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Abstract

A large majority of approaches have been proposed to lever-
age the dependency tree in the relation classification task.
Recent works have focused on pruning irrelevant informa-
tion from the dependency tree. The state-of-the-art Attention
Guided Graph Convolutional Networks (AGGCNs) trans-
forms the dependency tree into a weighted-graph to distin-
guish the relevance of nodes and edges for relation classifi-
cation. However, in their approach, the graph is fully con-
nected, which destroys the structure information of the origi-
nal dependency tree. How to effectively make use of relevant
information while ignoring irrelevant information from the
dependency trees remains a challenge in the relation classi-
fication task. In this work, we learn to transform the depen-
dency tree into a weighted graph by considering the syntax
dependencies of the connected nodes and persisting the struc-
ture of the original dependency tree. We refer to this graph
as a syntax-transport graph. We further propose a learnable
syntax-transport attention graph convolutional network (LST-
AGCN) which operates on the syntax-transport graph directly
to distill the final representation which is sufficient for clas-
sification. Experiments on Semeval-2010 Task 8 and Tacred
show our approach outperforms previous methods.

Introduction

Relation classification aims to classify the semantic relations
between two entities in a sentence. For instance, given a sen-
tence “My apartment has a pretty large kitchen.” and two
entities apartment and kitchen, the goal is to classify the
relation of the two entities into a Component-Whole cat-
egory, denoted as Component-Whole(kitchen, apartment) .
Relation classification plays a vital role in a variety of down-
stream natural language processing task including knowl-
edge extraction from unstructured texts and question an-
swering.

With the aim to address the classification task, several
methods have been developed. The sequence-based meth-
ods only take word sequence as input (Zeng et al. 2014;
Zhang et al. 2015) and attention mechanism is applied to dis-
till relevant information for classification (Zhou et al. 2016;
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(a) The man used a support pillow to remedy the pain caused
by stresses.

(b) Amateur video shows some of the devastation caused by
the tsunami waves.

(c) Work was completed by contractors using a temporary
entrance off old Renwick road.

(d) Analysts assess distribution and changes in distribution
over time by using frequency.

Table 1: Four sentences with entities in bold.

Shen and Huang 2016; Zhang et al. 2017; Lee, Seo, and Choi
2019). However, conventional attention mechanism on se-
quence of words ignores the grammar structure information
of the sentence.

So far, a variety of methods have been proposed to lever-
age dependency grammar information in this task (Miwa
and Bansal 2016; Yang et al. 2016; Zhang, Qi, and Manning
2018; Guo, Zhang, and Lu 2019). In particular, the shortest
dependency path (SDP) between the two entities in the de-
pendency tree of the given sentence is believed to convey in-
formative clues of target relation (Xu et al. 2015). However,
some significant nodes might not be included in the SDP
and be omitted (Liu et al. 2015). For example, the prepo-
sition is commonly excluded from SDP while it generally
indicates the subject-predicate relationship between the con-
sidered entities.

Recent works have focused on pruning irrelevant informa-
tion from the dependency tree. The C-GCN (Zhang, Qi, and
Manning 2018) obtain a pruned tree by including tokens that
are up to distance K away from the dependency path in the
lowest common ancestor (LCA) subtree. However, the dis-
tance K is predefined and fixed. Such a rule-based pruning
strategy is not general for most cases.

The state-of-the-art C-AGGCN (Guo, Zhang, and Lu
2019) exploits self-attention to transform the dependency
tree into a fully connected weighted graph. However, as all
the nodes are connected, the new introduced connections
damage the dependency relationship between words pre-
served in the tree structure. How to effectively make use of
relevant information while ignoring irrelevant information
from the dependency trees remains a challenge in this task.

Generally, we claim that it is necessary to model the de-
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Figure 1: The substructures of three dependency trees.
The entity relations of these three instances are Cause-
Effect(e2,e1), Instrument-Agency(e2,e1) and Instrument-
Agency(e2,e1). The two entities e1 and e2 are marked in blue
and green separately. The most relevant nodes and edges for
the relation classification task are marked in red.

pendency structure explicitly. One reason is that there may
exist multiple entity pairs in one sentence. For example,
consider the sentence (a) in Table 1. The target relations
include Instrument-Agency(support pillow,man) and Cause-
Effect(stresses,pain). If the dependency structure is not ex-
plicitly modeled, the representation acquired by merely
modeling the word sequence of sentences may be a mixture
containing the feature of both relations. This mixed repre-
sentation may provide confusing clues for relation classifi-
cation.

Besides, the same grammar structure has relatively dif-
ferent importance in a different context. Consider the sen-
tence (b) and sentence (c) shown in Table 1, their cor-
responding dependency trees are shown in Figure 1. The
word node by and dependency edge case indicate the
subject-predicate relation between two entities waves and
devastation, which is significant for the prediction of the
Cause-Effect(waves,devastation) relation in the first depen-
dency tree. However, the same node and edge are rel-
atively irrelevant for the prediction of the Instrument-
Agency(entrance,contractors) relation in the second depen-
dency tree.

It is also worth mentioning that the dependencies between
words in some cases are more important than the words
themselves for relation classification. Consider the sentence
(d) in Table 1. Replacing the word assess with another predi-
cate will not change the Instrument-Agency relation between
the two entities analysts and frequency. However, the depen-
dency nsubj indicates the subject component of entity ana-
lysts and the dependency advcl indicates the adverbial com-
ponent of the verb-object phrase containing entity frequency.
As the syntactic component pair (object in adverbial com-
ponent, subject) is highly consistent with the syntactic com-
ponent pair of Instrument and Agency, these dependencies
specifying the syntactic component pair is critical for the
prediction of target relation. Based on this observation, the
recent dependency tree-based approaches (Zhang, Qi, and
Manning 2018; Guo, Zhang, and Lu 2019) without taking
the dependency relation into consideration may not suffi-
ciently capture the precise semantic information.

Based on these observations and issues discussed above,

we are inspired to develop a general model which can dis-
tinguish the importance of the nodes (words) and edges (de-
pendencies) and model information transport between con-
nected nodes in the dependency tree automatically. In this
paper, we propose a novel method to transform the depen-
dency tree into a weighted graph which we refer to as a
syntax-transport graph. The syntax-transport graph models
the importance of nodes and edges by assigning a particu-
lar weight to all nodes and edges. To model the information
transport of nodes in the syntax-transport graph, we further
propose a multi-layer convolutional network which can op-
erate on the syntax-transport graph directly. In the proposed
model, the information of nodes is strictly guided by the
syntax-transport graph. The information transport is biased
to edges with large weights, and is restricted to edges with
small weights. After all, this information transport is a strat-
egy for composing information of nodes. Thus, each node
in the syntax-transport graph is enhanced by composing the
information from other nodes along the edges. Finally, we
exploit a max-pooling on all nodes to distill a representation
which potentially aggregates all the relevant information for
relation classification.

The contribution of this paper is summarized as follow:

• We proposed a syntax-transport graph to distinguish the
importance of nodes and edges in the dependency tree.

• We further introduced the LST-AGCN operating directly
on the syntax-transport graph to model the information
transport of nodes in the syntax-transport graph.

• The empirical study on Semeval-2010 Task 8 and Tacred
confirmed the effectiveness of the proposed model.

Related Work

In earlier relation extraction studies, researchers focused on
leveraging various kinds of linguistic features and manually
designed feature in the task. However, all the feature-based
methods depend strongly on the quality of designed features
from a pre-processing step.

Most recent works have focused on leveraging neural net-
works in this task. The existing approaches can be cate-
gorized into two classes: sequence-based and dependency-
based. The sequence-based models only make use of the
sequence of the words. (Zeng et al. 2014) first exploits a
convolutional neural network with manual designed features
to encode relations. (Zhang et al. 2015) propose a bidirec-
tional long short-term memory network (BLSTM) to model
the sentence with complete, sequential information about
all words. (Zhou et al. 2016) and (Shen and Huang 2016)
proposed to leverage attention mechanism over RNN and
CNN based models for this task. Apart from only using
words sequence, the dependency-based models attempt to
integrate the dependency tree into models. The dependency-
based models have been shown to improve the performance
by capturing long-distance relations. Specifically, the short-
est dependency path (SDP) between entities in the depen-
dency is believed to convey informative clues for target rela-
tion. (Xu et al. 2015) apply a LSTM over the SDP between
entities. (Cai, Zhang, and Wang 2016) proposed a recurrent
convolutional neural network to encode the global pattern in
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SDP using a two-channel LSTM, and employ a CNN to cap-
ture the local features of every two neighbor words linked by
a dependency relation.

However, the shortest dependency path may omit some
important information about relations. Recent works have
focused on pruning irrelevant information from the depen-
dency tree. (Miwa and Bansal 2016) reduces the full tree
to the subtree below the lowest common ancestor (LCA) of
the entities. (Zhang, Qi, and Manning 2018) apply a graph
convolutional networks (GCNs) (Kipf and Welling 2017) to
model over a pruned tree. This tree includes tokens that are
up to distance K away from the dependency path in the LCA
subtree. However, the pruning strategies in their approaches
is predefined and fixed. Such a rule-based pruning strategy
is not general for most cases. (Guo, Zhang, and Lu 2019)
employs a self-attention mechanism to transform the depen-
dency tree into a fully connected weighted graph. The At-
tention Guided Graph Convolutional Networks (AGGCNs)
is further proposed to operate on the graph to model the re-
lations between entities. As all nodes are connected in their
graph, the newly introduced edges may damage the structure
of the dependency tree. How to effectively remove the irrel-
evant information from the dependency tree still remains a
challenge in this task.

Problem Statement

In this section, we formally describe the relation classifica-
tion problem. For a given sentence s = {w1, w2, · · · , wn}
with n words, entity e = {wp+1, wp+2, · · · , wp+ne

} is a
word phrase contained in s given by starting position index
p and ending position index p + ne, where ne is the word
length of entity e. Given two entities e1 and e2 of sentence
s, the relation classification problem is to predict their rela-
tion t(e1, e2) ∈ T, where T = {t1, · · · , tm} is the set of all
m different types of entity relation. Note that t(e1, e2) and
t(e2, e1) commonly belong to two different relations.

Model

In this section, we gradually describe the proposed model.
Firstly, we describe the framework of the syntax-transport
GCN (ST-GCN). Nextly, we introduce the learnable syntax-
transport GCN (LST-GCN). Then, we present the learnable
syntax-transport attention GCN (LST-AGCN). Finally, we
show the overall model for relation classification.

Syntax-transport GCN

The overview of ST-GCN is shown in Figure 2. The model
directly operates over the dependency tree of a sentence.
Generally, the dependency tree can be equivalently inter-
preted as a directed self-loop graph G, where nodes repre-
sent words in the sentence, and edges represent syntactic de-
pendency paths between words in the dependency tree. And
the graph G can be represented as an n× n adjacent matrix
A, where n denotes the length of the sentence, with entities
Aij signaling if node i is connected to node j by a single
dependency path in G. Specifically, Aij = 1 if node i is
connected to node j, and Aij = 0 otherwise.

GCN GCN GCN∗ + + +

AD AT AT AT

A

maxpooling
H(0)

H(0)

H(1)Ĥ(1)

H(1)

H(2)Ĥ(2)

H(2)

H(3)Ĥ(3) γ(3)
X

Figure 2: Overview of ST-GCN.

In this model, we represent the dependency tree using a
weighted graph referred to as the syntax-transport graph.
The syntax-transport graph describes the information trans-
port among nodes in the dependency tree. Nodes and edges
are given particular weights in this graph. In this way, the
corresponding A representing this graph is not a binary ma-
trix. Each entry Aij is taken from [0, 1] representing the per-
centage of information transported from node j to node i.
Specifically, the diagonal element Aii represents the impor-
tance of node i in the dependency tree, in other words, the
percentage of information to be reserved in node i.

Given the matrix A, together with node embeddings X =
{x1, x2, . . . , xn}, a GCN (Kipf and Welling 2017) can be
operated directly on this graph to model the information
transport of nodes. In a single layer GCN, nodes only get
the information from their first-order neighborhood. For the
K layer GCN, nodes get information from up to the K-th
order neighborhood. At the k-th convolution layer of GCN,

the embedding h
(k)
i of a single node i updates as follows:

h
(k)
i = φ

⎛

⎝

n
∑

j=1

ciAij

(

W (k)h
(k−1)
j + b(k)

)

⎞

⎠ , (1)

where k = 1, 2, ...,K,h
(k)
j is the embedding of node j at the

kth layer, h
(0)
j = xj , b(k) is a bias term, W (k) is a weight

matrix. ci is a normalization constant, which we choose as
ci = 1/

∑n

j=1 Aij . φ(·) denotes the ReLU activation func-

tion.
Roughly speaking, the ST-GCN is a multi-layer soft-

gating GCN over the dependency graph. One challenge of
the soft-gating mechanism in practice is that since Aii < 1,
the new node representations tend to become smaller as the
layers deepen, especially when the nodes of the dependency
tree have only one or two children. Besides, it is natural
to consider the importance and the transport of node sep-
arably. To handle this problem, we weigh the importance
of the node only once and gradually integrate its neighbor
(i.e. children) information through multi GCN layers. Let
AD = diag(A) be the diagonal matrix with diagonal ele-
ments same with A. AT = A − AD be the adjacent matrix

for the GCN. Formally, H(k), the output of the k-th GCN
layer is computed as follows:

H(0) = ADX (2)

Ĥ(k) = σ(ATH
(k−1)W (k)) (3)

H(k) = H(k−1) + Ĥ(k), k = 1, 2, ...,K (4)

where W (k) is the parameter in the k-th GCN layer, K is the
number of layers.
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After Eq. (2), nodes with large weights are reserved while
nodes with small weights are removed. The residual nodes
are informative for the classification task. In particular, the
GCN can be visualized as an information propagation net-
work which transforms and propagates information along
the edges of the graph to update the node embeddings.

To the end of multi-layer GCN, a max-pooling operation

is performed on the output of the last GCN layer H(K) to
distill a representation that has potentially aggregated all the
information of the nodes sufficient for classification.

γ(K) = max-pooling(H(K)) (5)

Learnable Syntax-transport GCN

Recall that the adjacency matrix A is assumed to be given
above. In this section, we describe the computation of A
which now we refer to as the transporting matrix. Due to
the fact that the transporting matrix A is learnable, we refer
to this model as the learnable syntax-transport GCN (LST-
GCN).

The LST-GCN models over the sentence dependency tree,
which is directed and acyclic. In this tree, the verb word is
often taken to be the structural center (the root of the tree)
and other words are either directly or indirectly connected
to the root. Considering two words wi, wj and their depen-

dency relation rij , denoted as wi

rij
−−→ wj , wi is the father

node of wj . wj is also called the dependent connected to its
head wi in terms of the dependency rij .

In the LST-GCN, we propagate all the dependents’ in-
formation to its head along their syntax dependencies and
choose a node that has potentially aggregated all the relevant
information for relation classification. Therefore, we train a
learnable syntax-transport graph which is represented by the
transporting matrix A. Recall that Aij implies how much in-
formation of node j will be transported to node i. It should
relate to the two words wi, wj and the dependency relation
rij . Considering that wi, wj and rij are only the local de-
pendency features of node j, it may be insufficient to de-
termine the information transport from node j to node i. So
we introduce the contextual feature of node j as a supple-
ment to computing Aij . For all the dependency relations,
P = {p1, p2, ..., pl} is their embedding matrix, where pi
is the vector representation of the i-th dependency relation.
P is randomly initialized and updated together with other
model parameters. The embeddings of words are denoted as
E = {e1, e2, ..., eN}.

We model Aij by word embeddings ei, ej , dependency
relation embedding prij , and the dependent node embedding
oj which is a BiLSTM embedding for node j.

Aij = σ(wT
e (whei +Wdej +Wpprij ) + wT

o oj) (6)

where WA = {wh,Wd,Wp, we, wo} are trainable model
parameters and sigmoid activation function σ is used. In this
way, Aij will be assigned to a real value taken from [0, 1]
when there is a directed link from i to j in the dependency
tree, otherwise it will be zero.

Recall that the diagonal element Aii of the transporting
matrix in GCN implies how much the information of node
i should be retained to its new representation. To unifying

the calculation of A, we introduce a special “self-loop de-

pendency relation” rl, and add the dependency wi
rl−→ wi

to all nodes in the dependency tree. Thus, all the diagonal
elements of A are also learned according to Eq. (6).

Learnable Syntax-transport Attention GCN

Another challenge in the multi-layer model is to determine
the number of layers K. Theoretically, if the transporting
matrix A is given, we can easily choose the optimal K ac-
cording to A. However, the transporting matrix A is learn-
able in our model. It is impossible to choose a fixed K opti-
mal to the transporting matrix A which is varying during the
training process. In addition, a fixed K is not optimal for all
the instances in the dataset.

Taking these issues into account, we exploit a max
pooling-operation on the output of each GCN layer:

γ(k) = max-pooling(H(k)), k = 1, 2, ...,K (7)

Then, we adopt attention mechanism to soft-choose all

representations H = {γ(1), · · · , γ(K)} output from all the
layers. The weighted combination of all the K layers is then
the final representation of a sentence s for relation classifi-
cation.

vs = softmax((Hwh)
T )H (8)

where wh is the attention parameters to be trained. We refer
to this model as a learnable syntax-transport attention GCN
model (LST-AGCN). Overview of LST-AGCN is shown in
Figure 3.

GCN GCN GCN∗ + + +

AD AT AT AT

A

max-pooling max-pooling max-pooling

attention

H(0)

H(0)

H(1)Ĥ(1)

H(1)

H(2)Ĥ(2)

H(2)

H(3)Ĥ(3)

γ(1) γ(2) γ(3)

vs

X

Figure 3: Overview of LST-AGCN.

Overall Model for Relation Classification

In this LST-AGCN model, each node in the dependency tree
is encoded into a high dimensional embedding. For a given
sentence s = {w1, w2, · · · , wn} with n words, we perform
a lookup in the embedding matrix to obtain the vector repre-
sentation E = {e1, e2, · · · , eN} of words. The embedding
matrix is the vector representation of all words in the dictio-
nary. We use the pre-trained GloVe embeddings (Penning-
ton, Socher, and Manning 2014) and update it together with
the other model parameters. Besides, special position sym-
bols are used to mark the entities in the sentence. We add
the “position symbols” to the word dictionary and randomly
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initialize their embeddings. To further encode the contextual
information into word embeddings, we exploit a BiLSTM
on E. For each word embedding ei, the BiLSTM returns
a forward representation −→xi and a backward representation
←−xi . The concatenation xi = [−→xi ,

←−xi ] is our final node em-
beddings, namely X = {xi}|

n
i=0.

Finally, we use a softmax classifier to predict label ŷs
for the sentence s, and for all the sentence s and the tar-
get relation label t̂s, we minimize the cross-entropy loss be-
tween the true relation label distribution and the predicted
label distribution over all the model parameters including
word embedding matrix, dependency relation embedding
matrix P , weight parameters WA, GCN weight parameters

W (1), · · · ,W (K), attention weight parameters wh and pre-
dictive possibility weight parameter Wc.

ys = softmax(vsWc + bc) (9)

L =
∑

s

(

−
1

m

m
∑

i=1

tis log(y
i
s)

)

(10)

where ts ∈ R
m is the one-hot represented ground truth,

yis ∈ R is the estimated probability for the ith class, m is
the number of target classes.

Experiment

In this section, we conduct experiments to validate our
model on benchmark datasets. Specifically, we perform ex-
periments on the Semeval-2010 Task 8 (Hendrickx et al.
2010) (Semeval) and the Tacred (Zhang et al. 2017) datasets.
For Semeval, we use the macro-averaged F1 score, which is
officially used as the evaluation metric. For Tacred, we use
the micro-averaged F1 score, which is the main evaluation
metric used on the dataset. We summarize the statistics of
the datasets in Table 2.

Dataset Train Dev Test

Semeval 7200 800 2717
Tacred 68124 22631 15509

Table 2: Distribution of splits on benchmark datasets.

Implementation and Parameter Settings

We exploit 300-dimensional Glove vectors (Pennington,
Socher, and Manning 2014) for the word embeddings, as
well as a 30-dimensional part-of-speech (POS) embeddings,
30-dimensional named entity recognition (NER) embed-
dings, and 30-dimensional dependency relation (DEP) em-
beddings. We concatenate both word, POS and NER embed-
dings, and learn a 300-dimensional BiLSTM embeddings
for each word. We randomly dropout 10% of neurons in the
first GCN layer, and 10% of neurons in the input layer. Our
model is trained for 100 epochs with batch size 50. We use
the SGD optimizer with an initial learning rate of 0.7 for all
datasets. The sentences in Semeval-2010 Task 8 are parsed
by the Stanford parser 1.

1https://stanfordnlp.github.io/CoreNLP/

Performance Comparison

We now show the results on Semeval and Tacred dataset. As
a baseline, we include the SVM classifier (SVM) (Rink and
Harabagiu 2010), Shortest path LSTM (SDP-LSTM) (Xu et
al. 2015), tree structural neural network (SPTree) (Miwa and
Bansal 2016), Position Aware LSTM (PA-LSTM) (Zhang
et al. 2017). We mainly compare our model with C-
GCN (Zhang, Qi, and Manning 2018) and C-AGGCN (Guo,
Zhang, and Lu 2019). Both models exploit GCN to operate
on the pruned dependency trees. All the results of the base-
line models are taken from (Guo, Zhang, and Lu 2019). For
evaluating the effectiveness of our proposed model, we also
show the results of ST-GCN and LST-GCN. Note that in the
ST-GCN model, we use the binary adjacent matrix as the
transporting matrix A and a 3 layer GCN is employed.

Model F1

SVM (Rink and Harabagiu 2010) 82.2
SDP-LSTM (Xu et al. 2015) 83.7

SPTree (Miwa and Bansal 2016) 84.4
PA-LSTM (Zhang et al. 2017) 82.7

C-GCN (Zhang, Qi, and Manning 2018) 84.8
C-AGGCN (Guo, Zhang, and Lu 2019) 85.7

ST-GCN 85.0
LST-GCN (K = 1) 84.7
LST-GCN (K = 2) 84.9
LST-GCN (K = 3) 85.5
LST-GCN (K = 4) 85.0

LST-AGCN (K = 3) 86.0

Table 3: Performance comparison of different models on the
Semeval-2010 Task 8 dataset. The best performance is bold-
typed. K represents the number of GCN layers.

Model Evaluation on Semeval. Table 3 shows the perfor-
mances from various baseline models. It can be seen that
LST-AGCN (K = 3) outperforms all previous models.
Specifically, both our model LST-AGCN and C-AGGCN
significantly surpasses C-GCN, revealing the superiority
of ‘soft pruning’ methods over the ‘hard-rule pruning’
methods. Even with simple architectures, we find that ST-
GCN has outperformed most of the baseline models and
shows competitive performance with the state-of-the-art C-
AGGCN. By making the transporting matrix A learnable,
the LST-GCN (K = 3) has only a degradation of 0.2 com-
pared to C-AGGCN. LST-AGCN (K = 3) which exploits an
attention mechanism achieves a performance improvement
of 0.3 over C-AGGCN.
Model Evaluation on Tacred. We also conduct experi-
ments on Tacred dataset. We compare our proposed methods
with the baseline methods and present the results in table 4.
It can be observed that our proposed method LST-GCN for
K = 1, 2, 3 significantly outperforms the baseline methods,
except the reported result of C-AGGCN. However, we re-
turned to the source code provided by (Guo, Zhang, and Lu
2019) to reproduce the result reported for C-AGGCN. The
best result we could obtain was 67.7. (Guo, Zhang, and Lu
2019) have claimed to revise the results in their paper, pub-
lishing a stable result of about 68.2 for C-AGGCN. We find
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that our model LST-AGCN with K = 2 shows competitive
performance with C-AGGCN.

Result Discussion For the LST-GCN model, it can be noted
that the macro-F1 and micro-F1 performance increases with
increasing GCN layers in both Semeval and Tacred respec-
tively. However, we find out the model encounters a perfor-
mance degradation after a number of layers. As elaborated
in the model section, we cannot predetermine a fixed K opti-
mal to the learnable transporting matrix A. A fixed K might
not be optimal for all instances as well. For the performance
deterioration after a number of layers, a possible explanation
is that deep GCNs operating on shallow dependency trees
tend to over-smooth node representations, making node rep-
resentations indistinguishable and thereby hurting the model
performance (Li, Han, and Wu 2018). We conduct experi-
ments to further study this behavior. To deal with the lim-
itation of LST-GCN, the LST-AGCN has been proposed to
soft-choose all representations output from all GCN layers.
We find that LST-AGCN achieves a performance improve-
ment of 0.5 for K = 3 on the Semeval and a performance
improvement of 0.2 on the Tacred. Notice that choosing K
for LST-AGCN results in a trade-off between the avoidance
of node smoothening and soft-choosing rich representations.
Thus, care must be taken when choosing K for LST-AGCN.

Model F1

LR (Zhang et al. 2017) 59.4
SDP-LSTM (Xu et al. 2015) 58.7

Tree-LSTM (Tai, Socher, and Manning 2015) 62.4
PA-LSTM (Zhang et al. 2017) 65.1

C-GCN (Zhang, Qi, and Manning 2018) 66.4
C-AGGCN (Guo, Zhang, and Lu 2019) 69.0 (67.7*)

ST-GCN 67.2
LST-GCN (K = 1) 68.3
LST-GCN (K = 2) 68.6
LST-GCN (K = 3) 66.6
LST-GCN (K = 4) 65.9

LST-AGCN (K = 2) 68.8

Table 4: Performance comparison of different models on the
Tacred dataset. The best performance is in bold. K repre-
sents the number of GCN layers. “*” marks the best result
produced from rerunning the published source code.

Ablation Study

To examine the contributions of the main model compo-
nents, we conduct ablation experiments on the Semeval and
Tacred datasets. We focus on the LST-AGCN with 3 GCN
layers for Semeval and 2 GCN layer for Tacred. Table 5
shows the results of our experiments. The ablated models are
characterized by (1) LST-AGCN

−AD
: a LST-AGCN with

AD set to the identity matrix, ensuring equal importance
on all nodes, (2) LST-AGCN

−AT
: a LST-AGCN with AT

set to the binary adjacency matrix, ensuring node informa-
tion is propagated equally, (3) LST-AGCN

−Attention: a LST-
AGCN which has been reduced to a LST-GCN (4) LST-
AGCN

−GCN: a LST-AGCN which does not utilize the GCN
but simply performs a max-pooling operation on the BiL-
STM embeddings of the nodes to distill a representation.

Model Semeval Tacred

LST-AGCN 86.0 68.8
LST-AGCN

−AD
84.7 66.7

LST-AGCN
−AT

84.9 67.8
LST-AGCN

−Attention 85.5 68.6
LST-AGCN

−GCN 84.6 57.1

Table 5: Performance of different ablation models of LST-
AGCN.

We find that the performance of LST-AGCN deterio-
rates as we remove critical components. Specifically, LST-
AGCN

−AD
underperforms relative to LST-AGCN, suggest-

ing that the importance of nodes must be modeled for per-
formance improvement. We also find that LST-AGCN

−AT

underperforms relative to LST-AGCN, giving an indica-
tion on the fact that information being propagated from
a node to the K-th neighbor nodes must be weighed
based on the importance of nodes. LST-AGCN outper-
forms LST-AGCN

−Attention (LST-GCN model), which is
expected from our explanation earlier. We also find that LST-
AGCN significantly outperforms LST-AGCN

−GCN. The re-
sults suggest that GCNs improve BiLSTM embeddings.
Moreover, in Tacred which has lots of lengthy sentences
with multiple entity pairs, we find that the performance sig-
nificantly drops. It seems that the GCN is efficient to model
the dependency structure of a sentence to properly distin-
guish multiple entity relations.

Case Study

In this section, we present a visualization of the behavior of
LST-AGCN on three instances chosen from Table 1, with the
aim to validate our motivation provided in the introduction
section. We wish to examine whether LST-AGCN indeed as-
signs high weights to important words and structures in the
transporting matrix A through a per instance inspection. The
visualization result is shown in Figure 4.

In Figure 4, we find that for the instance containing the
two entity pairs (man,support pillow) and (pain,stresses),
LST-AGCN is able to distinguish the relevant substructures
according to the given entity pair. This is seen by the high
weights assigned to word pairs in the transporting matrix or
the highlighted edges.

Consider the second instance with entity pair (en-
trance,contractors) and third instance with entity pair (fre-
quency,Analysts). We find that in the second instance, the
node by is significant to indicate the subject-predicate rela-
tion between the two entities. However, in the third instance,
by is relatively irrelevant with the classification of the tar-
get relation Instrument-Agency(entrance,contractors). LST-
AGCN is able to identify the relevance of the word by in
terms of the context to properly learn the correct relational
features. We see this by the high weight it assigns to the
third instance and the low weight on the second instance in
the transporting matrix.
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Figure 4: Visualization of the transporting matrix A in LST-AGCN. The highlighted (Aij > 0.5) nodes together with the
highlighted edges are defined as the relevant substructure. The first two instances are chosen from a single sentence. The
relevant substructures are marked in red and blue respectively. The last two instances are chosen from different sentences. The
entity relation of these four instances are Instrument-Agency(support pillow, man), Cause-Effect(stresses,pain), Instrument-
Agency(entrance,contractors) and Instrument-Agency(frequency,Analysts).

Depth(Prop) Depth(Prop) Depth(Prop) Depth(Prop) Depth(Prop)

Model 2(14.28%) 3(24.9%) 4(25.36%) 5(18.66%) 6(9.31%)

LST-GCN (K = 1) 6.19% 11.82% 11.03% 9.66% 8.30%
LST-GCN (K = 2) 6.44% 11.67% 11.90% 9.27% 8.70%
LST-GCN (K = 3) 6.96% 12.41% 11.03% 9.27% 7.51%

LST-AGCN (K = 3) 6.44% 11.08% 11.47% 8.88% 7.51%

Table 6: Error rate of LST-GCN and LST-AGCN on instances with different dependency tree depth, the “Other” relation is
excluded. “Prop” denotes the proportion of total instances having a particular depth.

The Impact of Attention Mechanism in LST-AGCN

As discussed above, we speculate that a fixed K for the GCN
layer LST-GCN is not optimal for most cases, and a rela-
tively large K hurts performance. Here, we present experi-
mental results to buttress this claim and show that the atten-
tion mechanism of LST-AGCN solves the problem. Experi-
mental results are shown in Table 6. The results indicate that
LST-GCN is sensitive to K and the depth of dependency
trees. Specifically, LST-GCN shows increasing error rates
for increasing K on shallow dependency trees. Also, LST-
GCN shows decreasing error rates for increasing K on deep
dependency trees. This is due to the over-smoothing prob-
lem of deep GCNs and the fact that the transporting ma-
trix is learnable as explained earlier. Hence, an optimal K
cannot be chosen for LST-GCN. However, LST-AGCN can
improve upon the performance through soft-choosing repre-
sentations distilled by LST-GCN layers. We find that LST-
AGCN achieves low error rates for different depths of the
dependency tree. The result confirms our claim and show the
effectiveness of the attention mechanism exploited in LST-
AGCN.

Conclusion

Relation classification is a basic block of natural language
processing tasks. While most recent work leverage depen-
dency grammar information of sentences, the effect of the
tree structure and the dependency relations in the depen-

dency tree is not fully explored. In this paper, we proposed
a learnable attention graph convolutional network over the
syntax-transport graph (LST-AGCN) for relation classifica-
tion. In this model, both the word features and syntax rela-
tion information are transported and aggregated according
to the grammar structure. And with attention mechanism,
different levels of propagation are softly mixed in the fi-
nal representation for the classification task. Experimental
results on public dataset Semeval-2010 and Tacerd verified
the effectiveness of our proposed approach and showed that
it outperforms the state-of-the-art in terms of classification
accuracy. As our work depends on the dependency tree, the
quality of the parsing result may affect the performance of
our model. In the future, we will further study the behavior
of our model with different parsing tools.
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