

3. Howdoes the domain-specific preprocessing of the signal
influence the pattern?

4. Are structural properties of the computed subspaces
related to the wear increase?

The results are presented in the next subsections,with each
subsection providing a discussion of the results regarding the
questions in chronological order.

Experiment execution

For experiments E1 and E3, irregularities have been recorded
during the experiment execution. While during the first 700
strokes of E1 a lubrication error was recorded, a sequence
of stroke data of about 1000 strokes are missing for E3.
Therefore, in the following result evaluation, the performance
of both experiments are considered with these obstacles in
mind.

Evaluation of feature spaces

First, the Pearson correlation coefficients are computed for
the principal components based on the four experiments, four
feature sets, and five process segments considered in this
study, see Fig. 8.

The first correlation matrix shows the correlations of the
first three principal components of each experiment using
the combined feature template with the manually selected
features. For all experiments, the first component shows
the highest correlation with the manually selected features,
except for some outliers. Only experiment E1 shows a lower
correlation with a part of the features. The lowest correlation
is observed for the total amount of applied stripping force,
represented by I e. Of particular interest are the correlations
of the components with t , where t represents the stroke index
and thus the sequence. They indicate the change of signals
over time and represent the non-stationary behavior of the
signal changes. The high correlations of the first component
and only low correlations of the second and third compo-
nents indicate that a large part of the non-stationary behavior
of the data is captured in the first principal component. The
second correlation matrix displays the average correlations
between the principle components based on each feature tem-
plate with the complete set of manually selected features for
all experiments. Again, a common pattern between all exper-
iments except for E1 can be identified, where most of the
correlations are found in the first component, while the cor-
relations of the other components are negligible. The third
matrix shows the correlations for the principle components of
each segment based on the combined feature template to the
manually selected features for each experiment.All segments
show similar correlation patterns for each experiment, while
again E1 shows a different pattern, consistently for all con-
sidered segments. Additionally, the clamping segment shows
a different correlation pattern with the selected features, but
also consistent throughout all experiments E1 to E4.

Thefindings indicate that the lubrication error in E1 signif-
icantly skews the pattern observable in all other experiments
and it is therefore expected that the wear estimation of E1

will performpoorly.A low correlation between the amount of
applied pulling force during the stripping phase and the prin-
ciple components derived from features computed from the
complete signal indicates that local information is lost for all
of the experiments and hints that considering local segments
can be beneficial if such information is important. Addition-
ally, since the correlation structure of the feature sets remains
considerably stable throughout all considered feature tem-
plates, all feature spaces seem to cover the basic information
of themanually selected features for each experiment equally.
Lastly, the similarity between the correlation structure of the
complete signal’s components and the components of the
blanking segment is expected, since the complete signal is
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Fig. 7 Aspects and methods for
the identification of patterns that
are linked to the wear coefficient

dominated by the blanking signal’s behavior. The difference
in correlation structure of the pre-stripping and stripping seg-
ments indicates a general difference in included information
within the subspaces.

To compare the explained variance ratio (EVR) of the
principle components based on four feature sets for each
experiment, Fig. 9 shows the cumulative EVR for the first
60 principle components. For each feature set, differences
between each experiment can be observed, while the general
pattern between the feature spaces remains the same, indi-
cating that the amount of information in the feature spaces
in total is similar after reduction in subspace with PCA.

Qualitative evaluation of the subspace structure

After evaluating the correlation structure of the signals’ fea-
tures, common patterns are identified in two-dimensional
plots of the first two principal components on a qualitative
basis. Figure 10 shows the two-dimensional plots of all data
sets using the combined feature template of all models eval-
uated. Figure 11 shows the two-dimensional plots of only
experiment E2 using PCA and UMAP with four different
feature templates, and for all segments considered. Both plots
show the significant correlation with time and stroke index.
Figure 10 shows that UMAP and PCA have very different
properties when the feature size is reduced to a few dimen-
sions.Whereas PCA tends to maintain the global structure of
the input feature set, UMAP can detect local differences in
the data, often resulting in more and clearly separated clus-
ters. The flat AE used in this study is still able to capture
similar information to both algorithms, but tends to learn
highly correlated features, especially for E1 and E2.

The different feature templates and their effects can be
seen in Fig. 11. The spectral feature template shows strong
similarities to the combined feature template, for bothUMAP
and PCA, indicating that most of the information in the spec-
tral set dominates the representation of the combined feature
set. Again, UMAP shows better cluster separability, while
PCA is more coherent and shows fewer clusters overall. The
different segments clamping, blanking, pre-stripping, and
stripping show a large influence on the resulting plot. While
the plot of the blanking segment bears a strong resemblance
to the plot of the full signal, which is intuitive since the orig-
inal signal is dominated by the blanking segment, the rest of
the signal shows a very different structure with a different

number of clusters or level of variation. This indicates that
the information contained in the local structure of the original
signal may contain additional information (see pre-stripping
and stripping). It has already been pointed out in Sect. 2 that
during the stripping phase, the different wear conditions have
a considerable influence on the measured signal. In the first
1000 strokes, a strong deviation from one stroke to the next
can be observed, which decreases until the end of the test
run, see Fig. 11.

Figure 12 shows the UMAP plots of the last 1500 strokes
of E2 and all templates sets. Here, the correlation with
time and the change in local variance are shown by the red
and yellow arrows. The plots show that the chosen dimen-
sionality reduction methods result in considerably different
low-dimensional representations, showing a consistent corre-
lation with time, sometimes directly related to the amount of
variation. In thenext chapter, the relationshipbetween thedif-
ferent representations, their variations and the approximated
wear increase is examined and related to the dimensionality
reduction method used, the feature templates, and the esti-
mator approach.

Connecting wear and structural properties
of the reduced feature spaces

In this chapter, four different univariate estimates that quan-
tify the range of variation from the beginning to the end of the
experiment are mapped onto the approximated wear increase
derived by SEM image processing of the tool edges. Recall-
ing Sect. 4.2, four estimation methods, namely distance to
reference point, cumulative stroke-wise change, cumulative
rolling variance and a combination of the first two, were
defined. Each of the measures attempts to capture differ-
ent structural aspects of the low-dimensional projections of
the force signal. While the cumulative stroke-wise change
attempts to quantify the amount of local absolute variation
that increases each time a subsequent stroke is projected to
a different position, the distance to a reference point encom-
passes a global structural property. For the latter, only the
distance to the reference points is important, regardless of
the positioning of the subsequent strokes. The cumulative
rolling variance quantifies the variation of the distance to a
reference point through several successive strokes, thus com-
bining local and global structural aspects in a different way.
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Fig. 8 Absolute values of the Pearson correlation coefficients for the
first three principal components of the combined feature template to
the engineered features (top), averaged correlation over all engineered
features for all feature sets and experiments (mid), and averaged cor-
relation over all data sets for all segments using the combined feature
template (bottom)

Identifying the specific structural features associated with
the increase in wear leads to a more understandable and
interpretablemonitoring system than simply classifyingwear
levels. In the following, the results are presented and dis-

Fig. 9 Cumulative explained variance ratio of the first 60 principal
components for all feature templates and respecting data sets

cussed in terms of the impact of each of these aspects and
the quality of the resulting estimates.

Impact of feature spaces

Figure 13 shows the comparison between the four different
feature sets evaluated in this work for all experiments and
the estimates derived from UMAP and PCA embeddings.
The results show that the performance of the approaches
depends strongly on the experiment. Recall that experiment
E3 lacks a critical amount of data from process execution,
which seems to lead to poorer performance in contrast to
the other experiments. When using the cumulative estima-
tion of stroke variance and cumulative rolling-variance, the
effect of varying feature templates is much smaller com-
pared to the distance to reference points. Since the estimator
for distance to reference points is more sensitive to global
structure changes, while the other two are more sensitive to
local structure in the input spaces, it can be concluded that
a change in feature template mainly affects the global struc-
ture, whereas the local structure remains similar. The feature
template T emp leads to slightly better results than the other
feature templates in most experiments. For the other feature
templates, the wear estimators perform similarly, with some
exceptions. In general, the feature template Stat leads to the
worst estimates. The feature templates Comb and Spec lead
to very similar good estimates in most cases.

Impact of local segments

Figure 14 shows the performance of the estimators with
respect to the local segments in the force signal. A first obser-
vation is the similarity of the results for experiments E2 and
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Fig. 10 First two components of all experiments E using PCA (a),
UMAP (b), and AE (c). The results for PCA and UMAP are based on
the combined feature set

E4 and the significant deviations for the other two exper-
iments. For E2 and E4, the best results for all projection
methods were obtained with the distance to reference points

Fig. 11 First two components of experiment E2 using PCA (a), UMAP
(b), each with four different feature sets, and of each segment using the
combined feature set (c)

measure and the stripping segment. For E1 and E3, on the
other hand, other segments, e.g., clamping or pre-stripping,
led to the best wear estimates. The same observations can be
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Fig. 12 UMAP representations of the last 1500 strokes of E2 and
all feature templates. The red arrows indicate long-term variations of
the representations with stroke index. The yellow arrow represents the
short-term stroke-to-stroke based variations within restricted time inter-
vals

Fig. 13 RMSEbetween thewear estimates and thewear approximation
using the four different feature templates with PCA as well as UMAP
and the distance to reference points (top), the cumulative stroke-wise
change in the signal (middle), and the cumulative rolling variance (bot-
tom) based on the original force signal

made for the results of the cumulative stroke-wise change.
PCA shows very good performance for the stripping seg-
ments of E2 and E4, while no clear pattern is evident for
UMAP in terms of segment suitability. Interestingly, AE
performs well for the stripping segments, but best for the
blanking segments for E2 and E4. From a fine-blanking per-

Fig. 14 RMSE between the wear estimates and the wear approxima-
tion for data of the complete signal (O) in comparison to the segments
corresponding to the process phases (C, B, P, S) using the distance to
reference points (top), the cumulative stroke-wise change in the signal
(middle), and the combination of both estimators (bottom). The results
for PCA and UMAP are based on the combined feature set

spective, the respective blanking and stripping segments are
both stages in the fine-blanking process that are strongly
affected by changes in wear condition. Therefore, good
results for both segments are appropriate.Good results for the
clamping and pre-stripping segments could indicate that the
data are biased because, from a theoretical point of view, the
segments in question should not contain detailed information
on wear condition. In addition, AE seems to be particularly
suitable for quantifying variations and changes in the blank-
ing segment, compared to the other methods, which perform
significantly worse for the blanking segments.

Impact of projectionmethods

Figure 16 shows a comparison between the methods for
computing the low-dimensional projection. Of particular
interest is the comparison of performances between the fea-
ture engineering-based approaches PCA and UMAP on the
one hand, andAE,which automatically learns to extract valu-
able features, on the other hand. In addition to these three
methods, a baseline reference is given by a simple approxi-
mation of the wear increase using a linear function from 0 to
the maximumwear value. First, on experiment E1, the linear
approximation is almost always more accurate than all other
estimators, indicating the influence of the skewed data result-
ing from the lubrication error in the beginning of experiment
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E1. In general, a better overall performance of the cumulative
approaches can be observed, using the stroke-wise change
and the rolling variance. The distance to reference points is
better than the linear reference approximation only for some
of the experiments and segments presented, namely for the
original and stripping segments of E2 and E4. Regarding the
cumulative stroke-wise change for both E2 and E4, AE per-
forms best for the blanking, whereas PCA performs best for
the stripping segment. Similar trends are observed for the
combined estimator. UMAP generally performs worst for
the cumulative stroke-wise change, while PCA and AE can
achieve better results than the linear wear approximation.

Estimator comparison

Figure 16 compares the performance of the four estima-
tion approaches for PCA, UMAP, and AE. For PCA, the
distance to reference point estimator performs worst in all
trials, while the combined and stroke-wise estimators per-
form best in most cases. This is in contrast to UMAP, where
the distance to reference point estimator performs better than
its competitors. This observation is consistent to the before
mentioned properties of UMAP that allow UMAP to iso-
late local changes,while skewing global structure. Therefore,
local structure gains more significance. In both methods, the
rolling variance estimator is able to achieve good results in all
trials, while it does not achieve the best results in any of the
trials. For AE, the distance to reference point and the cumu-
lative stroke-wise approaches perform worse than the other
two methods in most cases. Figure 17 shows the approxi-
mate wear for each estimator for selected experiments and
methods. Here, the combined estimator highly overlaps to
the measured wear increase for PCA, while the distance to
reference points estimator shows much better performance
on UMAP.

The poor performance of the estimator for the distance
to reference point on the stripping segments of E1 can be
explained by the recorded lubrication error. A reduction in
lubrication has a strong effect on the frictional forces during
stripping and thus on the measured force signal. In Fig. 10,
the scatter plot on the upper left shows the global distribu-
tion of the data and shows a strong deviation from the other
experiments. Since the estimator for the distance to reference
point mainly captures global structural properties, the poor
performance of this estimator is understandable. On the other
hand, the estimators based on stroke-wise change or variance
do not seem to be negatively affected by the error. This is a
very interesting fact, as it shows that the different estima-
tors indeed handle severe local or global structural changes
differently.

Fig. 15 RMSE between thewear estimates and thewear approximation
for the methods using PCA, UMAP, AE, and a linear wear approxima-
tion for the distance to reference points (top), the cumulative stroke-wise
change in the signal (2nd), the cumulative rolling variance (3rd), and
the combined method (bottom). The results for PCA and UMAP are
based on the combined feature template

Discussion

In general, the results for both non-skewed experiments show
that a much better approximation can be achieved by using
cumulative methods based on stroke-wise variations or vari-
ance. The combination of both distance to reference point
and cumulative stroke-wise estimators provides the most
consistent results across experiments and models. The fact
that the estimators perform significantly better than linear
estimators in most cases, and in some cases can approxi-
mate the wear increase with high accuracy, demonstrates the
applicability of extracting structural measures from auxil-
iary sensor signals to serve as estimators for real physical
conditions. Moreover, AE offers the advantage that fea-
tures can be extracted automatically and does not require
exhaustive feature engineering approaches, which can incur
additional computational costs, and works well in most of
the considered cases. Another important finding is that the
UMAP approach performs poorly in most cases. Neverthe-
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Fig. 16 RMSE between the wear estimates and the wear approxima-
tion for the different variation quantification methods using PCA (top),
UMAP (middle), and AE (bottom). The results for PCA and UMAP are
based on the combined feature template

less, UMAP is known to capturewell the local behavior of the
considered data set, so the estimators derived from UMAP
may reflect reasonable behavior, but are not strongly related
to the wear increase in most cases.

Conclusion

This paper discusses the current state of research onmonitor-
ing sheetmetal formingprocesses inmanufacturing, focusing
on short- and long-term process signal variations. Research
has shown that force signal variations or signal anomalies
are related to changes in physical conditions and increasing
wear. Nevertheless, which part of the signal, which structural
properties of the data distribution, which type of variation
can provide a valuable basis for estimating the characteris-
tics of a manufacturing process with respect to wear, has not
been adequately explored. In fact, current studies often use
data sets, where a specific wear state is artificially introduced
by the manipulation of tool components. The force data of
the strokes executed in different wear stages are classified
into different classes, while not taking the relation between
the different wear states into account. The understanding of
the relationship between wear conditions is a preliminary for
complex monitoring tools that work in industrial settings and
the next stage after pure classification of wear stages.

The results of this study demonstrate the importance of
examining short- and long-term variations in force sensor

Fig. 17 Wear estimates and the wear approximation for the methods
using PCA (top), UMAP (middle) based on the E2 experimental data
and combined feature set, and AE (bottom) based on the E4 experimen-
tal data set

data from sheet metal forming processes in relation to phys-
ical quantities of interest such as wear. The present study
first focused on a descriptive approach to observe variations
in low-dimensional representations of force data, and then
investigated actual estimators representing wear increase
during fine-blanking. It was found that in the context of the
experiments conducted, both PCA and a flat AE as dimen-
sionality reduction techniques have the potential to capture
important global structure that can be used in the outlined
approach. In the next step, more experimental data with con-
text have to be obtained. Additionally, a study to compare
established dimensionality and representation learningmeth-
ods has to be conducted for sheet metal forming time series
data. Furthermore, a convolutional AE-based approach in
combination with class activation maps (CAM) can provide
an explainable representation learning approach to further
localize important structures in time series data.
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