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1 Introduction

There is a very important connection between error correcting codes and conformal field
theories (CFT for short). First, Dolan et al. [1] discovered the construction of a chiral CFT
using a classical error correcting code. Then their construction was extended to a quantum
error correcting code and Narain CFT by Dymarsky and Shapere [2]. In these cases, one
can relate some quantities of CFTs to those of error correcting codes. For instance, in both
classical and quantum cases, self-duality of a code corresponds to modular invariance of
CFT and the length of code is equal to the central charge of CFT. In the classical case,
the Hamming distance of a code corresponds to the minimum value of conformal weight of
vertex primary operators, which is known as the spectral gap ∆.

At the level of codes, the Hamming distance plays a very important role in the code
theory because it represents how many errors the code can correct. For this reason, many
researchers have studied the upper and lower bound of the Hamming distance d with the
ratio of the dimension to the length fixed. One of the well-known lower bounds is Gilvert-
Varshamov bound dGV [3] that guarantees the existence of codes with distance higher than
dGV. Unfortunately, this is a nonconstructive bound, and no systematic way has been found
to construct codes over F2 with distance d ≥ dGV. However there are some constructions to
obtain asymptotically good codes with n→∞, dn finite where n is the length of the code.
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For instance, Muller discovered Reed-Muller code [4] whose length is n = 2m and distance
is d = 2m−2. Note that quantum codes that can construct Narain CFT are restricted to
real and self-dual codes. Since the well-known examples including Reed-Muller code are
not always real and self-dual, they might not be useful for obtaining Narain CFTs with the
large spectral gap.

On the other hand, Hartman et al. [5] investigated the condition on ∆ for a Virasoro
CFT to have a holographic dual, and it was extended to Narain CFT cases1 by Dymarsky
and Shapere [6]. It requires ∆ to be sufficiently large compared to c. This is analogous to
the condition that codes are asymptotically good for large n. So, if ∆ and the Hamming
distance of a quantum code are in a sense related to each other, one can construct various
Narain CFTs with large ∆ using constructions of good codes. However, this is not the case
because they are slightly different to each other. Instead, one can relate the spectral gap
∆ of a Narain CFT to db of corresponding quantum code. However since db is unfamiliar
in code theory, no such construction for good codes with respect to db has been known.
Therefore we are motivated to find another representation of db.

We find a solution in a boolean function associated with a B-form code, defined in
section 3.2. Previously, it has been known that the distance of a quantum code is identical
to APC distance of the associated boolean function. We extend this relation to db and EPC
distance of the boolean function. In addition, we find a kind of “duality” between EPC dis-
tance and discrete Fourier transformations {I,H}n. The APC distance version of this dual-
ity was implied in [7] where it was insisted that codes with high distance tend to be associ-
ated with boolean functions with low PAR. To verify EPC version of this tendency, we con-
struct some examples of B-form codes with length t2 and distance 2t−2 for some primes t.

This paper is organized as follows. In section 2 we briefly review definitions of Narain
CFT, quantum error correcting codes, and construction of Narain CFT using a kind of
quantum error correcting codes. Section 3 is devoted to interpreting this construction using
terms in graph theory and boolean functions. We also introduce definitions of propagation
criteria which are used to define APC or EPC distance. Then in section 4 we show that
the binary distance db coincides with EPC distance, which is our main result. This result
suggests that getting higher EPC distance leads to obtaining code CFTs with large spectral
gaps. In this section we also study the correlation between high EPC distances and low
Peak-to-Average Power Ratio (PAR). This is done by testing that if codes with high db
correspond to graphs with low independence numbers, since PAR can be represented by
the independence number of the associated graph.

2 Narain CFT and quantum stabilizer code

Recently, some constructions of conformal field theory have been studied by [1, 2] using
lattices associated with even self-dual codes. In this section, we review several results of [2]
where the construction of a Narain CFT associated with a quantum error correcting code
is shown. We also review how the spectral gap is identified with the binary distance of a
quantum code in favorable cases.

1In this picture, the holographic dual to the Narain theory is a U(1) gravity together with some additional
matter field, while in the Virasoro case the holographic dual is a pure U(1) gravity.
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2.1 Narain CFT

Narain CFT was first considered by Narain [8]. It can be obtained by compactifying n free
bosons X onto an n dimensional torus associated with an n dimensional lattice. Given a
lattice Γ ⊂ Rn, one can compactify the field X to the n-dimensional torus Rn/Γ:

~X ∼ ~X + 2π~e, ~e ∈ Γ. (2.1)

In this configuration, any state of this theory can be labeled by a 2n component vector
(~pL, ~pR) where ~pL and ~pR have n components respectively. Using an antisymmetric metric
field B, they are formulated as

~pL = 2~P + (B + I)~e
2

~pR = 2~P + (B − I)~e
2

(2.2)

where ~P is the momentum conjugate to the field ~X and this vector lies in Γ∗ (Γ∗ means
the dual lattice of Γ). These vectors turn out to satisfy |~pL|2−|~pR|2 ∈ 2Z so that the set of
vectors (~pL, ~pR) for all possible ~P ∈ Γ∗ and ~e ∈ Γ form an even self-dual Lorentzian lattice
Λ ⊂ Rn,n. By performing a linear transformation

(~pL, ~pR) 7→ (α, β) =
(
~pL + ~pR√

2
,
~pL + ~pR√

2

)
, (2.3)

the generator matrix Υ and the metric g of the lattice can be expressed as

Υ =
(

2γ∗ B
0 γ

)
, g =

(
0 I
I 0

)
, (2.4)

where γ is the generator matrix of Γ and γ∗ is its dual. Therefore, one finds that any even
self-dual Lorentzian lattice defines a CFT called Narain CFT. To summarize, any Narain
CFT corresponds to an even self-dual lattice and vise-versa.

2.2 Error correcting codes

In order to review how to construct Narain CFT from Quantum error correcting code
(QECC), we give a brief introduction to QECC. QECC is the protocol that enables one
to “decode” the error state to the original state. A qubit of a state |ψ〉 is regarded as an
element in C2 such that (q0, q1) represents the state q0 |↑〉+q1 |↓〉 where |↑〉 and |↓〉 are spin
up state and spin down state respectively. Thus all states constitute a Hilbert space (C2)⊗n

, which is usually denoted H. In this up-down basis, one can regard the interactions with
the environment as a linear transformation on H. So, an error on a state |ψ〉 is described
by a linear operator E such that the error state is E |ψ〉.

Now we will introduce stabilizer code, a kind of QECC that is to be used to construct
Narain CFT. Let HC be a linear subspace of H that consists of all the states which can
be error-corrected. This is called code subspace. A stabilizer code associated with HC is
defined by a group S of operators stabilizing any state of HC , called stabilizer group:

S :=
{
s : H → H | s |ψ〉 = |ψ〉 for ∀ |ψ〉 ∈ HC

}
. (2.5)

– 3 –
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For simplicity, we assume that any stabilizer s ∈ S is obtained by taking a tensor product
of Pauli matrices up to a constant factor. In other words, each generator si of S can be
expressed in terms of n components binary vectors α, β as

si = iα·βε (Xα1 ⊗ · · · ⊗Xαn)
(
Zβ1 ⊗ · · · ⊗ Zβn

)
, α, β ∈ {0, 1}n (2.6)

where ε is a constant phase factor and X,Z are Pauli x and z matrices respectively. Note
that each X or Z is a linear operator on the corresponding qubit and αi, βi = 1 means
Pauli y operator is multiplied on the i-th qubit. Therefore, one can regard each generator si
as a 2n components binary vector (α, β) and commutativity of any two operators requires

sisj = sjsi ⇔ αi · βj − αj · βi ≡ 0 mod2. (2.7)

This relation can be simplified by constructing a (n− k)× 2n binary matrix

H =

 α1 β1
. . . . . .

αn−k βn−k

 (2.8)

where we assume that the number of the generators of S is n − k for convenience. Then

the relation (2.7) becomes HgH> = 0 mod2 where g =
(

0 I
I 0

)
. This means that the code

generated by the matrix H,2 is even with respect to the Lorentzian metric g. So, one can
identify a stabilizer code with a corresponding code C generated by rows of H. Moreover,
C can be regarded as an additive code on Galois field GF(4).3 This can be done using
Gray map

0↔ (0, 0), 1↔ (1, 1)
ω ↔ (1, 0), ω̄ ↔ (0, 1),

(2.9)

which is an isomorphism under addition between GF(4) and (Z2)2 where ω is one of the
cube roots of 1. Then one gets a codeword c of the code on GF(4) by combining the i-th
components of α and β into an element of GF(4) via Gray map (2.9), so that C can be
regarded as a code on GF(4).

2.3 Construction of Narain CFT

Now we are going to review the result of [2, 6] where the construction of a Narain CFT from
a real self-dual quantum stabilizer code C is introduced. This can be done by constructing a
Lorentzian even self-dual lattice, associated with a Narain CFT as described in section 2.1.
Given a quantum stabilizer code, one can construct an associated lattice Λ(C), defined as

Λ(C) := {v ∈ Fn2 | ∃c ∈ C s.t. v ≡ c mod2} /
√

2. (2.10)
2In other words, the code is a subspace of F2n

2 which is spanned by n− k rows of H.
3This is a field extension of GF(2)= F2 by a polynomial x2 + x + 1, in other words one obtains GF(4)

by adding to GF(2) one of the root α of x2 + x+ 1. So GF(4) can be denoted as F2(α).
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Here the metric of Λ(C) is taken to be Lorentzian and the factor 1/
√

2 is necessary for
convenience. Through this construction, some properties are inherited from the code: if
C is real, Λ(C) is even, and if C is self-dual, Λ(C) is also self-dual. Thus, a real self-dual
quantum stabilizer code C corresponds to an even self-dual lattice with respect to the
Lorentzian metric, which can construct a Narain CFT. In this way, one can construct a
Narain CFT from C, and such a Narain CFT is called code CFT.

Since each element (~pL, ~pR) labels a primary vertex operator V~pL,~pR =: ei~pL·XL+i~pR·XR :,
the Euclidean norm ‖(~pL, ~pR)‖2/2 = p2

L+p2
R

2 represents the conformal dimension of V~pL,~pR .
Note that since the metric of Λ(C) is taken to be Lorentzian the conformal dimensions are
not equal to the norm as elements of the lattice and also not related to the weights of
codewords. However, this difficulty is resolved by defining a new weight of a codeword c,
named binary weight as follows.

wb(c) = wx(c) + 2wy(c) + wz(c). (2.11)

The difference from the original one is the coefficient on wy(c). Now we define the minimal
distance db of C with respect to wb to be the minimum value of wb(c) among all codewords
c ∈ C. Then db is proportional to the minimal norm of all elements of Λ(C), which is
twice the smallest conformal dimension ∆ of corresponding code CFT called spectral gap.
Strictly, for n > 4, db is not proportional to ∆ because Λ(C) for arbitrary C always has a
vector 1√

2(2, 0, . . . , 0) whose norm is 2 and is smaller than the spectral gap. This can be
partially solved by applying shift operation [2] to elements of Λ(C) which makes it possible
to relate ∆ and binary distance db. This operation is called “twist” of a code CFT. Then,
at least for db ≤ 4 one finds the relationship between db and corresponding ∆ is

∆ = db
4 . (2.12)

Note that the equation (2.12) holds at least for db ≤ 4,4 since twisted theories also have light
states with norms of order 1.5 However, searching higher db is a good scientific question,
since it is expected that high binary distances should be related to large spectral gaps, as
investigated in [9]. This question is based on the problem to obtain the holographic dual
to the Narain CFT, and it imposes the condition that the CFT has a large spectral gap.
Thus, we will investigate how to construct quantum codes with high db, representing db by
another form.

3 Graphs and boolean functions

After constructing code CFTs from quantum stabilizer codes, we will introduce in this
section the notion of graphs and boolean functions associated with real self-dual codes.
They are deeply connected to T-duality of code CFTs and to the corresponding equivalence,
named T-equivalence. Then for boolean functions, one can consider some criteria about
their periodic characteristic introduced in [10]. In section 3.2, we will show that the fixed-
aperiodic autocorrelation is related to Hamming distance of the quantum code.

4It may holds for the case db > 4, but it does not always holds.
5We thank Anatoly Dymarsky for reminding us of the fact that the binary distance is not always

proportional to the spectral gap.
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3.1 B-form codes and graphs

For code CFTs, some elements of the code equivalence group named Clifford group can be
written in terms of T-duality transformations. It includes arbitrary permutations of code-
word components and swapping the i-th components of α and β.6 So these transformations
are called T-equivalences of a code, and they play an important role in discussing B-form
codes, defined later. Note that not all Clifford group elements correspond to T-duality
of a code CFT, because it contains cyclic permutations 1 → ω → ω̄ → 1, which are not
T-equivalences.

When a generator matrix of a code is represented in terms of binary vectors (α, β)
with 2n components, one can bring it to the simple form named B-form by performing
T-equivalence transformations. Explicitly,

G> =

α1 β1
· · · · · ·
αn βn

 T−equivalence−−−−−−−−−→
(
B I

)
(3.1)

where B is n × n matrix and I is n × n identity matrix. Moreover, if the code is real
self-dual then the matrix B defined above has zeros on the diagonal and is symmetric,
which implies that B corresponds to the adjacency matrix of a finite graph of size n.
Here the adjacency matrix Bij of a graph of size n is defined as Bij = 1 if and only if
vertexes Vi and Vj are connected by an edge and 0 otherwise. Thus, each code CFT can
be represented by a corresponding graph, and as in the discussion later, certain T-dualities
can be interpreted as graphical transformations named edge local complementation. Using
the adjacency matrix, one can explicitly write down all generators of stabilizer group S as

si = σix

n∏
j=1

(σjz)Bij , (3.2)

and the unique state |ψ〉 that is stabilized by all elements in S

|ψ〉 = 2−n
∑
α∈Zn2

(−1)f(α) |α1, α2, . . . , αn〉 , α = (α1, α2, . . . , αn) (3.3)

where f : Zn2 → Z2 is a boolean function associated with the adjacency matrix Bij defined
as f(α) =

∑
i<j Bijαiαj for α ∈ Zn2 . In particular, the state |ψ〉 is called graph state. One

can verify the above equations by referring [11].

3.2 Periodic criterion of boolean function

In this section, we introduce some definitions of propagation criteria of boolean functions
which are used to construct graph states (3.3) associated with adjacency matrices. Then
we also review a part of the results of [7, 10], which we will make use of later. They
claimed some relationships between certain properties of a boolean function and those of
the corresponding quantum self-dual code.

6In other words, it is conjugations of i-th component as a GF(4) code, ω ↔ ω̄.
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Let f be a function on Zn2 valued in Z2 for a positive integer n. This function is
called a boolean function and we will introduce some definitions of several notions which
characterize its periodic or aperiodic properties. For a given boolean function f , one can
consider a vector s with the information of all values it takes (sometimes this is mentioned
as “truth table”). s is defined as

s = ((−1)f(0,0,...,0), (−1)f(0,0,...,0,1), . . . , (−1)f(1,1,...,1)), (3.4)

and usually denoted as s = (−1)f(x). It has 2n components and its i-th component (0 ≤ i ≤
2n − 1) is (−1)f(in−1,in−2,...,i0) where i =

∑n−1
k=0 ik2k is binary representation of i. In terms

of graph states (3.3), this can be understood as the coefficients of each basis |in−1, . . . , i0〉,
so in a sense one can regard s as a representative of the graph state. Therefore, any action
of operators to the graph state can be identified with their action on s. This discussion
will appear later.

Since each component of s is 1 or −1, one can consider 2-points discrete Fourier
transformation, which is equivalent to Walsh-Hadamard transformation.

Definition 3.1. (Walsh-Hadamard transformation) Let f be a boolean function. Then
Walsh-Hadamard transformation (WHT) of its truth table vector s = (−1)f(x) is denoted
as χ̂f and

χ̂f (b) = 2−
n
2
∑
x∈Zn2

(−1)f(x) × (−1)b·x = 2−
n
2
∑
x∈Zn2

(−1)f(x)+b·x. (3.5)

WHT of a truth table s can be easily calculated by multiplying so called Hadamard
transformation Hn to s. Here Hadamard transformation is 2n × 2n matrix defined as

Hn = H1 ⊗Hn−1 for n ≥ 2, H1 = 1√
2

(
1 1
1 −1

)
(3.6)

where ⊗ denotes the tensor product of matrices. For simplicity, let us discuss only the n = 1
case and write the i-th component of s as (−1)f(i) where i = 0, 1. Since the (i, j)-element
of H1 is (H1)ij = 1√

2(−1)ij , one can calculate the i-th component of H1s as

(H1s)i = 2−
1
2
∑
j∈Z2

(H1)ijsj = 2−
1
2
∑
j∈Z

(−1)ij(−1)f(j), (3.7)

which coincides with the right hand side of (3.5) after replacement of indices (i, j) →
(b, x). Because WHT is understood as a discrete Fourier transformation (DFT), one obtains
Wiener-Khintchin’s theorem.

Theorem 3.1. ([7]) Let f(x) be a boolean function and r(a) be its periodic autocorrelation
defined as

r(a) =
∑
x∈Zn2

(−1)f(x)+f(x+a) (3.8)

for a ∈ Zn2 . Then Wiener-Khintchin’s theorem holds

r(a) =
∑
b∈Zn2

χ̂2
f (b)(−1)b·a. (3.9)

– 7 –
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Proof. This can be proved by a straightforward calculation. Starting from right hand side,
we see that ∑

b∈Zn2

χ̂2
f (b)(−1)b·a =

∑
b∈Zn2

∑
x,y∈Zn2

(−1)f(x)+f(y)+b·(x+y)(−1)b·a

= 2−n
∑

x,y∈Zn2

(−1)f(x)+f(y) ∑
b∈Zn2

(−1)b·(x+y+a)

=
∑

x,y∈Zn2

(−1)f(x)+f(y)δx+y+a,0

=
∑
x∈Zn2

(−1)f(x)+f(x+a) = r(a).

(3.10)

where we used
∑
b∈Zn2

(−1)b·z = 2nδz,0 for an arbitrary z ∈ Zn2 and δz,0 is Kronecker’s delta,
and all the additions in the exponents of (−1) is taken mod 2.

Since WHT can be regarded as a spectrum of {H}n transformation where {H}n denotes
1-element set of H⊗· · ·⊗H, Theorem 3.1 means that {H}n spectrum of a boolean function
is “dual” of its periodic autocorrelation in terms of Fourier transformation. Then when one
extends this relation to larger sets, for instance {I,H,N}n defined later, the autocorrelation
function obtained by the extension of (3.9) will be the fixed-aperiodic autocorrelation
function of the boolean function. Moreover, one can define a distance with respect to
the fixed-aperiodic autocorrelation which measures its aperiodic autocorrelation property
in a sense, which will turn out to be equal to the distance of the code associated with
the boolean function. Therefore, one conjectures that the distance of the code and the
{I,H,N}n spectrum of the boolean function are related. From now, we will explain this
relationship due to [7, 10].

First, we remark some notations used in [7]. For two binary vectors x, y ∈ Zn2 ,

x � y ⇔ xi ≥ yi for ∀i ∈ {1, . . . , n}. (3.11)

Then for a binary vector a, its conjugate ā is āi = ai + 1 mod 2, and a vector space Va is

Va := {x ∈ Zn2 | x � a}. (3.12)

So, for k � a, k + Va defines a coset space of Va where k + Va = {k + x | x � a}.
Next, we introduce the definition of the (fixed-) aperiodic autocorrelation function of

a boolean function and its distance called APC distance.

Definition 3.2. Let f be a boolean function. Its aperiodic autocorrelation function s(a, k)
(a, k ∈ Zn2 ) is defined as

s(a, k) =
∑

x∈k+Vā
(−1)f(x)+f(x+a), k � a, (3.13)

and its fixed-aperiodic autocorrelation function s(a, µ, k) (µ ∈ Zn2 ) is

s(a, µ, k) =
∑

x∈k+Vµ̄
(−1)f(x)+f(x+a), a, k � µ. (3.14)

– 8 –
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Similarly to Theorem 3.1, s(a, µ, k) is “dual” of some spectra with respect to certain
transformations including WHT. To explain this, we introduce another transformation than
WHT named nega-Hadamard transformation N (NHT). It is defined as

N = 1√
2

(
1 i

1 −i

)
. (3.15)

Then the transformation set that is “dual” to s(a, µ, k) turns out to be {I,H,N}n, which
consists of all transformations of form∏

i∈RI

I
∏
j∈RH

Hj

∏
k∈RN

Nk. (3.16)

Here (RI ,RH ,RN ) is the partition of {1, 2, . . . , n} and Hj denotes I ⊗ I ⊗ · · · ⊗ I ⊗H ⊗
I ⊗ · · · ⊗ I with H acting only on the j-th tensor component and I on the others. So
{I,H,N}n has 3n components. By the same argument as WHT (3.7), one finds that the
spectrum of a {I,H,N}n transformation7 is of the following form [12]

Pk,c,r,µ = 2−
n−wt(µ)

2
∑

x∈r+Vµ̄
(−1)f(x)+k·x(i)wtc(x) (3.17)

where wtc(x) denotes the weight restricted on the support8 of c and k, c ∈ Vµ̄, r ∈ Vµ.
Then the next proposition will reveal “duality” between {I,H,N}n spectrum and a certain
aperiodic autocorrelation function.

Proposition 3.1. For a boolean function f(x) and µ, k, c ∈ Zn2 where a, k � µ and c � µ̄,
let RN be the indices on which nega-Hadamard transformation is acted. Then set ci = 1⇔
i ∈ RN . Then one finds the following equation∑

x∈k+Vµ̄
(−1)f(x)+f(x+a)+

∑
i
χRN (i)ai(xi+1) = (i)−wtc(a) ∑

u∈Vµ̄
‖Pu,c,k,µ‖2(−1)u·a. (3.18)

where χRN (i) is the characteristic function of RN ,

χRN (i) =

1 (i ∈ RN )
0 (i /∈ RN )

. (3.19)

Proof. This can be proved in the same way as Theorem 3.1.

2−(n−wt(µ)) ∑
u∈Vµ̄

∑
x,y∈k+Vµ̄

(−1)f(x)+f(y)+u·(x+y+a)(i)wtc(x)−wtc(y)−wtc(a)

=
∑

x,y∈k+Vµ̄
(−1)f(x)+f(y)(i)wtc(x)−wtc(y)−wtc(a)δµ̄x+y+a,0

(3.20)

7An {I,H,N}n transformation means an element of {I,H,N}n.
8Support of c is the set of indices defined as {i ∈ {1, . . . , n} | ci = 1}.

– 9 –



J
H
E
P
0
9
(
2
0
2
2
)
1
4
6

where δµ̄x+y+a,0 means δµ̄x+y+a,0 = 1 if and ony if (x+y+a)|µ̄ = 0. Then when y|µ̄ = (x+a)|µ̄,

wtc(x)− wtc(y)− wtc(a) = wtc(x)− wtc(x+ a)− wtc(a)
= wtc(x)− (wtc(x) + wtc(a)−∑

i

χRN (i)aixi)− wtc(a)

= 2
∑
i

χRN (i)aixi − 2wtc(a)

= 2
∑
i

χRN (i)ai(xi − 1),

(3.21)

which leads one to (3.18) because ai(xi − 1) and ai(xi + 1) make no difference on the
exponent of (-1).

In a cryptographic sense, Danielsen et al. [10] used s(a, µ, k) to define aperiodic prop-
agation criteria (APC). They were motivated in a block cipher scenario, which we will
not argue for more detail, and they defined APC distance to measure to which degree the
boolean function satisfies APC.

Definition 3.3. For positive integers (l, q), a boolean function f satisfies APC(l) of order
q if s(a, µ, k) = 0 for any a, k, µ ∈ Zn2 such that a, k � µ and 1 ≤ w(a) ≤ l, 0 ≤ w(µ&ā) ≤ q
where (x&y)i = 1⇔ xi = yi = 1. Here W (x) denotes the weight of x, and if for a integer
d > 0 f satisfies APC(l) of order q for all (l, q) such that d > l+ q, f has APC distance d.

Although APC distance was defined in a cryptographic context, it can be related to
the code theory via the boolean function. This is described in the following theorem.

Theorem 3.2. ([10]) Let f(x) =
∑
i<j Bijxixj for Bij ∈ {0, 1} (i 6= j), Bii = 0 be a

boolean function with APC distance d. Then QECC C associated with f(x) constructed by
the matrix Bij is real self-dual and has distance d.

Proof. See appendix A.

Wiener-Khintchin theorem with respect to {I,H,N}n transformation implies that
power spectrum ‖Pk,c,r,µ‖ is related to APC, as discussed in [7]. Specifically, they de-
fined peak-to-average ratio with respect to {I,H,N}n transformation PARI,H,N [13] as for
s = (−1)f(x)

PARI,H,N (s) = max
U∈{I,H,N}n,k∈Zn2

{‖(Us)k‖2} (3.22)

and investigated the correspondence to values of APC distance. They concluded that these
two values are related in the way

low PARI,H,N ↔ high APC distance.

However, this is just a tendency and some pairs of them are counterexamples.
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4 Main results

As in Theorem 3.2, the distance of a QECC C can be identified with APC distance of
the associated boolean function and as reviewed in section 2.3 the binary distance db of C
is proportional to the spectral gap of its associated Narain CFT for a limited condition.
However because the definition of db is subtlety different from that of d, APC distance
may not be related to spectral gap ∆. In this section, we will introduce another periodic
criterion, extended periodic criterion (EPC), and its distance (EPC distance), and show
that EPC distance can be associated with ∆.

4.1 Extended periodic criteria and distance

EPC was first defined by Preneel [14] and investigated by Caret [15] to extend the config-
uration in which aperiodic propagation criteria were considered.

Definition 4.1. For a boolean function f(x), the fixed-extended autocorrelation function
v(a, k, µ) for a, k, µ ∈ Zn2 , k � µ is defined by

v(a, k, µ) =
∑

x∈k+Vµ̄
(−1)f(x)+f(x+a). (4.1)

f is set to have EPC distance d if f satisfies EPC(l) of order q for l+q < d, where EPC(l)
of order q means that v(a, k, µ) = 0 for all k � µ such that 1 ≤ w(a) ≤ l and 0 ≤ w(µ) ≤ q.

From the above definition, one finds that EPC can be seen as an extension of APC in
that taking a � µ reduces v(a, k, µ) to s(a, k, µ). This observation leads us to

APC distance ≤ EPC distance.

Extending the identity between APC distance and code distance, we have the following
theorem.

Theorem 4.1. For a boolean function f(x) and the binary distance db of a quantum code
associated with f(x), EPC distance and db are related as

EPC distance of f = db. (4.2)

Similarly to the reformulation of APC distance in appendix A, we use another form of
the definition of EPC distance found by Preneel [16]:

Proposition 4.1. EPC distance of a boolean function is equal to the least weight of the
2n component binary vector (a, b) such that∑

x∈Zn2

(−1)f(x)+f(x+a)+b·x 6= 0. (4.3)

Eq. (4.1) is similar to the one of the case of APC distance, the only difference being the
way of counting weight of a vector (a, b). In the APC distance case, the weight is the number
of indices such that ai or bi is 1, which is consistent with the weight of a codeword in QECC.
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On the other hand, in the EPC distance case, the indices such that ai = bi = 1 are doubly-
counted. The way of counting is consistent with the binary weight (2.11) because wy(c)
is also doubly-counted whose representation in (Z2)2 via (2.9) is (1, 1). Thus, considering
eq. (2.12) and applying the discussion in appendix A to the case of EPC distance and
binary weight, one finds Theorem 4.1.

Therefore, when investigating the spectral gap of a code CFT, one can use EPC dis-
tance of the corresponding boolean function associated with its B-form. Moreover, to find
Narain CFTs with large spectral gaps, instead, it is partially resolved by making EPC
distance higher. This topic is discussed in the next subsection.

As can be seen in definitions of APC distance and EPC distance, these two distances
usually take different values. For instance, consider the boolean function f(x) made from
a clique graph whose edges are all possible edges that connect arbitrary two vertexes. In
this case, the adjacency matrix is Bij = 1 for i 6= j and the associated boolean function
f(x) is f(x) =

∑
i<j xixj . Then the APC distance and EPC distance are two and four

respectively, and distance d and binary distance db can be easily seen to be two and four.

4.2 EPC distance and PAR

Generally, the construction of CFT with large spectral gap or QECC with high distance is
so difficult a problem that no systematic construction has been found. However as in the
above discussion, codes with high distance might be related to boolean functions with low
PARI,H,N . For instance, Danielsen [7] studied nested clique graphs and found some nested
clique graphs of length ≤ 30 can construct codes with high distance, some of which have
optimal distance. They are motivated in [17], which considered how to make PARI,H,N

lower. In this subsection, similarly to APC distance, we will show the connection between
EPC distance and PAR with respect to certain discrete Fourier transformations. Then we
also extend examples of nested clique graphs in [7] to larger lengths with high distances.

First, extending Theorem 3.1 to the transformations in {I,H}n, one finds

Theorem 4.2. For a boolean function f(x), the fixed-extended autocorrelation function
satisfies

v(a, µ, k) =
∑
u∈Vµ̄

|Pu,k,µ|2(−1)u·a. (4.4)

where a � µ̄, k � µ and
Pu,k,µ =

∑
x∈k+Vµ̄

(−1)f(x)+u·x (4.5)

is the spectrum of a {I,H}n transformation.

This implies that partially the fixed-extended autocorrelation function is Fourier trans-
formation of the spectrum of {I,H}n transformation. Therefore one can write the spectrum
as a Fourier transformation of v(a, µ, k),

|Pu,k,µ|2 =
∑
a�µ̄

v(a, µ, k)(−1)a·u. (4.6)
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This equation sets the upper bound of |Pu,k,µ|2. Let d be the EPC distance of f(x).
Considering the definition of v(a, µ, k) and using the triangle inequality out of the region
where 1 ≤ w(a) ≤ l, 0 ≤ w(µ) ≤ m and l +m < d, one obtains

Corollary 4.1. Each spectrum of PARI,H,N is bounded from above.

|Pu,k,µ|2 ≤ 2n−w(µ)


n−w(µ)∑
i=d−w(µ)

(
n− w(µ)

i

)
+ 1

 . (4.7)

As known in [13], it is self-evident that PARI,H,N ≤ 2n, and this corollary reveals
stricter upper bound. So it is a convincing argument that higher EPC distance is related
to lower PARI,H,N . Then we will construct some examples of the so-called nested clique
graphs with low PARI,H,N in the next subsection.

4.3 Examples of nested clique graphs

According to Parker and Tellambura [17], one can construct boolean functions with lower
PARI,H,N as follows.

Theorem 4.3. ([17]) Let p(x) = p(x0, . . . , xn−1) be a boolean function defined as

p(x) =
L−2∑
j=0

θj(xj)γj(xj) +
L−1∑
j=0

gj(xj) (4.8)

where θj , γj are any permutations Zt2 → Zt2 and

xj = {xπ(tj), xπ(tj+1), . . . , xπ(t(j+1)−1)}, (4.9)

π is a permutation of Zn. Then s = 2−
1
2 (−1)p(x) satisfies PAR(s) ≤ 2t where PAR de-

notes the peak-to-average power ratio with respect to linear unimodular unitary trans-
form (LUUT).9

This theorem can bound PARI,H,N from above because {I,H,N}n transformations are
included in the class of LUUTs. Danielsen [7] investigated whether this construction can
give lower PARI,H,N . At the level of graphs, this construction includes a class of graphs
known as nested clique graphs. Clique graphs are defined at the last of section 4.1, and
a nested clique graph has a nested structure of clique graphs. For instance, if one nests
3-clique graph to 2-clique graph, the result is a graph shown in figure 1.

Here the nested clique graph in this example is denoted [K2[K3]] where Kn means a
clique graph with n vertexes. In the following, we will show several examples of [Kt[Kt]]
where t ∈ Z>0. is a prime. It consists of t blocks of clique graph where every block is a
Kt graph and each block is denoted as K(i)

t for i = 1, 2, . . . , t. So, for an arbitrary pair of
two blocks (K(i)

t ,K(j)
t ), the vertexes of K(i)

t ,K(j)
t are connected in the following way. If one

regards the sets of all edges which connect K(i)
t and K(j)

t as a map from the vertex set of
K

(i)
t to that of K(j)

t , it is bijective. Therefore choosing the bijection σi,j : K(i)
t → K

(j)
t for

9Now we will not introduce the definition of LUUT, but this does not affect later arguments.
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1

2 3

4

5 6

Figure 1. An example of [K2[K3]] graph.

all i 6= j, one gets a nested clique graph. Here the bijection can be regarded as an element
of the permutation group Sn. Then relabeling vertexes, σi,i+1 for i = 1, . . . , t − 1 can be
fixed to be the identity map. Therefore, when constructing a nested clique graph, one has
to choose σi,j for j ≥ i+ 2 and the number of them is 1

2(t− 1)(t− 2).
We introduce a way of construction of a nested clique graph [Kt[Kt]] for a prime number

t ≥ 5. First, label all σi,j for j ≥ i + 2 as σ1, σ2, . . . , σs where s = 1
2(t − 1)(t − 2). The

order of labeling can be taken arbitrarily. Then let k, l,m be integers such that 1 ≤ k ≤ s,
k = lt+m, and 1 ≤ m ≤ t. Then σk is set as

σk =
(

1 2 · · · t
m m+ l · · · m+ (t− 1)l

)
. (4.10)

For example, σ1 is the identity permutation (1 2 · · · t). The condition that t is prime is
needed for (m m+ l · · · m+ (t− 1)) to be a permutation of t. Then the adjacency matrix
is constructed as

B =



1t − I I σ · · · σ2 σ1
I 1t − I I σ · · · σ3

σ> I 1t − I I · · ·
...

...
... I

. . . . . . ...
σ>2

...
... . . . 1t − I I

σ>1 σ>3 · · · · · · I 1t − I


. (4.11)

Here 1t is t× t matrix with all entries 1 and σk denotes t× t matrix with (σk)iσk(i) = 1 and
0 for otherwise. For t = 3, one has to choose one permutation σ1 not to be the identity
permutation, and one gets 9× 9 adjacency matrix

B =



0 1 1 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1
1 1 0 0 0 1 1 0 0
1 0 0 0 1 1 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 1 1 0 0 0 1
0 0 1 1 0 0 0 1 1
1 0 0 0 1 0 1 0 1
0 1 0 0 0 1 1 1 0


(4.12)

for which the associated QECC generated by (I | B) has binary distance db = 4.
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By this construction, we verified that for t = 3, 5, 7, 11 the associated QECC has at
least db = 2t − 2. In fact, we constructed QECCs with n = 9, 25, 49, 121 and their binary
distances are calculated to be db = 4, 8, 12, 21 respectively. For large t, this value is not
so high because db/n → 0 when n(= t2) → ∞. However, db/n decreases as slowly as
1/
√
n. This means that these codes have binary distances as high as the square root of

n. Therefore, if this holds in general, we can construct relatively good codes compared to
already known good codes associated with graphs. Then we have the following conjecture,
which is remained to be proved or disproved.

Conjecture. Let t be an odd prime number. B-form code C constructed by the nested
clique graph with respect to permutations (4.10) has length t2 and binary distance at least
2t− 2.

4.4 PARI,H and independence number

As we have seen, the binary distance of a code is related to PARI,H of the associated
boolean function. So we are motivated to find quadratic boolean functions with lower
PARI,H . On the other hand, Riera and Parker [18] showed that PARI,H is related to the
size of the maximum independent set (i.e. independence number), which is explained in
the following. In this subsection, we examine the relationship between the binary distance
and the independence number of the graph by computing these values for some examples.

First, we explain the definition of the maximum independent set of a graph and the
proposition that relates PARI,H and independence number.

Definition 4.2. Let G = (V,E) is a graph of size n. Then a subset W of V is called an
independent set of G if and only if no two vertexes of W are connected. If |W | denotes
the size of W , the maximum value of |W | for independent sets of G is called indepen-
dence number α(G) of G. The independent set with this maximum value is the maximum
independent set.

For instance, for the graph in figure 1, the vertex set {1, 5} is an independent set of
[K2[K3]] of size two and one finds this is the maximum independent set. Therefore [K2[K3]]
has independence number two. Note that the maximum independent set is not unique. The
vertex set {2, 4} in the above example has size two, so this is also the maximum independent
set. As in the following proposition, Riera and Parker showed that the independence
number deals with PARI,H .

Proposition 4.2. ([18]) Let f(x) =
∑
i<j Bijxixj be a boolean function associated with a

adjacency matrix B = (Bij) of a graph G. Then PARI,H of (−1)f(x) and α(G) is related as

PARI,H = 2α(G). (4.13)

With this proposition, one can evaluate binary distance by measuring α(G) instead of
PARI,H . Now we will observe the tendency

low α(G)↔ high EPC distance.

through several examples of graphs, comparing the binary distance (or Hamming distance)
and independence number.
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Example 1: nested clique graphs. The first example is nested clique graphs [Kt[Kt]]
which we have constructed in the previous section. For these graphs, the independence
number can be easily computed to be t as follows. The independence number α([Kt[Kt]])
is obviously bounded from above α([Kt[Kt]]) ≤ t because for each complete graph K(i)

t no
two vertexes can be disconnected. Then choosing one vertex from each K

(i)
t adequately,

one obtains an independent set of size t, which saturates the bound. Since we have al-
ready established the conjecture about the binary distances of nested clique graphs, we
should check whether the independence number t is low. To check this, we compare the
independence number α([Kt[Kt]]) = t to those of random graphs.

Let α(G(n,m)) be an independence number of a random sparse graph G with m edges
and of size n. Then it is well-known that a non-constructive argument gives

α(G(n,m)) ∼ 2 log dV
dV

n (4.14)

where dV is the vertex degree of G. This means α(G(n,m)) is nearly equal to 2 log dV
dV

n

with high possibility. Note that this approximation can be applied only for sparse graphs,
which is the case for nested clique graphs. In this case, one has n = t2 and dV = 2t − 2.
Assigning these values to the right hand side of eq. (4.14), we see

α(G(n,m)) ∼ t2 log(2t− 2)
t− 1 (4.15)

with high possibility. This is apparently higher than α([Kt[Kt]]) = t and the ratio of those
independence numbers is

α([Kt[Kt]])
α(G(n,m)) ∼ o

( 1
log t

)
(4.16)

for large t. So we take these graphs as examples that have relatively high binary distances
and low independence numbers.

Example 2: circulant graphs. Next we consider circulant graphs, which were investi-
gated by Grassl and Harada [19]. A circulant graph is a graph whose adjacency matrix is
circulant, and a circulant matrix is defined to be of the following form:

r0 r1 · · · rn−2 rn−1
rn−1 r0 · · · rn−3 rn−2
...

... . . . ...
...

r2 r3 · · · r0 r1
r1 r2 · · · rn−1 r0


(4.17)

where r0 = 0 and each ri for i = 1, . . . , n − 1 is zero or one. We list in the table 1 the
codes they discovered and the independence numbers of their corresponding graphs. Here
n and dH are respectively the length and Hamming distance of the code. We also list the
independence number α(G) with adjacency matrix of form (4.17). In order to verify that
these codes have low α(G), we compare these independence numbers to those of many
random graphs as in the table.
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name (n, dH) α(G) (α(G), # of random graphs)
C56 (56,15) 7 (7,180), (8,7773), (9,2011), (10,36)
C57 (57,15) 11 (10,211), (11,6129), (12,3445), (13,208), (14,7)
C58 (58,16) 8 (8,1754), (9,7453), (10,786), (11,7)
C63 (63,16) 8 (10,4), (11,3017), (12,6188), (13,769), (14,21), (15,1)
C67 (67,17) 6 (7,4), (8,5792), (9,4103), (10,100), (11,1)
C70 (70,18) 4 (5,13), (6,8418), (7,1560), (8,9)
C71 (71,18) 9 (9,3530), (10,6133), (11,330), (12,7)
C79 (79,19) 9 (7,436), (8,8816), (9,744), (10,4)
C83 (83,20) 5 (7,2233), (8,7495), (9,271), (10,1)
C87 (87,20) 8 (8,246), (9,8502), (10,1235), (11,17)
C89 (89,21) 8 (9,1976), (10,7561), (11,458), (12,4), (13,1)
C95 (95,20) 7 (8,5207), (9,4704), (10,89)

Table 1. Codes that Grassl and Harada [19] constructed compared to random graphs.

name (n, dH) α(G) (α(G), # of random graphs)
C66 (66,17) 5 (7,25), (8,7254), (9,2661), (10,60)
C78 (78,19) 7 (7,21), (8,7670), (9,2174), (10,35)
C94 (94,21) 8 (9,466), (10,8422), (11,1106), (12,6)

Table 2. Three codes that Harada [20] constructed compared to random graphs.

For each code listed in table 1, we enumerate 10,000 random graphs with the same
length and vertex degree as the corresponding code. Then computing the independence
numbers of all these graphs, we list in the right column pairs of an independence number
and the number of random graphs with the independence number. The result implies
that many of the codes that they constructed have low independence number compared
to random graphs. In particular, for C63, C67, C70, C83, C89, C95, their independence
numbers are lower than the lowest number among corresponding 10,000 random graphs.

Example 3: circulant matrices. In addition to the result above, Harada [20] investi-
gated several graphs whose adjacency matrices are given by pairs of circulant matrices. He
constructed three adjacency matrices combining two circulant matrices A and B as(

A B

B> A

)
, (4.18)

and found corresponding codes have higher distances than the previously known upper
bound as in table 2.

Similarly to Example 2, one finds that these codes have lower independence numbers
than 10,000 random graphs. This example together with Example 2 suggests that low
independence number may be regarded as an index for high distance.
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Example 4: complete graphs. Since the correspondence between high distance and
low PAR is not rigorous, there are some counterexamples with low distances and low
independence numbers. One of them is complete graphs, which is denoted as Kt in this
paper. As in the last of section 4.1, the binary distance and Hamming distance are known
to be four and two, which is low because these values are constant for any length n. On the
other hand, the independence number of a complete graph is one, as all pairs of vertexes
are connected. This independence number is quite lower than random graphs listed in
tables 1, 2.

5 Conclusion

In this paper, we discussed how the binary distance of a quantum code is related to its
boolean function. On the other hand, the binary distance of QECC is proportional to the
spectral gap of the Narain CFT in a favorable condition and is expected to be related to
the spectral gap in general. Therefore, our result can be used when seeking Narain CFTs
with large spectral gaps, replacing the problem by that of getting higher EPC distances.
However in general, making EPC distance higher is very difficult, so we planned to obtain
lower PAR instead of higher EPC distances. According to previous works by Danielsen [7],
high APC distance seems to have a high chance of implying low PAR and vise versa.
Extending this relation to EPC distance, we formulated the upper bound of PARI,H with
its bound depending on the EPC distance.

Moreover, consulting with the work of Parker and Tellambura [17], we constructed
some nested clique graphs of length t2 and confirmed that their binary distances satisfy
db ≥ 2t−2 for t = 3, 5, 7, 11. To prove or disprove that this holds for all t, and to make the
upper bound (4.7) stricter are left to future works. We also tested the correlation between
the high distance and the low independence number comparing the independence number
of graphs with high distance to those of a large number of random graphs. As a result, we
found that many graphs follow the expectation, though some examples do not. Therefore,
we propose the low independence number as a possible index for high distance.

Let us conclude this paper with some comments on the future direction. As we con-
struct some quantum codes with relatively high binary distances, it should be tested how
large spectral gaps the Narain CFTs associated with these codes have. In addition, it is
a remaining problem to construct the holographic duals to the code theories. This paper
will shed light on this problem by proposing the construction of a quantum code with a
high chance of a large binary distance. The physical interpretation of the construction
of Narain CFTs with quantum codes is also to be given. Recently this has been studied
by [21, 22]. Finally, it is a future subject to extend the correspondence between Narain
CFTs and quantum stabilizer codes. In the construction of [2], only GF(4) codes regarded
as codes over F2 are used. Some extensions are given in [9, 23] where the coefficient field
is extended to some finite fields Fp. Using some constructions of good codes over Fp for
p > 2, one may address the problem to obtain a larger spectral gap of Narain CFT.
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A The relation between APC distance and code’s distance

In this appendix, we explain how to identify APC distance with distance of QECC, follow-
ing [7, 10].

As mentioned in section 3.2, operations on stabilized state

E : |ψ〉 7→ E |ψ〉 , |ψ〉 =
∑
α∈Zn2

(−1)f(α) |α1, . . . , αn〉 (A.1)

are identified with transformations on the associated boolean function f(x). In particular,
error operators on |ψ〉 is generated by Pauli operators {I, σx, σy, σz} and each action on
the boolean function can explicitly be written in terms of certain vectors a, b. First we
consider σx operator on |ψ〉. Let E be an operator associated with a vector a = (ai) ∈ Zn2
such that it makes σx act on the i-th qubit if and only if ai = 1 and I for otherwise.

E =
⊗
ai=1

σ(i)
x

⊗
aj=0

I(j). (A.2)

Then the action on f(x) is easily verified to be

f(x) 7→ f(x+ a). (A.3)

This is because σx is bit-flip operator σx |0〉 = |1〉, so performing σx on the i-th qubit means
that the i-th argument of f(x) is flipped as 0↔ 1. Since in Zn2 , the flip 0↔ 1 is equivalent
to the addition +1, f(x) changes to f(x+ a). Then consider σz operators associated with
a vector b = (bi) ∈ Zn2 .

E =
⊗
bi=1

σ(i)
z

⊗
bj=0

I(j). (A.4)

The operator σz has eigenvectors |0〉 , |1〉 whose eigenvalues are 1 and -1 respectively. So
performing σz on the i-th qubit state |αi〉 (α = 0, 1) is equivalent to adding αi to f(x).
Therefore the action of E written in terms of f(x) is of form

f(x) 7→ f(x) + b · x. (A.5)

Combining these two observations, one obtains the action of σy = iσxσz. Thus, the error
operator E is

E =
⊗

ai=1,bi=0
σ(i)
x

⊗
aj=bj=1

σ(j)
y

⊗
ak=0,bk=1

σ(k)
z

⊗
al=bl=0

I(l), (A.6)

and f(x) changes under the action of E as

f(x) 7→ f(x+ a) + b · x. (A.7)
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The distance of QECC is defined as the minimum weight of error operators E (A.6)
such that QECC can detect the error where the weight is the number of indices on which
σx,y,z is performed. Note that the weight is equal to the weight of (a, b) regarded as a
codeword of GF(4) code. Then in order for QECC to detect an error defined by (a, b), it is
necessary and sufficient that the original state |ψ〉 and the error state E |ψ〉 are orthogonal.
Since {|α1 . . . αn〉} is an orthogonal basis, the orthogonality of |ψ〉 and E |ψ〉 is equivalent
to the condition

s · s′ = 0 s = (−1)f(x), s′ = (−1)f(x+a)+b·x. (A.8)

Therefore, the distance of QECC is identical to the minimum value of the weight of the
vector (a, b) such that ∑

x∈Zn2

(−1)f(x)+f(x+a)+b·x 6= 0. (A.9)

Then this is the same form as the definition of APC distance reformulated in [10], which is
equivalent to Definition 3.3. So one can identify APC distance of a boolean function with
the distance of the corresponding QECC.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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