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Abstract— Multilabel classification plays a momentous role in
perceiving intricate contents of an aerial image and triggers
several related studies over the last years. However, most of them
deploy few efforts in exploiting label relations, while such depen-
dencies are crucial for making accurate predictions. Although
an long short term memory (LSTM) layer can be introduced
to modeling such label dependencies in a chain propagation
manner, the efficiency might be questioned when certain labels
are improperly inferred. To address this, we propose a novel
aerial image multilabel classification network, attention-aware
label relational reasoning network. Particularly, our network
consists of three elemental modules: 1) a label-wise feature
parcel learning module; 2) an attentional region extraction
module; and 3) a label relational inference module. To be more
specific, the label-wise feature parcel learning module is designed
for extracting high-level label-specific features. The attentional
region extraction module aims at localizing discriminative regions
in these features without region proposal generation, yielding
attentional label-specific features. The label relational inference
module finally predicts label existences using label relations
reasoned from outputs of the previous module. The proposed
network is characterized by its capacities of extracting discrim-
inative label-wise features and reasoning about label relations
naturally and interpretably. In our experiments, we evaluate the
proposed model on two multilabel aerial image data sets, of which
one is newly produced. Quantitative and qualitative results on
these two data sets demonstrate the effectiveness of our model.
To facilitate progress in the multilabel aerial image classification,
our produced data set will be made publicly available.

Index Terms— Attentional region extraction, convolutional
neural network (CNN), high-resolution aerial image, label rela-
tional reasoning, multilabel classification.
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I. INTRODUCTION

R
ECENT advancements of remote sensing techniques

have boosted the volume of attainable high-resolution

aerial images, and massive amounts of applications, such as

urban cartography [1]–[4], traffic monitoring [5]–[7], terrain

surface analysis [8]–[11], and ecological scrutiny [12], [13],

have benefited from these developments. For this reason,

the aerial image classification has become one of the fun-

damental visual tasks in the remote sensing community and

has drawn a plethora of research interests [14]–[21]. The

classification of aerial images refers to assigning these images

with specific labels according to their semantic contents, and

a common hypothesis shared by many relevant studies is that

an image should be labeled with only one semantic category,

such as scene categories (see Fig. 1). Although such image-

level labels [22], [23] are capable of delineating images from

a macroscopic perspective, it is infeasible for them to provide

a comprehensive view of objects in aerial images. To tackle

this, huge quantities of algorithms have been proposed to

identify each pixel in an image [24]–[26] or localize objects

with bounding boxes [27]–[29]. However, the acquisition of

requisite groundtruths (i.e., pixel-wise annotations and bound-

ing boxes) demands enormous expertise and human labor,

which makes relevant data sets expensive and difficult to

access. With this intention, multilabel image classification now

attracts increasing attention in the remote sensing community

[30]–[34] owing to that 1) a comprehensive picture of aerial

image contents can be drawn and 2) data sets required in this

task are not expensive (only image-level labels are needed).

Fig. 1 illustrates the difference between image-level scene

labels and object labels. As shown in Fig. 1, although these

four images are assigned with the same scene label, their

multiple object labels vary a lot. It is worth noting that the

identification of some objects can actually offer important cues

to understand a scene more deeply. For example, the existence

of building and pavement indicates a high probability that

rivers in Fig. 1(c) and (d) are very close to areas with

frequent human activities, while rivers in Fig. 1(a) and (b)

are more likely in the wild due to the absence of human

activity cues. In contrast, simply recognizing scene labels can

hardly provide such information. Therefore, in this article,

we dedicate our efforts to explore an effective model for the

multilabel classification of aerial images.
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Fig. 1. Example aerial images of scene river and objects present in them.
(a) Bare soil, grass, tree, and water. (b) Water, bare soil, and tree. (c) Water,
building, grass, car, tree, pavement, and bare soil. (d) Water, building, grass,
bare soil, tree, and sand.

A. Challenges of Identifying Multiple Labels

In identifying multiple labels of an aerial image, two main

challenges need to be faced with. One is how to extract seman-

tic feature representations from raw images. This is crucial but

difficult especially for high-resolution aerial images, as they

always contain complicated spatial contextual information.

Conventional approaches mainly resort to manually crafted

features and semantic models [22], [35]–[38], while these

methods cannot effectively extract high-level semantics and

lead to a limited performance in classification [23]. Hence an

efficient high-level feature extractor is desirable.

The other challenge is how to take full advantage of

label correlations to infer multiple object labels of an aerial

image. In contrast to single-label classification, which mainly

focuses on modeling image-label relevance, exploring and

modeling label-label correlations plays a supplementary yet

essential role in identifying multiple objects in aerial images.

For instance, the presence of ships confidently infers the

co-occurrence of water or sea, while the existence of a car

suggests a high probability of the appearance of pavements.

Unfortunately, such label correlations are scarcely addressed

in the literature. One solution is to use a recurrent neural

network (RNN) to learn label dependencies. However, this is

done with a chain propagation fashion, and its performance

heavily depends on the learning effectiveness of its long-

term memorization. Moreover, in this way, label relations are

modeled implicitly, which leads to a lack of interpretability.

Overall, an efficient multilabel classification model is sup-

posed to be capable of not only learning high-level feature

representations but also modeling label correlations effectively.

B. Related Work

Zegeye and Demir [39] propose a multilabel active learning

framework using a multilabel support vector machine (SVM),

relying on both the multilabel uncertainty and diversity. Koda

et al. [32] introduced a spatial and structure SVM for multi-

label classification by considering spatial relations between

a given patch and its neighbors. Similarly, Zeggada et al.

[33] employed a conditional random field (CRF) framework to

model spatial contextual information among adjacent patches

for improving the performance of classifying multiple object

labels.

With the development of computational resources and

deep learning, very recent approaches mainly resort to deep

networks for multilabel classification. Zeggada et al. [31]

make use of a standard convolutional neural network (CNN)

architecture to extract feature representations and then feed

them into a multilabel classification layer, which is composed

of customized thresholding operations, for predicting multiple

labels. Stivaktakis et al. [40] demonstrated that training a

CNN for multilabel classification with a limited amount of

labeled data usually leads to an underwhelming-performance

model and propose a dynamic data augmentation method

for enlarging training sets. More recently, Sumbul and

Demir [41] proposed a CNN-RNN method for identifying

labels in multispectral images, where a bidirectional long

short term memory (LSTM) is employed to model spatial

relationships among image patches. In order to explore

inherent correlations among object labels, Hua et al. [34]

proposed a CNN-LSTM hybrid network architecture to learn

label dependencies for classifying object labels of aerial

images. Besides, we also notice that several zero short

learning research studies focus on employing prior knowledge

to model label relations. For instance, Sumbul et al. [42]

apply an unsupervised word embedding model to encoding

labels into word vectors, which are supposed to contain label

semantics, and then model label relationships with these

vectors. Lee et al. [43] proposed to learn label relations from

structured knowledge graphs observed from the real world.

C. Motivation of Our Work

In order to explicitly model label relations, we propose a

label relational inference network for multilabel aerial image

classification. This article is inspired by recent successes of

relation networks in visual question answering [44], object

detection [45], video classification [46], activity recognition

in videos [47], and semantic segmentation [48]. A relation

network is characterized by its inherent capability of inferring

relations between an individual entity (e.g., a region in an

image or a frame in a video) and all other entities (e.g., all

regions in the image or all frames in the video). Besides,

to increase the effectiveness of relational reasoning, we make

use of a spatial transformer, which is often used to enhance

the transformation invariance of deep neural networks [49],

to reduce the impact of irrelevant semantic features.

More specifically, in this article, an innovative end-to-

end multilabel aerial image classification network, termed as

attention-aware label relational reasoning network, is proposed

and characterized by its capabilities of localizing label-specific

discriminative regions and explicitly modeling semantic label

dependencies for the task. This article’s contributions are

threefold, which are given as follows.

1) We propose a novel multilabel aerial image classifica-

tion network, attention-AL-RN-CNN, which consists of

three imperative components: a label-wise feature parcel

learning module, an attentional region extraction mod-

ule, and a label relational inference module. To our best

knowledge, it is the first time that the idea of relation

networks is employed to predict multiple object labels

of aerial images, and experimental results demonstrate

its effectiveness.

2) We extract attentional regions from the label-wise fea-

ture parcels in a proposal-free fashion. Particularly,

a learnable spatial transformer is employed to localize
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Fig. 2. Architecture of the proposed attention-aware label relational reasoning network.

attentional regions, which are assumed to contain dis-

criminative information, and then re-coordinate them

into a given size. By doing so, attentional feature parcels

can be yielded.

3) To facilitate progress in the multilabel aerial image

classification, we produce a new data set, AID multilabel

data set, by relabeling images in the AID data set [23].

In comparison with the UCM multilabel data set [50],

the proposed data set is more challenging due to diverse

spatial resolutions of images, more scenes, and more

samples.

Sections II–IV of this article are organized as follows.

Section II delineates three elemental modules of our proposed

network, and Section III introduces experiments, where experi-

mental setups are given and results are analyzed and discussed.

Eventually, Section IV draws a conclusion of this article.

II. METHODOLOGY

A. Network Architecture

As illustrated in Fig. 2, the proposed network comprises

three components: a label-wise feature parcel learning module,

an attentional region extraction module, and a label relational

inference module. Let L be the number of object labels and l

be the lth label. The label-wise feature parcel learning module

is designed to extract high-level feature maps Xl with K

channels, termed as feature parcel (for more details refer to

Section II-B), for each label l. The attentional region extraction

module is used to localize discriminative regions in each

Xl and generate an attentional feature parcel Al , which is

supposed to contain the most relevant semantics with respect

to the label l. Finally, relations among Al and all other label-

wise attentional feature parcels are reasoned about by the label

relational inference module for predicting the presence of the

object l.

Details of the proposed network are introduced in

Sections II–IV.

B. Label-Wise Feature Parcel Learning

The extraction of high-level features is crucial for visual

recognition tasks, and many recent studies adopt CNNs owing

to their remarkable performance in learning such features [15],

[51]–[56]. Hence, we take a standard CNN as the backbone

of the label-wise feature parcel learning module in our model.

As shown in Fig. 2, an aerial image is first fed into a

CNN (e.g., VGG-16), which consists of only convolutional

and max-pooling layers, for generating high-level feature

maps. Subsequently, these features are encoded into L feature

parcels for each label l via a label-wise multimodality feature

learning layer. To implement this layer, we first employ a

convolutional layer with K L filters, whose size is 1 × 1,

to extract K L feature maps. Afterward, we divide these

features into L feature parcels, and each includes K feature

maps. That is to say, for each label, K specific feature maps

are learned, so-called feature parcel, to extract discriminative

semantics after the end-to-end training of the whole network.
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Fig. 3. Illustration of the attentional region extraction module. Green dots in the left image indicate the feature parcel grid G Xl
. White dots in the middle

image represent the attentional feature parcel grid G
X

attn
l

, while those in the right image indicate re-coordinated G
X

attn
l

. Notably, the structure of re-coordinated

G
Xattn

l
is identical to that of G Xl

, and values of pixels located at grid points in re-coordinated G
Xattn

l
are obtained from those in G

Xattn
l

. For example, the pixel

at the left top corner grid point in re-coordinated G
X

attn
l

is assigned with the value of that at the left top corner of G
X

attn
l

.

We denote the feature parcel for label l as Xl in the following

statements.

In our experiment, we notice that Xl with a higher res-

olution is beneficial for the subsequent module to localize

discriminative regions, as more spatial contextual cues are

included. Accordingly, we discard the last max-pooling layer

in VGG-16, leading to a spatial size of 14 × 14 for outputs.

Weights are initialized with pre-trained VGG-16 on ImageNet

but updated during the training phase.

C. Attentional Region Extraction Module

Although label-wise feature parcels can be directly applied

to exploring label dependencies [34], less informative regions

(see blue areas in Fig. 3) may bring noise and further reduce

the effectiveness of these feature parcels. As shown in the

left image of Fig. 3, weakly activated regions indicate a

loose relevance to the corresponding label, while highlighted

regions suggest a strong region-label relevance. To diminish

the influence of unrelated regions, we employ an attentional

region extraction module to automatically extract discrimina-

tive regions from label-wise feature parcels.

We localize and re-coordinate attentional regions from Xl

with a learnable spatial transformer. Particularly, we sample a

feature parcel Xl into a regular spatial grid G Xl (see green dots

in the left image of Fig. 3) according to the spatial resolution

of Xl and regard pixels in Xl as points on the grid G Xl with

coordinates (xl, yl). Similarly, we can define coordinates of a

new grid, attentional region grid G
X

attn
l

(see white dots in the

middle image of Fig. 3), as (xattn
l , yattn

l ), and the number of

grid points along with the height and width is equivalent to

that of G Xl . As demonstrated in [49] that G
X

attn
l

can be learned

by performing spatial transformation on G Xl , (xattn
l , yattn

l ) can

be calculated with the following equation:

�

xattn
l

yattn
l

�

= MTl





xl

yl

1



 (1)

where MTl is a learnable transformation matrix, and grid

coordinates, xl and yl , are normalized to [−1, 1]. Consid-

ering that this module is designed for localization, we only

adopt scaling and translation in our case. Hence (1) can be

rewritten as

�

xattn
l

yattn
l

�

=

�

sxl 0 txl

0 syl tyl

�





xl

yl

1



 (2)

where sxl and syl indicate scaling factors along the x- and y-

axes, respectively, and txl and tyl represent how feature maps

should be translated along both axes. Notably, since different

objects distribute differently in aerial images, MTl is learned

for each object label l individually. In other words, extracted

attentional regions are label-specific and capable of improving

the effectiveness of label-wise features.

As to the implementation of this module, we first vectorize

Xl with a flatten function and then employ a localization

layer (e.g., a fully connected layer) to estimate elements in

MTl from the vectorized Xl . Afterward, attentional region grid

coordinates (xattn
l , yattn

l ) can be learned from (xl , yl) with (2),

and values of pixels at (xattn
l , yattn

l ) are able to be obtained

from neighboring pixels by bilinear interpolation. Finally,

the attentional region grid G
X

attn
l

is re-coordinated to a regular

spatial grid, which shares an identical structure with G Xl , for

yielding the final attentional feature parcel Al .

D. Label Relational Inference Module

Being the core of our model, the label relational inference

module is designed to fully exploit label interrelations for

inferring existences of all labels. Before diving into this

module, we define the pairwise label relation as a composite

function with the following equation:

LR(Al, Am) = fφ(gθlm (Al, Am)) (3)

where the input is a pair of attentional feature parcels, Al

and Am , and l and m range from 1 to L. The functions

gθlm and fφ are used to reason about the pairwise relation

between label l and m. More specifically, the role of gθlm is

to reason about whether there exist relations between the two

objects and how they are related. In previous works [44], [47],

a multilayer perceptron (MLP) is commonly employed as gθlm

for its simplicity. However, spatial contextual semantics are

not taken into account in this way. To address such an issue,

here, we make use of 1 × 1 convolution instead of an MLP

to explore spatial information. Furthermore, fφ is applied to

encode the output of gθlm into the final pairwise label relation
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Fig. 4. Illustration of the label relation module.

LR(Al, Am). In our case, fφ consists of a global average

pooling layer and an MLP, which finally yields the relation

between label l and m.

Following the motivation of our work, we infer each label

by accumulating all related pairwise label relations, and the

accumulated label relation for object label l is defined as:

LR(Al, ∗) = fφ





X

m 6=l

gθlm (Al, Am)



 (4)

where ∗ represents all attentional feature parcels except Al .

Based on this formula, we implement the label relational

inference module with the following steps (taking the pre-

diction of label l as an example): 1) Al and every other

attentional feature parcel are concatenated and fed into a

1 × 1 convolutional layer, respectively; 2) afterward, a global

average pooling layer is employed to transform gθlm (Al, Am)

into vectors, which are then element-wise added; and 3) finally,

the output is fed into an MLP layer with trainable parameters

φ to produce the accumulated label relation LR(Al, ∗). Note

that gθlm is a learnable unit, which models pairwise relations

using convolutions. Through the end-to-end training, it could

be expected to learn data-driven label relations. Experiments

in Sections III-D and III-E have verified that learned label

relations are in line with prior knowledge. Since we expect

the model to predict probabilities, an activation function σ is

utilized to restrict each output digit to [0, 1]. For label l, a digit

approaching 1 implies a high probability of its presence, while

one closing 0 suggests the absence. Fig. 4 presents an visual

illustration of the label relational inference module.

Compared to other multilabel classification methods, our

model has three benefits.

1) The module can inherently reason about label relations

as indicated by (3) and requires no particular prior

knowledge about relations among all objects. That is to

say, our network does not need to learn how to compute

label relations and which object relations should be con-

sidered. All relations are automatically learned through

a data-driven way and proven to meet the reality in our

experiments.

2) The learning effectiveness is independent of long short-

term memory, leading to increased robustness. This is

because, in (4), accumulated label relations are cal-

culated with a summation function instead of chain

architecture, e.g., an LSTM.

3) The function gθlm is learned for each object label pair

l and m separately, which suggests that pairwise label

relations are encoded in a specific way. Besides, our

implementation of gθlm can extend the applicability of

relational reasoning compared to using an MLP.

Since [34] shares the same design philosophy that modeling

label relations is crucial, here, we emphasize two differences

between our network and [34]: 1) the proposed network learns

to extract discriminative regions as label-wise features for

modeling label relations (see Section II-C) instead of directly

using entire feature maps as in [34] and 2) the proposed label

relation inference module encodes label relations explicitly

with composite functions, while in [34], label relations are

modeled implicitly via an RNN whose effectiveness depends

heavily on the learning effect of long-term memorization.

Quantitative comparisons between these two approaches are

shown in Section III.

III. EXPERIMENTS AND DISCUSSION

In this section, we conduct experiments on the UCM [50]

and proposed the AID multilabel data set for evaluating

our model. Specifically, Section III-A presents a descrip-

tion of these two data sets. Afterward, we introduce train-

ing strategies and thoroughly discuss experimental results in

Sections III-B–III-F.

A. Data Set Introduction

1) UCM Multilabel Data Set: UCM multilabel data set

[50] is reproduced by assigning all aerial images collected

in the UCM data set [22] with newly defined object labels.
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Fig. 5. Samples of various scene categories in the UCM multilabel data set as well as associated object labels. The spatial resolution of each image is one
foot, and the size is 256 × 256 pixels. Scene and object labels of each sample are as follows. (a) Tennis court: tree, grass, court, and bare soil. (b) Overpass:
pavement, bare soil, and car. (c) Mobile home park: pavement, grass, bare soil, tree, mobile home, and car. (d) Storage tank: tank, pavement, and bare soil.
(e) Runway: pavement and grass. (f) Intersection: car, tree, pavement, grass, and building. (g) River: water, tree, and grass. (h) Medium residential: pavement,
grass, car, tree, and building. (i) Harbor: ship, water, and dock. (j) Sparse residential: car, tree, grass, pavement, building, and bare soil. (k) Golf course:
sand, pavement, tree, and grass. (l) Beach: sea and sand. (m) Forest: tree, grass, and building. (n) Baseball diamond: pavement, grass, building, and bare soil.
(o) Airplane: airplane, car, bare soil, grass, and pavement. (p) Dense residential: tree, building, pavement, grass, and car. (q) Parking lot: pavement, grass, and
car. (r) Building: pavement, car, and building. (s) Free way: tree, car, pavement, grass, and bare soil. (t) Chaparral: chaparral and bare soil. (u) Agricultural:
tree and field.

The number of all candidate object labels is 17: building, sand,

dock, court, tree, sea, bare soil, mobile home, ship, field, tank,

water, grass, pavement, chaparral, and car. It is worth noting

that labels, such as tank, airplane, and building, exist in both

[22] and [50] while at different levels. In [22], such terms are

considered as scene-level labels due to the fact that related

images can be characterized and depicted by them, while in

[50], they mean objects that may present in aerial images.

As to the properties of images in this data set, the spatial

resolution of each sample is one foot, and the size is 256 × 256

pixels. All images are manually cropped from aerial imagery

contributed by the National Map of the U.S. Geological Survey

(USGS), and there are 2100 images in total. For each object

category, the number of images is listed in Table I. Besides,

80% of image samples per scene class are selected to train

our model, and the other 20% of images are used to test our

model. The number of images assigned to training and test

sets with respect to all object labels is available in Table I as

well. Some visual examples are shown in Fig. 5.

2) AID Multilabel Data Set: In order to further evaluate

our network and meanwhile promote progress in the area

of multiclass classification of high-resolution aerial images,

we produce a new data set, named AID multilabel data set,

based on the widely used AID scene classification data set

[23]. The AID data set consists of 10 000 high-resolution

aerial images collected from worldwide Google Earth imagery,

including scenes from China, the United States, England,

France, Italy, Japan, and Germany. In contrast to the UCM

data set, spatial resolutions of images in the AID data set

TABLE I

NUMBER OF IMAGES FOR DIFFERENT OBJECT CATEGORIES IN THE

UCM MULTILABEL DATA SET

vary from 0.5 to 8 m/pixel, and the size of each aerial image

is 600 × 600 pixels. Besides, the number of images in each

scene category ranges from 220 to 420. Overall, the AID data

set is more challenging compared to the UCM data set.

Here, we manually relabel some images in the AID data set.

With extensive human visual inspections, 3000 aerial images

from 30 scenes in the AID data set are selected and assigned
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Fig. 6. Samples of various scene categories in the AID multilabel data set and their associated object labels. The spatial resolution of each image varies from
0.5 to 8 m/pixel, and the size is 600 × 600 pixels. Here are scene and object labels of selected samples. (a) Airport: car, building, tank, tree, airplane, grass,
pavement, and bare soil. (b) Church: pavement, car, and building. (c) Bridge: building, car, grass, pavement, tree, and water. (d) Center: grass, building, tree,
car, bare soil, and pavement. (e) Bare land: bare soil, building, pavement, and water. (f) Commercial: building, car, court, grass, pavement, tree, and water.
(g) Desert: sand. (h) Forest: bare soil and tree. (i) Industrial: pavement, grass, car, bare soil, and building. (j) Meadow: pavement and grass. (k) Mountain:
tree and grass. (l) Park: bare soil, building, court, grass, pavement, tree, and water. (m) Playground: car, grass, and pavement. (n) Pond: building, field, grass,
pavement, tree, and water. (o) Port: ship, sea, car, grass, pavement, tree, building, and dock. (p) Railway: tree, car, pavement, building, and grass. (q) Resort:
pavement, building, car, tree, field, bare soil, and water. (r) River: car, building, bare soil, dock, water, grass, pavement, tree, ship, and field. (s) School:
pavement, tank, grass, court, building, and car. (t) Sparse residential: pavement, car, building, tree, and grass. (u) Square: tree, car, court, pavement, grass,
and building. (v) Stadium: car, pavement, tree, court, grass, building, and bare soil. (w) Storage tanks: tank, tree, car, grass, pavement, building, and bare soil.
(x) Viaduct: pavement, car, bare soil, tree, grass, and building.

with multiple object labels, and the distribution of samples in

each category is shown in Table II. Besides, 80% of all images

is taken as training samples, while the rest is used for testing

our model. Several example images are shown in Fig. 6.

B. Training Details

As to the initialization of our network, different modules

are done in different ways. For the label-wise feature parcel

learning module, we initialize the backbone and weights in

other convolutional layers with a pre-trained ImageNet [57]

model and a Glorot uniform initializer, respectively. Regarding

the attentional region extraction module, we initialize the

transformation matrix in (1) as an identical transformation

MTl =

�

1 0 0

0 1 0

�

. (5)

In the label relational inference module, weights in both

fφ and gθlm are initialized with a Glorot uniform initializer

and updated during the training phase. Notably, the entire

network is trained in an end-to-end manner, and weights in

the backbone are fine-tuned as well.

In our case, multiple labels are encoded into multihot binary

sequences instead of one-hot vectors widely used in single-

label classification tasks. The length of such multihot binary

sequence is identical to the number of total object categories,

i.e., 17 in our case, and as to each digit, 0 suggests an absent

object, while 1 indicates the presence of its corresponding

object label. Accordingly, we define the network loss as the

binary cross-entropy. Besides, Adam with Nesterov momen-

tum [58], which shows faster convergence than stochastic

gradient descent (SGD) for our task, are selected and its

parameters are set as recommended [58]: � = 1e − 08, β1 =

0.9, and β2 = 0.999. The learning rate is initially defined as

1e−04 and decayed by a factor of 10 if the validation loss fails

to decrease. Notably, we randomly select 10% of the training

samples as the validation set. That is, during the training pro-

cedure, we use 90% of the training samples to learn network

parameters.
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TABLE II

NUMBER OF IMAGES FOR DIFFERENT OBJECT CATEGORIES IN THE AID
MULTILABEL DATA SET

Our model is implemented on TensorFlow-1.12.0 and

trained for 100 epochs. The computational resource is an

NVIDIA Tesla P100 GPU with a 16-GB memory. As a

compromise between the training speed and GPU memory

capacities, we set the size of training batches as 32. To avoid

overfitting, the training progress is terminated once the vali-

dation loss increases continuously in five epochs.

C. Experimental Setup

To fully explore the capacity of our proposed network,

we extend our researches by replacing the backbone with

GoogLeNet (Inceptionv3) [59] and ResNet (ResNet-50 in our

case) [60]. Specifically, we adapt GoogLeNet by removing

global average pooling and fully connected layers as well

as reducing the stride of convolutional and pooling layers

in “mixed8” to 1 to improve the spatial resolution. Besides,

in order to preserve receptive fields of subsequent convo-

lutional layers, filters in “mixed9” are replaced with atrous

convolutional filters, and the dilation rate is defined as 2.

Regarding ResNet, we set the convolution stride and dilation

rate of filters as 1 and 2, respectively, in the last residual

block. Global average pooling and fully-connected layers are

removed as well.

In our experiments, we compare the proposed attention-AL-

RN-CNN with the following competitors: a standard CNN,

CNN-RBFNN [31], and CA-CNN-BiLSTM [34]. Regarding

the CNN, we replace its last softmax layer, designed for

single-label classification, with a sigmoid layer to produce

multihot sequences. For the CA-CNN-BiLSTM, we follow

the experimental configurations in [34]. Specifically, we first

initialize the feature extraction module of CA-CNN-BiLSTM

and weights in the bidirectional LSTM layer with CNNs pre-

trained on ImageNet data set and random values from −0.1 to

0.1, respectively. Afterward, we fine-tune the entire network in

the training phase with Nestro Adam optimizer, and the initial

learning rate is set to 1e − 04. The loss is calculated with the

binary cross-entropy, and the size of training batches is 32.

Notably, for all models, output sequences are binarized with

a threshold of 0.5 to generate final predictions.

D. Results on the UCM Multilabel Data Set

1) Quantitative Analysis: In our experiment, we employ F1

[61] and F2 [62] scores as evaluation metrics to quantitatively

assess the performance of different models. Specifically, these

two F scores are calculated with the following equation:

Fβ = (1 + β2)
pere

β2 pe + re
, β = 1, 2 (6)

where pe indicates the example-based precision and recall [63]

of predictions. Formulas for calculating pe and re are

pe =
TPe

TPe + FPe

, re =
TPe

TPe + FNe

(7)

where TPe (example-based true-positive) indicates the number

of correctly predicted positive labels in an example, while

FPe (example-based false-positive) denotes the number of

those failed to be recognized. Besides, FNe (example-based

false-negative) represents the number of incorrectly predicted

negative labels in an example. Here, an example stands for an

aerial image and its associated multiple labels.

To evaluate our network comprehensively, we take mean

F1 and F2 score as principal indexes. Moreover, we also

report mean pe and mean re. In addition to the example-

based perspective, label-based precision and recall are also

considered and calculated with

pl =
TPl

TPl + FPl

, rl =
TPl

TPl + FNl

(8)

to demonstrate the performance of networks from the perspec-

tive of each object label.

Table III exhibits experimental results on the UCM mul-

tilabel data set. We can observe that our model surpasses all

competitors on the UCM multilabel data set with variant back-

bones. Specifically, AL-RN-VGGNet increases mean F1 and

F2 scores by 7.16% and 5.64%, respectively, in comparison

with VGGNet. Compared to CA-VGG-BiLSTM, which resorts

to employing a bidirectional LSTM structure for exploring

label dependencies, our network obtains an improvement

of 5.92% in the mean F1 score. Besides, although CA-VGG-

BiLSTM is superior to VGGNet in both mean F1 and F2

scores, it achieves decreased mean precisions and recalls.

In contrast, AL-RN-VGGNet outperforms VGGNet not only

in mean F1 and F2 scores but also in mean example- and

label-based precisions and recalls. For another backbone,

GoogLeNet, our network gains the best mean F1 and F2

scores. As shown in Table III, AL-RN-GoogLeNet increases

the mean F1 score by 4.56% and 3.42% with respect to

GoogLeNet and CA-GoogLeNet-BiLSTM, respectively. For

the mean F2 score and precisions, our model also surpasses

other competitors, which proves the effectiveness and robust-

ness of our method. AL-RN-ResNet achieves the best mean

F1 score, 0.8676, and F2 score, 0.8667, in comparison with all

other models. Furthermore, it obtains the best mean example-

based precision, 0.8881, and label-based precision, 0.9233,
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TABLE III

COMPARISONS OF THE CLASSIFICATION PERFORMANCE ON UCM MULTILABEL DATA SET (%)

TABLE IV

EXAMPLE IMAGES AND PREDICTED LABELS ON THE UCM AND AID MULTILABEL DATA SET

and recall, 0.8595. To summarize, comparisons between

AL-RN-CNN and other models demonstrate the effectiveness

of our network. Moreover, comparisons between AL-RN-CNN

and CA-CNN-BiLSTM illustrate that the composite function-

based proposed model performs better than a BiLSTM frame-

work in terms of both accuracy and robustness. Reasons could

be that: 1) a chain-like BiLSTM architecture might suffer from

the error propagation [41] and thus is sensitive to the order of

predictions, while in our network, all pair-wise label relations

are encoded separately and the final summation function is

order invariant [44] and 2) a BiLSTM-based structure models

label relations implicitly, whereas our network encodes such

relations in an explicit and direct way. Table IV presents

several example predictions from the UCM multilabel data set.
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Fig. 7. Example label-specific features of (a) samples selected from the UCM multilabel data set regarding, (b) tank, (c) court, (d) pavement, (e) car,
(f) bare soil, and (g) building. Red implies strong activations, whereas blue indicates weak activations.

Fig. 8. (a)–(d) Example attentional regions for car, bare soil (soil), building (build.), pavement (pave.), court, and tank in various scenes in the UCM
multilabel data set. For each scene, only positive labels mentioned in Fig. 7 are considered.

As a supplementary study, we evaluate the robustness of our

proposed model by performing cross-validation in the training

phase. More specifically, we randomly divide training samples

into fivefold and train our best-performing model, i.e., AL-

RN-ResNet, five times. For each training progress, we select

one of fivefold as the validation set and train our model with

the remaining fourfold. We observe that variances of mean F1

and F2 scores are 0.38% and 0.71%, respectively. Compared to

improvements brought by our network, variances are limited,

and this demonstrates the robustness of our proposed network.

2) Qualitative Analysis: In order to figure out what is

going on inside our network, we further visualize features

learned from each module and validate the effectiveness of the

proposed network in a qualitative manner. In Fig. 7, a couple

of feature parcels regarding bare soil, building, car, pavement,

court, and tank is displayed for several example images. Note

that for K feature maps in each feature parcel, we select

the most strongly activated one as the representative. We can

observe that discriminative regions related to positive labels

are highlighted in these feature maps, whereas less informative

regions are weakly activated. As an exception, the feature map

at the bottom left (BL) of Fig. 7 shows that the baseball field is

misidentified as tanks, which may lead to incorrect predictions.

For evaluating the localization ability of the proposed net-

work, we visualize attentional regions learned from the second

module. Coordinates of BL and top right (TR) corners of

attentional region grids are calculated with the following

equation:

�

xattn
BL xattn

TR

yattn
BL yattn

TR

�

= MTl





−1 1

−1 1

1 1



 . (9)

Fig. 8 shows some examples of learned attentional regions.

As we can see, most attentional regions concentrate on areas
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Fig. 9. Example pairwise relations among labels present in scene (a)–(d), which are shown in Fig. 8. Each label at Y -axis represents the predicted label l,
and labels at X-axis are correlated labels. Normalization is performed according to each row, and white color represents null values.

TABLE V

COMPARISONS OF THE CLASSIFICATION PERFORMANCE ON AID MULTILABEL DATA SET (%)

covering objects of interest. Besides, it is noteworthy that

even objects are distributed dispersedly, the learned attentional

regions can still cover most of them, e.g., buildings in Fig. 8(a)

and cars in Fig. 8(b).

Furthermore, learned pairwise label relations are visualized

in the format of matrix, where an element at (l, m) indicates

LR(Al, Am). Fig. 9 exhibits some examples for the four scenes

in Fig. 8. In these examples, we take only positive object

labels into consideration and perform normalization alongside

each row to yield a distinct visualization of “label relations.”

Since m differs from l, we assign null values to diagonal

elements and mark them as white color in Fig. 9. It can be seen

that in Fig. 9(a) and (b), relations between car and pavement

contribute significantly to predicting the presence of both car

and pavement. Besides, Fig. 9(d) shows that the existence of

a tree highly suggests the presence of bare soil, but not vice

versa. These observations illustrate that even without prior

knowledge, the proposed network can reason about relations

that are in line with reality.

E. Results on the AID Multilabel Data Set

1) Quantitative Analysis: To further evaluate the proposed

network, we report experimental results on the AID multilabel

data set. Evaluation metrics here are the same as those in

previous experiments, and results are presented in Table V.

As we can observe, the proposed AL-RN-CNN behaves

superior to all competitors in most of the metrics. To be

more specific, AL-RN-VGGNet improves the mean F1 and

F2 score by 2.57% and 2.71%, respectively, compared to

the baseline model. In comparison with CA-VGG-BiLSTM,

our network gains an improvement of 1.41% in the mean

F1 score and 1.43% in the mean F2 score. Regarding the

other two backbones, similar phenomena can be observed as

well. AL-RN-GoogLeNet achieves the highest mean F1 and

F2 score, 0.8817 and 0.8825, compared to GoogLeNet and

CA-GoogLeNet-BiLSTM, while AL-RN-ResNet surpasses the

second-best model by 1.09% and 0.51% in the mean F1 and F2

score, respectively. Besides, it is noteworthy that although CA-

GoogLeNet-BiLSTM shows a decreased performance com-

pared to the baseline model, our network still achieves higher

scores in all metrics. Moreover, we notice that the proposed

AL-RN-CNNs outperform baseline CNNs by a large margin

in the mean label-based recall, and the maximum improve-

ment can reach 18.30%. In conclusion, these comparisons

suggest that explicitly modeling label relations can improve the

robustness and retrieval ability of a network. Several example

predictions on the AID multilabel data set are presented

in Table IV.

2) Qualitative Analysis: To dive deep into the model,

we visualize label-specific features and attentional regions

in Figs. 10 and 11, respectively. In Fig. 10, representative

feature maps in various feature parcels for bare soil, building,
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Fig. 10. Example label-specific features of (a) samples selected from the AID multilabel data set regarding, (b) building, (c) car, (d) bare soil, (e) tree,
(f) water, and (g) pavement. Red implies strong activations, whereas blue indicates weak activations.

Fig. 11. Example attentional regions for car, bare soil (soil), building (build.), pavement (pave.), court, and tank in various scenes (a)–(d) in the AID
multilabel data set. For each scene, only positive labels mentioned in Fig. 10 are considered.

car, pavement, tree, and water are displayed. As shown here,

regions with label-related semantics are highlighted, while less

informative regions present weak activations. For instance,

regions of ponds are considered as discriminative regions for

identifying water. Residential and industrial areas are strongly

activated in feature maps for recognizing building. In Fig. 11,

it can be observed that attentional regions learned from our

network are able to capture areas of semantic objects, such

as cars and trees. We also note that some attentional regions

in Fig. 11 are coarser than those in Fig. 8, which is because

the AID multilabel data set has a lower spatial resolution.

Furthermore, pairwise relations among positive labels are

visualized in Fig. 12. As shown in Fig. 12(b)–(d), existences

of both tree and pavement contribute significantly to the

identification of car, while the occurrence of the car only

suggests a high probability that pavement presents. Strong

pairwise relations between the building and other labels, e.g.,

car, pavement, and tree, indicate that the presence of building

can heavily assist in predicting those labels.

F. Discussion on the Relational Inference Module

Regarding the relational inference module, the function gθlm

is an important component, which reasons about relations

between two objects. Hence, in this section, we discuss about

different implementations of gθlm . Specifically, we compare

our AL-RN-CNN with LR-CNN [65], which employs a global

average pooling layer and an MLP as gθlm , on both the

UCM and AID multilabel data sets. Experimental results are

reported in Table VI. As shown in Table VI, our network
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Fig. 12. Example pairwise relations among labels present in scene (a)–(d), which are shown in Fig. 11. Each label at Y -axis represents the predicted label
l, and labels at X-axis are correlated labels. Normalization is performed according to each row, and white color represents null values.

TABLE VI

COMPARISON BETWEEN DIFFERENT gθlm
(%)

gains the best mean F1 and F2 score on both data sets

with variant backbones. AL-RN-VGGNet achieves the highest

improvements of 3.59% and 3.82% for the mean F1 and F2

score, respectively, compared to LR-VGGNet on the UCM

multilabel data set. AL-RN-GoogLeNet increases the mean F1

and F2 score by 3.25% and 1.28%, respectively, in comparison

with LR-ResNet on the AID multilabel data set. Moreover,

AL-RN-CNN can encode label relations through various fields

of view by simply changing the size of convolutional filters

in gθlm .

IV. CONCLUSION

In this article, we propose a novel aerial image multilabel

classification network, namely attention-aware label relational

reasoning network. This network comprises three components:

a label-wise feature parcel learning module, an attentional

region extraction module, and a label relational inference

module. To be more specific, the label-wise feature parcel

learning module is designed to learn high-level feature parcels,

which are proven to encompass label-relevant semantics, and

the attentional region extraction module further generates finer

attentional feature parcels by preserving only features located

in discriminative regions. Afterward, the label relational infer-

ence module reasons about pairwise relations among all labels

and exploit these relations for the final prediction. In order

to assess the performance of our network, experiments are

conducted on the UCM multilabel data set and a newly pro-

posed AID multilabel data set. In comparison with other deep

learning methods, our network can offer better classification

results. In addition, we visualize extracted feature parcels,

attentional regions, and relation matrices for demonstrating

the effectiveness of each module in a qualitative way. Looking

into the future, such network architecture has several poten-

tials, e.g., weakly supervised object detection and semantic

segmentation.
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