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Quantum measurement is a class of quantum channels that sends quantum states to classical
states. We set up resource theories of quantum coherence and quantum entanglement for quantum
measurements and find relations between them. For this, we conceive a relative entropy type quan-
tity to account for the quantum resources of quantum measurements. The quantum coherence of a
quantum measurement can be converted into the entanglement in a bipartite quantum measurement
through coherence non-generating transformations. Conversely, a quantum entanglement monotone
of quantum measurements induces a quantum coherence monotone of quantum measurements. Our
results confirm that the understanding on the link between quantum coherence and quantum en-
tanglement is valid even for quantum measurements which do not generate any quantum resource.

I. INTRODUCTION

Quantum superposition or quantum coherence is at the
heart of quantum theory; it is indispensable to describe
quantum features such as the double-slit experiment.
Distinct from the coherence of classical lights, quan-
tum coherence of optical fields has been the main sub-
ject of quantum optics since the foundational works [1–
3]. Quantum information science provided rigorous con-
cepts and tools to explore quantum coherence of finite-
dimensional systems as well as optical modes in the name
of the quantum resource theory [4–6]. Quantum coher-
ence has been studied for a fixed basis [7–9], for subspaces
[10], for a set of linearly independent states [11, 12], or
concerning an enlarged space for a quantum measure-
ment [13, 14]. Quantum coherence is also investigated in
the continuous variable systems related to the nonclassi-
cality of light [11, 15].

Quantum entanglement, the typical quantum correla-
tion [16–21], is known to have a close relation to quan-
tum coherence even from the early works in quantum op-
tics; the nonclassicality of light was shown to be a source
of quantum entanglement [22, 23]; the relation between
nonclassicality of lights and entanglement is further es-
tablished [24–26]. For finite-dimensional systems, quan-
titative relations between quantum coherence and quan-
tum correlations were established [10, 27–32]. In partic-
ular, it was confirmed that the quantum coherence of a
quantum state could be converted to quantum entangle-
ment without supplying further quantum coherence [33],
which also implied that a quantum entanglement mono-
tone could induce a quantum coherence monotone for
quantum states.

Quantum dynamics enter the scene by changing quan-
tum resources either in quantum states or in other quan-
tum dynamics [34–45]. The intimate relation between
quantum coherence and quantum entanglement contin-
ues to hold for quantum dynamics: specifically, it was
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shown that a quantum channel’s quantum coherence gen-
erating power converts to the quantum entanglement
generating power without additional quantum coherence
in the process [46]. In fact, quantum channels have var-
ious aspects concerning quantum resources other than
resource generating powers; a quantum channel can in-
crease, decrease, erase, or preserve the quantum resources
of a quantum state [47–61]. Does quantum coherence of
a quantum channel convert to quantum entanglement in
all such aspects as in the case of quantum states?

To shed light on this problem, we focus on quan-
tum measurements that send quantum states to classi-
cal states as quantum channels. The classical output of
quantum measurements implies that they can generate
neither quantum coherence nor quantum entanglement.
However, it is known that entangled quantum measure-
ments are useful to certify quantum resources [62–66].
This paper investigates quantum coherence and quantum
entanglement of quantum measurements using resource
theory framework. We find that, despite the classical out-
puts, quantum resources of quantum measurements can
be formulated without relying upon resources of quan-
tum states, and yet they share analogous intimate re-
lations. Understanding the quantum resources of quan-
tum dynamics would enable us to design more effective
algorithms and efficient quantum dynamics for the im-
plementation of a quantum computer in the NISQ era
[67].

II. RESOURCE THEORY OF QUANTUM
MEASUREMENTS

We briefly review quantum measurements and their
transformations, and the resource theory of them with
respect to the quantum coherence and the quantum en-
tanglement.

A quantum measurement MA on a system A with n
outcomes is often described by a positive operator val-
ued measure (POVM) MA = {Mx ≥ 0 :

∑n−1
x=0 Mx =

IA, x = 0, . . . , n − 1}, which, by Born’s rule, deter-
mines the outcome statistics of an input state ρA as
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{px = TrA ρAMx : x = 0, . . . , n− 1}. The quantum mea-
surement MA is equivalently described as a quantum-
classical channel that sends a quantum state to a classical
state as

MA(XA) =

n∑
x=1

Tr (MxXA) |x〉〈x|R , (1)

where the system R is a classical register system [68]; we
use the same calligraphic letterMA both for the POVM
and for the above measurement channel with a slight
abuse of notation. The convex set of quantum measure-
ments on d dimensional systems with n outcomes is de-
noted by M(d, n) [69]; in the following, any single system
is assumed to be d dimensional, and quantum measure-
ments on each system are assumed to have n outcomes
for simplicity.

EA MA SR NA=

FIG. 1. Transformation of a quantum measurementMA to a
quantum measurement NA through a pre-processing channel
EA and a classical post-processing channel SR. The double
line means classical data.

A quantum measurementMA can be converted to an-
other quantum measurement by a pre-processing channel
EA and a classical post-processing channel SR as shown
in Fig. 1 [70, 71]. A classical post-processing on the out-
come effectively results in statistical mixing among the
POVM elements of the quantum measurement [70]: con-
sider a classical post-processing channel SR that sends
an outcome x to an outcome y with a probability p(y|x),
where

∑
y p(y|x) = 1 for all x. It transforms a quantum

measurement MA = {Mx}n−1x=0 as follows:

SR ◦MA(ρA) =
∑
x

TrA(MxρA)
∑
y

p(y|x)|y〉〈y|R (2)

=
∑
y

TrA
(
M ′yρA

)
|y〉〈y|R, (3)

where M′A = {M ′y =
∑

x p(y|x)Mx}n−1y=0 is a valid quan-

tum measurement satisfying that M ′y ≥ 0 and
∑

yM
′
y =

IA.
A pre-processing channel EA for a quantum measure-

ment MA can also be described by its action on the
POVM elements considering the output statistics as fol-
lows:

px = TrA [MxEA(ρA)] = TrA

[
E†A (Mx) ρA

]
, (4)

where E†A is the adjoint map of EA [72]. Therefore, a
quantum measurement MA with a pre-processing chan-

nel EA is the same as a quantum measurement M̃A:

M̃A ≡MA ◦ EA = {E†A(Mx)}. (5)

In the resource theory of quantum coherence, one
quantifies quantum coherence with respect to a chosen
basis {|i〉} the so-called incoherent basis. A quantum
state and an operator are incoherent if they are diag-
onal in the incoherent basis. A quantum measurement
MA = {Mx}n−1x=0 is called incoherent if all its POVM
elements are incoherent, i.e., ∆AMx = Mx for all x
where ∆A is the dephasing channel in the incoherent ba-
sis [73, 74]. We denote the set of the n outcome incoher-
ent measurements on d dimensional systems as I(d, n).
We take the set of the incoherent measurements as the
free resource for quantum coherence of quantum mea-
surements. Operationally, an incoherent measurement
MA on an input state ρA results in an output statistics
independent of the quantum coherence of the state as

px = TrA(ρAMx) (6)

= TrA(ρA∆(Mx)) (7)

= TrA(∆(ρA)Mx). (8)

That is, the output statistics depends only on the inco-
herent part of the input state [74].

For quantum entanglement, a quantum measurement
with all its POVM elements being separable operators
is called separable; the set of separable measurements
is strictly larger than the set of LOCC measurements
[75, 76]. We take the set of the separable measurements
as a free resource [73]; the set of separable measure-
ments on d dimensional systems A and B is denoted as
SepM(A :B). Note that entanglement theory does not
have any resource destroying channel which destroys en-
tanglement while preserving any separable state [51, 77],
analogous to the dephasing channel in the resource the-
ory of quantum coherence. This disallows the operational
interpretation of the separable measurements by its out-
come statistics’ dependence on the entanglement of in-
put states, distinct from the case of the incoherent mea-
surements. However, when the separable measurement is
regarded as free, one can still quantify quantum entan-
glement necessary to implement bipartite measurements
which are not separable measurements; such a measure
is shown to have operational meanings such as an advan-
tage in the distributed state discrimination [78].

Next we ask for the set of free transformations for
quantum resources. Firstly, one can easily check that an
incoherent measurement stays incoherent under a statis-
tical mixing by a classical post-processing channel; the
same holds for the separable measurements. For pre-
processing channels, note that the output register system
R of any measurement is treated as being classical; thus
we take the register states {|x〉R}n−1x=0 as the incoherent
basis of the system R. Then we figure out the free pre-
processing channels for quantum coherence of quantum
measurements as follows [74]:

Proposition 1. The set of pre-processing quantum chan-
nels that preserves incoherent measurements is the set of
detection-incoherent channels EA which is characterized
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by

∆A ◦ EA = ∆A ◦ EA ◦∆A. (9)

For readability, we defer all proofs to the Appendices
hereafter.

III. RESOURCE MONOTONES

Quantum resources of a quantum channel can be mea-
sured by various resource monotones regarding quantum
resources in quantum states [79]. For quantum measure-
ments, from the definitions of the incoherent measure-
ments and the separable measurements, it is clear that
the quantum resources of the POVM elements are essen-
tial to the quantum resources in quantum measurements.
So we conceive a different relative entropy type quantity
between two quantum measurements that aims to mea-
sure the quantum resources of the POVM elements. We
define the measurement relative entropy between quan-
tum measurements MA = {Mx}x and NA = {Nx}x as
follows:

Dm(MA‖NA) :=
1

d
D (⊕xMx‖ ⊕x Nx) (10)

=
1

d

∑
x

D(Mx‖Nx), (11)

where D(·‖·) is the quantum relative entropy [68, 80, 81]
defined as

D(M‖N) :=

{
Tr{M(logM − logN)} im M ⊆ im N

∞ else

(12)
for positive semidefinite operators M and N ; im M is the
image of M . We use the logarithm base two.

The measurement relative entropy satisfies the follow-
ing properties:

lemma 2. Let MA,NA,KA,LA ∈ M(d, n) be measure-
ment channels, EA a unital quantum channel, and UA
a unitary channel. Let SR be a classical channel that
sends |x〉R to |y〉R with a probability p(y|x) that satisfies∑

y p(y|x) = 1 for all x. Let 0 ≤ p ≤ 1. The following
holds:

1. Dm(MA‖NA) ≥ 0; the equality holds if and only if
MA = NA,

2. Dm(MA ◦ EA‖NA ◦ EA) ≤ Dm(MA‖NA),

3. Dm(MA ◦ UA‖NA ◦ UA) = Dm(MA‖NA),

4. Dm(SR ◦MA‖SR ◦ NA) ≤ Dm(MA‖NA),

5. Dm(MA ⊗ NB‖KA ⊗ LB) = Dm(MA‖KA) +
Dm(NB‖LB),

6. Dm(pMA + (1 − p)NA‖pKA + (1 − p)LA) ≤
pDm(MA‖KA) + (1− p)Dm(NA‖LA).

We conceive quantum resource monotones for quantum
coherence and quantum entanglement, respectively:

Cm(MA) := min
FA∈I(d,n)

Dm(MA‖FA), (13)

Em(MAB) := min
FAB∈SepM(A:B)

Dm(MAB‖FAB). (14)

Both Cm and Em are non-negative and faithful thanks to
the property of the measurement relative entropy. The
monotonicity of Cm under free transformations can be
seen as follows: for any unital detection-incoherent chan-
nel EA and a classical channel SR,

Cm(SR ◦MA ◦ EA)

= min
FA∈I(d,n)

Dm(SR ◦MA ◦ EA‖FA)

≤ min
FA∈I(d,n)

Dm(SR ◦MA ◦ EA‖SR ◦ FA ◦ EA)

≤ min
F ′

A∈I(d,n)
Dm(MA‖F ′A), (15)

where the first inequality is due to the fact that an inco-
herent measurement remains incoherent after free trans-
formations, and the second inequality is from the mono-
tonicity of the measurement relative entropy. Further-
more, the quantum coherence monotone can be explicitly
calculated:

Proposition 3. The quantum coherence monotone of a
quantum measurement MA = {Mx} is given by

Cm(MA) =
1

d

∑
x

{S(∆Mx)− S(Mx)} , (16)

where S(·) is the von Neumann entropy.

Thus, if we regard S(∆Mx) − S(Mx) as the quantum
coherence of the POVM element Mx, the quantum co-
herence monotone Cm(MA) amounts to the sum of the
quantum coherence of all the POVM elements in MA.

Because entanglement theory does not possess a re-
source destroying channel [77], the entanglement mono-
tone Em does not possess an analogous expression as
eq. (16). However, one can still compute the entangle-
ment monotone for some cases, such as the Bell measure-
ment and the Werner measurement: we defer the results
to the Appendices for interested readers.

To summarize, taking the set of incoherent mea-
surements as free resource, we regard unital detection-
incoherent pre-processing channels with classical post-
processing channels as the free transformations; the
quantum coherence and entanglement of quantum mea-
surements are quantified by Cm and Em, respectively.

IV. QUANTUM COHERENCE CONVERSION
TO QUANTUM ENTANGLEMENT

We are now in a position to restate our problem con-
cerning whether quantum coherence of a quantum mea-
surement can be converted into quantum entanglement of
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NAB

MA

SR

EB

M′
AB

=

FIG. 2. Building a bipartite quantum measurement M′AB

from two quantum measurements MA and EB with a pre-
processing channel NAB and a classical post-processing chan-
nel SR. The double line means classical data.

a bipartite quantum measurement as depicted in Fig. 2.
Here is our first result:

Theorem 4. LetMA ∈M(d, n) be a quantum measure-
ment. For any ancillary incoherent measurement EB ∈
I(d, n) and a unital detection-incoherent pre-processing
channel NAB, it holds that

Cm(MA) ≥ Em(MA ⊗ EB ◦ NAB). (17)

This shows that the quantum coherence of a quantum
measurement MA is an upper bound on the quantum
entanglement of any resultant bipartite quantum mea-
surement under the free transformations. Note that a
classical post-processing channel is unnecessary in the
right-hand side of eq. (17) since it just deteriorates quan-
tum resources as argued before. While it is not always
the case that quantum coherence of a quantum measure-
ment fully converts to quantum entanglement, a proper
choice of free transformation might achieve the conver-
sion completely as shown in the next result:

Theorem 5. LetMA ∈M(d, n) be a quantum measure-
ment. Let EB ∈ I(d, n) be an incoherent measurement
given by

EB =

{
{E0, . . . , Ed−1, 0, . . . , 0} n ≥ d,
{E0, . . . , En−2, IB −

∑n−2
x=0 Ex} n < d,

(18)

where Ex = |x〉〈x|B. For n ≥ d, the following holds:

sup
NAB∈UDI

Em(MA ⊗ EB ◦ NAB) = Cm(MA), (19)

where UDI is the set of unital detection-incoherent chan-
nels: an optimal pre-processing channel NAB is given by
the adjoint channel of the generalized CNOT gate. For
n < d, the following holds:

n− 1

d
Cm(MA) ≤

sup
NAB∈UDI

Em(MA ⊗ EB ◦ NAB)

≤ Cm(MA). (20)

When there is a large enough number of measurement
outcomes, that is, n ≥ d, the quantum coherence com-
pletely converts to quantum entanglement for quantum

measurement; the class of informationally complete mea-
surements corresponds to this because an informationally
complete measurement needs at least n ≥ d2 outcomes
[68, 82]. In the case of a small number of outcomes
n < d, the quantum coherence of a quantum measure-
ment MA provides an upper and a lower bound on the
quantum entanglement of a bipartite quantum measure-
ment obtained from MA without additional coherence:
an extreme case of n = 1 corresponds to the trivial mea-
surement MA = {IA} that does not possess quantum
coherence.

A typical example of the above result is given

by MA =
{
|±〉〈±|A : |±〉 = 1√

2
(|0〉A ± |1〉A)

}
, EB =

{|0〉〈0|B , |1〉〈1|B}, and the adjoint channel of the CNOT
gate as a pre-processing channel, for which we observe

that MA ⊗ EB ◦ U†CNOT = {|Φ±〉〈Φ±|AB , |Ψ±〉〈Ψ±|AB},
where |Φ±〉AB = 1√

2
(|00〉AB ± |11〉AB) and |Ψ±〉AB =

1√
2
(|01〉AB ± |10〉AB); The quantum resources are given

by Cm(MA) = Em(MA ⊗ EB ◦ U†CNOT) = 1.
We emphasize that outputs of any quantum measure-

ments are classical states having no quantum resources;
this clearly distinguishes the above results from those on
the quantum resource generating powers [46].

V. COHERENCE MONOTONES FROM
ENTANGLEMENT MONOTONES

We have seen that the quantum coherence of a quan-
tum measurement can be converted into the quantum en-
tanglement of a bipartite quantum measurement. This
implies that, given a quantum entanglement monotone
for bipartite quantum measurements, one can utilize it
to construct a quantum coherence monotone of a quan-
tum measurement by the convertible amount of the
quantum entanglement [83]. In the following we show
this quantitatively. A quantum coherence monotone
is required to satisfy the following properties, that is,
non-negativity, faithfulness, monotonicity, and convex-
ity [5, 84]: for a quantum measurement MA, any unital
detection-incoherent channel FA, and any classical chan-
nel SR,

1. C(MA) ≥ 0; C(MA) = 0 if and only if MA ∈
I(d, n),

2. C(SR ◦MA ◦ FA) ≤ C(MA),

3. C
(∑

i piM
(i)
A

)
≤
∑

i piC
(
M(i)

A

)
,

where pi ≥ 0,
∑

i pi = 1, and M(i)
A ’s are quantum mea-

surements. Similarly a quantum entanglement monotone
E is required to satisfy the following conditions as well:
for a quantum measurement MAB , any pre-processing
channel FAB that preserves SepM(A :B), and any clas-
sical channel SR acting on the system A and B,



5

1. E(MAB) ≥ 0; E(MAB) = 0 if and only if MAB ∈
SepM(A :B),

2. E(SR ◦MAB ◦ FAB) ≤ E(MAB),

3. E
(∑

i piM
(i)
AB

)
≤
∑

i piE
(
M(i)

AB

)
,

where pi ≥ 0,
∑

i pi = 1, and M(i)
AB ’s are quantum mea-

surements.
We figure out that once a quantum entanglement

monotone for quantum measurements is given, one can
construct a quantum coherence monotone as follows:

Theorem 6. Let MA ∈ M(d, n) be a quantum mea-
surement with n > 1. Let EB ∈ I(d, n) be an incoherent
measurement given by

EB =

{
{E0, . . . , Ed−1, 0, . . . , 0} n ≥ d,
{E0, . . . , En−2, IB −

∑n−2
x=0 Ex} n < d,

(21)

where Ex = |x〉〈x|B. A quantum entanglement monotone
E for a quantum measurement induces a quantum coher-
ence monotone for a quantum measurement as follows:

C(MA) := sup
FAB∈UDI

E(MA ⊗ EB ◦ FAB), (22)

where UDI is the set of unital detection-incoherent chan-
nels.

This shows that the idea to measure quantum coher-
ence or nonclassicality of a quantum state by its potential
to transform to quantum entanglement still holds for the
case of quantum measurements [24, 29, 33].

VI. CONCLUSION

The quantum coherence of a quantum measurement
can be converted to the quantum entanglement of a bi-
partite quantum measurement without additional quan-
tum coherence. We establish this by taking the set of the
incoherent measurements as free resources. The set of
unital detection-incoherent pre-processing channels with
the classical post-processing channels consists of the free
transformations for the quantum coherence of quantum
measurements. We take the set of the separable mea-
surements as the free resources for entanglement. These
quantum resources are measured by resource monotones
built upon the measurement relative entropy that we in-
troduce: the measurement relative entropy between two
quantum measurements is a sum of the relative entropy
between the POVM elements of the quantum measure-
ments so that it helps to capture the quantum resources
in each POVM element. Thus, under the free transfor-
mations, a quantum measurement could transform to a
bipartite quantum measurement of which quantum en-
tanglement is upper bounded by the quantum coherence
of the input quantum measurement; quantum coherence

of a quantum measurement completely converts to quan-
tum entanglement of a bipartite quantum measurement
under the adjoint channel of the generalized CNOT gate
as the pre-processing channel.

We also show that the above fact indicates that a quan-
tum entanglement monotone of a quantum measurement
induces a quantum coherence monotone of quantum mea-
surements.

Our results strengthen the close relation between quan-
tum coherence and quantum entanglement at the level
of quantum dynamics. In the previous work [46], it
was unavoidable to use the dephasing channel as a pre-
processing channel to pinpoint quantum resource gener-
ating powers. However, quantum measurements do not
generate any quantum resource as outputs; thus, our re-
sults enlarge our understanding further in yet another
aspect of quantum dynamics. Furthermore, our resource
monotones only depend on the quantum measurement
without any reference to quantum states distinct from
typical dynamical resource monotones [79]. Meanwhile,
it is desirable to find operational meanings of the mea-
surement relative entropy and resource monotones built
on it.

We hope that our research sheds light on the prop-
erties of quantum resources of quantum dynamics; the
more profound the understanding is, the more effective
we can utilize the quantum resources in quantum dy-
namics for quantum information tasks such as quantum
computation in the NISQ era.
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Appendix A: Resource theory of quantum
measurements

We assume that the outcome register of a quantum
measurement channel is a classical system, so we take
the measurement outcome basis {|x〉R} as the incoherent
basis of the register system R. Upon this assumption the
set of pre-processing channels that keeps incoherent mea-
surements is given by the detection-incoherent channels
[74]:

Proposition 7. The set of pre-processing quantum chan-
nels that keeps incoherent measurements is the set of
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detection-incoherent channels E which is characterized by

∆ ◦ E = ∆ ◦ E ◦∆. (A1)

Proof. A quantum channel EA is detection-incoherent if

E†A ◦∆ = ∆ ◦ E†A ◦∆, (A2)

where E†A is the adjoint map of EA. Assume that a pre-
processing channel EA keeps incoherent POVM elements
incoherent such that, for Mx = ∆Mx, it holds that

E†A(Mx) = ∆ ◦ E†A(Mx). Then for an arbitrary POVM
element Nx, it follows that

E†A ◦∆(Nx) = E†A(∆Nx) (A3)

= ∆ ◦ E†A(∆Nx) (A4)

= ∆ ◦ E†A ◦∆(Nx). (A5)

Thus, we conclude that the set of pre-processing chan-
nel that keeps incoherent measurements is the set of
detection-incoherent channels.

Being regarded as a quantum channel, an incoherent
measurement channel also belongs to a more stringent
class of channels that do not even allow preserving quan-
tum coherence:

Proposition 8. A measurement channel M ∈ M(d, n)
is a classical channel characterized by ∆ ◦M ◦∆ = M
if and only if it is an incoherent measurement, i.e.,
∆(Mx) = Mx for all x.

Proof. The outcome register of a quantum measurement
channel is a classical system so that we have that ∆◦M =
M for any measurement channel M ∈M(d, n). If M is
a classical channel, that is, M = ∆ ◦ M ◦ ∆, it follows
that

M = ∆ ◦M ◦∆ (A6)

=M◦∆ (A7)

=
∑
x

Tr(Mx∆(·)) |x〉〈x|R (A8)

=
∑
x

Tr(∆(Mx)·) |x〉〈x|R . (A9)

Thus we have that M = {Mx} = {∆(Mx)}. Conversely,
ifM is an incoherent measurement channel, then tracing
back the above equations proves the statement. This
completes the proof.

In addition, a measurement channel is a maximally in-
coherent operation by definition: hence any measurement
channel does not generate coherence.

Proposition 9. All the effects of a bipartite incoherent
measurement are separable operators.

Proof. A POVM element Mxy of a bipartite incoherent
measurement satisfies

∆AB(MAB) =
∑
x′,y′

〈x′, y′|Mxy|x′, y′〉AB |x′〉〈x′|A⊗|y
′〉〈y′|B ,

(A10)
thus being a separable operator.

1. Measurement relative entropy and resource
monotones

We utilize the quantum relative entropy between mea-
surements to construct measurement resource mono-
tones. For M = {Mx} ∈ M(d, n) and N = {Nx} ∈
M(d, n), we define the measurement relative entropy as

Dm(M‖N ) :=
1

d
D (⊕xMx‖ ⊕x Nx) (A11)

=
1

d

∑
x

D(Mx‖Nx), (A12)

where, for M ≥ 0 and N ≥ 0,

D(M‖N) :=

{
Tr{M(logM − logN)} if im M ⊆ im N

∞ else

(A13)
is the quantum relative entropy between positive semidef-
inite operators and im M is the image of an operator M
[68].

The measurement relative entropy satisfies the follow-
ing properties:

lemma 10. Let M,N ,K,L ∈ M(d, n) be measurement
channels, E a unital quantum channel, and U a unitary
channel. Let SR be a classical channel that sends |x〉R to
|y〉R with a probability p(y|x) that satisfies

∑
y p(y|x) = 1

for all x. Let 0 ≤ p ≤ 1. The following holds:

1. Dm(MA‖NA) ≥ 0; the equality holds if and only if
MA = NA,

2. Dm(MA ◦ EA‖NA ◦ EA) ≤ Dm(MA‖NA),

3. Dm(MA ◦ UA‖NA ◦ UA) = Dm(MA‖NA),

4. Dm(SR ◦MA‖SR ◦ NA) ≤ Dm(MA‖NA),

5. Dm(MA ⊗ NB‖KA ⊗ LB) = Dm(MA‖KA) +
Dm(NB‖LB),

6. Dm(pMA + (1 − p)NA‖pKA + (1 − p)LA) ≤
pDm(MA‖KA) + (1− p)Dm(NA‖LA).

Proof. 1. The non-negativity and the faithfulness of
the measurement relative entropy follow from the
properties of the quantum relative entropy.

2. The measurement relative entropy is monotone un-
der any unital pre-processing channel E :

Dm(MA ◦ EA‖NA ◦ EA)

=
1

d

∑
x

D(E†A(Mx)‖E†A(Nx)) (A14)

≤ Dm(MA‖NA), (A15)

where we interpreted the action of the pre-
processing channel E through its adjoint channel
on the POVM elements regarding the measurement
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outcome probabilities. Since E is a unital quantum
channel, its adjoint map E† is also a unital quan-
tum channel. So the inequality follows from the
monotonicity of the quantum relative entropy.

3. The measurement relative entropy is invariant un-
der any unitary pre-processing channel U due to
the invariance of the quantum relative entropy un-
der isometries.

4. The measurement relative entropy is monotone de-
creasing under a classical post-processing channel:

Dm(SR ◦MA‖SR ◦ NA)

=
1

d

∑
y

D

(∑
x

p(y|x)Mx‖
∑
x

p(y|x)Nx

)
(A16)

≤ 1

d

∑
y

∑
x

D(p(y|x)Mx‖p(y|x)Nx) (A17)

=
1

d

∑
y

∑
x

p(y|x)D(Mx‖Nx) (A18)

=
1

d

∑
x

D(Mx‖Nx) (A19)

= Dm(MA‖NA), (A20)

where the first inequality and the third line follow
from

D(P0 + P1‖Q0 +Q1) ≤ D(P0‖Q0) +D(P1‖Q1), (A21)

D(αP0‖βQ0) = αD(P0‖Q0) + (α logα/β) TrP0 (A22)

for any positive semidefinite operators P0, P1, Q0,
and Q1, and α, β > 0; the fourth line comes from∑

y p(y|x) = 1 for all x.

5. The measurement relative entropy is additive for
the tensor product:

Dm(MA ⊗NB‖KA ⊗ LB)

=
1

d2

∑
x,y

D(Mx ⊗Ny‖Kx ⊗ Ly) (A23)

=
1

d2

∑
x,y

{(TrB Ny)D(Mx‖Kx)

+ (TrAMx)D(Ny‖Ly)} (A24)

=
1

d

∑
x

D(Mx‖Kx) +
1

d

∑
y

D(Ny‖Ly) (A25)

= Dm(MA‖KA) +Dm(NB‖LB). (A26)

6. The measurement relative entropy is jointly convex
due to the joint convexity of the quantum relative

entropy:

Dm(pMA + (1− p)NA‖pKA + (1− p)LA) (A27)

=
1

d

∑
x

D(pMx + (1− p)Nx‖pKx + (1− p)Lx) (A28)

≤ 1

d

∑
x

{pD(Mx‖Kx) + (1− p)D(Nx‖Lx)} (A29)

= pDm(MA‖KA) + (1− p)Dm(NA‖LA). (A30)

Now we construct a quantum coherence and quan-
tum entanglement monotones for quantum measurement
channels using the measurement relative entropy as fol-
lows:

Cm(MA) := min
FA∈I(d,n)

Dm(MA‖FA), (A31)

Em(MAB) := min
FAB∈SepM(A:B)

Dm(MAB‖FAB), (A32)

where SepM(A :B) is the set of separable measurements.
The above resource monotones are non-negative and

faithful since the quantum relative entropy is non-
negative and faithful. The same holds for Em for sep-
arable measurements. The quantum coherence mono-
tone Cm is also monotone decreasing under any unital
detection-incoherent (UDI) pre-processing channels and
the classical post-processing channels: for a UDI channel
EA and a classical post-processing channel SR, it follows
that

Cm(SR ◦MA ◦ EA)

= min
FA∈I(d,n)

Dm(SR ◦MA ◦ EA‖FA) (A33)

≤ min
FA∈I(d,n)

Dm(SR ◦MA ◦ EA‖SR ◦ FA ◦ EA) (A34)

≤ min
FA∈I(d,n)

Dm(MA‖FA), (A35)

where we used the monotonicity of Dm in the last in-
equality.

Note that the quantum coherence monotone for mea-
surement channels can be explicitly calculated:

Proposition 11. The quantum coherence of a quantum
measurement MA = {Mx} is given as follows:

Cm(MA) =
1

d

∑
x

D(Mx‖∆Mx) (A36)

=
1

d

∑
x

{S(∆Mx)− S(Mx)} (A37)

=
1

d

∑
x

pxCr(ρx), (A38)

where S(·) is the von Neumann entropy, Cr(ρ) is the
relative entropy of coherence for quantum states, and
ρx ≡Mx/TrMx for all x.
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Proof. Let Mx = pxρx with px = TrMx. During the
derivation, we also denote Fx = qxσx with qx = TrFx:

Cm(MA) = min
FA∈I(d,n)

Dm(MA‖FA) (A39)

= min
FA∈I(d,n)

1

d

∑
x

D(Mx‖Fx) (A40)

= min
FA∈I(d,n)

1

d

∑
x

D(pxρx‖qxσx) (A41)

= min
FA∈I(d,n)

1

d

∑
x

{
pxD(ρx‖σx) + px log

px
qx

}
(A42)

= min
FA∈I(d,n)

1

d

{∑
x

pxD(ρx‖σx) +D(~p‖~q)

}
.

(A43)

The last line implies that the minimization is achieved by
incoherent measurements FA such that TrFx = TrMx,
that is, qx = px for all x due to the non-negativity of
the quantum relative entropy. Applying this fact, we
conclude that

Cm(MA) =
1

d

∑
x

pxD(ρx‖∆ρx) (A44)

=
1

d

∑
x

D(Mx‖∆Mx) (A45)

=
1

d

∑
x

{S(∆Mx)− S(Mx)} . (A46)

As some examples of quantum measurements regard-
ing quantum resources, a quantum measurement MA =
{|±〉〈±|A : |±〉 = 1√

2
(|0〉 ± |1〉)} has Cm(MA) = 1, while

an incoherent measurement EA = {|0〉〈0|A , |1〉〈1|A} has
Cm(EA) = 0.

For quantum entanglement, the Bell measurement
MAB = {Φ±AB ,Ψ

±
AB} has Em(MAB) = 1 with an op-

timal free measurement

FAB =

{
1

2
(|00〉〈00|AB + |11〉〈11|AB),

1

2
(|00〉〈00|AB + |11〉〈11|AB),

1

2
(|01〉〈01|AB + |10〉〈10|AB),

1

2
(|01〉〈01|AB + |10〉〈10|AB)

}
. (A47)

As another example, we consider a class of two-qubit
Bell-diagonal measurements given by

BAB = {UA(p1Φ+
AB + p2Φ−AB + p3Ψ+

AB + p4Ψ−AB) :

UA ∈ {IA, σX
A , σ

Y
A , σ

Z
A}}, (A48)

where p1, p2, p3, p4 ≥ 0,
∑4

i=1 pi = 1, and σX
A , σ

Y
A , σ

Z
A

are the Pauli operators. Without loss of generality,
we assume that maxi pi = p1. Each POVM element
is the Bell-diagonal state which is known to be entan-
gled if and only if p1 > 1

2 [85, 86]. For p1 > 1
2 ,

one can compute the entanglement monotone of BAB

utilizing the relative entropy of entanglement for each
POVM element [87] as Em(BAB) = 1 − h(p1), where
h(p1) = −p1 log p1 − (1 − p1) log(1 − p1) is the binary
entropy. An optimal separable measurement is given by

FAB =

{
UA
(

1

2
Φ+

AB +
p2

2(1− p1)
Φ−AB +

p3
2(1− p1)

Ψ+
AB

+
p4

2(1− p1)
Ψ−AB

)
: UA ∈ {IA, σX

A , σ
Y
A , σ

Z
A}
}
.

(A49)

An example of the above class is a two-qubit measure-
ment given by

WAB =

{
pΦ±AB +

1− p
4

IAB , pΨ
±
AB +

1− p
4

IAB

}
,

(A50)
where 0 ≤ p ≤ 1. The POVM elements of the mea-
surement are equal to the Werner state up to local uni-
tary operations so that each of them is known to be en-
tangled for p > 1

3 . The entanglement monotone of the

measurement for p > 1
3 is computed as Em(WAB) =

1 − h(λ), where λ = 1+3p
4 ; Em(WAB) = 0 for p ≤ 1

3 .
An optimal free POVM element for WAB is given by{

1
3Φ±AB + 1

6IAB ,
1
3Ψ±AB + 1

6IAB

}
.

Another example of the above class is a two-qubit mea-
surement given by

IAB =

{
UA
(
pΦ+

AB +
1− p

3
(IAB − Φ+

AB)

)
:

UA ∈ {IA, σX
A , σ

Y
A , σ

Z
A}
}
, (A51)

where 0 ≤ p ≤ 1. The POVM elements of the measure-
ment are equal to the isotropic state up to local unitary
operations so that each of them is known to be entangled
for p > 1

2 . The entanglement monotone of the measure-

ment for p > 1
2 is computed as Em(IAB) = 1 − h(p);

Em(IAB) = 0 for p ≤ 1
2 . An optimal free POVM ele-

ment for IAB is given by

FAB =

{
UA
(

1

2
Φ+

AB +
1

6
(IAB − Φ+

AB)

)
:

UA ∈ {IA, σX
A , σ

Y
A , σ

Z
A}
}
. (A52)

.

Appendix B: Quantum coherence conversion to
quantum entanglement

The quantum coherence of a measurementMA upper-
bounds the quantum entanglement of a composite mea-
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surement that is constructed from MA using free re-
sources:

Theorem 12. Let MA ∈ M(d, n) be a quantum mea-
surement. For any ancillary incoherent measurement
EB ∈ I(d, n) and a unital detection-incoherent pre-
processing channel NAB, it holds that

Cm(MA) ≥ Em(MA ⊗ EB ◦ NAB). (B1)

Proof. Let an optimal incoherent measurement for
Cm(MA) be F∗A. It follows that

Cm(MA) = min
FA∈I(d,n)

Dm(MA‖FA) (B2)

= Dm(MA‖F∗A) (B3)

= Dm(MA ⊗ EB‖F∗A ⊗ EB) (B4)

≥ Dm(MA ⊗ EB ◦ NAB‖F∗A ⊗ EB ◦ NAB)
(B5)

≥ min
F ′

AB∈SepM(A:B)
Dm(MA ⊗ EB ◦ NAB‖F ′AB)

(B6)

= Em(MA ⊗ EB ◦ NAB), (B7)

where we used the fact that F∗A⊗EB ◦NAB ∈ I(d×d, n×
n) ⊂ SepM(A :B) in the last inequality.

Note that it is unnecessary to consider a classical post-
processing channel since it does not increase quantum
entanglement.

Before moving into the main result, we extend the
relative entropy of entanglement for bipartite states to
positive semidefinite bipartite operators, or unnormal-
ized bipartite states in other words. Recall that the von
Neumann entropy and the quantum relative entropy are
defined over positive semidefinite operators [68]:

ER(XAB) := min{D(XAB‖YAB) :

YAB ∈ Sep(A : B),TrAB YAB = TrAB XAB}, (B8)

where Sep(A :B) denotes the set of separable operators.
We first extend some of the results in [88] to the set of
positive semidefinite operators:

lemma 13. For a positive semidefinite operator XAB

and a separable operator YAB, it holds that

S(XA)− S(XAB) ≤ D(XAB‖YAB)−D(XA‖YA), (B9)

S(XB)− S(XAB) ≤ D(XAB‖YAB)−D(XB‖YB).
(B10)

Proof. The map ΛB(ZB) = TrB(ZB)IB − ZB is positive
but not completely positive [89]. Since YAB is separable,
it is undistillable so that it satisfies IdA ⊗ ΛB(YAB) =
YA ⊗ IB − YAB ≥ 0, where IdA is the identity channel.

From this, we have that

log YA ⊗ IB ≥ log YAB , (B11)

TrAB XAB log YA ⊗ IB ≥ TrAB XAB log YAB , (B12)

−S(XAB) + S(XA)− S(XA)− TrAB XAB log YA ⊗ IB
≤ −S(XAB)− TrAB XAB log YAB , (B13)

S(XA)− S(XAB) ≤ D(XAB‖YAB)−D(XA‖YA).
(B14)

The second one can be derived similarly.

lemma 14. For a positive semidefinite matrix XAB, it
holds that

ER(XAB) ≥ max{S(XA)− S(XAB), S(XB)− S(XAB)}
(B15)

Proof. Let ER(XAB) = D(XAB‖Y ∗AB). Then

S(XA)− S(XAB) ≤ D(XAB‖Y ∗AB)−D(XA‖Y ∗A)
(B16)

≤ D(XAB‖Y ∗AB) (B17)

= ER(XAB). (B18)

The remaining one can be shown similarly.

Upon the above lemmata, we obtain the following re-
sult:

lemma 15. Let MA ∈M(d, n) be a quantum measure-
ment and UCNOT =

∑
i,j |i, j ⊕ i〉〈i, j| the generalized

CNOT gate [90]. Let EB ∈ I(d, n) be an incoherent mea-
surement given by

EB =

{
{E0, . . . , Ed−1, 0, . . . , 0} n ≥ d,
{E0, . . . , En−2, IB −

∑n−2
x=0 Ex} n < d,

(B19)

where Ex = |x〉〈x|B. The following holds:

Em(MA ⊗ EB ◦ U†CNOT) ≥

Cm(MA) n ≥ d,
n− 1

d
Cm(MA) n < d.

(B20)

Proof. Note that the composite measurement consisting
of MA ∈ I(d, n) and NB ∈ I(d, n) is an element of

I(d × d, n × n). U†CNOT is a unital detection-incoherent
channel since its adjoint channel is a maximally inco-
herent operation. The case of n ≥ d can be proven as
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follows:

Em(MA ⊗ EB ◦ U†CNOT)

= min
FAB∈SepM(A:B)

Dm

(
MA ⊗ EB ◦ U†CNOT‖FAB

)
(B21)

= min
FAB∈SepM(A:B)

1

d2
D (⊕x,yUCNOT(Mx ⊗ Ey)‖ ⊕x,y Fxy)

(B22)

= min
FAB∈SepM(A:B)

1

d2

n−1∑
x,y=0

D (UCNOT(Mx ⊗ Ey)‖Fxy)

(B23)

≥ 1

d2

n−1∑
x,y=0

ER(UCNOT(Mx ⊗ Ey)) (B24)

=
1

d

n−1∑
x=0

ER(UCNOT(Mx ⊗ E0)) (B25)

≥ 1

d

n−1∑
x=0

{S(∆Mx)− S(Mx)} (B26)

= Cm(MA), (B27)

where the fifth line follows from the fact that
ER(UCNOT(Mx⊗Ey)) = ER(UCNOT(Mx⊗E0)) for all y
because of

UCNOT(Mx⊗Ey) = IdA⊗Sy ◦ UCNOT(Mx⊗E0) (B28)

with the (unitary) shift channel Sy =
∑

i|i⊕ y〉〈i| (or the
generalized Pauli X channel); the inequality follows from
Lemma 14. For n < d, it can be seen in a similar way:

Em(MA ⊗ EB ◦ U†CNOT)

= min
FAB∈SepM(A:B)

Dm

(
MA ⊗ EB ◦ U†CNOT‖FAB

)
(B29)

≥ 1

d2

n−1∑
x,y=0

ER(UCNOT(Mx ⊗ E0)) (B30)

≥ n− 1

d2

n−1∑
x=0

ER(UCNOT(Mx ⊗ E0)) (B31)

≥ n− 1

d2

n−1∑
x=0

{S(∆Mx)− S(Mx)} (B32)

=
n− 1

d
Cm(MA). (B33)

This completes the proof.

Note that for information complete measurements, it
holds that n ≥ d2. Upon the above results, we arrive at
the main result [91]:

Theorem 16. Let MA ∈ M(d, n) be a quantum mea-
surement. Let EB ∈ I(d, n) be an incoherent measure-
ment given by

EB =

{
{E0, . . . , Ed−1, 0, . . . , 0} n ≥ d,
{E0, . . . , En−2, IB −

∑n−2
x=0 Ex} n < d,

(B34)

where Ex = |x〉〈x|B. For n ≥ d, the following holds:

sup
NAB∈UDI

Em(MA ⊗ EB ◦ NAB) = Cm(MA), (B35)

where UDI denotes the set of unital detection incoher-
ent channels: an optimal pre-processing channel NAB is
given by the adjoint channel of the generalized CNOT
gate. For n < d, the following holds:

n− 1

d
Cm(MA) ≤

sup
NAB∈UDI

Em(MA ⊗ EB ◦ NAB)

≤ Cm(MA). (B36)

Proof. Theorem 12 shows that

Em(MA ⊗ EB ◦ NAB) ≤ Cm(MA) (B37)

for any unital detection-incoherent channel NAB . On the

other hand, using U†CNOT as the preprocessing channel,
Lemma 15 indicates that

Em(MA ⊗ EB ◦ U†CNOT)

≥ Cm(MA) n ≥ d,

≥ n− 1

d
Cm(MA) n < d.

(B38)
Combining the two results completes the proof.

Appendix C: Coherence monotones from
entanglement monotones

A quantum entanglement monotone of quantum mea-
surements induces a quantum coherence monotone of
quantum measurements. We require that a quantum co-
herence monotone C satisfies the following conditions:

1. C(NA) ≥ 0; C(NA) = 0 if and only if NA ∈ I(d, n),

2. C(SR ◦ NA ◦ FA) ≤ C(NA) for any pre-processing
channel FA ∈ UDI and a classical post-processing
channel SR,

3. C
(∑

i piN
(i)
A

)
≤
∑

i piC
(
N (i)

A

)
.

We require similar conditions for a quantum entangle-
ment monotone E as well:

1. E(NAB) ≥ 0; E(NAB) = 0 if and only if NAB ∈
SepM(A :B),
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2. E(SR ◦ NAB ◦ FAB) ≤ E(NAB) for any pre-
processing channel FAB that does not generate
quantum entanglement from SepM(A : B) and a
classical post-processing channel SR acting on the
system A and B,

3. E
(∑

i piN
(i)
AB

)
≤
∑

i piE
(
N (i)

AB

)
.

The following result establishes the existence of the in-
duced quantum coherence monotone for quantum mea-
surements:

Theorem 17. Let MA ∈ M(d, n) be a quantum mea-
surement. Let EB ∈ I(d, n) be an incoherent measure-
ment given by

EB =

{
{E0, . . . , Ed−1, 0, . . . , 0} n ≥ d,
{E0, . . . , En−2, IB −

∑n−2
x=0 Ex} n < d,

(C1)

where Ex = |x〉〈x|B. For n > 1, a quantum entanglement
monotone E for quantum measurements induces a quan-
tum coherence monotone for quantum measurements as
follows:

C(MA) := sup
FAB∈UDI

E(MA ⊗ EB ◦ FAB). (C2)

Proof. We verify the condition for C being a quantum
coherence monotone:

1. First, note that C(·) ≥ 0 due to E(·) ≥ 0. To
show that C(NA) = 0 for NA ∈ I(d, n), I(d×d, n×
n) ⊂ SepM(A :B) proves the “if” direction, while
Theorem 16 assures the other direction.

2. For any FA ∈ UDI and a classical post-processing
channel SR acting on the system A and B, the

monotonicity holds as follows:

C(SR ◦ NA ◦ FA)

= sup
GAB∈UDI

E((SR ◦ NA ◦ FA)⊗ EB ◦ GAB) (C3)

≤ sup
F ′

AB∈UDI

E(SR ⊗ IdB ◦ NA ⊗ EB ◦ F ′AB) (C4)

≤ sup
F ′

AB∈UDI

E(NA ⊗ EB ◦ F ′AB) (C5)

= C(NA), (C6)

where we used the monotonicity of E and that FA⊗
IdB ◦ GAB ∈ UDI for GAB ∈ UDI.

3. The convexity of the dynamic coherence monotone
can be seen as below:

C

(∑
i

piN (i)
A

)

= E

(∑
i

piN (i)
A ⊗ EB ◦ F

∗
AB

)
(C7)

≤
∑
i

piE
(
N (i)

A ⊗ EB ◦ F
∗
AB

)
(C8)

≤
∑
i

pi sup
F(i)

AB∈UDI

E
(
N (i)

A ⊗ EB ◦ F
(i)
AB

)
(C9)

≤
∑
i

piC
(
N (i)

A

)
, (C10)

where we assumed and used the convexity of E in
the first inequality.

We finally remark that a single outcome measurement
(n = 1) is the trivial measurementMA = {IA} that does
not have any quantum resources.
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