

U.D.C. 678.7-13:536.421:539.2

ROYAL AIRGRADT BSTABLISHMBNT

Technioal Report 67187
Auguet 1967

RRTATION OF GLASS TRANSITION TEMPLRAFURE TO MOLECULAR SIRUCTURE OF ADDITION COPOLYMERS

by
J.M. Barton

SUMMARY

An equation is proposed relating the glass transition temperature $\left(T_{G}\right)$ of copolymers to the molecular structurg in terms of the mole fractions of the various diad sequences of monomer units combined in the copolymer chains. The equation, which can account for the occurrence of a maximum or a mininum in plots of T_{G} versus copolymer composition, is applied to eleven addition copolymer systems and found to give good agrsement with the experimental data. Application of the equation to obtain homopolymer T_{G} by extrapolation is demonstrated.

CONTINTS

Egge
1 INTRODECTITON 3
2 THE IKPTNDENCE OF T_{G} ON COPOLYMER COMPOSITION 3
2.1 The importance of sequence distribution in determining the $T_{G}{ }^{8}$ of copolymers 3
2.2 The proposed relationship between T_{G} and copolymer composition 5
3 RESULTS OF THR APPLICATION OF THE FROPOSED RELAATIONSHIP TO EXPERIMENTAL DATL 8
3.1 Method of caloulation 8
3.2 Styrene/butadiene copolymers 9
3.3 Acrylonitrile/methyl methacrylate copolymers 9
3.4 Acrylonitrile/vinyl chloride copolymers 10
3.5 Vinylidene ohloride/methyl acrylate copolymers 10
3.6 Vinylidone ohloride/ethyl acrylate copolymers 11
3.7 Styrene/met'yyl acrylate copolymers 11
3.8 Styreno/butyl acrylate copolymers 11
3.9 Styrene/acrylic acia copolymers 11
3.10 Styrene/methyl methacrylate copolymers 12
3.11 Methyl methacrylate/methyl acrylate copolymers 12
3.12 Vinyl chloride/vinyl acotate copolymers 12
4 DISCUSSION 13
4.1 Summary of results 13
4.2 Comparisons with other theories 13
4.3 The inflience of chemical structure on the ${ }_{G} s$ of
copolymers 16
5 CONCLUSIONS 18
Appendix 4 Calculation of the fractions of diad sequences in a copolymer 19
Table 1 Summary of results 2.1
Reforences 22
Illustrations
Detachable abstract cardsFigures 1-25

Many of the elastomers in current service, for axamis Viton and -thylene-propylene rubbers, are based on copolymers which are often less orystalline than the corresponding homopolymers and which may also have lower glass transition temperatures $\left(T_{G}\right)$. The T_{G} of an olestomer is of great significance as it determines the lower temperature limit of elantomeric behaviour and influences the physioal properties in tre rubbery atate. Therefore, a knowledge of the faotors governing T_{G} is essential in designing new olastomeric materials.

In this Report an equation is proposed which relates the T_{G} of a copolymer to its molecular structure, and the equation is accurately applied to published experimental data for eleven different addition copolymer aystems. It is shown that homopolymer $T_{G} s$ may be obtained by extrapolation, and by this method the $T_{G} s$ of polyacrylonitrile and polyacrylic acid are estimated to be 380° and $413^{\circ} \mathrm{K}$, respectively. The relationship of the equation to other theories is discussed.

2 THE DEPENDENCE OF T_{G} ON COPOLYMER COMPOSITION

2.1 The importance of sequence distribution in deternining the $T_{G} s$ of copolymers

Boyer ${ }^{1}$ has reviewed some of the factors which govern the $T_{G} s$ of copolymers. Several semi-empirical equations have been suggested which give the T_{G} of a copolymer in terms of the $T_{G} s$ of the homopolymers of the corresponding monomers and the overall copolymer composition ${ }^{2-9}$. These equations are based on the assumption that sertain pruperties of the copolymer, e.g., specific voiume, molar cohesive erargy, chein stifiness, are additive combinations of the properties of the homopolymers of the corresponding monomers. The equations involve functions of either the weight- or mole-fractions of the comonomers combined in the copolyner.

Many addition copolymer systems exhioit a minimum or maximum value of T_{G} in plots of T_{G} versus copolymer compcsition, yet only three of the equations mentioned above 7-9 can be used to describe such phenomena. In a copolymer formed from moncmers A and B there are four possible sequences of pairs of repeating uni s, which may be represented as $a a, b b, a b$, and ba pairs. DiMarzio and Gibbs ${ }^{2}$ pointed out that the properties (e.g. chain stiffness) of an $a b$ or ba sequence may well be different from those of an aa or bb
sequence and that it may be neoessary to take, account of the sequence distribution in order to make accurate predictions of copolymer T_{G} when the freotion of $a b+b a$ sequences is large. Beevers ${ }^{10}$ found a minimum in the T_{G}-composition curve for random styrene/methyl methaorylate copolymers, and suggested that this may be due to the presence of absequences in whioh there is a greater freedom of rotation than in as or bb sequences. This idea has not hitherto bewn tested quantitatively.

Kanig ${ }^{7}$ has formulated a thermodynamic theory of the glass transition besed on the treatment of a polymer melt as mixture of molecules and voids. The equation derived for copolymers is complex and relates T_{G} to a funotion of the weight fraction of comonomers combined in the copolymer, and the work required to produce holes in the melt by the separation of $a, a b, o r b b$ associations. The assumption is made that the components A and B are "statistically distributed" in the oopolymer, and does not allow for the variation in the sequence distribution with copolymer composition. Illers ${ }^{11}$ found that the T_{G}-composition data for thirteen copolymer system could be fitted to the Kanig equation. The relationship of these results to the present work are discussed later in this Report.

Lee and 0^{\prime} Mahony ${ }^{12}$ have treated homopolymers as ideal multicomponent "copolymers" in which the sequence distribution of any one group is fixed with respect to its nearest neighbours. Δ grouy is defined as the smallast atom or group of atoms capable of independent torsional oscillation with respect to its nearest neighbours and the groups may be considered to be the monomer units of the "copolymer". Severel equations were ovaluated, whioh related T_{G} to molecular struoture on the basis of additive oontribution of the groups on a mole- or weight-fractional basis. For a set of 32 homopolymers it was found that a simple additive mole fractional equation gave the best agreament between celculated and observed ${ }_{G} \mathrm{~g}$. Although different in application, this equation is of the same form as genersifed versions of the Hayes ${ }^{6}$ and DiMarzio and Gibbs ${ }^{2}$ copolymer equations.

The extension of the DiMarzio and Gibbs copolymer equation to include the effects of the different properties of $a, a b$, be and $b b$ seques ces, and the applicability of the resulting equation to experimental date is demonstrated in the following sections.
2.2 The proposed relationshif between T_{G} and copolymer composition

For a copolymer composed of monomer units A and B, Dikarsio and Gibbs ${ }^{2}$ obtained the following equation relating T_{G} and copolymer composition:

$$
\begin{equation*}
n_{a}^{\prime}\left(T_{G}-T_{G_{a}}\right)+n_{b}^{\prime}\left(T_{G}-T_{G_{b}}\right)=0 \tag{1}
\end{equation*}
$$

where n_{a}^{\prime} is the fraction of rotatable bonds in component A of the copolymer, $\mathrm{n}_{\mathrm{b}}^{\prime}$ is the fraction of rotatable bonds in component B, T_{G} refers to the copolymer, and $T_{G_{a}}$ and $T_{G_{b}}$ refer to the homopolymers $C f$ and B, respectively. When A and B both contain the same number of rotatable bonds, n_{a}^{\prime} and n_{b}^{\prime} may be replaced by the mole fractiors n_{a} and n_{b}. The equation was based on the proposition that the T_{G} of a copolymer denended mainly on chain stiffness. The stiffness energy of a bond was related to the onergy difference beiween retaticral isomers, and it was assumed that the atiffnesa energy of an $A-B$ bond is the arithmetic mean of that of an $A-A$ and a $B-B$ bond. It: was shown that equation (1) is of the same form as the equations of Gorden and Taylor ${ }^{3}$ and of Mandelkern, Martin, and Quinn ${ }^{4}$, which involve the weight fractional composition of the copolymer. The terms n_{a}^{\prime} and $n_{b}^{\prime} 1$. equation (1) were defined more specifically as the fractions o: rotatable bonas in a copolymer, which could change its configuration on rotation, thus excluding bonds connecting penultimate groujs of side chains to the end group. As discussed in section 2.1 , it was found that with certain provisiona a evneralized form of equation (1) could be applied to homopolymers ${ }^{12}$. It was furtner shown in an extension of this nork ${ }^{13}$ that better precision in celculated T_{G} s was obtained by including the contributions of all groups, irrespece tive of whether or not their rotation could charge the configuration of the molecule. The total numbers of groupa and rotatable bonds in a copolymer are equal, and in the present discussion, by analogy with the work on homopolymers ${ }^{13}$, all rotateble bonds are considered in calculating rotatable bond fractions.

Equation (1) may be rearranged in the following form:

$$
\begin{equation*}
T_{G}=n_{a}^{\prime} T_{G_{a}}+n_{b}^{\prime} T_{G_{t}} \tag{2}
\end{equation*}
$$

It is now proposed that equation (2) can be extended so as to differentiate between the contributions to the T_{G} of the $a s, b b, a b$, and be sequences in the copolymer, as follows:

$$
\begin{equation*}
T_{G}=n_{a a}^{\prime} T_{a a}+n_{b b}^{\prime} T_{b b}+n_{a b}^{\prime} T_{a b}+n_{b a}^{\prime} T_{b a}, \tag{3}
\end{equation*}
$$

where $n_{1 j}^{\prime}$ is the mole fraction of rotatable bonds (or groups) container in if sequences, and $T_{i j}$ is an additive temparature parametor associated with an ij sequence. The terms $T_{a a}$ and $T_{b b}$ may be equated to the $T_{G} s$ of the homopolymers, $T_{G_{a}}$ and $T_{G_{b}}$, respeotively, while $T_{a b}$ and $T_{b a}$ may be equated to the T_{G} of the eltornating copolymer $\left.f a=b\right\}_{n}$, so that the equation may be writton as

$$
\begin{equation*}
T_{G}=n_{a a}^{\prime} T_{a a}+n_{b b}^{\prime} T_{b b}+\left(n_{a b}^{\prime}+n_{b a}^{\prime}\right) T_{a b} \tag{4}
\end{equation*}
$$

This treatment can be readily extended to multicomponent copolymer systems and the general form of equation (4) is

$$
\begin{equation*}
T_{G}=\sum n_{i:}^{\prime} T_{i j} \tag{4a}
\end{equation*}
$$

The number of terms in the summation is the square of the number of different monomer components in the copolymer, and the values of the terms in equations (4) and (4a) are determined as follows. Tho $n_{1 j}^{\prime}$ terms (rotatable bond fractions) are given by

$$
\begin{equation*}
n_{i j}^{\prime}=n_{i j} a_{i j} / \sum\left(n_{i j} a_{i j}\right) \tag{5}
\end{equation*}
$$

so that $n_{1 j}^{\prime}$ is the mole fraction, $n_{i j}$, f ij soquences in a copolywer weighted according to the number of rotatable bonds, $a_{i j}$, in an $i j$ sequence. The mole
fractions of the diad sequences, $n_{i j}$, can be calculated from conventional addition copolymer theory and a knowledee of the comonomer reactivity ratios. The following treatment is restricted to binary copolymers.

From a consideration of the relative kinetic probabilities of the various copolymerisation propagation reactions it can be shown (see Appendix A) that the molg fractions of the aa and bb sequences are

$$
\begin{equation*}
n_{a a}=r_{a} x /\left[r_{a} X+\left(r_{b} X\right)+2\right] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{b b}=\left(r_{b} / x\right) /\left[r_{a} x+\left(r_{b} / x\right)+2\right], \tag{7}
\end{equation*}
$$

where r_{a} and r_{b} are the reactivity ratios of the comonomers A and B, respeotively, X is the ratio of the molar concentrations of the two monamers in the monraer feed, [A]/[B], necsosary to give the copolymer composition defined by $n_{a a}$ and $n_{b b}$. The total mole fraction of monomer A combined in the copolymer, n_{a}, is given by the conventional copolymer composition equation:

$$
\begin{equation*}
n_{a}=\left(r_{a} X+1\right) /\left[r_{a} X+\left(r_{b} / X\right)+2\right] \tag{8}
\end{equation*}
$$

Through equations (6), (7), and (8) the values of $n_{a,}$ and $n_{b b}$ may be found whiah correspand to the experimental values of the overall composition, n_{a} (ar n_{b}), for which T_{G} is know or is required to be calculated from equation (4). The sum of the mole fractions of $a b$ and ba sequences is readily obtained from the relation

$$
\begin{equation*}
n_{a b}+n_{b a}=1-n_{a a}-n_{b b} \tag{9}
\end{equation*}
$$

If the T_{G} of the homopolymers, $T_{a a}$ and $T_{b b}$, are knom, equation (4) can now be applied grarhically to experimertal data in the following form

$$
\begin{equation*}
T_{G}-n_{a a}^{\prime} T_{a A}-\eta_{b b}^{\prime} T_{b b}=\left(n_{a b}^{\prime}+\eta_{b a}^{\prime}\right) T_{a b}, \tag{10}
\end{equation*}
$$

where T_{G} is the observed value for the copolymer. If the left hand side of equation (10) is plotted against ($n^{\prime}{ }_{a b}+n_{b a}^{\prime}$), and if the theory ia valid, the Doints should fall on a straight line with zero !ntercept and slope $=T_{a b}$ 。 Alternatively, plots can be made of T_{G} calculaided for different values of $T_{a b}$ aganst n_{a}, to provide the $T_{o b}$ value which gives the curve lying closest to the experimental. T_{G} s. The first of these two procedures is olearly more elegant and more easily apried.

If the va of $T_{a a}$ or $T_{b b}$ is uncertain it is possible to oonstruct a series of plots in the form of equation (10), but varying $T_{a a}$ or $T_{b b}$ to f ind the value which gives che best linear fit to the experimental datao

These are two special cases which simplify equation (4) :-
(a) When $T_{a b}=\left(T_{a a}+T_{b b}\right) / 2$ and $a_{a a}=\alpha_{b b}$ it can be shown that equation (4) simplifies to the Dimarzio and Gibbs form, equation (2).
(b) When $r_{a}=r_{b}=1, n_{a a}$ and $n_{b b}$ are related simply to n_{a} by the expressicns $n_{a a}=n_{a}^{2}$ and $n_{b b}=\left(1-n_{a}\right)^{2}$. If also $a_{a a}=a_{b b}$, substitution in equation (4) gives the equation:

$$
\begin{equation*}
T_{G}=n_{a}^{2} T_{a a}+n_{b}^{2} T_{b b}+2 n_{a} n_{b} T_{a b} \tag{11}
\end{equation*}
$$

This equation was also reported by Ellerstein ${ }^{9}$ and is discussed further in section 1 .a. 2 .

3 LZSULS OF THE APPLICATION OF THE FROPOSED RELATIONSHIP TO BYPERDGENTIL DATA

3.1 Method of caloulation

In general, the copclymerisation reactivity ratios are taken from the tuiull:tion of Lark et al ${ }^{14}$ and the $T_{G} s$ and the reactivity ratios correspand to orrolymers prepared wider similar experinental conditions.

The general procedure for oalculating the parameters in equation (10) is as follows. Fram the reactivity ratios, values of n_{a} are caloulated from equation (8) for a range of values of $n_{A}=X /(1+x)$ between 0 and 1 , where n_{A} is the mole fraction of manamer A in the monomer feed. The values of n_{A} correspanding to the experimental n_{a} values are read from a plot of n_{A} versus n_{a}, and the corresponding values of X are tabulated. Then $n_{a a^{\prime}}$ $n_{b b}$, and $n_{a b}+n_{b a}$, corresponding to experimontal n_{a} are caloulated from equations (6), (7), and (9). The values of $n_{i j}^{\prime}$ are caloulated from $n_{1 j}$ and $\alpha_{i j}$ using, equation (5), and finally $T_{a b}$ is determined graphically using the method desoribed in section 2.2. Values used for $r_{a}, r_{b}, \alpha_{1 j}, T_{a a}$ and $T_{b b}$ are given in Table 1, which also summarises the results obtained. Any departures from this general methcd are disoussed as they ocour.

3.2 Styrene/butadiene oopolymers

The T_{G}-composition data of Wood ${ }^{5}$ are given in Fig.1, as a plot of T_{G} in ${ }^{\circ} C$ versus the mole fraction of styrene in the copolymer (n_{a}), for copolymers prepared at 5° and $50^{\circ} \mathrm{C}$, respeotively. In both cases a atraight line between the two homopolymer $T_{G} s$ (at $n_{a}=0$ and 1.0) adequately fits the data. This is a simple case where $\alpha_{a a}$ and $a_{b b}$ and where equation (2), corresponding to the straight lines, describes the data. It follows that $T_{a b}=\left(T_{a a}+T_{b b}\right) / 2$.

3.j Acrylonitrile/methyl methacrylate oopolymers

The plot of T_{G} versus n_{b}, from the data of Beevers and White ${ }^{15}$, exhibits a minimum in T_{G}, as shown in Figo \%. The variations of the mole fracitions of the diad sequences in the copclymer, $n_{a a}, n_{b b}, n_{a b}+n_{b a}$, mich correspand to the experimental values of n_{a} वr n_{b}, are shown in Figo 3 . It can be seen that $n_{a h}+n_{b a}$ reaches a maximum in the same region of copolymer oomposition as is associated with a minimum in T_{G}. The data are plotted in the form of equation (10) in Fig.4, for $T_{a A}=T_{b b}=105^{\circ} C^{16}$.

The values reported far the T_{G} of polyaorylonitrile ${ }^{16}\left(T_{a A}\right)$ vary oier the wide range 52° to $180^{\circ} \mathrm{C}$. T_{G} depends on the molecular weight and the miaro struoture (branching, stereo-regularity etc.), which in turn depend on the polymerization method. A study of the variation in T_{G} with molecular weight of polyaorylanitrile prepared by freo-radical polymerization in solution ${ }^{15}$ yielded, by extrapolation, a T_{G} of $100^{\circ} \mathrm{C}$ at infinite molecular weight. Dilatometrio measurements on solutions of high molecular weight polyacrylonitrile gave an extrapolated value of $104^{\circ} \mathrm{C}$ for the pure polymer ${ }^{17}$. This latter value agrees
well with reault obtained by extrapolating data for various acrylonitrile oopolymers to the 100% aoryionitrile levelo In this nanner, illers ${ }^{11}$, Howard ${ }^{18}$ and Reding et a 1^{19} obtainod values of $106^{\circ}, 110^{\circ}$, and $106^{\circ} \mathrm{C}$, for oopolymers with methyl aorylate, vinyl acetate, and vinyl ohlaride, reupeotively.

It is of interest to see how the results vary with values for T as other than $105^{\circ} \mathrm{C}$. The oaloulations were repeated for a range of $T_{a a}$ values between 100° and $120^{\circ} \mathrm{C}$. A measure of the precision of a least squares fit of the data to equation (10) is the sum ar the equares of the deviations between observed and caloulated T_{G}. Aocordingly Fig. 5 is a plot of $\Sigma \Delta^{2}$ against $T_{a Q^{\prime}}$, for equation (10), where $\Delta=T_{G}$ (observed) $-T_{G}$ (oaloulated). The plot show a minimm in $\Sigma \Delta^{2}$ for $T_{a s}=108^{\circ} \mathrm{C}$, and the errore are amall in the range $T_{\text {ea }}=105^{\circ}$ to $111^{\circ} \mathrm{C}$, but they inareace steoply cn either side of this range. 1 value for the T_{G} of polyacrylanitrile of $108 \pm 3^{\circ} \mathrm{C}$ is therefore the best remilt obtainable from these data by extrapolation using equation (10), and thin is in good agreement with same of the reported values discussed previcully. The variation of $T_{a b}$ witil the assumod value for $T_{a a^{\prime}}$, according to equation (10), is ahom in Fig.6, and for $T_{a a}=108 \pm 3^{\circ} \mathrm{C}, \mathrm{T}_{a b}=70.1 \pm 1.4^{\circ} \mathrm{C}$. The ourve drawn through the experimental data in Pige 3 is oaloulated from equation (4) for $T_{a a}=108^{\circ}, T_{b b}=105^{\circ}$, and $T_{a b}=70^{\circ} \mathrm{C}$.

3.4 torylonitriie/vinyl ohloride oopolymers

The T_{G} were determined fram low frequency dynamic mechenical loss measurements by Reding et al ${ }^{19}$. Fige 7, which is the plot of observed T_{G} veraus n_{a}, shows a ourvature below the "ideal" linear plot. Since both moncmar repeating units oontain three groups, $n_{i j}^{\prime}=n_{i j}$, and equation (10) can be plotted in terms of $n_{i j}$. The best least squares fit of the data to equation (10) is obtained for $T_{a a}=105^{\circ} \mathrm{C}$, as in Fig. 8 , and the variation of $\Sigma \Delta^{2}$ with $T_{s a}$ is ahown in Fig.9. The value for the T_{G} of polyacrylonitrile, $105^{\circ} \mathrm{C}$, is in good agreement with the estimate of $108 \pm 3^{\circ} \mathrm{C}$ from the a.crylonitrile/methyl methaorylate copolymer data, and the corresponding Value of $\mathrm{T}_{a b}$ is $88.5^{\circ} \mathrm{C}$. The aurve dramn in Fig. 7 is oaloulated from equation (4) for $T_{a a}=105^{\circ}$ and $T_{a b}=88.5^{\circ} \mathrm{C}$.

3.5 Vinylidene ahloride/methyl aorylate oopolymers

This system shows a pronounoed maximm in T_{G} with composition as shown in Fige10. The T_{G} ware determined refractametrioally, by Illers ${ }^{11}$ at a
cooling rate of $0.5^{\circ} \mathrm{C} / \mathrm{min}$ and by Powell and Elgood ${ }^{20}$ at a heating rate of $0.2{ }^{\circ} \mathrm{C} /$ min. Since the reactivity ratios ${ }^{14}$ are $r_{a}=r_{b}=1$, this is an example of the special case where $n_{a a}=n_{a}^{2}$ and $n_{b b}=\left(1-n_{a}\right)^{2}$. Fig. 11 is the plot of the data in the form of equation (10). The least squares line shown is of slope $T_{a b}=357.5 \mathrm{~K}_{\mathrm{K}}$, and the theoretical curve predicted by equation (4) for this value is shown in Fig. 10.

3.6 Vinylidene chloride/ethyl acrylate copolymers

This is another system which exhibits a maximum in the T_{G} versus oomposition plot, as shown in Fig.12. The copolymer T_{G} s were determined ${ }^{20}$ as described above. Although reactivity ratios have not been revorted f ar this system, they are estimated from the Alfrey-Price ${ }^{21}$ Q-e values, given in the tabulation of Young ${ }^{22}$, to be $r_{a}=0.40, r_{b}=2.44$ The plot of the data according to equation (10) is shown in Fig.13. The least squares line shown is of slope $T_{a b}=345.4 \mathrm{~K}$, and the corresponding theoretical curve fram equation (4) is shown in Fig.12.

3.7 Styrene/methyl acrylate copolymers

The experimental data of J nckel and Herwig ${ }^{23}$ are shown on a T G_{G}-camposition plot in Fig. 140 The T_{G} s were determined refrictanetrically by cooling fram above T_{G} at a rate of $0.5^{\circ} \mathrm{C} / \mathrm{min}$, and this probably accounts for the rather low value found for the T_{G} of 100% polystyrene (fast ooling tends to underestimate, and fast heating tends to overestimate, T_{G}). When the T_{G} of polystyrene has been determined in a rising temperature experiment at slow heating rates, a value of $100^{\circ} \mathrm{C}$ has been reported by several workers ${ }^{16}$. The plot of the data in the form of equation (10) provides Fig.15. The least squares slope is $T_{a b}=58.3^{\circ} \mathrm{C}$ and the corresponding theoretical curve from oquation (4) is shown in Fig. 140

3.8 Styrene/butyl acrylate conolymers

The experimental T_{G}-composition data (refractometric, cooling rate $0.5^{\circ} \mathrm{C} / \mathrm{min}$) of Illers ${ }^{11}$ are plotted in Fig. 16 and the data are plotted in the form of equation (10) in Fig.17. The least squares slope is $T_{a b}=291.0^{\circ} \mathrm{K}$ and the corresponding theoretical curve fram equation (4) is show in Fig.16.

3.9 Styrene/acrylic acid copolymers

The experimental T_{G}-composition data of Illers ${ }^{11}$ are plotted in Fig. 18. Various values, between 80° and $106^{\circ} \mathrm{C}$, have been reported ${ }^{16}$ for the T_{G} of
polyacrylic aoid ($T_{b b}$). The exact determination is very diffioult beoause traces of moisture have a plastioizing effect, and thermal degradation coours in the glass transition temparature region ${ }^{11}$. By extrapolation of the present copolymer data using the Gordan-Iaylor equation ${ }^{3}$, Illera eatimated ${ }^{11} \mathrm{~T}_{\mathrm{bb}}$ to be $166^{\circ} \mathrm{C}$. Taking his value of $\mathrm{T}_{\mathrm{aa}}=90^{\circ} \mathrm{C}$, and assuming various values for $T_{b b}$ between 100° and $200^{\circ} \mathrm{C}$, a series of plota of the data in the form of equation (10) have been obtained. The plot of $\Sigma \Delta^{2}$ (see seotion 3.3) against $T_{b b}$ is shom in rig.19, and the minimum arror in obtained when $T_{b b}=140^{\circ} \mathrm{O}_{\text {。 }}$ Equation (10), with $T_{b b}=140^{\circ} \mathrm{C}$, is plotted in Fige 20 and the least squares slope is $T_{a b}=154.9^{\circ} \mathrm{C}$. The corresponding theoretioal ourvo fram equation (4) is ahow in Fig.18. The extrapolated value of $140^{\circ} \mathrm{C}$ for Tbb is ocnsiderably lower than Iller's estimate of $166^{\circ} \mathrm{C}$, but both of these values are signifin oantly higher than the previausly reported values ${ }^{16}$. However, the GordanTaylor equation, whiah Illers used in his extrapolation, oannot prediat a maximum in the variation of T_{G} with omposition, whereas the theoretical ourve in Fige 18 is of this type.

3.10 Styrene/methyl methacrylate oopolymers

The experimental (refractametric) T_{G}-oomposition data of Beevers ${ }^{10}$ are shom in Pig. 21 and the plot of the data in the form of equation (10) is ahown in Fig. 22. The least squares slope is $T_{a b}=89.7^{\circ} \mathrm{C}$, and the correspandr ing theoretical ourve from equation (4) is shown in Pig. 21.

Although the experimontal data are rather widely scattered about the theoretical curve in Fig.21, it can be seen that nearly all the data lie within the envelope formed by the theoretical ourves for $T_{a b}=85^{\circ}$ and 95°, respectivelys so that $T_{a b}=90 \quad \pm 5^{\circ} \mathrm{C}$.
3.11 Methyl methacrylate/methyl aorylate copolymars

The refractometric T_{G} data of Illers ${ }^{11}$ are given in Fig. 23 and the usual computations allow the data to be plotted in the form of equation (10) in Fig. 240 The least squares slope is $T_{a b}=93.3^{\circ} \mathrm{O}$, and inserting this value in equation (4) gives the theoretioal ourve shown in Fig. 23.
3.12 Vinyl chloride/vinyl acetate copolymers

The experimental data of Reding et al ${ }^{19}$ are given in Fige25. The T_{G} a were determined by low frequency meohanical loss meamurementse Figo 26 is a
plot of the data in the form of equation (10), and the least squares slope is $T_{a b}=34 \cdot 0^{\circ} \mathrm{C}$. The oorresponding theoretical arve fram equation (4) is shom in Fig. 25.

4 DISCIJSSION

401 Summary of results
The T_{G}-composition data for all of the oleven copolymer systems examined conform to the proposed theary, and provide the results sumarised in Table 1. The calculated values of $T_{a b}$ may be compared with the corresponding value of $\left(T_{a a}+T_{b b}\right) / 2$. All of the systems showing a positive daviation from linearity or a maximum in the T_{G} versus overall composition plots conform to the candition $T_{a b}>\left(T_{a a}+T_{b b}\right) / 2$. Canversely, with the exoeption of styrene/butyl acrylate copolymers, all of the systems exhibiting negative deriation ar a minimum conform to the condition $T_{a b}<\left(T_{a a}+T_{b b}\right) / 2$. In the oase of styrene/ butyl acrylate copolymers $T_{a b}-\left(T_{a a}+T_{b b}\right) / 2=1.5 K_{\text {, wioh is very small, }}$ and it would be advantageous to obtain further experimental data to establiah whether or not this system is a genuine exception.

to 2 Comparisons with other theories

Three other equations have been proposed by Kanig ${ }^{7}$, Dyvik et al ${ }^{8}$, and Ellerstein ${ }^{9}$ to describe the variation of copolymer T_{G} with composition and these are also capable of describing the ocourronce of a maximu or a minimum value in T_{G}.

As shown in section 2.2, the equation proposed by Ellerstein to eccount for the effect of $A-B$ interactions in copolymer T_{G} is identical to equation (11) which is the special case of equation (10) when $r_{a}=r_{b}=1$ and $\alpha_{a a}=\alpha_{b b}$ 。 Ellerstein did not give a derivation of the equation nor examples of its ap:lication to experimental data and it would seem that this equation is only applicable when these special conditions are fulfillede When however $r_{a}=r_{b}=1$ but $a_{a a} \neq \alpha_{b b}$, the terms of equatian (11) should be weighted to allow for the effects of the numbers of groups in the diad sequences. In this way a good fit is obtained to the experimental data for the vinylidene ciloride/methyl acrylate system (seotion 3.5).

To explain the ocourrence of curvature or maxima or minima in plots of T_{G} versus weight-fractional composition Dyvik et al ${ }^{8}$ proprsed the ampirical equation

$$
\begin{equation*}
T_{G}=W_{a} T_{a}+W_{b} T_{b}-\psi W_{a} W_{b} \tag{12}
\end{equation*}
$$

where T_{G} refers to the copolymer, T_{a} and T_{b} are the $T_{G} s$ of the corresponding homopolymers, π_{a} and Π_{b} are the weight fractions of A and B in the copolymer, and $\psi=4$ times the deviation of the data from the straight line comneoting T_{a} and T_{b} in the plot of T_{G} versus weight-fractional copolymer oomposition. It was show that equation (12) described the data for five copolyner systems exhibiting negative curvature in the T_{G} versus W_{b} plots, and two systems exhibiting mindman It was suggested that the equation could also desoribe data which exhibited positive curvature or maxima; in these cases * would be a negative constant. This equation does not give a very satisfactory fit to the experimental data for vinylidene chloride/methyl acrylate copolymers, and it is difficult tu see specific relations between the interaction parameter, ψ, and the molecular structure of the copolymer.

The theory of Kanig ${ }^{7}$ was discussed briefly in section 2.1. This theory is based on a thermodynamic model of a copolymer treated as a mixture of moleoules and voids, and after introducing several s: nplifying assumptions the following equation is derived:

$$
\begin{equation*}
\left(T_{G}-T_{b b}\right) / \phi_{f_{a}}=K_{1} \phi_{f_{a}}+K_{2}, \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{f_{a}}=\left(W_{a} \delta_{a}\right) /\left(W_{a} \delta_{a}+W_{b} \delta_{b}\right) \tag{14}
\end{equation*}
$$

In these equations K_{1} and K_{2} are both constants for a given cononomer pair and functions of $A_{i j}^{*}$, the work to produce " 1 mole of holes" by separating ij associations; W_{a} and W_{b} are the weight-fractional copolymer compositions.

The terms δ_{a} and δ_{b} are the differences between the coefficients of oubical expansior above and below the T_{G} for homopolymers of A and B, respectively. A randon distribution of A and B units in the copolymer is assumed, and it follows that the theory prediuts a constant T_{G} for copolymers of constant overall composition but of varying degrees of alternation. Thus polystyrene, and an alternating, or a randam, copolymer containing equal proportions of othylene and 1,2 diphenylethylene would all have the same T_{G}, a prediction which does not seem likely for reasons given in seotion 4.3.

Illers ${ }^{11}$ found that the experimental data for styrenefacrylic acid ard styrene/butyl aorylate, could not be satisfactorily fitted to equation (13). This Report has demonstrated however that the data for these two systems can be satisfactorily fitted to the proposed theory (equation (10)); the remaining nine copolymer systems give good fits to both equation (10) and equation (13).

In deriving his equation, Kanig assumed a random distribution of A and B units in the copolymer, so that the numbers of $A A, B B$, and $A B$ (or $B A$) interactions are anly dependent an the overall concentrations of A and B units. Kanig's treament corresponds to the case α. the present theory w. in $r_{a}=r_{b}=1$, so that the occurrence $a f a, b b, a b$, and ba sequences are $a 11$ equally probable. When this last assumption is made, together with the condition that $a_{a a}=a_{b b}$, it has been shown that the equation of Ellerstein ${ }^{9}$, equation (11), appears as a special case of equation (10). It is therefore pertinent to relate equation (11) (Kllerstein) to equation (13) (Kanig). Squation (11) can be written as follows:

$$
\begin{equation*}
\left(T_{G}-T_{b b}\right) / n_{a}=A_{1} n_{a}+A_{2} \tag{15}
\end{equation*}
$$

where $A_{1}=T_{a a}+T_{b b}-2 T_{a b}$ and $A_{2}=2\left(T_{a b}-T_{b b}\right)$, and this equation is of the same algebraio form as equation (13). Furthermore there is a striking similarity between the constants A_{1} and K_{1}, and A_{2} and K_{2}, since ${ }^{7}$ in equation (13) $K_{1}=k\left(A_{a a}^{*}+A_{b b}^{*}-2 A_{a b}^{*}\right)$ and $-k_{2}=2 k\left(A_{a b}^{*}-A_{b b}^{*}\right)$, where k is a function of the ratio of "hole volume" to free volume, which is a constant for any given polymer ${ }^{7}$. The terms $A_{i j}^{*}$ and $T_{i j}$ are thus cambined in exaotly the same : orm within the constants A_{1} and K_{1}, and A_{2} and K_{2}, respectively. The prameters n_{a} and $\phi_{f_{a}}$ and equations (13) and (15) are related by the expression

$$
\begin{equation*}
\left[\left(1 / n_{a}\right)-1\right] /\left[\left(1 / \phi_{f_{a}}\right)-1\right]=M_{a} \delta_{a} / \mu_{b} \delta_{b} \text {, } \tag{16}
\end{equation*}
$$

where M_{a} and K_{b} are the molecular weights of monamers A and B. When $y_{a} \Delta a_{a}=y_{b} \Delta a_{b}, n_{a}=\phi_{a}$, making equations (13) and (15) formally identioal, which is the case for the methyl mothacrylate/methyl acrylate oopolymer systome For the other oopolymer systems under disoussion the value of $M_{a} \delta_{a} / M_{b} \delta_{b}$ varies between 0.6 and 2.8 , and for these systems the Kanig and Ellerstein equations are intermelated by the more oomplex form of equation (16). Equations (13) and (15) would aiso be identical if $n_{a} / \phi_{f_{a}}=\left(K_{1} / A_{1}\right)^{\frac{1}{2}}=K_{2} / A_{2}$.
4.3 The influance of ohemical structure on the T_{G} s of oppolymers

The relative extenta to which intermolecular and intramoleoular forces determine the T_{G} of a polymer or oopolymer is still not clearly defined: the DiMarzio and Gibbs ${ }^{2}$ oopolymer theory emphasises the role of intramolecular forces, particularly chain stiffness, while that of Kanig 7 places more weight on the role of intermolecular forces.

It is possible in some cases to see qualitative reasons why the T_{G} of a oopolymer system should exhibit a maximum or a minimum value if the chemioal structures of the relevant pairs of repeating units are considered in terms of the possible interplay of steric and electronic interactions, as in the following examples.

The maximum observed in T_{G} with composition for vinylidene chloride/ methyl acrylate and vinylidene chloride/ethyl acrylate copolymers can be partly explained by assuming an intramolecular electronic interaction in the ab Unit:

Interaction between the electronegative chlorine and the ester carbanyl group would tend to inhibit rotation of the main-ohain segments. This interaotion would reinforce the effect of steric hindrance caused by the proximity \mathfrak{f} the chloro and ester substituents.

The $\mathrm{L} \quad$ in T_{G} observed in styrene/methyl methacrylate oopolymers can be explainec in similar terins. In the aa sequence aterio hindranco is likely due to the rroxinity of the pendant phenyl rings, wile in the bb sequenoe intrawolecular interaction to form a pseudoring conformation is possible:

$$
\mathrm{R}=\mathrm{CH}_{3} \cdot \mathrm{O}
$$

Both of these interactions are likely to be absent in the ab sequence, where the phenyl groups are spaced apart by methoxy carbanyl groups, thus conferring greater ease of rotation about the main shain.

This type of qualitative approach could be useful in predicting whether a given oopolymer system is likely to exhibit positive or negative ourvature in the T_{G} versus composition plot.

The results show that a pair of stiff homopolymers can often be flexibilised by the alternating spacing conferred by copolymerization, and when this is so the minimum T_{G} will be obtained at the maximum degree of ulternation; this may be a useful concept in the desigr. of new elastamers. It seems unlikely, howevar, that chains already flexible in homopolymer form (low T_{G}) could themselves be greatly roduced in T_{G} on copolynerizaition.

5

OXNCIUSIONS

A simple relationship is proposed (equation (10)) between T_{G} and the mole fractions of the repeating unit aiad sequences in a oopolymer. When the reactivity ratios are know, the relationship also gives T_{G} as a function of cwerall copolymer composition. There is good agreement between theory and experimental data for all of the eleven copolymer systems examined including those exhibiting a maximm or a minimum in T_{G} with respect to the corresponding homopolymer $T_{G} s$. Furthermore, the data for two systems which did not fit the Kanig theory ${ }^{11}$, namely, styrene/aorylic acid and styrene/methyl methacrylate copolymers, agree well with the proposed relationship.

The copolymer equations of Dikarzio and Gibbs ${ }^{2}$ and Ellerstein ${ }^{9}$ are special cases of the proposed relations'ilp; the Ellerstein and the Kanig ${ }^{7}$ equation are closely related in form.

When one of the hamopolymer $T_{G} s\left(i . a_{n} T_{a a}\right.$ or $T_{b b}$) is unkown it may be estimated by finding the vaiue which gives the besi fit of the data to equation (10). In this way the T_{G} of polyacrylonitrile is estimeted to be 378° and 381 K , fram the data for copolymers with vinyl ahloride and methyl methacrylate, respectively. Fram the data for styrene/aorylic acid copolymers, the T_{G} of polyacrylic acid is estimated to be $413^{\circ} \mathrm{K}$.

A knowledge of the factors which determine the values of the parameter $T_{a b}$ would enable quantitative prediotions to be made of oopclymer T_{G} from the homopolymer $T_{G} s$ and the oopolymerisation reactivity ratiose At present, however, it is only possible to discuss the factors governing $T_{a b}$ in qualitative termse Very muoh more data will be required before quantitative oorrelations may be made between $T_{a b}$ and the molecular struoture of the ab unit.

Appendix A

GALCULATION OF THE FRACIIONS OF DIAD SEXUENCES IN A COPOLDER

$$
\text { (see section } 2.2 \text {) }
$$

The mole fraction of an ij sequence is given by

$$
\begin{equation*}
n_{i j}=n_{i} P_{i j}, \tag{A-1}
\end{equation*}
$$

where n_{i} is the mole fraotion of 1 units in the copolymer and $P_{i j}$ is the probability of forming an ij sequence. For example, $n_{a a}=n_{a} P_{a a} \cdot N o w$ an aa sequence can anly be formed from the reaction of monamer A with a chain onding in a radical A°, but there is a competing reaction $A^{\circ}+B$ to give an $a b$ sequence, so that $P_{a a}$ is given by

$$
\begin{equation*}
P_{a a}=k_{a a}\left[A^{*}\right][A] /\left(k_{a, a}\left[A^{*}\right][A]+k_{a b}\left[A^{*}\right][B]\right), \tag{A-2}
\end{equation*}
$$

where $k_{a a}$ is the rate calstant for the propagation reaction $A^{\circ}+A$, and $k_{a b}$ is the rate constant $f\left(\sigma A^{\circ}+\right.$ B. Although ins treatment is civen in terms of free-radical intermediates, the same method can be applied to ionic oopolymerization if the propagation reactions are of the same simple bimoleoular type.

Bquation (A-2) can be rearranged to give

$$
\begin{equation*}
P_{a a}=r_{a} x /\left(r_{a} x+1\right) \tag{A-3}
\end{equation*}
$$

where $r_{a}=k_{a d} / k_{a b}$, and $X=[A] /[B]$ the ratio of the concentrations of the comonomers in the monamer feed.

The conventianal copolymer composition equation ${ }^{24-26}$ may be written as

$$
\begin{equation*}
n=\left(r_{a} x+1\right) /\left[\left(r_{b} / x\right)+1\right], \tag{A-4}
\end{equation*}
$$

where $n=[a] / b]$, the ratio of the concentrations of a and b units ocambine in the copolymer at low conversions. From equation (Am) it follows that

$$
\begin{equation*}
n_{a}=\left(r_{a} x+1\right) /\left[r_{a} x+\left(r_{b} / x\right)+\dot{z}\right] \tag{1-5}
\end{equation*}
$$

Combining equations ($1-3$) and ($1-5$) according to equation ($1-1$) given equation (6) of section 2.2:

$$
\begin{equation*}
n_{a a}=r_{a} x /\left[r_{a} x+\left(r_{b} / x\right)+2\right] \tag{1-6}
\end{equation*}
$$

In a similar manner the expressions for $n_{b b}$ and $n_{a b}$ may be dorivedo
It should be noted that these derivations neglect any penultimate group effects and apply to low conversion copolymers.
Trule
Uubity of recur:s

Manomer 1	Monomer B	r	${ }_{5}$	$\alpha_{\text {as }}$	$a_{a b}$	$\alpha_{b b}$	$\begin{aligned} & T_{a a} \\ & \rho_{n} \end{aligned}$	$T_{b b}$ $\left(a_{x}\right)$	$\frac{\frac{T_{a a}+T_{b b}}{2}}{i^{0} \mathrm{~d}}$	$\begin{aligned} & \mathrm{T}_{\mathrm{ab}} \\ & \mathrm{e}_{\mathrm{k}} \mathrm{f} \end{aligned}$	Shape of TG-composition plot	Expt. data ref.	Hotes
Styrene	Butadiene	-	-	6	6	6	373	$\begin{aligned} & 195^{1} \\ & 188^{1} \end{aligned}$	$\begin{aligned} & 284 \\ & 280.5 \end{aligned}$	$\begin{aligned} & 284 \\ & 280.5 \end{aligned}$	Linear	5	1 Copolymerization at $\equiv^{\circ} \mathrm{C}$ 2 Copolymerization at $50{ }^{\circ} \mathrm{C}$
Acryionitrile	Methyl metnacrylate	0.15	1.20	6	9	12	$381{ }^{3}$	378	379.5	343	Min ${ }^{4}$	15,16	3 3y extrapolation to give
Acrylonitrile	vinyl chloride	3.0	0.05	6	6	6	3783	353	366	361.5	-ve ${ }^{5}$	19	best : it to equation (10)
Vinylidene chloride	Methyl acrylate	1.0	1.0	8	9	10	254	279	266.5	375.5	Max ${ }^{6}$	$\begin{aligned} & 11,16 \\ & x \end{aligned}$	4 Exhibits a minimem in T_{G} 5 Exhibits negative
Vinylldene ohloride	Ethyl acrylate	0.40	2.44	8	10	12	254	249	251.5	354	Max	16,20	curvature below "ideal" linear plot
styrene	Methyl acrylate	0.75	0.18	6	8	10	364	279	321.5	331	+re 7	22	6 Exhibits a maximum in T_{G}
Styrene	Butyl acrylate	0.76	0.15	6	11	16	363	26	289.5	29	-ve	11	7 Exhibits fositive
Styrene	Acrylic acid	0.15	0.25	6	7	8	363	$413{ }^{3}$	388	428	Max	11	curvature
styrene	Methyl methacrylate	0.48	0.46	6	9	12	372	368	370	363	M11n	10	
Methyl methacrylate	Methyl acrylate	0.3	1.5	12	11	10	376	278	327	366	+ve	11	
Vinyl cnloride	Vinyl acetate	1.35	0.65	6	8	10	353	303	328	307	-ve	19	

REFERENCES

irc	Author	Title, eto.
1	R.F. Bojer	The relation of transition temperatures to chemical structure in high polymers. Rubber Chem. Technol., 36, 1303 (1963)
2	E.A. DiMorzio J.H. Gibbs	Glass temperature of copolymers. J. Polymer. Sci. , 40, 121 (1959)
3	M. Fordon J.S. Taylor	Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem., 2, 493 (1952)
4	L. : :andelkern rol, liartin F.is. Quinn	Glass, state transitions of polychlorotrifluoroethylene, polyvinylidene fluoride, and copolymers. J. Res. Nat. Bur. Stande, 58, 137 (1957)
5	L. A. IVood	Glass transition temperatures of copolymers. J. Polymer. Sci., 28, 319 (1958)
6	2.A. Hajes	The relationship between ciass temperature, molar ochesion and polymer structure. J. Appl. Polymer Sci., 5, 318 (1961)
7	$\because \cdot \mathrm{Kaniz}$	Zur theorie der glastemperatur von polymerhamolozen, copolymeren, und weichgemachten polymeren. Kolloid-Z., 190, 1 (1963) Available as "On the theory of the glass transition temperature of hamopolymers, copolymers and plasticized polymersn, translated by Mrs. B.E.C. Dickinson, R.A.E. Library Translation 1135 (1965)
3	.K. Djvik i. B . Bartoe N. S. Steck	```A new second-order transition temperature relatianship for copolymers. Soc. Plastics Engrs. Trans., No.4, }98\mathrm{ (1964)```
'3	S. Sllerstein	The slass temperature of random aduition copolymers. J. Polymer Scie, B1, 223 (1963)
10	2.B. Beev:rs	Physical properties of vinyl polymers. Part 4. Glass-transition temperature of methyl methacrylate + styrene copolymers. Trans. Firaday Soc. , 58, 1465 (1962)

REFERENTCSS (Cmt'd)

No.
Author
H. Mark
B. Immergat
B.H. Immergut
L.J. Young
K.I. Beymon

15 R.B. Beevers
E.F.T. White

17 W.R. Krigbaum
N. Tokd ta

18 W.H. Howard

19 F.P. Reding
J.A. Faucher
R.D. Whitman

KH Illers
W. A. Lee Diana O'Mahony
J.M. Barton
W.A. Lee
W.A. Lee
E. Powell
B.G. Elgood

Title, etc.
Die glastemperatur von copoiymeren. Kolloid-Z., 190, 16 (1963)

Calculation of the glass temperatures of polymers having alkyl side-chains. R.A.E. Technical Report 66292 (1966)

Definition of structural groups in the calculation of tie glass temperatures of homopolymers. R.A. E. Technical Report 67119 (1967)

Copolymerisation reactivity ratios. In Copolymerization, edited by G.E. Ham, pp 695-843, Now York, Interscience Publishers Inc. (1964)

Physical properties of vinyl polymers. Part 2. The glass transition temperature of block and random acrylonitrile + methyl methacrylate copolymers. Trans. Faraday Soc., 56, 1529-1534 (1960)

Glass transition temperatures of homopolymers: a bibllography and assessment of available data. R.A.E. Technical Report 65151 (1965)

Melting pcint depression study of polyacrylonitrile. J. Polymer Sci., 43, 467 (1960)

The glass temperatures of palyacrylonitrile and acrylonitrile - vinyl acetate copolymers. J. Appl. Polymer Sci., 5303 (1961)

Glass transitions in ethylene copolymers and vinyl hamopolymers and copolymers.
J. Polymer Scie, 57, 483 (1962)

Glass transitions in vinylidene chloride copolymers. Chemistry and Industry, 901 (1900)

24

REFEREIICES (Cont'd)

No.	Author	TitIe, etc.
21	T. Alfrey, Jro L.J. Young	The Q-e scheme. Reference 14, pp.67-87
22	InJ. Young	Tabulation of Q-e values. Reference 14, pp. $845-863$
23	E. Jenokel H. V. Herwig	Vibration damping and freezing temperature in copolymers, polymer mixtures, and solutions. Kolloid-Z., 148, 57 (1956)
24	F.R. Mayo F.M. Lewis	Copolymerization. I. A basis for comparing the behaviour of monomers in conolymerization, the conolymerization of styrene and methyl methacrylate. J. Amer. Chem. Soc., 66, 1594 (1944)
25	T. Alfrey, Jro G. Goldfinger	The mechanism of copolymerization. J. Chem. Physe, 12, 205 (1944)
26	G.E. Ham	Theory of copolymerization. Reference 14, pp.1-65

Fig.l Dependence of T_{G} on composition for styrene/buta" ne copolymers

Fig. 2

Fig. 2 Dependence of T_{G} on composition for acrylonitrile / methylmethacrylate copolymers

Fig. 3 Calculated sequence distributions for acrylonitrile/methylmethacrylate copolymers

Fig. 4

Fig. 4 Plot of equation (IO) for acrylonitrile/methylmethacrylate copolymers

Fig. 5 Variation in $\Sigma \Delta^{2}$ with $T_{a a}$ for acrylonitrile/methylmethacrylate copolymers

Fig. 6
014900437

Fig. 6 Dependence of $T_{a b}$ on $T_{a a}$ for acrylonitrile/methylmethacrylate copolymers

Fig. 7 Dependence of T_{G} on composition for acrylonitrile/vinyl
chloride copsiymers

Fig. 8 Plot of equation (10) for acrylonitrile / vinyl chloride copolymers

Fig. 9 Variation in $\Sigma \Delta^{2}$ with $T_{a a}$ for acrylonitrile/methyl methacrylate copolymers

Fig.IO Dependence of T_{G} on composition for vinylidene chloride/methyl acrylate copolymers

Fig.ll Plot of equation (10) for vinylidene chloride / methyl acrylate copolymers

Fig. 13 Plot of equation (10) for vinylidene chloride / ethyl acrylate copolymers

Fig. $14 \& 15$

```
014 900445
```


Fig. 14 Dependence of T_{G} on composition for styrene / methyl acrylate copolymers

Fig. 15 Plot of equation(10) for styrene / methyl acrylate copolymers

Fig. 16 Dependence of T_{G} on composition for styrene/butyl acrylate copolymers

Fig. 17 Plot of equation (10) for styrene / butyl acrylate copolymers

Fig. 18 Dependence of T_{G} on composition for styrene/acrylic acid copolymers

Fig. 19

Fig. 19 Variation in $\Sigma \Delta^{2}$ with $T_{b b}$ for styrene/acrylic acid copolymers

Fig. 20 Plot of equation (10) for styrene/acrylic acid copolymers

Fig. 21

Fig. 21 Dependence of T_{G} on composition for styrene/ methylmethacrylate copolymers

Fig. 22 Plot of equation (IO) for styrene / methyl methacrylate copolymers

Fig. 23 Dependence of T_{G} on composition for methyl methacrylate/ methyl acrylate copolymers

Fig. 24 Plot of equation (ic; for methyl methacrylate / methyl iucryiate copolymers

Fig. 25 Dependence of T_{G} on composition for vinyl chloride / vinyl acetate copolymers

Fig. 26 Plot of equation (IO) for vinyl chloride/vinyl acetate copolymers

