
Relation Between Fault Tolerance and Reconfiguration in Cellular Systems

Luká̌s Sekanina and Vladimir Drábek
Department of Computer Science and Engineering

Brno University of Technology
Brno, Czech Republic

sekanina@dcse.fee.vutbr.cz, drabek@dcse.fee.vutbr.cz

Abstract

Recently, hardware researchers have promptly begun to
investigate alternative computational principles to the con-
ventional ones. The main signs of these principles are in-
spiration in biology and their direct hardware implementa-
tion. Evolvable hardware, cellular computing or embryonic
electronics are the most important examples. This paper de-
scribes different approaches to configuration, reconfigura-
tion and fault tolerance implementation of two-dimensional
cellular system. Simplicity of the cell, vast parallelism, and
the connection locality are considered as the design restric-
tions.

1. Introduction

New bio-inspired systems don’t want to copy natural
processes; nature is only a source of inspiration. Living
beings exhibit such qualifications as evolution, adaptation
and fault tolerance that have difficult implementation using
traditional methodologies.Phylogeny andontogeny [5] are
nowadays ones of the most popular natural phenomena in
hardware design. From the technological point of view,
these experiments can be done in the field of digital circuit
design, because the reconfigurableVLSI digital circuits (e.g.
Field Programmable Gate Arrays) have been developed.

Phylogeny concerns the temporal evolution of the genetic
programwithin individuals and species. At the hardware de-
signer’s level—evolution of the physical circuit connection
is usually implemented bygenetic algorithm. Bit strings
encode the circuit connections and evolution looks for the
best connection for each task. The research field is called
evolvable hardware. Ontogeny concerns the developmental
process of a singlemulticellular organism—it is succes-
sive division of the mother cell, the zygotype, in which
each newly formed cell possessing a copy of the original
genome (cellular division), followed by a specialization of
the daughter cells in accordance with their environment (cel-

lular differentiation). Genes, the basic constituents of the
genome, act on two quite different levels: they participate
in the embryonic process, influencing the development of
the phenotype in a given generation, and they participate
in genetics, having themselves copied down the generations
(reproduction).

The basic model of the developmental process is thecel-
lular automaton [7]. For our purposes, two-dimensional
cellular automaton, as the natural model of hardware im-
plemented cellular system, is (non-formally) defined in this
way: Cells (m x n of computing elements) are placed in the
regular grid (see Fig. 1). Each cell is connected to the four
neighboring cells called north, east, south and west neigh-
bor. The automaton works synchronously—a new state of
the cell is calculated from its previous state and the previous
states of the cell’s neighbors in each clock. Function of the
cells, the initial states, and the boundary conditions depend
on given task.Cellular system then, furthermore, involves
description of (re)configuration mechanism, fault tolerance
implementation, and other mechanisms which are related to
the hardware implementation.

Cellular computing machines are quite different to the
traditional parallel architectures: Instead of a powerful pro-
cessors, scheduling, message passing, synchronization etc.
in traditional parallel systems, they are inherently parallel,
based on the local interaction of the millions simply work-
ing cells. Thecellular computing paradigm (in Sipper’s
[6] term) promises to compute more efficiently—in terms
of speed, cost, power, and solution quality for some special
tasks as the image processing, NP-complete problem fast
solution or physical phenomena simulation. Cellular com-
puting shows three fundamental principles [6]:simplicity,
vast parallelism, andlocality. The goal is the regular struc-
ture of the identical cells, with easy implementation on the
chip.

� Simplicity. The basic element of cellular computing—
the cell—is simple. All cells are identical from the
hardware implementation point of view. They differ in
the stored configuration information, which determines

0-7695-0646-1/00 $10.00 � 2000 IEEE 



Figure 1. Two-dimensional cellular structure

behavior of cells. This behavior can be defined by
lookup table, as the function of the cell’s neighbors, by
simple program, etc.

� Vast parallelism. In the traditional parallel computing
domain, the termmassively parallel usually describes
machines consisting of several hundreds of processors
and powerful communication mechanisms. Cellular
systems suppose millions (and more) of cells.

� Locality. A cell communicates only with its neighbors.
In our examples, regular grid with four neighbors per
cell is used. Connection lines carry only small amount
of information.

After this brief introduction to the cellular systems and
cellular computing, the most important points of cellular
system design are discussed. Special sections are dedicated
to the (re)configuration mechanisms and fault tolerance
implementation—from classical engineering, bio-inspired,
and Macias’s points of view. Advantages and disadvantages
of these approaches are summarized and some conclusions
are done.

2. Cellular system design

It is not possible to do any experiments with the real
physical chips for cellular computing (meaning millions of
cells on the chip), because these chips are not available
nowadays. Only experimental systems with several cells
exist [2, 1]. But simulators make a lot of work. Simi-
larly to the quite different tasks, simulations can help to
choose the best architecture and decide when the cellular
computing is the best approach for the solution of a given
problem. In cellular computing, simulations can be used
to solve e.g. these design problems: the cellular function,

structure, programming; the number of used cells; cellular
connection, organization, interactions; configuration and re-
configuration mechanisms; fault tolerance implementation;
input and output connection. It is important to note that it
is necessary to develop the theoretical model and hardware
implementation together in cellular computing [6]. These
areas are closely related in this approach.

2.1. Programming

For most cellular computing models, it is possible to
provecomputing universality by implementing some serial
universal machine in considered model [7]. But program-
ming in this way leads to the total degradation of cellular
machine parallel power. Classical programming approach
based on"divide et impera" usually fails. Programmer has
to solve the global task only by definition of local cell be-
haviors. And it is difficult. Similarly to evolvable hardware,
cellular functions (e.g. lookup tables – rules) can be encoded
into the bit strings and genetic algorithm then tries to find
the best cellular functions [7] (machine genotype). Genes
(several genes represent function of the cell) work at phy-
logenetic level—the best function of the cell is looked for.
Genes also work on the ontogenetic level—they determine
the developmental process of cellular system. Such consti-
tuted systems are bio-inspired in two levels of organization
[6].

3. Reconfiguration and fault tolerance imple-
mentation

Cellular system configuration, reconfiguration and fault
tolerance implementation are closely related problems and
it is useful to describe them together. Three approaches—
classical engineering, bio-inspired, and Macias’s are consid-
ered and a special subsections are dedicated for them. The
first solution is described in detail of hardware implemen-
tation, other principles are described at higher level. Next
paragraphs comment some general concepts. Principles of
locality and simplicity of cellular computing paradigm deter-
mine ways of configuration. Mostly the serial configuration
of the configuration registers is permitted. The configuration
information flow depends on the given approach.

Fault tolerance implementation is usually based on some
kind of redundancy. In time redundancy, the task performed
by faulty cell is distributed among its neighbors. Cellular
systems have not any global control mechanisms thus they
can not implement task redistribution and, furthermore, cells
are too simple to do anything more. In this traditional way,
time redundancy can not be used.Hardware redundancy
usesspare cells to replace faulty ones. Two concepts are
usually used: Incolumn (or equivalentlyrow) elimination,

0-7695-0646-1/00 $10.00 � 2000 IEEE 



Figure 2. Spare column is used when a cell
fails

the failing of one cell provokes the elimination of the cor-
responding column, and cells are shifted to the right (see
Fig. 2). This strategy eliminates many good cells when
a fault occurs, but hardware implementation is simple. In
cell elimination, only the faulty cell is eliminated. Such
strategy provides a very efficient use of spare cells, but the
complexity of interconnected circuits increases and regular
topology is broken. It is in contradiction with the basic prin-
ciples of cellular computing—simplicity and locality. Next
text supposes that sufficient number of the spare columns is
present.

Cellular systems bring a new view to fault tolerance
implementation—they areinherently fault tolerant. When a
cell fails, it still exhibits some behavior—e.g. all inputs and
outputs are set up to the low logical level. When a config-
uration information is subject to evolution, a new solution
(using faulty cell and other cells with modified function)
can be found. Success depends on a given task. This effect
can be considered as an implicit redundancy and it is the
result of phylogenetic approach incorporation. It is quite
different to other principles of fault tolerance, since they are
inspired at ontogenetic level, where previous configuration
is recovered. Generally, it is difficult to say, when the time
or hardware redundancy is in principle used.

3.1. Tasks from the fault tolerance point of view

Two different kinds of tasks may be solved by two-
dimensional cellular system. In the first case, cellular system
is considered as a black box and only outputs are important
for given inputs. It is usually difficult to decide how many
cells are essential for a solution. In the case of evolvable
machine, an explicit fault tolerance mechanism needn’t be
implemented, because the system is inherently fault toler-

Figure 3. Principle of the configuration flow
routing, where cells are configured serially.
The producer switches one of the routing con-
figurations A-F, which is inverted when a cell
fails.

ant. On the other hand, every cell (its state) is important for
the system function—e.g. a pixel is mapped into a cell in
tasks of image processing. Then when a cell fails, explicit
fault tolerance mechanism must be activated.

3.2. Failure detection

Each cell contains internal diagnostic mechanisms,which
activate an error signal when some defect occurs. It ensures
distributed diagnostic without central control. In modelling,
faulty cell is marked manually. In case of real implemen-
tation, e.g. module redundancy, error detection codes, and
another logic should be considered. Details are not subject
of the paper.

3.3. Engineering approach

These ways of the fault tolerance implementation are
based on the column (i.e. hardware) redundancy. When a
cell fails, every cell becomes a short circuits in the given
column, someERR signal value of this column and the
globalCONF signal are set up, and a new configuration is
downloaded from memory. The first spare column is used
to replace the missing one.

In the serial configuration, configuration registers are
connected in serial and the configuration bit stream is shifted
through entire cellular array. Fig. 3 describes an initial and
an after-repairing routing configuration. Figures 4 and 5
show hardware implementation: combinational circuitCC,
which works according to the Fig. 3, selects configuration
input. An internal function of the cell is based on appro-
priate configuration register bit selection. Identical cells

0-7695-0646-1/00 $10.00 � 2000 IEEE 



Figure 4. Internal logic of the serially config-
ured cell

Figure 5. Cell’s connection to neighbors

differ in the configuration information and the values of the
three bit routing register (M0, M1 andM2). The rout-
ing values (switched by producer) and theCHRC signal
(CHhange Routing Configuration) determine configuration
input of each cell. Configuration information is sent to every
output of the cell. An invertor of theCHRC signal in each
cell ensures correct routing during configuration. Time of
reconfiguration is proportional to theC.m.n product, where
C is the number of bits in the configuration register.

In theserially parallel configuration, cells in the row are
configured in serial, but rows concurrently. It is necessary
to design a special configuration memory organization to
ensure concurrent row configuration. Note that thousands of
the rows can constitute a cellular system. The cell is simpler
than in the previous example: theCHRC signal, routing
memory and the combinational circuitCC are omitted. The
configuration bits flow from the west to the east. Time of
reconfiguration is proportional to theC.n product.

Figure 6. Configuration during cellular divi-
sion process

3.4. Fault tolerance and embryology

The basic inspiration lies in theembryonic development
of multicellular organism in nature. Two main bio-inspired
mechanisms are used:cellular division andcellular differ-
entiation. During cellular division a mother cell gives rise
to at most two daughter cells, each obtains a complete copy
of mother’s genetic information [2, 4]. Cellular function
depends on a part of this genetic information. Appropriate
genes, which define configuration register, are selected ac-
cording to the cell’s position. Cellular differentiation is thus
implemented using coordinate registersX andY , which
values are calculated from coordinates of the nearest west
and north neighbors.

Fault tolerance (as in the previous approaches) is based
on hardware redundancy—sparecolumns. When a cell fails,
the appropriate column is eliminated. A new connection is
established by recalculation of coordinates of the cells (to
the right of the faulty ones only). New coordinates then
determine new configuration register values. Configuration
bits are not carried through cellular array, because cells have
entire genetic program (of course, spare columns have to be
configured). Thus a distributed reconfiguration mechanism
is obtained.

This cellular system can be initially configured in serial,
serial-parallel or during cellular division process [2]. Cellu-
lar division proceeds in discrete time steps, beginning with
a mother cell placed at coordinatesX=1,Y =1 (see Fig. 6).
At the next time, this genome is copied to the two neigh-
boring cells to the east and to the south. Process continues
until the space is programmed. Coordinates are calculated
during this process or they can be a part of the configuration
bit stream. In the case of reconfiguration, no genes are trans-
mitted. Faulty cells only signalize, that the right neighbors
should recalculate their coordinates.

0-7695-0646-1/00 $10.00 � 2000 IEEE 



Figure 7. The Processing Integrated Grid

When cellular system contains millions of cells, it is not
acceptable the cell holds the entire genetic information. On
the other hand, when a system exhibits properties ofquasi-
uniform cellular automaton [7] (i.e. the most of cells have
the same function) it is the best solution. Another solution
leads to the restriction of genetic information of a cell [4].
The cell then may contain only its configuration bits and con-
figuration bits of several neighbors (cell, containing genes
of the cells of the same row, needs only one coordinate). But
when several neighbor columns fail, it needn’t be (generally)
possible to reconfigure neighboring cells since the required
genes are lost. Then a process of initial configuration must
be restarted. Thus the entire array is configured in case of a
major fault, while self repair allows a partial reconstruction
in case of a minor fault. This approach exhibits fast and
flexible reconfiguration, but additional hardware (against to
engineering approach) is needed: configuration registers of
neighboring cells, coordinate registers, logic for selection of
the configuration and coordinate calculation.

3.5. Macias’s cell

A quite different approach to the cellular system
(re)configuration exhibitsThe Processing Integrated Grid
(US Patent #5,886,537) orPIG, which is a massively paral-
lel, fine grained, self-reconfigurable infinitely scalable sys-
tem [1].

Figure 7 shows two-dimensional grid of identical cells,
each with four neighbors. A cell has two inputs (dataDin
and configurationCin) and two outputs (Dout andCout)
from/to each of its neighboring cells. At any given moment,
a cell is either in one of two modes:data mode or configu-
ration mode. If all four of theCin’s are zero, then the cell
is in data mode. The fourDin bits are used as an address
in a 16x8bit truth table. The 8 bits are output as data to the

Figure 8. Cell X configures cell Z by first con-
figuring cell Y to act as a router (with table T1)
and then passing table T2 into Z via Y

four Cout’s and the fourDout’s. If one of theCin’s is a
1, then the cell switches to configuration mode and theD

inputs are serially shifted into the cell’s internal truth table.
This allows one cell to write another cell’s truth table, which
subsequently affects that cell’s behavior when it returns to
D mode. As the new truth table is shifted into the cell, the
cell’s prior truth table is shifted out on itsD outputs, and is
available for reading. When a cell is in C mode, only theD

inputs and outputs on sides whereCin = 1 are relevant [1].
Hence any cell can control the mode of any neighboringcell.
By placing a neighboring cell in C mode and reading and
writing that neighbor’sD lines, a cell can read and write the
truth table of any neighboring cell, and thereby configure it
to subsequently perform any combinatorial function desired
(after returning the neighbor to D mode). Since the neigh-
bor’s new combinatorial function can produce any desired
C andD outputs, that neighbor can be configured to itself
configure any of its neighboring cells [1]. CellX (as seen
in Fig. 8) configures non-adjancent cellZ by first configur-
ing cellY to act as router ofX ’s configuration information
(step 1), and then passingZ ’s desired truth table (T2) into
Z via Y (step 2). CellY is first an object of configuration,
and then becomes a configuration controller itself. This is
calledcode/data duality or self-configuration. Because of
the PIG’s distributed configuration control, it can be used
to study not only parallel execution of algorithms in hard-
ware, butparallel reconfiguration of hardware. Moreover,
the PIG can implement circuits, which create new circuits,
which themselves create and modify other circuits. This
simple cellular structure is extremely powerful and exhibits
the inherent fault tolerance.

4. Conclusion

Many applications based on cellular automata are nowa-
days described and published, but only software simulations

0-7695-0646-1/00 $10.00 � 2000 IEEE 



are usually used. The main benefit from the use of cellular
approach is (except powerful parallel model, of course) the
easy hardware implementation contrary to other computa-
tion models. Principles of simplicity, locality, and vast par-
allelism determine the paradigm of cellular computing and
thus influence hardware design. During engineering design
process, contrary to program simulators, more problems
must be solved. This paper shows close relations between
configuration, reconfiguration, and fault tolerance imple-
mentation of the vast parallel cellular system. Decision,
what (re)configuration and what fault tolerant mechanism
should be used, depends on the application. There are key
questions: Should be used full (slow, using external mem-
ory, but with simple cells), partial (quick, using genes of
the neighboring cell, but with complex cells) or implicit
(using evolution or Macias’s self-configuration) chip recon-
figuration when a fail occurs? How many spare cells should
be used? Should serial or parallel configuration be used?
Is it useful to prefer principles from biology or traditional
engineering approach?

Modelling and simulations can indicate many system
features, but the final proof of the successful solution lies
in hardware implementation of the chips with millions
of cells. These chips and incorporation of phylogeny
will probably open up inherent fault tolerance approach
even more. Developed simulation models (consisting of
several cells only) have been used for studying of described
reconfiguration and fault tolerance principles.

This research was performed with the research intent
CEZ: J22/98:262200012"Research of information and con-
trol systems" and the Grant Agency of the Czech republic
under No. 102/98/1463.

References

[1] N. Macias. The PIG paradigm: The design and use of a
massively parallel fine grained self-reconfigurable infinitely
scalable architecture. InProc. of The First NASA/DoD Work-
shop on Evolvable Hardware (EH’99), Pasadena, California,
USA, 1999. IEEE Computer Society.

[2] D. Mange, M. Sipper, and P. Marchal. Embryonic electronics.
BioSystems, 51(3):145–152, September 1999.

[3] P. Marchal, P. Nussbaum, C. Piguet, S. Durand, D. Mange,
E. Sanchez, A. Stauffer, and G. Tempesti. Embryonics: The
birth of synthetic life. InTowards Evolvable Hardware. The
Evolutionary Engineering Approach, pages 166–196, Berlin,
1996. Springer-Verlag.

[4] C. Ortega-Sanchez and A. Tyrrell. MUXTREE revisited: Em-
bryonics as a reconfiguration strategy in fault-tolerant proces-
sor arrays. InProc. of The Second International Conference
on Evolvable Systems: From Biology to Hardware (ICES’98),
pages 206–217, Berlin, 1998. Springer-Verlag.

[5] E. Sanchez, D. Mange, M. Sipper, M. Tomassini, A. Perez,
and A. Stauffer. Phylogeny, ontogeny, and epigenesis: Three

sources of biological inspiration for softening hardware. In
Proc. of The First International Conference on Evolvable sys-
tems: From Biology to Hardware (ICES96), pages 35–54,
Berlin, 1997. Springer-Verlag.

[6] M. Sipper. The emergence of cellular computing.IEEE Com-
puter, 32(7):18–26, July 1999.

[7] M. Sipper. Evolution of Parallel Cellular Machines: The
Cellular Programming Approach. Springer-Verlag, Berlin,
1997.

0-7695-0646-1/00 $10.00 � 2000 IEEE 


