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Abstract: Using the Roeser–Huber equation, which was originally developed for high temperature

superconductors (HTSc) (H. Roeser et al., Acta Astronautica 62 (2008) 733), we present a calculation

of the superconducting transition temperatures, Tc, of some elements with fcc unit cells (Pb, Al),

some elements with bcc unit cells (Nb, V), Sn with a tetragonal unit cell and several simple metallic

alloys (NbN, NbTi, the A15 compounds and MgB2). All calculations used only the crystallographic

information and available data of the electronic configuration of the constituents. The model itself is

based on viewing superconductivity as a resonance effect, and the superconducting charge carriers

moving through the crystal interact with a typical crystal distance, x. It is found that all calculated

Tc-data fall within a narrow error margin on a straight line when plotting (2x)2 vs. 1/Tc like in the

case for HTSc. Furthermore, we discuss the problems when obtaining data for Tc from the literature or

from experiments, which are needed for comparison with the calculated data. The Tc-data presented

here agree reasonably well with the literature data.

Keywords: metallic superconductors; superconducting alloys; A15 superconductors; transition

temperature; Roeser–Huber equation

1. Introduction

In 1908, Dutch physicist Heike Kamerlingh Onnes succeeded in liquefying helium 4He,

which extended the lowest temperature achievable in a laboratory from 14 K [1] to slightly below

1 K [2]. This made it possible to investigate the low temperature behavior of solids. One of the first

properties studied was the resistivity of pure metals. In 1911, Onnes and his team found that the

resistivity of mercury dropped abruptly to zero at 4.2 K [3]. They also discovered the same kind of

transition with lead at 7 K and tin at 3.7 K. This phenomenon became known as superconductivity and

the temperature at which the transition occurs as the critical temperature of the material (Tc).

In the following years, more and more superconductors have been found, first in pure metals

and later in alloys and compounds. With 9.2 K, the highest critical temperature observed in a natural

element belongs to niobium (Nb). Before 1950, this critical temperature was also the highest of all

superconducting materials until the alloy NbN0.96 was found to superconduct at 15.2 K, and in 1954,

the A15-structured compound Nb3Sn broke the record with 18.1 K [4]. The highest critical temperature
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for a “conventional” superconductor, i.e, a superconductor described by the Bardeen-Cooper-Schrieffer

(BCS) theory, is 39 K [5] and belongs to MgB2, which was found as late as 2001. However, it became clear

that practical applications would require the discovery of materials that will become superconducting

at significantly higher temperatures.

The breakthrough came with the discovery of superconductivity in a ceramic material containing

lanthanum (La), barium (Ba), copper (Cu) and oxygen (O) with the full formula La2−xBaxCuO4

(LBCO), with a critical temperature around 30 K by Bednorz and Müller in 1986 [6]. It was the first

high temperature superconductor (HTSc) or cuprate superconductor. The following year, Chu et al.

studied the superconductivity of LBCO under pressure and found that Tc increased to over 40 K [7].

With the reduction of the lattice parameter with increasing pressure, the question came up if it would

be possible to reduce the lattice parameter of the LBCO compound through chemical means. Wu et al.

accomplished this reduction of the lattice parameter by replacing La with the smaller yttrium Y,

discovering the compound YBa2Cu3O7−δ (YBCO) with Tc near 90 K [8]. This was crucial since it was

the first superconducting material with a Tc above the boiling point of nitrogen (77 K), thus making

research of the superconducting state much easier and superconductivity commercially viable as well.

High pressure experiments are an important factor for these systematic studies because they

provide the only available means to reduce the lattice parameter significantly without changing the

chemical composition. This enables tests of superconductivity to be carried out in a controlled manner.

As of November 2014, the record holder for the highest superconducting critical temperature was

Tc = 164 K in a mercury based cuprate under a pressure of 31 GPa [9]. The newest studies of hydrogen

sulfide H3S claim a critical temperature near 190 K at 150 GPa [10], and very recently, superconductivity

was observed in LaH10 under high pressure above 250–260 K [11,12].

To this day, there is still no general theory able to predict the superconducting transition

temperature of a given material or even to answer the question if a given material will become

superconducting or not [13]. Despite nearly a century of research and five decades since the

development of a complete microscopic theory of superconductivity (BCS theory), systematic studies

and the comparison to already existing superconductors continue to be the primary method for

the discovery of new superconductors [14]. The best example for this are the empirical rules of

Matthias to find new superconducting alloys [15,16]. With high Tc superconductivity, these rules

seemed to be obsolete, but recently, there was a revival with the new intermetallic superconductor

LaBi3 [17,18]. Various theoretical calculations of Tc were published in the literature using band structure

calculations [19–24]. These methods were recently reviewed in [25] with the emphasis of obtaining

the Tc of the hydrogen sulfide under pressure. These calculations are extensive and time consuming,

but brought out important insights into the nature of superconductivity. However, the discoveries of

new superconductors were mostly accidental and not following theoretical predictions.

In the present contribution, we employ the Roeser–Huber equation developed for various

types of HTSc [26–29] to calculate the superconducting transition temperatures of several metallic

superconductors (elements and simple alloys) using only the data of the crystal structure and the

electronic configuration, which offers a much simpler approach to calculate Tc. We discuss the required

changes to the formalism and present the calculation steps for several metals and simple alloys,

including Pb, Al (fcc structure), Nb, V (bcc), Sn (tetragonal), NbN, NbTi, the A15 compounds and

MgB2. Furthermore, the results obtained are compared to experimental data from the literature or

from our own measurements.

2. Outline of the Model

The basic assumption for the following calculations is that superconductivity is a resonance effect

between the crystal lattice and the moving charge carriers within the crystal. Thus, the half wavelength,

λcc/2, of the material wave formed by the moving charge carriers must correspond to the distance

of two participating atoms in the crystal lattice. The resonance effect can be visualized regarding

the superconducting transition as an integrated resonance curve; see Figure 2a,b for an illustration.
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As superconductivity implies that there is no electric resistance, there will be no scattering of the charge

carriers. Thus, the charge carriers must move with the same speed, direction and in phase with each

other. This statement will be important for the development of selection criteria, which will appear

when discussing the real crystal structures.

The calculations of the superconducting transition temperatures, Tc, using this approach were

started on high Tc superconductors (HTSc), realizing that the distance x between the doping

centers (e.g., oxygen vacancies) in the Cu-O planes may play an important role for the resulting

superconducting properties of the material. In [26–28], such calculations were performed on

YBa2Cu3O7−δ (YBCO), the the Bi based HTSc family (Bi-2201, Bi-2212 and Bi-2223), the Tl based HTSc

family (Tl-2201, Tl-2212, Tl-2223, Tl-1234), the Hg based HTSc family (Hg-1201, Hg-1212, Hg-1223)

and some iron based HTSc of the so-called 1111 family [29]. The striking result was that all data fall

on a straight line when plotting the optimum doping distance, x, for the maximum Tc as (2x)2Neff

versus the inverse of Tc. The resulting straight line follows the equation of a particle in a box [30]

with the energy h2/(8Meffx
2) = πkBTc for n =1, where n is the number of Cu-O planes per chemical

formula [28].

A first investigation on the metallic superconductors niobium, vanadium, tantalum and mercury

has demonstrated that a calculation of the superconducting transition temperatures is possible using

the approach that the bond length (x) represents the shortest atomic separation in a crystal unit

cell [31]. Using the particle-in-box (PiB) concept [30], the energy level estimate for electronic excitation

in an atom is given by E = h2/(8med2
A), which leads to a typical value of ≈4 eV (with atomic

distance dA = 0.3 nm). In case the crystal structure offers straight lines or arrays of equidistant atoms

with separation length (x) throughout the unit cell, one could relate the energy of the unit cell to

the ground state E1 of a one-dimensional PiB, which scales with the size of the unit cell. In [31],

the slope of the straight line that was fitted to the graph (2x)2Neff = m2 · 1/Tc was determined to be

m2 ≈ 3.0 × 10−18 m2K. This clearly demonstrated that the approach was valid also for conventional

superconductors, but many related questions remained unanswered. Especially, the more complex

crystal structures of lead or aluminum (fcc) did not give satisfying results.

Therefore, in a subsequent investigation [32], the calculation procedure was refined to consider all

possible crystallographic directions, and some correction factors to the original equation were worked

out. The same principles were subsequently applied also to several two component superconductors

like NbN, Nb3Sn and MgB2 [33]. The final model is outlined below.

The main equation obtained for high Tc superconductors is:

[

(2x)22ML

]

n−2/3πkBTc = h2 , (1)

where h is the Planck constant, kB the Boltzmann constant, x the atomic distance, Tc the

superconducting transition temperature, ML the mass of the charge carriers and n is a correction factor

describing the number of Cu-O planes in the unit cell. Of course, it is evident that this equation needs

to be modified to count for the specific properties of the metallic superconductors. The parameter n,

which describes the number of superconducting Cu-O planes per elementary cell, has here no meaning

anymore for the metallic superconductors, and therefore, n is set equal to one.

The second part of Equation (1) can be considered as an energy:

∆(0) = πkBTc , (2)

which may correspond to the pairing energy. Therefore, one can write:

(2x)2 · 2ML∆(0) = h2 . (3)
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Regrouping and using Equation (2) lead finally to:

∆(0) =
h2

2
·

1

ML

1

(2x)2
= πkBTc (4)

Following the works of Moritz [32] and Stepper [33], there are in total four significant changes

necessary to deal successfully with the metallic superconductors:

(i) The distance x is no longer related to the doping distance as in the case of HTSc, but corresponds

to an atomic distance similar to the PiB approach applied in [31].

(ii) In all calculations of the various HTSc materials, ML was set equal to 2me (me = electron mass).

In the case of metallic superconductors, ML turns out to be much higher. As the charge carriers

in the metallic superconductors are always Cooper pairs formed by electrons or by holes, we

introduce here the abbreviation, ML, not to be confused with Meff used in the band structure

calculations. In a first approximation, ML is found to correspond closely to the mass of a proton

(mp). A justification for this is given in the diagrams of Figures 9 and 10 below, where such a high

mass is needed to unify the data of the HTSc and the metallic superconductors. Thus, the charge

carrier mass ML is then expressed in terms of mp in all further calculations.

(iii) There are more correction factors required besides setting n = 1 as described before. This is

required to account for the more complex crystal structures. Atoms close to a superconducting

direction may have an influence on the moving charge carriers via the phonon interaction.

Therefore, the number of atoms passed within a unit cell is counted. This correction is added to

the charge carrier mass via:

ML =
NL

Natoms
· mp , (5)

with NL giving the number of charge carriers, Natoms the number of near, passed atoms and mp

is the proton mass. One can introduce then a new first correction factor n1 via ML = n1 · mp,

so n1 = NL/Natoms. In case there are no (near) passed atoms, then n1 = 1. As the symmetry

plays an important role for our considerations, the passed atoms must be symmetrically arranged,

otherwise the charge carriers would be not in phase due to the unsymmetric forces. In turn,

this implies that superconductivity cannot exist in directions with unsymmetrically arranged

passed atoms. To test the influence of the passed atoms, we define a relation l/x (see Figure 1). l is

the perpendicular distance to the direction of the moving charge carriers. If l/x ≤ 0.5, we assume

that the passed atoms have an influence on the superconductivity. This relation is, therefore,

very important in the following calculations of Tc,(0).

superconduc!ng

direc!on

A

B

Figure 1. A sketch of a crystal direction where the Cooper pairs can move along and the atoms passed.

As an example, a NaCl-type crystal structure is shown with the atoms on the A-site depicted in dark

green and the atoms on the B-site in light green. Assuming that the direction of the charge carrier wave

λcc (superconducting direction) is along the atoms on the A-site, then several atoms on the B-site must

be passed in a distance lB as indicated. The situation shown corresponds to the direction (1) of the NbN

superconductor (see Section 4.5). The characteristic distance x = λcc/2 is indicated as well.
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(iv) Another correction is necessary for anisotropic superconductivity, which can even lead to so-called

multimode superconductivity as in the case of MgB2. This correction factor will be named n2,

giving a relation between the specific directions, R. Here, it is important to note that it becomes

possible to calculate a transition temperature for each direction separately, which does not need

to be equal to the “total” transition temperature of the entire system. In this way, there will be

an equation system to be solved. Further details of this will be presented when discussing the

calculation of the A15 superconductors and MgB2.

When all the corrections mentioned are implemented in Equation (4), we have the final

equation (Roeser–Huber equation), which is valid for HTSc, single element superconductors and

superconducting two component alloys:

∆(0)ges =
h2

2ML
·

(

Ri

∑
Ri=R1

1

(2xRi
)2

· n2/3 ·
n2Ri

n1Ri

)

= πkBTc(0) , (6)

with ML denoting the mass of the charge carriers. The interatomic distance x now depends on the

crystallographic direction Ri and also the new correction factors, n1 and n2. From the total energy,

∆(0)ges, the superconducting transition temperature, Tc(0), can be calculated.

Now, it is possible to formulate the questions, which need to be answered in order to calculate the

superconducting transition temperature(s) of metallic superconductors:

(1) Which crystal directions are able to carry the charge carrier wave, and how many of them exist

for a given crystal structure?

(2) How large is the interatomic distance in such an atomic chain?

(3) How many symmetric passages are possible, or formulated differently, how many partners for

the phonon interaction exist for the charge carriers?

(4) How large is the distance of the passed atoms to have an influence on the charge carrier mass?

(5) Which atom is the main carrier of superconductivity, or does superconductivity only exist in

a combination?

(6) How many electrons are involved in superconductivity?

Questions (1)–(4) can be obtained from a thorough analysis of the given crystal structure, so a

study of the respective databases [34,35] gives the required information. Question (5) can be treated by

checking the superconducting elements and their transition temperatures. Question (6) can, however,

not be answered intuitively, as for most alloys, this is unknown. More information can be obtained via

the Hall coefficient, which enables deciding if electron or hole conductivity is present. Furthermore,

the oxidation numbers give a base to count the electrons, and the electric conductivity is another

important measure to be considered, as we will see in Section 4.2 below.

3. Experimental Procedures

To obtain data input for the calculation procedure, data for the superconducting transition

temperature, Tc, and the transition width, ∆Tc, were required. Such data could be obtained from a

thorough literature search, but also from direct measurements. The analysis of the experimental data

gave valuable information of how to interpret the literature data. Therefore, we discuss here some

problems when using the literature data and some important details of the experimental determination

of these parameters.

There are various possible ways to determine the superconducting transition temperature, Tc,

from experimental data as illustrated in Figure 2a–c. Figure 2a,b show the superconducting transition

measured in a resistivity measurement. The superconducting transition (a) can be viewed as an integral

of a resonance curve (b), showing the derivative, dρ/dT. The peak position in (b) gives Tc,midpoint.

Figure 2c shows the problems (arrows) when trying to define the onset of superconductivity from

resistance data. The figure further shows another possibility to determine Tc using two linear fits,
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one to the data above Tc and one to the data in the transition regime. All these different approaches

make an analysis of existing literature somehow challenging, as often only Tc is mentioned by the

authors, but not the more correct terms like Tc,onset, Tc,midpoint, etc., which would allow knowing the

exact way how Tc was determined. As consequence, one must use the literature data with some

care. The same statement is also valid for the superconducting transition width, where often, ∆Tc is

determined from the top and bottom of a transition measurement, that is ∆Tc = Tc,onset − Tfoot/bottom.

Another approach used in the literature is to take the values at 10% and 90% of the transition as the

transition width, ∆Tc,90%−10%.
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Figure 2. Experimental determination of the superconducting transition temperature, Tc,

from resistance data as shown in (a) for a polycrystalline, bulk MgB2 sample. In (a), the superconducting

transition is presented. The plot (b) gives the derivative of the resistance data, with the peak position

yielding Tc,midpoint. The transition width, δTc, is obtained as the peak width. (c) presents the most

common approaches. Tc,onset is obtained from the first deviation of the fitted linear behavior to the

data above Tc. The arrows indicate the problems arising when determining the first onset temperature.

Another approach is the crossing point of two linear fits to the data above Tc and to the transition part,

also shown in (c). Finally, (d) gives a schematic comparison, which is really measured in the magnetic

DC and AC methods and the resistance data.

Here, we have to note that the three most common techniques (DC susceptibility, AC susceptibility,

resistance) give different information on the superconducting transition [36,37]; see Figure 2d. For the

magnetic data, it is sufficient that a single grain enters in the superconducting state to produce a

deviation from the behavior found at higher temperatures. To reduce the resistance measured between

the two voltage contacts, an entire superconducting path must exist. In a single crystalline sample,

these two situations may be reached at the same time, but in polycrystalline samples, there may be
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a clear difference between the two techniques. From the resistance data, a discussion of the flux

pinning properties can be performed using a scaling approach from pinning theory [38], and the field

dependence of the resistivity data gives information on the upper critical field, Hc2. Detailed AC

susceptibility measurements on polycrystalline YBCO HTSc samples were performed by Chen [39] and

Skumryev et al. [40], which revealed the differences of the inter- and intra-granular current densities

using the temperature and field behavior of the loss peak (χ′′). This information is especially valid for

polycrystalline samples. The DC magnetic susceptibility provides another interesting temperature,

Tirr, where the irreversibility (=flux pinning) sets in. Any reasonable transport current can only flow

in a sample below this temperature. This temperature plays an important role in the case of HTSc.

In the case of the hype around the highest possible Tc in the literature, e.g., the quest for the

highest Tc of the A15 compounds around 1970 or the high Tc race after 1987, one can directly observe

a tendency to use the Tc,onset for the claim. This was especially visible concerning the highest Tc

of the A15 compounds, where even an improvement by 0.2 K was claimed as a success. A fairer

way of determining Tc would be the method indicated in Figure 2c using two linear fits to the data.

The calculation of the derivative, dρ/dT, yields Tc,midpoint as the derivative is largest in the center of the

superconducting transition. An example of these Tc determinations is given in Figure 2d. Regarding

the view of superconductivity as a resonance effect, the Tc,midpoint determined from the resistance

measurements is the important input to the calculations.

Several transport measurements on various metallic and ceramic superconductors (HTSc and

iron based superconductors (IBS)) were performed using an Oxford Instruments Teslatron 8 T cryostat,

as well as a 10/12 T Teslatron cryostat system equipped with a λ plate in the temperature range

∼2 K–300 K. The temperature was controlled in both systems using Oxford Instruments ITC4

temperature controllers, operating with three calibrated temperature sensors (ruthenium oxide, Cernox

CX-1050, Pt-100). Temperature steps of 0.25 K were applied, with a steady temperature sweep

controlled by the ITC4 controller. The current to the sample was regulated by a stabilized current

source (Keithley 2400 source meter) delivering currents from 50 pA to 1 A with a compliance voltage

of up to 200 V. A Keithley 2001 multimeter recorded the voltage proportional to the sample four

probe resistance. The measurements were controlled by a MATLAB program [41,42]. The resistance

was measured in a four probe configuration. From most metallic samples, commercial wires with

insulation were employed for the measurements. To achieve a proper resistance value, wire pieces

with a length of 10 cm were wound up into small coils. The end sections of the wires (∼1 cm) were

thoroughly cleaned from the insulation. The current was fed into the wire at the ends, leaving a long

wire section (9 cm–9.5 cm) between the voltage contacts. In the case of a thin film (NbN), a 5 × 5 mm2

sample was employed, having the electric contacts at the four sample edges. Thin copper wires of

100 µm in diameter were used as leads for low resistance contacts placed onto the samples either by

soldering (lead-free solder) or by means of silver paste.

Figure 3 presents several resistance measurements on superconducting elements Pb, Nb and

Ta and alloys NbN, NbTi and MgB2 measured up to ∼270 K. In (a), the results for a Pb wire with

a length of l = 95 mm and a diameter of 0.5 mm are presented. Tc,onset was determined as 7.12 K,

the residual resistance ρ0 = 1.2 µΩ cm, and the normal state resistivity ρ(300 K) = 229 µΩ cm.

Graph (b) gives the resistance of a Nb wire with a length l = 90 mm and diameter of 0.25 mm.

The normal state resistivity, ρ(300 K), of Nb was ρ ≈ 0.5 µΩ cm, as in [43]. The measurement revealed

a Tc of 9.15 K and a residual resistivity of ρ0 = 0.045 µΩ cm extrapolated from the data towards

0 K. It is interesting to compare this Tc value obtained by resistance measurements with the very

precise SQUID data obtained in [44–46], yielding a Tc,onset of 9.21 K at a 0 mT applied field and the

variation down to Tc = 8 K in a 150 mT applied magnetic field. Panel (c) presents the resistance of

a Ta wire with l = 90 mm and diameter 0.5 mm. The Tc,midpoint determined was 4 K (Tc,onset = 4.2 K,

and the normal state resistivity was 16.5 µΩcm and ρ0 = 1.27 µΩcm, being quite similar to the

data of [47]. Graph (d) shows the resistance measurement on a NbN thin film, thickness 150 nm,

patterned into a bridge shape [48]. The experimentally determined Tc was 16.2 K. Panel (e) presents
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the data obtained on a NbTi wire. A commercial NbTi wire (EAS Superconductors, Hanau) with

several filaments was employed here. The data of the wire measured were close to the values found

in the literature [49]; the residual resistance was ρ0 = 35 µΩcm and Tc,onset = 9.8 K. Finally, Panel (f)

shows a resistance measurement on a MgB2 bulk sample, prepared from powder material at a reaction

temperature of 805 ◦C. This sample was polycrystalline with an average grain size of d ∼ 300 nm

and a connectivity of the grains, K = 17%. The resistance data determined were ρ(300 K)= 52 µΩcm,

ρ(40 K)= 15 µΩcm [50,51]. For the Tc-determination, we show here all data possible: Tc,onset = 38.818 K

(first deviation) determined from the linear behavior above Tc, Tc,onset = 38.53 K (cross point) and

Tc,midpoint = 38.30 K determined from the peak of the derivative.
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Figure 3. Resistivity measured on several metallic superconductors. (a) Pb wire, (b) Nb wire, (c) Ta

wire, (d) NbN thin film, (e) NbTi wire and (f) MgB2 (bulk, polycrystalline material). The insets give

details of the superconducting transitions and the residual resistivity, ρ0.

The experiments performed showed the problems the experimentalists were facing: The wires

employed were polycrystalline, and the resistivity depended on the treatments applied to make the

wires and at a second level on impurities. These data were normally specified in data sheets as the

residual resistance ρ0 (for superconductors extrapolated to 0 K) and the residual resistance ratio (RRR)

(defined as ρ(300 K)/ρ0). For the polycrystalline samples, the information about the grain connectivity

K = ∆ρg/∆ρ, where ∆ρg is a constant depending on the dimensionality and grain orientation and

∆ρ = ρ(300K)− ρ(T∗) with T∗ chosen just above the superconducting transition, was very useful to

compare the sample quality [52]. The thin film samples were affected by the presence of the substrate,

which may induce strain, and in many experiments, a clear dependence of Tc on the film thickness was

observed. This was recently reviewed by Ivry et al. [53]. Bulk polycrystalline samples may have grains

in the nanometer range, so again, many grain boundaries were present, which increased the residual

resistivity. Therefore, in the ideal case, such measurements should be done on single crystals. However,

this was impossible in many cases (e.g., NbN, NbTi, Nb3Ge), and the results of such experiments are

extremely rare in the literature.

This implies that one has to inspect the literature data carefully, which are often measured on

wire-type samples. Due to the strong influence of the substrate on Tc, the data of thin film samples

were excluded from the analysis in the investigations performed by Moritz [32] and Stepper [33].

To summarize this part, one has to keep in mind that the ideally suited data were Tc values from

resistance measurements of bulk-type samples, giving Tc.midpoint or at least Tc,onset and the transition

width ∆Tc.
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4. Results of the Calculations and Discussion

4.1. Lead

The first material considered was lead (Pb) with the fcc crystal structure. As mentioned before,

the simple search for the shortest interatomic distance, x, did not give proper results. Figure 4 presents

the first attempts of the calculations together with the data (Nb, Hg, V and Ta) from [31]. The fit

obtained in [31] is given as the blue line. The situation was even worse when also regarding Al, which

had the same fcc crystal structure as Pb. The corrections required for Pb and Al even went in the

opposite direction: the data for Pb were too high as compared to the result of Roeser, and the data for

Al were too low (indicated by arrows in Figure 4). This clearly indicated that the calculation approach

using the shortest interatomic distance (=shortest bond length) as a measure needed a refinement.

Pb

Al

Nb
V Ta

Sn

Hg In

0.0 0.2 0.4 0.6 0.8 1.0
0
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data
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)2

N
e

ff
(1
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-2

0
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2
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1/T
c

(1/K)

Figure 4. Relation of 2x2 vs. 1/Tc for the superconducting elements with fcc structure. For Tc,

experimental data are used. The horizontal error bars are determined by the variation of Tc from

sample to sample or from the uncertainty when using the literature data. This graph represents the

situation when [31] was written. The data of Pb and Al are calculated via the PiB principle (shortest

interatomic distance). The blue line gives the fit obtained by Roeser et al. [31] for the elements Nb, Hg,

V and Ta. Fit (1) and Fit (2) are linear fits to the data with different weight with respect to the data of Pb

and Al, and the two arrows indicate the direction of the changes required.

For the fcc structure, one can recognize four different directions, along which the charge carriers

can move. All these directions have to be considered in the calculation process:

• Direction (1) is the diagonal in one crystal face. This length is a ·
√

2. However, the next atom is

located in the center of the diagonal, so xfcc
1 = a/2 ·

√
2.

• Direction (2) along the edge of the unit cell. This length corresponds directly to the lattice constant,

so x
f cc
2 = a.

• Direction (3). There is a highly periodic connection between an atom at the edge of the unit cell

with an atom located in the middle of a not directly neighboring face. This can be calculated as

xfcc
3 =

√

a2 + (a/2)2 + (a/2)2 = a ·
√

1.5.

• Direction (4) is given by the diagonal in space. This length can be calculated as xfcc
4 =√

a2 + b2 + c2 =
√

3a2 = a ·
√

3.

In the next step, we have to answer Questions (3) and (4), i.e., the number of passed atoms,

which may influence the phonon interaction. Thus, we have to look at Figure 5a. In Direction (1),
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there are two atoms at the unit cell edges, and the central atom is the one sitting in the face center.

There are four atoms being the next ones. Now, the distance of these atoms in the main direction is

important. As a result, this distance turns out to be larger than 0.5, so these atoms do not need to be

considered. Therefore, Natom = 1 for Direction (1).

(1)                       (2)                     (3)                       (4)

(a)                       (b)                     (c)                       (d)

Figure 5. (a–d) Crystallographic directions (1) to (4) for the charge carriers in the fcc crystal structure,

allowing identifying the atoms passed (see main text).

For Direction (2), see Figure 5b. Again, there are four close atoms. This time, however, their

distance in the main direction is equal to x/2, so they must play a role. Therefore, Natom is taken

as four.

Direction (3) is depicted in Figure 5c. Natom is taken as two.

For Direction (4), see Figure 5d. Here, there are six atoms close to the main direction, which have

to be considered. Therefore, Natom = 6.

With this, we have all the ingredients for the calculation. The electron configuration of lead is [Xe]

4f145d106s26p2, and the lattice parameter a = 4.95 × 10−10 m. The 2s- and the 2p-electrons take part in

the superconductivity, so NL = 4. The results of the calculations for all directions (1)–(4) are given in

Table 1.

Table 1. The distance x, (2x)2, the charge carrier mass ML and the calculated energies for all 4 directions

in the fcc structure.

Direction x (10−10 m) (2x)2 (10−19 m2) ML (1/mp) ∆(0) [10−23 J]

1 3.5 4.9 4 6.69
2 4.95 9.8 1 13.4
3 6.06 14.7 2 4.46
4 8.58 29.4 2/3 6.69

With these data, one can now calculate the superconducting transition temperature. Following

Equation (6), all four energies have to be added. This implies that already here, the multi-mode

situation appears. This finally yields:

∆(0) =
4

∑
n=1

∆(n) = 3.124 × 10−22 J . (7)

Correspondingly, the calculated Tc of Pb is 7.201 K, which is very close to the measured value,

as well as the literature data.

4.2. Aluminum

Aluminum, Al, has the same fcc structure as Pb. The electron configuration of Al is [Ne] 3s23p1.

This implies that all electrons have a much closer distance to the nucleus as in the case of Pb. Following
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the calculation of Pb, one should use the three outer electrons for the calculation. This, however, is not

the case here. The possible reason for this is the high electric conductivity of Al, which suggests that

more electrons take part in the conduction band. The ionization energies of Al would allow 6, 9, 11 or

13 electrons, where 9 or 11 electrons are most likely. For the present calculation, all 13 electrons enter in

the calculation as shown below. This may seem unusual, but it was shown in [32] that this applies to

other elements as well (e.g., Zn, Zr, Hf, Ru, Mo). All these materials are characterized by their Tc being

lower than 1.5 K. A theoretical explanation of this behavior is still lacking. All other relations that are

related to the fcc structure are the same as for Pb, so we can summarize the results in Table 2.

Table 2. The distance x, (2x)2, the charge carrier mass ML and the calculated energies for all 4 directions

in the fcc structure.

Direction x (10−10 m) (2x)2 (10−19 m2) ML (1/mp) ∆(0) (10−23 J)

1 2.86 3.28 13 3.08
2 4.05 6.56 13/4 6.16
3 4.96 9.84 13/2 2.05
4 7.01 19.7 13/6 3.08

If we now calculate ∆(0) in the same way as before (Equation (6)), we obtain ∆Al
(0) = 1.437× 10−22 J.

From this, one obtains Tc = 3.312 K, which is clearly much higher than the literature value for bulk Al

of 1.181 K. The multimode situation has, however, some restrictions: The charge carriers must be in

resonance with the crystal lattice in each direction. In the case that the maximum velocity of the charge

carriers is not high enough to sustain a wave with such a small wavelength, then the resonance cannot

occur in this direction. This statement still needs a theoretical foundation. From the data, one can

conclude that the two shorter directions fall in this situation, so the two directions have to be omitted

from the calculation of Tc. Doing so, we obtain:

∆(0) =
4

∑
n=3

∆(n) = 5.130 × 10−23 J . (8)

From this, we can determine Tc = 1.183 K, which agrees very well with the experiments. Here,

we have to note that Al is indeed a special case as for Al thin films, a much higher Tc can be obtained

experimentally. Very recently, Ivry et al. [53] summarized the Tc change of thin films depending on the

film thickness. Al is the only superconducting material where Tc is increasing when decreasing the

film thickness. When now comparing the values for Tc calculated here with the experimental data,

one can find that the maximum Tc of the thinnest film reported in the literature is strikingly close to

3.3 K. One may conclude that the presence of the substrate may allow superconductivity in the two

directions excluded in the calculation before. The analysis of all such thin film data could indeed be an

interesting addition to the model presented here.

4.3. Sn

Tin (β-Sn) with the electron configuration [Kr] 4d105s25p2 is a metal (conductor) with a tetragonal

crystal lattice (space group I41/amd, Number 141). Sn becomes superconducting at Tc = 3.74 K.

The lattice parameters are a = b = 0.583 nm and c = 0.318 nm. The electronic structure enables four

valence electrons. There are two possible directions in the crystal structure:

• Direction (1) along the edge of the unit cell with x = c = 0.318 nm. There are no near atoms to

be considered.

• Direction (2) along the spatial diagonal with x =
√

c2/4 + a2/2 = 0.442 nm. Again, no near

atoms have to be taken into account.

Following Equation (6), we obtain Tc(0)(1) = 3.78 K and Tc(0)(2) = 3.74 K. The higher Tc is

obtained when adding both Directions (1) and (2) and using three charge carriers, whereas the lower
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Tc is obtained using Direction (1) only, but two charge carriers [32]. Both values are, however, close to

the experimentally determined value of Tc = 3.74 K.

4.4. Nb and V

The elements Nb and V were already included in [31], so we give here only a short summary of

the findings as these two elements are very important for other superconductor classes. Both elements

have a bcc crystal structure (Im-3m).

Nb has the lattice parameter a = 0.33 nm, α = β = γ = 90◦. This allows identifying three

distinct directions:

• Direction (1) along the edge of the unit cell with x = a = 0.33 nm,

• Direction (2) along the face diagonal with x =
√

2 · a = 0.4667 nm and

• Direction (3) along the space diagonal with x =
√

3 · a/2 = 0.2858 nm.

The electron configuration of Nb is [Kr] 4d45s1, so only the one s-electron takes part in the

superconductivity, and the charge carrier mass will be 1 mp. When calculating Tc(0) according to

Equation (6), one finds for Direction (3) 9.26 K. This implies that the other two directions possible do

not function, and superconductivity takes place only via Direction (3). Furthermore, this direction

also has the shortest distance x, which enabled the calculation of Tc already when using the PiB

approach [31].

V has the same bcc crystal structure with the lattice parameter a = 0.303 nm, α = β = γ = 90◦.

The results for the three possible directions are:

• Direction (1) x = a = 0.303 nm,

• Direction (2) x =
√

2 · a = 0.4285 nm and

• Direction (3) along the space diagonal with x =
√

3 · a/2 = 0.2624 nm.

The electron configuration of V is [Ar] 3d34s2, and only the outermost s-electrons take part in the

superconductivity. Using Equation (6) to calculate Tc(0), one finds for Direction (3) 5.49 K, which is

very close to the experimentally observed value of 5.46 K.

4.5. NbN

Superconductivity in NbN was found by Aschermann et al. in 1941 [54] and is a Type-II

superconductor. There are five phases in this system: β-Nb2N, γ-Nb4N3, δ′-NbN, δ-NbN and

ǫ-NbN [55]. The δ phase with the NaCl structure was found to exhibit the highest Tc ≈ 16.4 K.

The lattice parameter of this δ phase varies with the Nb/N-relation. Several authors have measured

the lattice parameter and the Tc as a function of the nitrogen content [56–65]. When plotting the two

relations together, one can realize that the highest Tc is not found at the largest a. The highest values

of Tc ∼ 16 K and above are found for the lattice parameters in the range between a = 0.4377 nm and

a = 0.4385 nm.

In the NbN compound, Nb is the superconducting material, and the nitrogen atoms are not

superconducting. Furthermore, the lattice parameter of NbN depends on the nitrogen concentration

as found in several publications. As the substrate can have a strong influence on the resulting

superconducting properties, we consider here only bulk samples. In the NaCl-type crystal structure,

there are two directions possible, which fulfill the symmetry demands. Both directions are along the

diagonal of the planes, one along the A atoms (Direction (1)) and one along the B atoms (Direction (2)).

These directions exist in all three space directions. The distance x can then be calculated as x =
√

2 · a/2.

Assuming that the superconductivity is carried only by the Nb atoms on the A-sites (Direction

(1)), then the charge carriers face two near N atoms on the B-sites, which can take part in the phonon

interaction. Their distance lB to the superconducting direction is lB =
√

2 · a/4 = x/2. This situation is

depicted in Figure 1. For Nb in the NbN compound, there is only one charge carrier like in the case of

elemental Nb. Thus, ML = mp, which however, is reduced to 0.5 mp due to the passed atoms. With all
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this information, it is now possible to calculate Tc as a function of the lattice parameters. This is shown

in Table 3 below.

Table 3. The crystal parameter a0, the distance x, NL, Natoms, ML, the calculated energies and the

calculated Tc(0).

a0 (nm) x (nm) NL Natoms ML(1/mp) ∆(0) (meV) Tc(0) (K)

0.436 0.308 1 2 0.5 4.31 15.92
0.4393 0.311 1 2 0.5 4.24 15.68

From these data, one can see that the calculated Tc is close to the experimental values. However,

due to possible inhomogeneities of the N concentration, e.g., a spatial variation at the sample surfaces,

experimentally higher Tc values may have been measured.

4.6. NbTi

The alloy NbTi is the classical workhorse of superconductivity. Since its discovery in 1960,

this material proved to be easily produced in wire form, and the superconducting parameters of

Tc ∼ 10 K (9.6 K) and Hc2(0) ∼ 11.5 T made it the material of choice for MRI applications and most

laboratory equipment [66–68]. The Ti content in commercial NbTi conductors varies between 30 and

49%, and additions of, e.g., 20% Zr (for Ti) further strengthen the high field properties. The effects of

the metallurgical treatments on the flux pinning properties was discussed by Hillmann [69].

The β-NbTi material has a bcc structure [70], which corresponds to that of Nb, whereas Ti has a

hexagonal, close packed (hcp) crystal structure (P63/mmc). The size difference of Nb and Ti is only 2%,

so a = 0.3285 nm. In contrast to Nb, Ti is not superconducting down to 0.39 K at ambient pressure [71].

There are three martensitic phases (α′, α′′ and ω), which are formed during the fast cooling

of the NbTi material. All these phases may form precipitates in the final product, as well as Ti

precipitates with the hcp structure [72]. The residual resistivity, ρ0, depends on the Ti content. Ti could

donate two electrons (electronic configuration [Ar] 3d24s2), but is considered to be a semi-metal. This

implies that for the calculation of Tc, we must consider the Nb base lattice with the modifications

introduced by the percentage of Ti. This is also manifested by the small range between 30% and

60%, where NbTi shows the best superconducting properties [72]. The problem is that there are not

many reports in the literature concerning the crystal parameters of NbTi and the correlation to the

superconducting transition temperature [70,72,73]. Thus, we employ here for an estimation the data of

a wire manufacturer and the data of [74–76], with a = 0.3285 nm.

The calculations, following closely those for Nb, show that the slightly smaller value for a

in NbTi is enough to increase the Tc, when only regarding Nb as the superconducting material.

Therefore, we consider also here superconductivity in the shortest direction (space diagonal) of the

bcc lattice, where x =
√

3 · a/2 = 0.2845 nm. Again, Nb is assumed to give one electron. This yields

a Tc(0) of 9.81 K, which is close to the most common experimental value [72,74–76]. One has to

note here, however, that the present form of the Roeser–Huber equation does not account for the

chemical variation in an alloy: At a Ti-content of 50%, statistically, every second atom in the Nb

based bcc lattice is replaced by Ti, which implies a difference in size of the ions, as well a chemical

variation (number of electrons). The size difference of the ions is reflected in the change of the lattice

parameter, but the chemical variation could be considered with a new correction factor to enable more

detailed calculations.

4.7. A15 Superconductors

The A15-type superconductors (V3Si and Nb3Sn) were found by Hardy and Hulm [77] and

Matthias [78] in 1954. The history of these materials, which were since then the materials with

the highest Tc known until the HTSc era, was recently reviewed by Stewart [79]. There are

69 distinct members of A15 compounds, from which 53 are superconductors, and 15 of them show
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a superconducting transition temperature of 10 K or higher. All superconductors with the A15

structure are extreme Type-II superconductors and thus very important for the generation of large

magnetic fields. The superconducting transition temperatures were steadily increased from 18 K

(Nb3Sn, 1954) [77,78], 20 K (Nb3Al0.2Ge0.8, 1967) [80], 20.3 K (Nb3Ga, 1971) [81] and, finally, Nb3Ge

with a Tc of 22.3 K (1973) and further optimized in thin films to 23.2 K in 1974 [82,83]. Even another

compound, Nb3Nb, was reported in the literature [84], but requires stabilization by a small amount of

Ge. This material has only a Tc of 6 K.

The fabrication of wires from A15 superconductors is, however, a complicated procedure as

Nb3Sn is a brittle intermetallic compound, but with a well defined stoichiometry. The wire form

is typically prepared by long term reactive diffusion, using Nb and Sn rods as starting materials.

To improve this process and to prepare the required multifilamentary wires, several routes have been

developed for this purpose like the bronze route, internal tin and the powder-in-tube technique [66].

The production of the A15 conductors is mainly driven by the large projects on particle accelerators

and fusion reactors, demanding high magnetic fields [66]. Therefore, many new developments are

reported in this field still today, and the achieved progress concerning the critical current density

is remarkable [85–87]. These materials are technologically very interesting, not only because of

superconductivity, but also because of their metallurgic properties including the appearance of a

martensitic phase transition [88]. Another direction is the preparation of thin films of the A15 materials,

e.g., to be used in superconducting cavities. It is remarkable that the highest Tc of all A15 compounds

was reached in the thin film state, where the substrate contributes to stabilizing the metastable Nb3Ge

compound. In this field also, the research is still ongoing, further optimizing the microstructure and

the superconducting properties [89].

The crystal structure of the A15 compounds is the β-tungsten structure. The prototype material is

Cr3Si (or abbreviated A3B). The B-component occupies a bcc lattice, and on each crystal face, there are

two atoms of the A-component. The crystal structure is depicted in Figure 6a. The lattice parameters

are a = b = c and α = β = γ = 90◦.

A = V or Nb

B = Ga, Sn, Al,

Ge

(a)

(b)                         (c)                    (d)

Figure 6. A15 crystal structure (a) and the main directions for the charge carriers with neighboring

atoms (b–d).
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There are three directions where the charge carriers can move in this crystal structure

(see Figure 6b–d):

• Direction (1) along the A-A atoms following the faces of the unit cell (b). The distance between

the A atoms is x = a/2. In this direction, two B atoms will be passed, which have a distance

of lB = a/2 = x. The relation lB/x = 1, which is much larger than x/2, so an influence can

be excluded.

• Direction (2) along the B-B atoms following the faces of the unit cell (c). The distance between

the B atoms is x = a. Two A atoms will be passed, which have a distance of lA1 = a/4, so there

will be an influence. Further, there are four more atoms at a distance of lA2 = a/2. The relation

lA2/x = 1/2, but these atoms are not located in the main direction, so that an influence of them

can be excluded.

• Direction (3) along the B-B atoms following the space diagonal in the unit cell (d). The distance

between the B atoms is x =
√

3/4 · a. There are three A atoms being passed, which have a distance

of lA = 3a/16. The relation is lA/x =
√

3/8, so that there is certainly an influence of these atoms,

which must be taken into account.

The unit cell of the A15 structure is a complicated one, so we have to consider the relations of the

directions to each other in the main c direction. Direction (1) appears in one spatial direction twice,

but these belong to two elementary cells, so that it follows 2 · 1/2 = 1. Direction (2) exists in one spatial

direction four times along the unit cell edges and once along the space centered B atom of one unit cell

to the next one. This direction belongs only to this unit cell, while in the former case, each direction

belongs to four unit cells, so we have 4 · 1/4 + 1 = 2. Direction (3) seems to appear at first glance only

once in a spatial direction, but to obtain a clearer image, we must consider a sectional view of the unit

cell, see Figure 7. Here, one can see that the edge of the unit cell is now a rectangle. As a consequence,

Direction (3) exists four times along the edges of the unit cell and once in the center. Again, the edges

belong to four unit cells each and the center only to one unit cell. Thus, we have a factor of two.

In total, we obtain now the relation:

1 × direction(1) + 2 × direction(2) + 2 × direction(3) , (9)

which was found to hold for all A15 compounds investigated here.

Table 4 summarizes some of the results obtained for the compounds V3Si, Nb3Ga, Nb3Sn, Nb3Al

and Nb3Ge. For the experimental data, Tc(exp), only data for bulk and wire samples were used.

However, not in all cases were data for the transition width given in the literature, which would

allow deducing the required Tc,midpoint properly. Thus, some experimental data were not useful for

a comparison. Data for the compounds V3Ga, V3Ge and V3Al were also obtained in [33] with Tc,(0)

values close to the reported experimental values. The hypothetical compound Nb3Nb (the prepared

material requires a small addition of Ge to stabilize the phase [84]) cannot be calculated with the same

electron configuration as for the other materials, as it is obvious that any Tc obtained in Direction (1)

with one electron only would give a Tc of ∼10 K. An important piece of information comes from band

structure calculations by Ho et al. [90], who explained the decrease of Tc by softening the bonding on

the Nb chains (which corresponds to Direction (1) here) and coupling of neighboring chains. If we

assume two charge carriers of Nb for all directions, we obtain a Tc of 6.35 K when summing up all

three contributions in a simple fashion. This value comes close to the estimated Tc of 6 K [84].
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Figure 7. View of the A15 crystal structure in Direction (3), the diagonal in space, which is pointing

out of the plane. In the center, a 3D cube is shown to provide a connection to the three dimensionality.

Direction (3) is oriented along the B-B atoms, which are marked by numbers accounting for the sharing

of the atoms between neighboring unit cells: 1/4 implies that this atom belongs to four neighboring

unit cells, and this direction exists four times in the crystal. The 1 indicates that this atom belongs only

to one unit cell, and this direction exists only once.

Table 4. Data obtained for the A15 compounds. Listed are the lattice parameter a, the experimentally

obtained Tc(exp), the distance x for Directions (1)–(3), the calculated ∆(0)calc and Tc,(0)calc for each

direction and the final ∆(0) and Tc,(0). The sources of the experimental data are given as well. Note that

we focus here on bulk-type materials only.

Compound a0 (nm) Tc(exp) (K) x (nm) ∆(0)calc (meV) Tc,(0)calc (K) ∆(0) (meV) Tc,(0) (K)

V3Si 0.472 16.8 0.2360 (1) 1.839 6.79 4.597 16.98
[91] 0.4720 (2) 0.460 1.70
[92] 0.4088 (3) 0.919 3.39

Nb3Ga 0.5165 20.2 0.2584 (1) 3.071 11.34 5.375 19.86
[93] 0.5165 (2) 0.384 1.42

0.4473 (3) 0.768 2.84
Nb3Sn 0.529 18.05 0.2645 (1) 2.927 10.81 4.879 18.02

[94] 0.5290 (2) 0.488 1.80
0.4581 (3) 0.976 3.60

Nb3Al 0.518 18.4 0.2590 (1) 3.053 11.28 5.089 18.8
[95] 0.5180 (2) 0.509 1.88
[96] 0.4486 (3) 1.018 3.76

Nb3Ge 0.5135 19.7 0.2568 (1) 3.107 11.48 5.179 19.13
[97] 0.5135 (2) 0.518 1.91

0.4447 (3) 1.036 3.83

The case of Nb3Ge is again an interesting one, as the maximum experimentally observed Tc value

is obtained in thin films. The result for Tc obtained here is 19.13 K, being close to that of bulk materials.

If we apply the same idea as for Al that the substrate may enable the superconducting direction to be

excluded from the calculation, we would have a contribution from Direction (2) as well, which would

give 22.95 K as the maximum achievable Tc in this system, which is again close to the experimentally

observed values. This is again a hint to investigate the thickness dependence of Tc in more detail.

In summary, for the various A15 compounds, the calculations using the Roeser–Huber equation

give reasonable results for the superconducting transition temperatures.
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4.8. MgB2

Superconductivity in the MgB2 system was found by Akimitsu et al. in 2001 [5]. The Tc of

MgB2 of 39 K nearly doubled the previous record for the highest Tc of an alloy held by Nb3Ge with

23.2 K [98,99]. The MgB2 crystal lattice shows two different atomic bindings, the covalent ones,

which are mostly typical for semiconductors, and also metallic binding, being typical for conductive

materials. Interestingly, both constituents are not individual superconductors, and both Mg and B

are light elements, which do not have d-electrons. Mg can be considered as ionized [100], as the two

s-electrons are donated and are now part of the B conduction band [101]. In the B plane, there are

the covalent bindings (2D σ) between the B atoms. These covalent bindings are strong, whereas the

coupling between B and Mg between the layers is formed by metallic 3D π bindings, which provide a

weak coupling only [102]. Furthermore, the bindings within the Mg plane are much stronger than the

Mg-B bindings [98]; thus, cleaving of the crystal can take place at this position [103]. The electronic

structure of MgB2 shows four bands crossing the Fermi level [104]. Two π bands, which result from

the pz-orbitals of the B atoms, are weakly coupled with the phonon modes (3D character). The two

σ bands result from the px,y orbitals of the B atoms. These are weakly coupled to the phonon modes

(2D character) [102,105,106]. MgB2 is in the normal conducting state a hole conductor, and the Hall

coefficient is positive [98]. There is one 3D electron-type binding and 3D hole conducting binding,

where the latter one is mainly in c direction [102]. Calculations by Palecchi et al. [105] also showed that

at least one π band shows electron conduction. A two band or even multiband superconductivity is

well understood and corroborated by various experiments like point contact spectroscopy or tunneling

experiments [106–110]. The consequence from this is that there are several pairing energies in the

system [111]. Furthermore, there have been recently speculations that MgB2 could belong to a new

type of superconductor exhibiting similarities between Type-I and Type-II superconductivity, based on

observations of the flux-line lattice [112].

The crystal structure of MgB2 is hexagonal of the the type AlB2 (space group C32, P6/mmm).

The magnesium and boron atoms are arranged in sequent layers (see Figure 8a). The lattice parameters

are a = 0.3047 nm and c = 0.3421 nm. The shortest distance between atoms is the B-B-spacing within

the B-layer with d = 0.176 nm.

(a) (b) (c)

(d) (e)

Figure 8. (a) Crystal structure of MgB2 and the four directions for the charge carriers (b–e).

There are four distinct main directions in the crystal lattice, which are are represented in

Figure 8b–e. A fifth direction along the space diagonal has unsymmetric passages and is therefore not

relevant for our considerations.
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• Direction (1) along the Mg-Mg atoms within the Mg plane (b): The distance between the Mg

atoms is x = a = 0.3047 nm. The charge carriers along this direction will pass 4 B atoms, 2 from

the layer below and 2 from the layer above. Furthermore, two Mg atoms from the same layer are

passed as well. The distances are lB = 0.192 nm (B) with lB/x = 0.630 and lMg = 0.264 nm with

the relation lMg/x = 0.866. Thus, the distances to the neighboring atoms are too big to have an

influence on the superconductivity.

• Direction (2) along the Mg-Mg atoms within the Mg layer (c): The distance between the Mg atoms

is x = 2
√

3 · a/2 = 0.528 nm. The passed atoms are the same as in Direction (1), but the distances

are different: lB = c/2 = 0.171 (lB/x = 0.324) and lMg = a/2 = 0.152 nm with lMg/x = 0.288 nm.

All distance ratios are smaller than 0.5, so all six atoms have an influence.

• Direction (3) along the Mg-Mg atoms in the c direction (d): The distance between the Mg atoms is

x = c = 0.3421 nm. In this direction, a hexagon of B atoms is passed. The corresponding distance

is lB = 0.176 nm, and the relation lB/x = 0.514, which is close to 0.5.

• Direction (4): along the B-B atoms in the c direction (e). The distance between the boron atoms is

x = c = 0.3421 nm. In this direction, three Mg atoms arranged in a triangle are passed, which

have the same short distance to the main direction. The distance between the Mg atoms and the

charge carrier direction is lMg = 2/3h = 0.176 nm, where h denotes the height of the triangle.

The relation lMg/x = 0.514, so an influence on the charge carriers is proposed.

The calculation of Tc in the MgB2 system was shown to be quite complex due to the multimode

character of the superconductivity. Thus, we give here only a short summary of the findings [33].

Superconductivity in MgB2 may take place via three directions along Mg chains and one direction

along B with NL = 2 and n2R1−3 = 1. Two distinctly different possibilities exist for the calculation of

Tc, using (i) one electron for the directions employing Mg atoms and (ii) two electrons. The electronic

configuration of Mg (Mg2+) indicates Case (ii). Furthermore, the sum of all experimental facts thus

favors the second possibility, which will be presented here.

In the (a,b) plane, we have in Direction (1) Natom = 0, so ML = 2 mp. In Direction (2), we have

Natom = 6, so ML = 0.333 mp. Summing up the individual pairing energies (Equation (8)), one obtains

∆ab(0) = 3.307 meV, and finally, using Equation (6) Tc(0)ab = 12.22 K. This value is clearly too small

when compared to the experimental values. This result points to a problem concerning the effective

mass employed in the calculations, as at least one band shows electron conductivity. Therefore,

this should be further analyzed in future works.

In the c direction, one uses in Direction (3) Natom = 6, which yields ML = 0.333, and in Direction

(4) Natom = 3 with ML = 0.666. Using Equations (6) and (8), one obtains ∆c(0) = 7.875 meV, and finally,

Tc(0)c = 38.79 K with n2R3 = 1 and n2R4 = 2.

The obtained value for Tc(0)c = 38.79 K is again very close to the experimentally obtained data

and places MgB2 on the common line with the other superconducting materials investigated.

5. Discussion

To summarize, we presented here a number of calculations of the superconducting transition

temperature, based on an approach of Roeser et al. [26]. The more complicated and complex crystal

structures of the fcc metals and the superconducting two component superconductors NbN, A15

and MgB2 required a refinement of the calculation procedure regarding the possible superconducting

directions in the crystal lattices. For this purpose, several selection criteria were evaluated and new

correction factors were introduced. The final equation, called the Roeser–Huber equation (Equation (6)),

combined the calculation processes of the HTSc and the metallic superconductors.

Figure 9 presents the results of all calculations for the simple metallic alloys calculated here and

in [33]. All data fall within a small error margin on a straight line, as was already shown in the first

analysis on the bcc metals by Roeser et al. [31]. The obtained slope is 2.9813 × 10−18 m2 K, and the

y-axis intersect is 0.0052 × 10−18 m2 K. The theoretical value would be m = h2/(2πkBmp) = 3.02586

× 10−18 m2 K. The deviation is 0.10756 × 10−18 m2K (3.55%), which is less exact as compared to the
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results obtained on various HTSc materials [26–28]. This may point out that some more refinements

may be required to describe all the various crystal structures properly. If we take the quotient of the

slope of the HTSc data and that of the present data, we obtain:

5555.17 · 10−18 m2K

2.9183 · 10−18 m2K
= 1903.56 . (10)
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Figure 9. The relation between the crystal structure and Tc of the metallic simple alloys calculated here

and in [33].

The quotient of proton mass and electron mass is:

mp

me
= 1836.15 , (11)

with a deviation of 3.67%. The relation being this close confirms the assumption that a charge carrier

mass of the dimension of the proton mass is required to describe the metallic superconductors in the

Roeser–Huber equation.

When now taking the charge carrier mass into the diagram, it becomes possible to combine

all the results shown here with those of the calculations of Tc for a large number of high Tc

superconductors. The final diagram is presented in Figure 10. All data fall on a common straight

line with only a small error margin. From a least squares fit to the data, we obtain a slope

m = 4.998 × 10−45 m2 kg K and an axis intersect of 0.0047 × 10−45 m2 kg K. The theoretical value,

m = h2/2πkB), equals 5.06112 × 10−45 m2 kg K. The obtained deviation is just 1.23%, which is

remarkably small.

A central finding of the present calculations is that the charge carrier mass being approximately

equal to the size of the proton mass is common for all metallic superconductors and thus clearly

distinct from the HTSc compounds, where the electron mass is employed. This high charge carrier

mass, mL, is a result from incorporating all correction factors here. Of course, the charge carriers in

the metallic superconductors are electrons or holes forming the Cooper pairs. Thus, we could also

write mL = me · µ instead, and the correction factor µ would contain all the additional information.

For the sake of having a unified expression for both HTSC and metallic superconductors, we adopted
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the first way of presentation. This directly distinguishes the metallic superconductors from the HTSc:

in HTSc, the charge carrier wave interacts solely with a characteristic doping distance in the crystal

lattice, whereas the charge carrier wave of the metallic superconductors interacts with a characteristic

interatomic distance, and the effect of neighboring atoms must be taken into account. It will be

interesting to see how this principle will develop in other superconductor systems like heavy fermion

superconductors or organic superconductors. The present calculations on MgB2 already demonstrated

that in the c direction, the description of a metallic superconductor worked well, as in the c direction,

we had a metallic interaction between the layers, whereas in the (a,b) direction, this principle was not

valid due to the strong covalent bindings in the boron layer, where one might need to assume an HTSc

behavior in order to find a crystal direction for an electron based charge carrier wave. The complete

understanding of the properties of MgB2 is thus another very interesting topic for future work.
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Figure 10. Compiled data of all metallic superconductors, the metallic alloys and most of the HTSc

samples [26–28,31–33]. All data fall on a common straight line with only a small error margin. The iron

based superconductors (IBS) superconductor SmO1−δFδFeAs with the highest Tc of the 1111-family is

abbreviated as SOFFA, and the data of the various other 1111-family members investigated in [29] are

not labeled.

Even though some of the assumptions made in the calculations (e.g., charge carrier mass, number

of electrons involved, excluding of some charge carrier directions, etc.) still require a deeper theoretical

foundation, the success of obtaining reasonable Tc values for various distinctly different materials

and crystal lattices by regarding only the details of the respective crystal structure is remarkable and

justifies the assumptions made.

Having obtained all these results for the superconducting transition temperatures via the

Roeser–Huber equation, one may ask three important questions:

(1) Will it be possible to analyze also the change of Tc when applying pressure to the material?

(2) Is it possible to find an explanation to the Tc dependence on the sample thickness of thin films?

(3) Can we make predictions concerning new superconductor materials?
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Question (1) was answered in a more recent study [113], and the answer is yes, the Roeser–Huber

equation can reproduce the pressure dependence of Tc, provided that proper crystallographic data

are available. For Question (2), there are already some interesting hints (see, e.g., the calculation of

Tc of Al), but up to now, the analysis of thin films was excluded from the analysis in order to avoid

substrate effects. This will be clearly one direction for further work. The most challenging Question (3)

is another possible goal. The need to know only the details of the crystal structure and the electronic

configuration enables a straightforward calculation of Tc in various combinations. However, up to

now, we have not attempted to make predictions of possible, new superconductors. One way to go

may be the computer aided design of new superconducting materials [114–116], which would require

the use of databases containing also the crystallographic information.

6. Outlook

As already mentioned, several assumptions made in the calculation process need further

theoretical consideration and a proper foundation. Nevertheless, the calculation of the superconducting

transition temperature of many metallic superconductors is possible using the Roeser–Huber equation,

using several refinements to cover the properties of the complicated crystal structures found for

metallic alloys like the A15 compounds or MgB2. Furthermore, for metallic alloys and systems with

more constituents, one might consider another correction factor describing the chemical environment

of a superconducting path including the atoms in the path, as well as the atoms passed, which is

presently not the case. The need for such correction is already seen in the calculation of the NbTi alloy

and may refine also the calculations of the A15 compounds. This will make the Roeser–Huber equation

a useful tool for the computer aided design of new superconducting materials [114–116]. Even more

superconducting systems have to be analyzed in detail, including the superconductivity in the (a,b)

plane of MgB2. The consideration of thin films and the dependence of Tc on the film thickness and the

type of substrate will be the next challenge for the application of the Roeser–Huber equation.

7. Conclusions

To conclude, we showed a calculation method and procedure of the superconducting

transition temperature, Tc, of several metallic superconductors and simple alloys, based on detailed

considerations of the respective crystal structures. For a large number of superconductors, we could

show that the data followed a straight line with only small deviations. Thus, the principle of calculating

the superconducting transition temperatures using the details of the crystallographic information and

the electronic configuration of the constituting elements seemed to be at least empirically a reasonable

approach, even though several assumptions still require theoretical foundation.
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