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RELATION BETWEEN BERGMAN'S AND CHAPLYGIN'S METHODS

OF SOLVING THE HODOGRAPH EQUATION*

By T. M. CHERRY (University of Melbourne)

When a perfect gas is in steady irrotational isentropic motion in two dimensions, the

stream function 1p satisfies a linear differential equation in which the independent vari-

ables are components of velocity. For this 'hodograph equation', general forms of solution

have been given by Chaplygin1 and Bergman2. The purpose of this note is to show how

Bergman's form of solution can be converted into Chaplygin's. Hereby we obtain the

specification of the same solution by means of two quite different series, and are in the

position to check the extensive computations which are required (in general) to evaluate

either of the series.

The results of §1 are due to Chaplygin1, Lighthill3 and Cherry4; for proofs of the key-

formulae (4), (6), (12) reference may be made to [3] or [4]. For Bergman's form of solution

the most convenient reference is v. Mises and Schiffer.5 The different authors use different

notations, and the present paper uses a blend of them.

1. Let the rectangular velocity-components be r1/2 cos 6, r1/2 sin 0, with the unit of

speed so chosen that the limiting speed, at which the pressure vanishes, corresponds to

r = 1. Then the hodograph equation is

m Y 2 , 4l"2 dxP i (i 2t \ dV .
4(1 - TV 1? + T Tr) + 7^1 ^ + V~T- (1)

where y is the adiabatic index of the gas. This equation is soluble by separation of the

variables, leading to Chaplygin's form of solution

\f/ = c,^,(r)e"', (c„ constant) (2)
v

where v can take any real value except —2, —3, • • • , and

Ur) = r"*F{a.,b,

it   _ 1 „ h - — + !)a,+ b, - v T _ 1 > a>b> 2(7 - 1) '

F denoting the hypergeometric series.

For r fixed, i/-„(r) is a meromorphic function of v\ its poles are at v = — 2, — 3, • • • ,

and its residue at v = — m is — /im^m(r), where

, r(qm)r(l + m — bm)  .

- r(am - m)r(l - 6„)r(m)r(l + m) ' w
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For large values of | v |, changes character at the point r = r, = (7 — 1)/(7 + 1)

at which the coefficient of d2\p/dd2 in (1) vanishes; it is (for v real) monotonia for

0 < t < t, , oscillating for r, < r < 1. In the first case (with which alone we shall be

concerned) there is an asymptotic expansion

Ur) ~ F(r)5Vx{l + E pn(r),-"}; (4)

valid for all complex e except the negative integers; here

X = t71/2 arc tanh — arc tanh ^ ^ — r"^) '

_ (1 _ jMKy-l, _ a- _ _1/2 _

F(t)- (l-r/r.)1/4 ' (1 -f- a)1 + t* '

(5)

and the p„(t) are determinate functions vanishing at r = 0. Hence follows the partial

fraction expansion

= 56 \F(t) ~ h m + v )' (6)

valid for 0 < t < rs and all v. If here we formally expand the last factor in powers of v~1

we must obtain (4), and therefore

(-1)>„(t)F(t) = E r), (n = 1, 2, • • ■)• (7)
2

Substitute (6) in (2) and interchange the order of the double summation. We obtain,

for 0 < t < r, ,

c„5"
t = V(r) - £ hm8me'mieMr) E

v m^2

~ E ^m5me~°"Vm(T) E

7* m +

c„5 e(m+'^9' - c„5"

m—2 m + v

Hence, putting

*«(r, 0) = E E zrir > (8)
m = 2 p Hi ~X" V

f = X + (9)

^o(r) = E e'f, (10)

we obtain

*1 = F(r) EMe"f - E hm8memXMr) [* E e.S'elm*'u~ml dt
v m = 2 ^ 0 v

= F(r)0„(f) - E hmSmemXMr) [C em('~n<i>o(t) dt. (11)
2 ^0

For the justification of these manipulations it is sufficient—apart from the over-riding
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condition 0 < t < rs—that (i) for all values of v comprised in (2) and all positive integers

m, | v + m | has a positive lower bound, and (ii) the series E | c„<5 Vf | converges in some

strip fi < Re f < 0; the proof rests essentially upon the estimations

Mr) = 7(r)5e"x{l + 0(0}, 2irhm = 5-2"{l + O^m'1)}, (12)

of which the former is the first approximation derived from (4).

We note that ^(r, 6), as defined in (8), is a solution of (1) in Chaplygin's form.

2. To convert (11) into Bergman's form of solution we expand the factor emU~n

and rearrange the resulting double sum. After an appeal to (7) this gives

i = F(r)0o(f) - E hmdmemXMr) f\0{t) dt E mn-\t - f)""1/^ - 1)!
2 0 1

= F(r)i(f) - f EC- r)"~Vo(0 d«/(n - 1)!- E rn"-,/lmremVm(r)
^ 0 n— 1 m-2

= F(r)0o(f) + £ E(r ~ (f 7(t) ̂ o(f) dt. (13)

The transformation is valid provided the series

E hmdmem^m(r)em,n

2

converges absolutely, and by (12) this is secured if | f | + 2X is negative; hence from (9),

it is sufficient that X be negative (as it is for 0 < t < ts) and that

— 31/2 | X | < 6 < 31/2 | X |. (14)

On the left of (13) ^ is a solution of Chaplygin's form, and on the right we have

this expressed in Bergman's form* in terms of an arbitrary analytic function <£0(f)- The

identification not merely of form but of content will be complete provided Bergman's

Gn and the present pn are related by

Gn = ( — 2)" pn. (15)

Now if, as in [5], we examine the conditions that the form on the right of (13) be a solu-

tion, with <£0(f) remaining arbitrary, we find that the derivative of pn must be determined

entirely by pn-i , so that is determined apart from an additive constant. This constant

is, in the preceding work, determined by the condition pn = 0 for r = 0, while in [5] the

condition is taken to be (?„ = 0 for X = — °°; and these conditions agree since to r = 0

corresponds by (5) X = — °o. Hence (15) expresses merely the same function in two

different notations.

In conclusion, it may be remarked that the conditions assumed in proving (13) are,

in one respect, more restrictive than those which validate Bergman's form of solution on

the right; for our conditions imply that $0(f) is regular in a strip < Re f < 0, whereas

Bergman requires only regularity in a partial neighbourhood of f = 0. Against this must

be set the fact that Bergman's form is established only when d is restricted as in (14),

while in the Chaplygin form 0 is unrestricted.

*See particularly [5], p. 258, un-numbcrcd equation following (4); here is defined in (1.6), where

2-1'2 is the same as F(r) of the present paper.


