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Abstract

We introduce a relational operationalisation of data which generalises, among others, the deter-
ministic information systems of [22], the indeterministic systems of [15] and [20], and the context
relation of [26]; it can also be used for fuzzy data modelling. Using an example from the area
of psychometrics, we show how our operationalisation can lead to an improved understanding of
agreements and disagreements by experts in classification tasks.

1 Introduction

In this paper we are concerned with developing a formal mechanism for describing the state of a
researcher’'s knowledge about objects in a given domain, which extends the widely used data table
operationalisation [1]. It turns out that relations between objects and features are a suitable tool to
achieve our aim. Using the set theoretical properties and common relational operators, we are able to
express not only the classical cases, but also semantical constraints such as single-valued, multiple-
valued, deterministic or indeterministic attributes. We can introduce different relations for different
states of knowledge, for example,
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e 2 /v ifand only if z certainly has property, and

e 2 Bv ifand only if 2 possibly has property.

Relations of this kind induce binary relations on the object set in various ways. While in the classical
case we have either equality or diversity, we can consider more differentiated cases in our setup. For
example, the relation

2Ty < (Vv)[zlvimpliesylv or yBv]

allows us to compare the certain features afith the certain or possible features:ofin this spirit,
we can also find (possible) compatibility between object descriptions.

The paper is organised as follows: In the first section we recall several modes of operationalisation
which have appeared in the literature and their model assumptions. Section 3 introduces our relational
operationalisation of data domains, and section 4 explores the relations among objects induced by the
object-attribute relations. Finally, we present an example for our approach, which shows how expert
ratings can be better understood and how possible reconciliation strategies can be found.

2 Domain operationalisation

When a domain of interest is investigated, one needs to introduce a language which possibly includes
relation and/or operator symbols with which the properties of the domain can be described. This pro-
cess is called “operationalisation”in the Social Sciences, and “knowledge representation”in Artificial
Intelligence; its result is sometimes called an “empirical model” [12].

One of the oldest operationalisations of data is the
(2.1) OBJECT+ ATTRIBUTES

assignment, i.e. in terms ektension*Umfang”) andintension(“Inhalt”) of Leibniz and Kant: A
researcher chooses a domain of interest, the attributes describing (parts of) the domain, and studies
the objects in the domain which fall under the description [12]. A data array as shown in Table 1

is an example of such an operationalisation: The leftmost column denotes different specimen of Iris
flowers, while each of the other columns describe one property (attribute) of each specimen.

A formal version of this type of operationalisation is the following [21]sifgle valued information
systenis a structure

(2.2) T={UQ{V,:a€Q}),

where

e [/ is a finite set of objects.



Table 1: Fisher’s Iris data [10]

_ Sepal Sepal Petal Petal _
SPeciMen | ngth width length  width PeC'eS
1 50 33 14 2 1
2 46 34 14 3 1
3 65 28 46 15 2
4 62 22 45 15 2
6 67 30 50 17 3
7 64 28 56 22 3
<143 other values>

e Qs afinite set of mappings: U — V,; eacha € Q is called amattribute

e V, is the set ofttribute valueof attributea.

Any such operationalisation puts semantic constraints on the data set. A simple and widely used
assumption is the “nominal scale restriction” which postulates that each object has exactly one value
of each attribute at a given time, and that the observation of this value is without error. It follows from
the assumption that each attribute is a function.

Given an information systeth as above, Iwinski [13] calls an information systém= (U, ', {V,, :
v € Q'}) adecomposition of, if

1. U=U".

2.V, ={0,1}forallv € .

3. For each: € Q there is somé), C Q' such that

(@) There is a bijectiorf, : Q, — {a(z):2 € U}.
(b) Forallv e Q,,2 €U,

(2.3) v(z) =1 a(z) = f(v).

This procedure is callebinarisationin [4] and [25].

Consider, for example the information system of Table 2, which, for simplicity, has only one attribute
“Size” [excerpt from 26]; the decomposition Bfis shown in Table 3.

Binary decomposition of attributes in this wagcks the problem, that there are various forms of such
attributes: Consider, for example, the attributéeing alive” with the set of attribute valudges,ng.

If a(z) = no, then we can infer thatis dead. Thus, the absence of the property signals the presence
of one other and vice versa. Binary attributes with this property are cajtednetricIf, on the other
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Table 2: Planet system

Table 3: Decomposed planet system

Planet Size Planet | Small Medium Large
Mercury | Small Mercury 1 0 0
Venus Small Venus 1 0 0
Earth Small Earth 1 0 0
Mars Small Mars 1 0 0
Jupiter | Large Jupiter 0 0 1
Saturn | Large Saturn 0 0 1
Uranus | Medium Uranus 0 1 0
Neptune| Medium Neptune| O 1 0
Pluto Small Pluto 1 0 0

hand, the attribute is “colour”, then being not red does usually not imply the presence of a particular
colour. This type of binary attribute is calledymmetrigsee 14]. This semantic information needs
to be present in any data operationalisation.

Wille [26] operationalises a single-valued information system by taking its binarisation, and then
interpreting the occurrence afin row z at (binary) attribute as the presence of the pair, v) in
acontext relation/. In the planet example, the operationalisation of the data is given by the context
relation/ C U x €' containing the pairs

(Mercury,smaly, (Venus,small, (Earth,small, {(Pluto,smalj,
(Uranus,medium (Neptune,mediuin
(Jupiter,large (Saturn,large

A generalisation of single-valued information systems which could indicate incompleteness was in-
troduced by Lipski [16, 17]:

“Information incompleteness means that instead of having a single value of an attribute,
we have a subset of the attribute domain, which represents our knowledge that the actual
value is one of the values in this subset, though we do not know which one” [17].

These considerations lead to the following definitiomrmAlti-valued information systeima structure
(2.4) T={UQ{V,:a€Q}),
where

e [/ is a finite set of objects.

e Qs a finite set of mappings: U — 2V¢; eacha € Q is called arattribute



e V, is the set ofttribute valueof attributea.

While Lipski indicates a semantic constraint, namely, tt{a) is a set of possible values fore U,
exactly one of which applies, tiiedeterministic information syster$[20], while formally the same
as Lipski’s system, do not put any semantic constraint(@r).

There are many other ways to give a semantic interpretation of a multi-valued information system;
here are a few examples:

1. a(z) is interpreted conjunctively and exhaustively. For example,isf the attribute “speaking
alanguage”, theny(z) = {German, Polish, Frengttan be interpreted as

(2.5) x speaks German, Polish, and French and no other languages

2. a(z) can also be interpreted conjunctively and non-exhaustively as in

(2.6) a speaks German, Polish, and French and possibly other languages

3. a(z) is interpreted disjunctively and exclusively. For example, a witness states that
(2.7) The car that went too fast was either a Mercedes or a Ford.
Here, exactly one of the statements

e The car that went too fast was a Mercedes.

e The car that went too fast was a Ford.
is true, but it is not known which one.

4. a(z) is interpreted disjunctively and non-exclusively. For example, i§ “cooperates with”,
then

(2.8) a(lvo) = {Gunther, Ewé&

means that Ivo cooperates with Giinther, or Ewa, or both.

3 Relational attribute systems

In this section we shall unify the operationalisations described above and, in addition, make semantic
constraints explicit.

We shall need some notation and definitions: SupposdilatA x B is a binary relation. If: € A,
we let R(z) = {v : 2 Rv}; furthermore, R~ is the relation{(v, z) : z Rv}, called theconverse of?.
If RC Ax BandS C B x (' thenthecomposition ofR and S, written ask o .5, is the relation

(3.1) z(RoS)y<= (32 € B)[zRzandzSy].



Note thatk o S C A x C. Theidentity relationonA is 1’y = {(z,z) : + € A}, and theuniversal
relation A x A on A is denoted by/4.

The attributes of a single-valued information system are functiéns: V,, while the attributes of
a multivalued system assign to eacte U a set of (possible) values. Such a functionl/ — 2«
corresponds to a relatiar, C U x V, by setting

(3.2) tR,v < v € a(x).

This generalises the binary information systems and the context relations described above.

While operationalisations such as those of [21] or [20] are not (openly) concerned with semantic
constraints as part of the design process of an information system and only learn the given data, we
will need to take into account those constraints which occur among the attributes regardless of the
extension given by a specific data set. This is a common procedure in the theory of relational data
bases, in which constraints are specifiddinitio. Thus, in order to be consistent, we need to specify
these semantic constraints as part of the operationalisation; in particular, we need to state whether
a(x) is to be interpreted conjunctively or disjunctively.

We are now ready for our main definition:rAlational attribute systerfRAS) is a structure
(3.3) IT={UA{Q:a €T}, R,A),
where

1. U is a non-empty set of objects.

2. Eachf, is a non-empty set of attribute values, and the Sgtare pairwise disjoint; we set
Q=U,er Q-

3. R is a set of relations such that for eakhe R there is some € T with R C U x €,.

4. A is a set of semantic constraints.

Eacha € T is an attribute, and eache 2, a value which an objeat € U can take undet, which

is thea-property of x. The relations iR express our knowledge about the connection ef U with

the properties of,, and the constraints describe the type of operationalisation, such as single-valued,
multiple-valued, deterministic or indeterministic. We do not want to prescribe the (logical) form of
the constraints. It will turn out, that for the simple (and most important) cases equations between
relations are sulfficient.

In what follows, we shall exhibit how the operationalisations from above can be found in our systems.
Suppose thaf is a single-valued information system. For each Q we letQ, = {a(z) : 2 € U};

we assume without loss of generality that the $&tsare pairwise disjoint./, C U x €2, is how
defined by

(3.4) rlv <= a(z) = v.



This is just the context definition from above. The constraint for this type of system translates into the
fact that for each: € U there is exactly one € €, such thatt R,v. It is not hard to see that this
condition is equivalent to the relational equations

(3.5) I,oVq, =UXQ, 1, is total.
(3.6) I,"oI, Clg, I, is functional

For the situation of (2.5), we letbe the property “speaking a language” and
(3.7) zl,v < 2 speaks language

There are no constraints; however, if we want to prescribe that each person speaks at least one lan-
guage, then we will have constraint (3.5). We notice how our relational notation allows us to generalise
the one-valued deterministic information systems to many-valued deterministic systems.

To be able to express incomplete information we introduce another relafiand we interpret B, v
as “r has possibly the-propertyv”. The constraints arising from Lipski’s systems are

(3.8) B,7ol, =10 “Certainly” and “Possibly” are not compatible.
(3.9) I, oI, Clg, I, is functional

This is reminiscent of fuzzy sets in that we do not necessarily have crisp attribute assignments, and
also of rough sets, since we have only one relation per attribute for uncertainty. Note that condition
(3.8) implies thatl, N B, = 0, and thatr/,v; and, = B, v, are together impossible. For (2.8) we note

that there are no semantic constraints.

Even though we will concentrate in the sequel on the relatioasd B, these are by no means the
only conceivable ones. Another frequently used relation is the one which signals absence of a property
such as “not red”.

4 Relational properties

In this section we shall look at relations between objects, which are induced by the relati®ns in
this generalises the dependencies of rough set theory, and the information relations of [18]. More
concretely, we shall consider the case of the relatigrend B, as described in the previous section,

ie.

e 1/,v means that certainly has the-propertyv.

e 1 B,v means that possibly has the-propertyw.

In the following considerations we will concentrate on the case of a single attitbuted conse-
guently drop the subscripts frol, B,, and(2,,.



Sincel andB signal the (possible) presence of a property, all attributes are seen to be asymmetric. In
order to picture the relationsand B, we agree on the following conventiof: andf2 are finite, and

we write the system as a data matrix with rows labelled by the elemetifs afid columns labelled

by the elements of th@. If 2 /v, we placehk into the cell{z, v}, and forz Bv we write<{y. Using this
notation, Lipski’s conditions (3.8) and (3.9) can be stated equivalently as

4.1) & and<> cannot appear in the same row.
4.2) There is at most ond in every row.
We also set! = I U B; then, H (z) is the set of those attribute values whicltertainly possesses

and those which it possibly possesses. This is similar to the lower and upper approximation of rough
set analysis [22], or to the egg-yolk model of [3], where

H(z)=1(z)UB(z).
e S S
€gg yolk white

Our overall constraint is
4.3) INB=40.

In rough set theory, two objects in a single-valued information system are ¢atlesternible if

they have the same feature vector. In a multivalued system there are other possibilities which use set
theoretic relations on the set$z). This leads to thénformation relationdirst studied in [18]. Our
relational setting extends these relations in the following way: We will consider the relations

(44) = §7 27 07 D7
where for a sef/ and subsets « of M,

tOu < tNu # (), andt andu are incomparable with respect@

tDu < tNu=170.
Then, the relations of (4.4) partitioll x M. Such “intersection tables” have been considered in
gualitative spatial reasoning, for example, in [8, 9] for the intefiand boundarnB of sets in a

topological space. In Tucholsky’s terms, the interior corresponds to the hole, and the boundary is the
uncertainty, the investigation of which is much more interesting than studying

Givenz, y in U, there are nine ways of relating an elemen{ bfz), B(z), H (x) } with an element of
{I(y), B(y), H(y)}, and we denote these possibilities by row headings

(4.5) II,IB, IH, BI, BB, BH, HI, HB, HH.

We can now construct a relational table by indicating below each heading which of the relations of
(4.4) holds. Of course, not all configurations are possible, since we have to observe the conditions

(4.6) H=IUBandInNnB=1{.



Table 4: Equality constraints

II IB IH BI BB BH HI HB HH
I@)=1I(y) |= D ¢ D 2
I{x)=B(y) | D = ¢ D 2
H{e)=H{y) |2 2 = D D D 2 2
B(x)=1(y) | D = b ¢ 2

B(z) = B(y) D D= ¢ 2
Be)=H(y) |0 D D 2 2 = 2 2 2
H@)=Iy |¢ D ¢ ¢ D ¢ = D ¢
H@)=BW|D ¢ ¢ D ¢ ¢ D = ¢
H(z) = H(y) c c 2 2 =

If one of the entries is=, then additional constraints occur which are listed in Table 4. There, for
example, the entrp) in the cell{(I(2) = I(y), BI) means thaf(z) = I(y) impliesB(z)N1(y) = 0.

The 78 arrangements, which are possible when we disregard the columns which ébataishown

in Table 5 on the following page. The EY column gives the number(s) of the corresponding egg-yolk
configuration(s) as listed in [3, Figure 4]. Since several egg-yolk pairs can belong to thé sAme
configuration, and not ever§, B — configuration is associated with &nH — configuration, we see

that the expressive powers bf B — configurations and, H — configurations are incomparable.

Suppose thak, S € {I, B, H}, and that) is one of the relations of (4.4). ArelatidnonU is called
anelementary information relatioifiit has the form
4.7) 2Ty < (R(z),5(y)) € Q.

Any U, N — combination of elementary information relations is calledrdarmation relation This
generalises the information relations of [18].

5 Example: Interrater reliability

A procedure often employed in psychological researaxjpgert-based categorisatioA collection of

N items — such as statements, behaviour sequences etc — are presented to an expert, who is asked to
assign each one to exactly oofn categories”;. If two experts solve this task, then these categories

can be cross-classified in a table as follows:

Category: ¢, Cy ... O,
No. of agreements &y ky ... ky

A measurement which is frequently used to express the agreement is

2?21 ki — Z?:l Elk]

1) FE TN B




Table 5: Set configurations witho#t

No. IT IB BI BB | EY No. | II IB BI BE |EY No. % b bt bb | EY
1. = D D = 46 2. D = = D 3. = D D D
4. = D D C 41 5. = D D 2 40 6. = D D O | 39
7. D = C D 8. D = 2 D 9. D = (@] D
10. D = D D 11. D C = D 12. D 2 = D
13. D @] = D 14. D D = D 15. g D D =
16. 2 D D = 17. (@] D D = 18. D D D =
19. D D D C 20. D D D 2 21. D D D o |2
22. D D D D 1 23. C D D D 24. 2 D D D
25. (@] D D D 26. D C D D 27. D 2 D D
28. D (@] D D 29. D D C D 30. D D 2 D
31. D D (@] D 32. D C C D 33 D C 2 D
34. D C (@] D 35. D 2 C D 36. D 2 2 D
37. D 2 (@] D 38. D (@] C D 39. D (@] 2 D
40. D (@] (@] D 41. C D D C 42. C D D 2
43. C D D (@] 44. 2 D D C 45. 2 D D 2
46. 2 D D (@] 47. (@] D D C 48. (@] D D 2
49. O D D O 50. D c 2 O 19, 28, 34, 42 51. D c O O 11,13
52. D O 2 O 10,12 53. O 2 c D 54. O O c D
55. (@] 2 O D 56. c D O 2 33, 45 57. c D O O 18, 26, 32, 38
58. O D O 2 59. 2 O D c 36, 44 60. O O D c
61. 2 O D O 17, 25, 27, 61 62, O O O O 14, 15, 16, 20,| 63. D D 2 217
21, 22, 35, 29,
43
64. D D 2 O 64 65. D D O 2 66. D D O O | 3
67. 2 2 D D 23,30 68. O 2 D D 69. 2 O D D
70. (@] (@] D D 71. D c D c 8 72 D c D O |6
73. D (@] D C 74. D O D O 4 75. c D c D | 24,37
76. (@] D C D 7. C D (@] D 78. (@] D (@] D
79. D O O O 9 80. O O O D

introduced by Cohen [2]. Herd/[k;] is the expectation of agreement under the hypothesis that the
codings used by the two experts are independent.

One problem of this procedure is that experts often cannot or will not assign the items to a unique
category, since statements or behavioural sequences can often be interpreted in more than one way,
so that there could be more than one category to which they could be assigned. By having to assign
an item to exactly one category, this information is suppressed, and, in case the experts ratings differ
significantly, it cannot be said whether the experts strongly disagree, or whether the categories are not
sufficiently discriminating.

In order to surmount this problem, one can offer the experts a choice among the following alternatives:

(5.2) Each item is assigned to a unique category, as described above.
(5.3) Each item is assigned to a main category and zero or more lesser categories.
(5.4) Each item is assigned to one or more categories “aequo loco”.

We can express these situations with our RAS operationalisation as follows: £etF, ... E;} be
the set of experts, and for each item 1 < i < N, letQ,, = {C4,...,C,} be the set of possible
categories. The relations which we consider&areand B, ; their meaning is given by

e (F,C) € I,, means that expett classifies itemu; as certainly belonging to categofy:.

e (F,C) € B,, means that expe#t classifies itenu; as possibly belonging to categary

10



The conditions (5.2) — (5.4) lead to the constraints thatnd B,, are disjoint, that each; can be
certainly assigned to only one categery and that each expert makes at least one certain or possible
assignment. In other words, we assume

(5.5) lo; N By, =1,
(56) Iaiv © Ial‘ C 1U7
(5.7) H,: is total.

We denote bynd(A) the indicator function of an evert, i.e.

ind (4) 1, if Aistrue
mn =
0, otherwise.

Suppose we consider two expefis I'. Different estimates of the reliability of the assignment of
items to categories, i.e. their discriminating power, can be obtained by considering the following
situations:

Ty: Our first situation considers only the agreement ohet

N
(5.8) IDy =) ind(I,,(E) = I, (E"))

j=1
be the number of identicdl,; assignments, and

N
(5.9) N* =Y "ind(I,,(E) # 0§ andl,, (E') # 0)
7=1

be the number of instances where both experts make one definite choice (and possible additional
$ entries), though not necessarily the same one. Then,

IDy — E[1D4]
A - ~—r—
(5.10) "1 T N B[ID]
defines a value in analogy toof (5.1), which is equal te, if each expert makes exactly one

choice for each:;, and this choice is &. A sensible interpretation of; can be given only if
NW* is close tol, since otherwise there are not enough non-enipggts.

Ty: One can sharpen the conditions by requiring that the experts agree not orkyahees but on
the B-values as well. Thus, we let

N
(5.11) ID; = ind(l,,(E) = I,,(E') andB,, (E) = B, (E")),
7=1
_ IDy — E[ID,]
(512) Ro = m

11



Ts: A softer requirement than 2. is that the experts agre& on

N
(5.13) IDs =" ind(H, (F) = H, (E"),
j=1
D3 — E[ID3)
(514) K3 = m

Note thatl; is incomparable td}.

T4: An even softer requirement is thHt(F) and H (E’) are comparable:

N

(5.15) IDy = ind(H, (E) C H, (E') or Hy (E') C Hy, (E)),
j=1
_ ID4— E[IDy]
(516) R4 = m

Ts: We can also only require that the certain assignments of one expert are containef is¢hef

the other:
N
(5.17) [Ds =Y " ind(L,(E) C Hy, (E') or I, (E") C Hq, (E)),
7=1
IDs — E[IDj)
A =
(-18) "= N~ E[Ds]

Ts: If the assignment is reliable, we should not observe many instances of

H, (E)NH, (E') = 0.

N
(5.19) NID =) "ind(H, (E)N H, (E') =),
7=1
we define
NID

These situations correspond to the relati@éis. . . , 7 depicted in Table 6. Observe that we have
combinedC (2) and=into C (D). If both experts use only the first coding alternative (exact assign-
ments — the “classical approach”), no differences among the 6 reldftjons’s will occur, up to the
point that the objects which fulfily are in the set complement of the set built by one of the relations
T, ... 1s.

Gediga et al. [11] present an instrumentarium for the evaluation of software usability which contains
75 questions rating the seven usability categories of ISO 9241-10. These are

12



Table 6:x-relations

T\|\II IB IH BI BB BH HI HB HH
1
2 =
3 =
c
4 or
2
c
5 or
2
6 D
1. Suitability for the task,
2. Selfdescriptiveness,
3. Controllability,
4. Conformity with user expectations,
5. Error tolerance,
6. Suitability for individualisation,
7. Suitability for learning.
In this case, we have 75 attribute groupseach with the categori€s,, . .. , C'; which correspond to

the seven usability criteria listed above.

We have asked two experts to assign categories to each of these questions, using the semantic con-
straints (5.5) — (5.7). It turns out that* = 73, which is sufficiently close t&v = 75. The values for

the various IDs, expectations (E) after 1000 simulations,sandrresponding td" to Tz are shown

in Table 7 on the next page. Note that the column headed “6” lists the results/fbr. We also give

the significancev after 1000 simulations, and the percentages of (dis-) agreement.

The relationT} is fulfilled in 2/3 of all instances, which means that 50 items of the test are assigned
to the sameh-category by both raters. In analogy to the classical procedure, we can regard a value of
k1 = 0.635 as “GOOD” [23]. Whereas the analysis'Bf is approximately the same as the classical
procedure, the other types of relations offer different insights. The strong eqiialfiglds in 32
(42,7%) of the cases, and the hull-equdlityis given in 35 cases (46.7%). Both results tell us that the
assignment of thé-value is by far less stable than the assignment o#healue. The values of;

13



Table 7: Experimental results

Ty Ty Ts Ty Ts Ts
IDy sandN1Dg 50 32 35 65 70 6
Expectation 9.927 3.724 4320 18.395 33.21947.772
K 0.635 0.397 0.235 0.823 0.9250.874
Significance 0.001 0.001 0.001 0.001 0.0010.001
% 66.7 427 46.7 86.7 933 8.0

andxs show that the difference of the resulting equalities to those which can be achieved by random
are much smaller than in case’tf.

Looking at7T, we observe that the “equality up to different strictness” describes the situation quite
well, because the ratings of 65 items (86.7%) can be described in that way.

RelationTs holds for 70 cases (93.3%), which means that at leastdcategory of one rater is
at least mentioned by the other rater — the other 5 items (6.7%) are of interest, because of obvious
disagreement.

Finally, Ts holds for 6 items (8.0%), which means that the experts totally disagree on only a few items.
Note, thatl; is stricter thar¥;s if N* = N; if this condition does not hold (as in our exampl&),and
Ts address different relationships.

6 Summary and outlook

We have investigated semantic interpretations of multivalued information systems, and have proposed
a relational operationalisation which enables the researcher to express a distinction between certain
and (im-)possible facts or events. In terms of methodology, the proposed procedures are in the “non-

invasive” spirit of data analysis [5], and integrate the characteristics of rough set and fuzzy set analysis

in a straightforward manner. Our approach shows connections to ideas in spatial reasoning research;
we have shown what kind of relations can be set up in this general framework and how these relations

are related to the egg-yolk representation of uncertainty in spatial reasoning.

In an example of our approach, we have shown how to generalise traditional methods of expert-
based classification, and that it is possible, without using many additional resources, to obtain a more
detailed picture of the interplay of the raters’ choices, and to explain previously hidden differences.
A main advantage of the new classification scheme is that we have a better chance of understanding
why experts disagree in categorisation, and in which cases a compromise among experts is feasible or
not.

We are currently undertaking an investigation of the logical background of the presented structures
[6], based on the relational semantics of [19], and more detailed case studies to gauge the possibilities

14



and limits of the concepts [7].
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