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“Das Merkwürdigste an einem Loch ist der Rand.”1 [24]

Abstract

We introduce a relational operationalisation of data which generalises, among others, the deter-

ministic information systems of [22], the indeterministic systems of [15] and [20], and the context
relation of [26]; it can also be used for fuzzy data modelling. Using an example from the area
of psychometrics, we show how our operationalisation can lead to an improved understanding of

agreements and disagreements by experts in classification tasks.

1 Introduction

In this paper we are concerned with developing a formal mechanism for describing the state of a

researcher’s knowledge about objects in a given domain, which extends the widely used data table

operationalisation [1]. It turns out that relations between objects and features are a suitable tool to

achieve our aim. Using the set theoretical properties and common relational operators, we are able to

express not only the classical cases, but also semantical constraints such as single-valued, multiple-

valued, deterministic or indeterministic attributes. We can introduce different relations for different

states of knowledge, for example,
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� xIv if and only if x certainly has propertyv, and

� xBv if and only if x possibly has propertyv.

Relations of this kind induce binary relations on the object set in various ways. While in the classical

case we have either equality or diversity, we can consider more differentiated cases in our setup. For

example, the relation

xTy () (8v)[xIv impliesyIv or yBv]

allows us to compare the certain features ofx with the certain or possible features ofy. In this spirit,

we can also find (possible) compatibility between object descriptions.

The paper is organised as follows: In the first section we recall several modes of operationalisation

which have appeared in the literature and their model assumptions. Section 3 introduces our relational

operationalisation of data domains, and section 4 explores the relations among objects induced by the

object-attribute relations. Finally, we present an example for our approach, which shows how expert

ratings can be better understood and how possible reconciliation strategies can be found.

2 Domain operationalisation

When a domain of interest is investigated, one needs to introduce a language which possibly includes

relation and/or operator symbols with which the properties of the domain can be described. This pro-

cess is called “operationalisation” in the Social Sciences, and “knowledge representation” in Artificial

Intelligence; its result is sometimes called an “empirical model” [12].

One of the oldest operationalisations of data is the

OBJECT 7! ATTRIBUTES(2.1)

assignment, i.e. in terms ofextension(“Umfang”) and intension(“Inhalt”) of Leibniz and Kant: A

researcher chooses a domain of interest, the attributes describing (parts of) the domain, and studies

the objects in the domain which fall under the description [12]. A data array as shown in Table 1

is an example of such an operationalisation: The leftmost column denotes different specimen of Iris

flowers, while each of the other columns describe one property (attribute) of each specimen.

A formal version of this type of operationalisation is the following [21]: Asingle valued information

systemis a structure

I = hU;
; fVa : a 2 
gi;(2.2)

where

� U is a finite set of objects.
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Table 1: Fisher’s Iris data [10]

Sepal Sepal Petal Petal
Specimen

length width length width
Species

1 50 33 14 2 1

2 46 34 14 3 1

3 65 28 46 15 2

4 62 22 45 15 2

6 67 30 50 17 3

7 64 28 56 22 3

<143 other values>

� 
 is a finite set of mappingsa : U ! Va; eacha 2 
 is called anattribute.

� Va is the set ofattribute valuesof attributea.

Any such operationalisation puts semantic constraints on the data set. A simple and widely used

assumption is the “nominal scale restriction” which postulates that each object has exactly one value

of each attribute at a given time, and that the observation of this value is without error. It follows from

the assumption that each attribute is a function.

Given an information systemI as above, Iwinski [13] calls an information systemI0 = hU 0;
0; fVv :

v 2 
0gi a decomposition ofI, if

1. U = U 0.

2. Vv = f0; 1g for all v 2 
0.

3. For eacha 2 
 there is some
a � 
0 such that

(a) There is a bijectionfa : 
a ! fa(x) : x 2 Ug.

(b) For allv 2 
a; x 2 U ,

v(x) = 1() a(x) = f(v):(2.3)

This procedure is calledbinarisationin [4] and [25].

Consider, for example the information system of Table 2, which, for simplicity, has only one attribute

“Size” [excerpt from 26]; the decomposition ofI is shown in Table 3.

Binary decomposition of attributes in this way faces the problem, that there are various forms of such

attributes: Consider, for example, the attributea “being alive” with the set of attribute valuesfyes,nog.

If a(x) = no, then we can infer thatx is dead. Thus, the absence of the property signals the presence

of one other and vice versa. Binary attributes with this property are calledsymmetric. If, on the other
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Table 2: Planet system

Planet Size

Mercury Small

Venus Small

Earth Small

Mars Small

Jupiter Large

Saturn Large

Uranus Medium

Neptune Medium

Pluto Small

Table 3: Decomposed planet system

Planet Small Medium Large

Mercury 1 0 0

Venus 1 0 0

Earth 1 0 0

Mars 1 0 0

Jupiter 0 0 1

Saturn 0 0 1

Uranus 0 1 0

Neptune 0 1 0

Pluto 1 0 0

hand, the attributea is “colour”, then being not red does usually not imply the presence of a particular

colour. This type of binary attribute is calledasymmetric[see 14]. This semantic information needs

to be present in any data operationalisation.

Wille [26] operationalises a single-valued information system by taking its binarisation, and then

interpreting the occurrence of1 in row x at (binary) attributev as the presence of the pairhx; vi in

a context relationI . In the planet example, the operationalisation of the data is given by the context

relationI � U � 
0 containing the pairs

hMercury,smalli; hVenus,smalli; hEarth,smalli; hPluto,smalli;

hUranus,mediumi; hNeptune,mediumi;

hJupiter,largei; hSaturn,largei:

A generalisation of single-valued information systems which could indicate incompleteness was in-

troduced by Lipski [16, 17]:

“Information incompleteness means that instead of having a single value of an attribute,

we have a subset of the attribute domain, which represents our knowledge that the actual

value is one of the values in this subset, though we do not know which one” [17].

These considerations lead to the following definition: Amulti-valued informationsystemis a structure

I = hU;
; fVa : a 2 
gi;(2.4)

where

� U is a finite set of objects.

� 
 is a finite set of mappingsa : U ! 2Va; eacha 2 
 is called anattribute.
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� Va is the set ofattribute valuesof attributea.

While Lipski indicates a semantic constraint, namely, thata(x) is a set of possible values forx 2 U ,

exactly one of which applies, theindeterministic information systemsof [20], while formally the same

as Lipski’s system, do not put any semantic constraint ona(x).

There are many other ways to give a semantic interpretation of a multi-valued information system;

here are a few examples:

1. a(x) is interpreted conjunctively and exhaustively. For example, ifa is the attribute “speaking

a language”, then,a(x) = fGerman, Polish, Frenchg can be interpreted as

x speaks German, Polish, and French and no other languages:(2.5)

2. a(x) can also be interpreted conjunctively and non-exhaustively as in

a speaks German, Polish, and French and possibly other languages:(2.6)

3. a(x) is interpreted disjunctively and exclusively. For example, a witness states that

The car that went too fast was either a Mercedes or a Ford.(2.7)

Here, exactly one of the statements

� The car that went too fast was a Mercedes.

� The car that went too fast was a Ford.

is true, but it is not known which one.

4. a(x) is interpreted disjunctively and non-exclusively. For example, ifx is “cooperates with”,

then

a(Ivo) = fGünther, Ewag(2.8)

means that Ivo cooperates with Günther, or Ewa, or both.

3 Relational attribute systems

In this section we shall unify the operationalisations described above and, in addition, make semantic

constraints explicit.

We shall need some notation and definitions: Suppose thatR � A�B is a binary relation. Ifx 2 A,

we letR(x) = fv : xRvg; furthermore,R� is the relationfhv; xi : xRvg, called theconverse ofR.

If R � A�B andS � B � C then thecomposition ofR andS, written asR Æ S, is the relation

x(R Æ S)y() (9z 2 B)[xRz andzSy]:(3.1)

5



Note thatR Æ S � A � C. The identity relation onA is 10A = fhx; xi : x 2 Ag, and theuniversal

relationA� A onA is denoted byVA.

The attributes of a single-valued information system are functionsU :! Va, while the attributes of

a multivalued system assign to eachx 2 U a set of (possible) values. Such a functiona : U ! 2Va

corresponds to a relationRa � U � Va by setting

xRav () v 2 a(x):(3.2)

This generalises the binary information systems and the context relations described above.

While operationalisations such as those of [21] or [20] are not (openly) concerned with semantic

constraints as part of the design process of an information system and only learn the given data, we

will need to take into account those constraints which occur among the attributes regardless of the

extension given by a specific data set. This is a common procedure in the theory of relational data

bases, in which constraints are specifiedab initio. Thus, in order to be consistent, we need to specify

these semantic constraints as part of the operationalisation; in particular, we need to state whether

a(x) is to be interpreted conjunctively or disjunctively.

We are now ready for our main definition: Arelational attribute system(RAS) is a structure

I = hU; f
a : a 2 Tg;R;�i;(3.3)

where

1. U is a non-empty set of objects.

2. Each
a is a non-empty set of attribute values, and the sets
a are pairwise disjoint; we set


 =
S
a2T 
a.

3. R is a set of relations such that for eachR 2 R there is somea 2 T with R � U � 
a.

4. � is a set of semantic constraints.

Eacha 2 T is an attribute, and eachv 2 
a a value which an objectx 2 U can take undera, which

is thea-property of x. The relations inR express our knowledge about the connection ofx 2 U with

the properties ofa, and the constraints describe the type of operationalisation, such as single-valued,

multiple-valued, deterministic or indeterministic. We do not want to prescribe the (logical) form of

the constraints. It will turn out, that for the simple (and most important) cases equations between

relations are sufficient.

In what follows, we shall exhibit how the operationalisations from above can be found in our systems.

Suppose thatI is a single-valued information system. For eacha 2 
 we let
a = fa(x) : x 2 Ug;

we assume without loss of generality that the sets
a are pairwise disjoint.Ia � U � 
a is now

defined by

xIav () a(x) = v:(3.4)
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This is just the context definition from above. The constraint for this type of system translates into the

fact that for eachx 2 U there is exactly onev 2 
a such thatxRav. It is not hard to see that this

condition is equivalent to the relational equations

Ia Æ V
a = U � 
a Ia is total.(3.5)

Ia� Æ Ia � 10
a Ia is functional:(3.6)

For the situation of (2.5), we leta be the property “speaking a language” and

xIav () x speaks languagev:(3.7)

There are no constraints; however, if we want to prescribe that each person speaks at least one lan-

guage, then we will have constraint (3.5). We notice how our relational notation allows us to generalise

the one-valued deterministic information systems to many-valued deterministic systems.

To be able to express incomplete information we introduce another relationBa, and we interpretxBav

as “x has possibly thea-propertyv”. The constraints arising from Lipski’s systems are

Ba� Æ Ia = ; “Certainly” and “Possibly” are not compatible.(3.8)

Ia� Æ Ia � 10

a

Ia is functional:(3.9)

This is reminiscent of fuzzy sets in that we do not necessarily have crisp attribute assignments, and

also of rough sets, since we have only one relation per attribute for uncertainty. Note that condition

(3.8) implies thatIa \Ba = ;, and thatxIav1 and; xBav2 are together impossible. For (2.8) we note

that there are no semantic constraints.

Even though we will concentrate in the sequel on the relationsI andB, these are by no means the

only conceivable ones. Another frequently used relation is the one which signals absence of a property

such as “not red”.

4 Relational properties

In this section we shall look at relations between objects, which are induced by the relations inR;

this generalises the dependencies of rough set theory, and the information relations of [18]. More

concretely, we shall consider the case of the relationsIa andBa as described in the previous section,

i.e.

� xIav means thatx certainly has thea-propertyv.

� xBav means thatx possibly has thea-propertyv.

In the following considerations we will concentrate on the case of a single attributea, and conse-

quently drop the subscripts fromIa,Ba, and
a.
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SinceI andB signal the (possible) presence of a property, all attributes are seen to be asymmetric. In

order to picture the relationsI andB, we agree on the following convention:U and
 are finite, and

we write the system as a data matrix with rows labelled by the elements ofU , and columns labelled

by the elements of the
. If xIv, we place| into the cellhx; vi, and forxBv we write}. Using this

notation, Lipski’s conditions (3.8) and (3.9) can be stated equivalently as

| and} cannot appear in the same row.(4.1)

There is at most one| in every row.(4.2)

We also setH = I [ B; then,H(x) is the set of those attribute values whichx certainly possesses

and those which it possibly possesses. This is similar to the lower and upper approximation of rough

set analysis [22], or to the egg-yolk model of [3], where

H(x)| {z }
egg

= I(x)|{z}
yolk

[B(x)| {z }
white

:

Our overall constraint is

I \B = ;:(4.3)

In rough set theory, two objects in a single-valued information system are calledindiscernible, if

they have the same feature vector. In a multivalued system there are other possibilities which use set

theoretic relations on the setsa(x). This leads to theinformation relationsfirst studied in [18]. Our

relational setting extends these relations in the following way: We will consider the relations

=; (; ); O; D;(4.4)

where for a setM and subsetst; u of M ,

tOu() t \ u 6= ;; andt andu are incomparable with respect to�;

tDu() t \ u = ;:

Then, the relations of (4.4) partitionM � M . Such “intersection tables” have been considered in

qualitative spatial reasoning, for example, in [8, 9] for the interiorI and boundaryB of sets in a

topological space. In Tucholsky’s terms, the interior corresponds to the hole, and the boundary is the

uncertainty, the investigation of which is much more interesting than studyingI .

Givenx; y in U , there are nine ways of relating an element offI(x); B(x); H(x)gwith an element of

fI(y); B(y); H(y)g, and we denote these possibilities by row headings

II; IB; IH; BI; BB; BH; HI; HB; HH:(4.5)

We can now construct a relational table by indicating below each heading which of the relations of

(4.4) holds. Of course, not all configurations are possible, since we have to observe the conditions

H = I [B andI \ B = ;:(4.6)
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Table 4: Equality constraints

II IB IH BI BB BH HI HB HH

I(x) = I(y) = D ( D )

I(x) = B(y) D = ( D )

I(x) = H(y) ) ) = D D D ) ) )

B(x) = I(y) D = D ( )

B(x) = B(y) D D = ( )

B(x) = H(y) D D D ) ) = ) ) )

H(x) = I(y) ( D ( ( D ( = D (

H(x) = B(y) D ( ( D ( ( D = (

H(x) = H(y) ( ( ) ) =

If one of the entries is=, then additional constraints occur which are listed in Table 4. There, for

example, the entryD in the cellhI(x) = I(y); BIimeans thatI(x) = I(y) impliesB(x)\I(y) = ;.

The 78 arrangements, which are possible when we disregard the columns which containH are shown

in Table 5 on the following page. The EY column gives the number(s) of the corresponding egg-yolk

configuration(s) as listed in [3, Figure 4]. Since several egg-yolk pairs can belong to the sameI; B –

configuration, and not everyI; B – configuration is associated with anI;H – configuration, we see

that the expressive powers ofI; B – configurations andI;H – configurations are incomparable.

Suppose thatR; S 2 fI; B;Hg, and thatQ is one of the relations of (4.4). A relationT onU is called

anelementary information relationif it has the form

xTy () hR(x); S(y)i 2 Q:(4.7)

Any [;\ – combination of elementary information relations is called aninformation relation. This

generalises the information relations of [18].

5 Example: Interrater reliability

A procedure often employed in psychological research isexpert-based categorisation: A collection of

N items – such as statements, behaviour sequences etc – are presented to an expert, who is asked to

assign each one to exactly oneof n categoriesCi. If two experts solve this task, then these categories

can be cross-classified in a table as follows:

Category: C1 C2 : : : Cn

No. of agreements: k1 k2 : : : kn

A measurement which is frequently used to express the agreement is

� =

Pn
i=1 ki �

Pn
i=1E[ki]

N �
Pn

i=1E[ki]
;(5.1)
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Table 5: Set configurations withoutH

No. II IB BI BB EY No. II IB BI BB EY No. ii ib bi bb EY

1: = D D = 46 2: D = = D 3: = D D D

4: = D D ( 41 5: = D D ) 40 6: = D D O 39
7: D = ( D 8: D = ) D 9: D = O D

10: D = D D 11: D ( = D 12: D ) = D

13: D O = D 14: D D = D 15: ( D D =

16: ) D D = 17: O D D = 18: D D D =

19: D D D ( 20: D D D ) 21: D D D O 2
22: D D D D 1 23: ( D D D 24: ) D D D

25: O D D D 26: D ( D D 27: D ) D D

28: D O D D 29: D D ( D 30: D D ) D

31: D D O D 32: D ( ( D 33: D ( ) D

34: D ( O D 35: D ) ( D 36: D ) ) D

37: D ) O D 38: D O ( D 39: D O ) D

40: D O O D 41: ( D D ( 42: ( D D )
43: ( D D O 44: ) D D ( 45: ) D D )

46: ) D D O 47: O D D ( 48: O D D )
49: O D D O 50: D ( ) O 19, 28, 34, 42 51: D ( O O 11, 13
52: D O ) O 10,12 53: O ) ( D 54: O O ( D

55: O ) O D 56: ( D O ) 33, 45 57: ( D O O 18, 26, 32, 38
58: O D O ) 59: ) O D ( 36, 44 60: O O D (

61: ) O D O 17, 25, 27, 61 62: O O O O 14, 15, 16, 20,
21, 22, 35, 29,
43

63: D D ) ) 7

64: D D ) O 64 65: D D O ) 66: D D O O 3.
67: ) ) D D 23, 30 68: O ) D D 69: ) O D D

70: O O D D 71: D ( D ( 8 72: D ( D O 6
73: D O D ( 74: D O D O 4 75: ( D ( D 24, 37
76: O D ( D 77: ( D O D 78: O D O D

79: D O O O 9 80: O O O D

introduced by Cohen [2]. Here,E[ki] is the expectation of agreement under the hypothesis that the

codings used by the two experts are independent.

One problem of this procedure is that experts often cannot or will not assign the items to a unique

category, since statements or behavioural sequences can often be interpreted in more than one way,

so that there could be more than one category to which they could be assigned. By having to assign

an item to exactly one category, this information is suppressed, and, in case the experts ratings differ

significantly, it cannot be said whether the experts strongly disagree, or whether the categories are not

sufficiently discriminating.

In order to surmount this problem, one can offer the experts a choice among the following alternatives:

Each item is assigned to a unique category, as described above.(5.2)

Each item is assigned to a main category and zero or more lesser categories.(5.3)

Each item is assigned to one or more categories “aequo loco”.(5.4)

We can express these situations with our RAS operationalisation as follows: LetU = fE1; : : :Etg be

the set of experts, and for each itemai, 1 � i � N , let 
ai = fC1; : : : ; Cng be the set of possible

categories. The relations which we consider areIai andBai ; their meaning is given by

� hE;Ci 2 Iai means that expertE classifies itemai as certainly belonging to categoryC.

� hE;Ci 2 Bai means that expertE classifies itemai as possibly belonging to categoryC.

10



The conditions (5.2) – (5.4) lead to the constraints thatIai andBai are disjoint, that eachai can be

certainly assigned to only one categoryvj , and that each expert makes at least one certain or possible

assignment. In other words, we assume

Iai \Bai = ;;(5.5)

Iai� Æ Iai � 1U ;(5.6)

Hai is total.(5.7)

We denote byind(A) the indicator function of an eventA, i.e.

ind(A) =

8<
:
1; if A is true;

0; otherwise.

Suppose we consider two expertsE;E0. Different estimates of the reliability of the assignment of

items to categories, i.e. their discriminating power, can be obtained by considering the following

situations:

T1: Our first situation considers only the agreement onI . Let

ID1 =
NX
j=1

ind(Iaj(E) = Iaj(E
0))(5.8)

be the number of identicalIaj assignments, and

N� =
NX
j=1

ind(Iaj(E) 6= ; andIaj(E
0) 6= ;)(5.9)

be the number of instances where both experts make one definite choice (and possible additional

} entries), though not necessarily the same one. Then,

�1 =
ID1 �E[ID1]

N� � E[ID1]
(5.10)

defines a value in analogy to� of (5.1), which is equal to�, if each expert makes exactly one

choice for eachaj , and this choice is a|. A sensible interpretation of�1 can be given only if
N�

N
is close to1, since otherwise there are not enough non-emptyI-sets.

T2: One can sharpen the conditions by requiring that the experts agree not only theI-values but on

theB-values as well. Thus, we let

ID2 =
NX
j=1

ind(Iaj(E) = Iaj(E
0) andBaj(E) = Baj (E

0));(5.11)

�2 =
ID2 �E[ID2]

N� �E[ID2]
:(5.12)

11



T3: A softer requirement than 2. is that the experts agree onH :

ID3 =
NX
j=1

ind(Haj(E) = Haj(E
0));(5.13)

�3 =
ID3 � E[ID3]

N �E[ID3]
:(5.14)

Note thatT3 is incomparable toT1.

T4: An even softer requirement is thatH(E) andH(E0) are comparable:

ID4 =
NX
j=1

ind(Haj(E) � Haj(E
0) orHaj(E

0) � Haj(E));(5.15)

�4 =
ID4 �E[ID4]

N �E[ID4]
:(5.16)

T5: We can also only require that the certain assignments of one expert are contained in theH-set of

the other:

ID5 =
NX
j=1

ind(Iaj(E) � Haj(E
0) or Iaj(E

0) � Haj(E));(5.17)

�5 =
ID5 � E[ID5]

N� � E[ID5]
:(5.18)

T6: If the assignment is reliable, we should not observe many instances of

Haj(E)\Haj(E
0) = ;:

If

NID =
NX
j=1

ind(Haj(E)\Haj(E
0) = ;);(5.19)

we define

�6 = 1�
NID

E[NID]
:(5.20)

These situations correspond to the relationsT1, : : : , T6 depicted in Table 6. Observe that we have

combined( ()) and= into� (�). If both experts use only the first coding alternative (exact assign-

ments – the “classical approach”), no differences among the 6 relationsT1 ... T6 will occur, up to the

point that the objects which fulfilT6 are in the set complement of the set built by one of the relations

T1, : : : ,T5.

Gediga et al. [11] present an instrumentarium for the evaluation of software usability which contains

75 questions rating the seven usability categories of ISO 9241-10. These are

12



Table 6:�-relations

T II IB IH BI BB BH HI HB HH

1 =

2 = =

3 =

�

4 or

�

�

5 or

�

6 D

1. Suitability for the task,

2. Selfdescriptiveness,

3. Controllability,

4. Conformity with user expectations,

5. Error tolerance,

6. Suitability for individualisation,

7. Suitability for learning.

In this case, we have 75 attribute groupsai, each with the categoriesC1; : : : ; C7 which correspond to

the seven usability criteria listed above.

We have asked two experts to assign categories to each of these questions, using the semantic con-

straints (5.5) – (5.7). It turns out thatN� = 73, which is sufficiently close toN = 75. The values for

the various IDs, expectations (E) after 1000 simulations, and� corresponding toT1 to T6 are shown

in Table 7 on the next page. Note that the column headed “6” lists the results forNID. We also give

the significance� after 1000 simulations, and the percentages of (dis-) agreement.

The relationT1 is fulfilled in 2/3 of all instances, which means that 50 items of the test are assigned

to the same|-category by both raters. In analogy to the classical procedure, we can regard a value of

�1 = 0:635 as “GOOD” [23]. Whereas the analysis ofT1 is approximately the same as the classical

procedure, the other types of relations offer different insights. The strong equalityT2 holds in 32

(42,7%) of the cases, and the hull-equalityT3 is given in 35 cases (46.7%). Both results tell us that the

assignment of the}-value is by far less stable than the assignment of the|-value. The values of�2
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Table 7: Experimental results

T1 T2 T3 T4 T5 T6

ID1::5 andNID6 50 32 35 65 70 6

Expectation 9.927 3.724 4.320 18.395 33.21947.772

�i 0.635 0.397 0.235 0.823 0.925 0.874

Significance 0.001 0.001 0.001 0.001 0.001 0.001

% 66.7 42.7 46.7 86.7 93.3 8.0

and�3 show that the difference of the resulting equalities to those which can be achieved by random

are much smaller than in case ofT1.

Looking atT4 we observe that the “equality up to different strictness” describes the situation quite

well, because the ratings of 65 items (86.7%) can be described in that way.

RelationT5 holds for 70 cases (93.3%), which means that at least one|-category of one rater is

at least mentioned by the other rater – the other 5 items (6.7%) are of interest, because of obvious

disagreement.

Finally,T6 holds for 6 items (8.0%), which means that the experts totally disagree on only a few items.

Note, thatT6 is stricter thanT5 if N� = N ; if this condition does not hold (as in our example),T6 and

T5 address different relationships.

6 Summary and outlook

We have investigated semantic interpretations of multivalued information systems, and have proposed

a relational operationalisation which enables the researcher to express a distinction between certain

and (im-)possible facts or events. In terms of methodology, the proposed procedures are in the “non-

invasive” spirit of data analysis [5], and integrate the characteristics of rough set and fuzzy set analysis

in a straightforward manner. Our approach shows connections to ideas in spatial reasoning research;

we have shown what kind of relations can be set up in this general framework and how these relations

are related to the egg-yolk representation of uncertainty in spatial reasoning.

In an example of our approach, we have shown how to generalise traditional methods of expert-

based classification, and that it is possible, without using many additional resources, to obtain a more

detailed picture of the interplay of the raters’ choices, and to explain previously hidden differences.

A main advantage of the new classification scheme is that we have a better chance of understanding

why experts disagree in categorisation, and in which cases a compromise among experts is feasible or

not.

We are currently undertaking an investigation of the logical background of the presented structures

[6], based on the relational semantics of [19], and more detailed case studies to gauge the possibilities
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and limits of the concepts [7].
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