I|I'I- Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2010-014 March 14,2010

Relational Cloud: The Case for a Database Service

Carlo Curino, Evan Jones, Yang Zhang, Eugene
Wu, and Samuel Madden

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Relational Cloud: The Case for a Database Service

Evan Jones
evanj@mit.edu

Cgarlo Cu.rino
curino@mit.edu

yang@csail.mit.edu

Yang Zhang Eugene Wu

eugenewu@mit.edu

Sam Madden
madden@csail.mit.edu

ABSTRACT

In this paper, we make the case for “databases as a service” (DaaS),
with two target scenarios in mind: (i) consolidation of data manage-
ment functionality for large organizations and (ii) outsourcing data
management to a cloud-based service provider for small/medium
organizations. We analyze the many challenges to be faced, and
discuss the design of a database service we are building, called Re-
lational Cloud. The system has been designed from scratch and
combines many recent advances and novel solutions. The proto-
type we present exploits multiple dedicated storage engines, pro-
vides high-availability via transparent replication, supports auto-
matic workload partitioning and live data migration, and provides
serializable distributed transactions. While the system is still under
active development, we are able to present promising initial results
that showcase the key features of our system. The tests are based
on TPC benchmarks and real-world data from epinions.com, and
show our partitioning, scalability and balancing capabilities.

1. INTRODUCTION

Database systems provide an extremely attractive interface for
managing and accessing data, and have proven to be wildly suc-
cessful in many financial, business, and Internet applications. How-
ever, they have several serious limitations:

1. Database systems are difficult to scale. Most database sys-
tems have hard limits beyond which they do not easily scale.
Once users reach these scalability limits, time consuming
and expensive manual partitioning, data migration, and load
balancing are the only recourse.

2. Database systems are difficult to configure and maintain. Ad-
ministrative costs can easily account for a significant fraction
of the total cost of ownership of a database system. Further-
more, it is extremely difficult for untrained professionals to
get good performance out of most commercial systems—for
example, in [19], we found that it took several months for a
senior graduate student to tune and configure a commercial
parallel database system for a simple 8-query workload.

3. Diversification in available systems complicates selection.
The rise of specialized database systems for specific mar-
kets (e.g., main memory systems for OLTP or column-stores
for OLAP) complicates system selection, especially for cus-
tomers whose workloads do not neatly fall into one category.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

4. Peak provisioning leads to unneeded costs. Database work-
loads are often bursty in nature, and thus, provisioning for
the peak often results in excess of resources during off-peak
phases, and thus unneeded costs.

In this paper, we make the case that “databases as a service” (DaaS)
can address these limitations.

Our vision is that users should have access to database func-
tionality without worrying about provisioning hardware and con-
figuring software, while providers should be able to manage sev-
eral databases without dedicating hardware and administrators to
each database. We try to achieve this vision with our Relational
Cloud' system, that hosts multiple databases on a pool of commod-
ity servers inside one data center. Relational Cloud is appropriate
for a single organization with many individual databases (a private
cloud), or as a public service (a public cloud) that allows database
provisioning and administration to be outsourced to a third-party
provider. By centralizing and automating databases, there are sub-
stantial opportunities to reduce initial and operational costs while
maintaining quality of service—as proven by the successful expe-
rience of salesforce.com, an example of ad-hoc multi-tenancy for a
specific set of applications.

Table 1: Requirements for Database as a Service

User Requirements
Ul | simple API, with near-zero configuration and administration (i.e., no tuning)
U2 | high-performance (e.g., throughput, latency, scalability)
U3 | high availability and reliability (e.g., hot standby, backup)
U4 | easy access to advanced features (e.g., snapshot, analytics, time travel)
Provider Requirements
P1 | meet user service level agreement (potentially under dynamic workloads)
P2 | limit HW and power costs (e.g., intense multiplexing)
P3 | limit administration costs (e.g., personnel costs)
Public Cloud Requirements
Cl1 | pricing scheme: cheap, predictable and proportional to actual usage (elasticity)
C2 | security and privacy guarantees
C3 | low-latency (relevant for OLTP and Web applications)

Table 1 summarizes a set of key requirements for Database as a
Service we have identified after discussions with many researchers
and potential users. From the user’s perspective, the main need
is a DB service with a simple interface that does not need tuning
and administration (U1). This is an improvement over traditional
solutions that requires provisioning, DBMS selection, installation,
configuration, and administration. The user wants good perfor-
mance, expressed in terms of latency and throughput (U2), that
is independent of data sizes and workload changes. This is cur-
rently a challenging task that requires extensive human analysis,
and costly software and hardware upgrades. High availability is

'See http://relationalcloud.com.

another key requirements (U3), which is typically offered by tra-
ditional databases, but requires careful configuration and mainte-
nance. Finally, advanced database management features, such as
database checkpointing, time travel, and analytics, should be read-
ily available and easy to use(U4).

The other important perspective is that of infrastructure providers,
responsible for managing the hardware and software providing the
service. The provider’s goal is to meet the service level agreements
(P1), despite data and workload changes. The system must be effi-
cient, using hardware resources effectively (P2). The service model
provides the opportunity to do this, by multiplexing workloads and
dynamically adjusting resource allocations. Finally, the amount of
administration should be minimized (P3). This is achievable with
sophisticated workload analysis tools and by centralizing the man-
agement of many databases.

There are additional requirements for providers of a public ser-
vice, such as pricing schemes (C1), security/privacy (C2), and la-
tency (C3). However, these issues are not specific to databases, and
can be addressed with the techniques being devised by the cloud-
computing community. Thus, we do not discuss them further.

The above list of requirements drove our design choices and
helped shape our architecture, as we discuss in Section 2. The sys-
tem builds on a collection of specialized storage engines, driven
by a custom-built distributed transaction coordinator, which also
supports high-availability via fail-over to replicas. To achieve elas-
ticity, scalability, and efficient usage of resources, we face major
research challenges in the area of adaptability and workload anal-
ysis. The main novelty of our Relational Cloud prototype lies in
these analysis and adaptation components, specifically:

1. Partitioning: To allow workloads to scale across multiple
computing nodes, it is important to divide their data into
partitions that maximize transaction/query performance. We
developed a new graph-based data partitioning algorithm for
transaction-oriented workloads that groups data items accord-

ing to their frequency of co-access within transactions/queries.

The idea is to minimize the probability that a given trans-
action has to access multiple nodes to compute its answer.
This component is discussed in Section 2.2. In Section 3,
we show how this component automatically derives optimal
partitionings for the TPC-C benchmark, and how it tack-
les the harder problem of a social-network test-case derived
from epinions.com, with performance gains between 28%
and 314% over hash-partitioning.

2. Live Migration: One of the key requirements of the cloud
is the ability to be elastic; in the context of a database ser-
vice, elasticity means adaptively dedicating resources where
they are most needed. This is particularly challenging in a
database environment where there are large amounts of data
that may need to be moved in order to adapt. Our Live
Migration component handles this by attempting to predict
when adaptation will be needed before any given node is
overloaded, and by partitioning and moving data in small
chunks and maintaining the ability to execute transactions
while movement occurs. The key ideas behind this approach
are described in Section 2.3.

3. Workload Analysis and Allocation: To properly co-locate
workloads and database instances on machines, it is neces-
sary to analyze and classify their resource requirements. This
is the goal of the analysis and allocation component, dis-
cussed in Section 2.4. Though we haven’t yet built a tool to
completely automate this process, we have run experiments

that suggest the potential gains from proper storage engine
selection and assignment to machines. Experiments show
that combining heterogeneous storage engines we can obtain
up to almost nine times better performance from the same
hardware.

In addition to describing this architecture and components in Sec-
tion 2, we describe some initial encouraging performance results in
Section 3 and discuss related work in Section 4.

2. SYSTEM DESIGN

Our Relational Cloud design is shown in Figure 1. The system
runs on commodity servers inside a single data center. This has
emerged as the most cost-effective way to provide computing, and
can be easily scaled by adding and removing individual servers.
Each physical server runs potentially multiple database instances,
as shown at the bottom of the figure. The database instances may
use different storage engines, since specialized engines are often
very efficient for specific workloads. Carefully combining work-
loads and database instances provides an invaluable opportunity to
increase efficiency.

Each database is divided into logical partitions, by an automatic
partitioning engine, as discussed in Section 2.2. These partitions
are stored in k-way redundant replica groups to guarantee high
availability and fault-tolerance. A replica group, shown in the mid-
dle of the figure, consists of k database instances each storing a
copy of the data of a logical partition. Partitioning of the databases
and allocation of replica groups to machines is controlled by the
the workload analyzer, and is crucial to achieve efficiency, as we
discuss in Section 2.4.

Applications communicate with Relational Cloud using a stan-
dard interface or a known protocol; the current prototype supports
core transactional SQL functionality via JDBC and MySQL inter-
faces. Incoming SQL statements are sent to the router, which an-
alyzes them and consults the metadata database to determine the
execution plan. The distributed transaction system then distributes
the work while ensuring serializability and handling failures.

By constantly monitoring performance and load, the system val-
idates and adjusts partitioning and placement choices on-line. Sys-
tem failures and workload changes require Relational Cloud to evolve
partitioning and allocation schemes at run-time. This requires mi-
gration of the data across storage engine instances.

2.1 Current Status

We are actively developing our Relational Cloud prototype. Cur-
rently, we have implemented the distributed transaction coordina-
tor along with the routing, partitioning and replication components.
We support MySQL and HSQLDB storage engines, and have im-
plemented JDBC and MySQL public interfaces. Given a query
trace, we can analyze and automatically generate a good parti-
tioning for it, and then run distributed transactions against those
partitions. Our transaction coordinator supports active fail-over to
replicas in the event of a failure. We currently do not have complete
implementations of the workload analysis, placement, and live mi-
gration components, though we have implemented portions of them
so that we can demonstrate the potential performance gains that a
fully-implemented Relational Cloud system should achieve.

Much of what we have built so far is infrastructure to allow us to
research the best partitioning, placement, and migration schemes.
Rather than further describing that infrastructure and its engineer-
ing challenges (which we feel is not a particularly novel contribu-
tion), in the rest of the paper we focus on our ideas and initial imple-
mentations of the partitioning, placement, and migration problems.

Applications/Users

RARRRARRRRRRAR!

—— | JDBC/ODBC/MySQL ... Public Interfaces }———————

SQL [
Workload = istri i
orkloa - _F"par[Distributed Transaction System]
Analyzer o1
c
Partitioning)| @ | ¢ (Partition 1 Partition 2 ‘} Partitions
Placement b I I f ’
il[RGroup1) (_RGroup2) RGroup N 5 Replica
. ¥

/ Groups

7 \
A s
MetaDB 2 X X = N
! (MysQL) (MysQL) (MysQL) oBXx |

Figure 1: Relational Cloud Architecture.

2.2 Database Partitioning

Partitioning is crucial to enable: (i) scalability beyond a single
node and (ii) finer-grained replication, migration and balancing.

Different classes of workloads necessitate different partitioning
strategies. For example, OLTP is characterized by short-lived trans-
actions with little internal parallelism, that are best executed in a
single location to minimize distributed transaction overhead, while
long-running OLAP queries often benefit from the parallelism en-
abled by distributing the work across many machines (e.g., large
sequential scans from disk). We plan to include multiple algorithms
targeting different types of workloads in our partitioning engine.

We started by developing a partitioning strategy for OLTP and
Web workloads that uses detailed workload execution traces. The
traces are processed in two steps: an agnostic partitioning phase,
and a justification phase. The agnostic partitioning phase creates
a graph with a node for each tuple in the database. For every
transaction in the trace, edges are drawn between each tuple that
is accessed, forming a clique. An alternative hypergraph formula-
tion is also available, where hyperedges represent individual trans-
actions. We then apply state of the art graph partitioning tech-
niques [15] to find k balanced partitions while minimizing the num-
ber of cut edges. Node and edge weights are used to account for
skewed workloads or to assign different priorities to transactions.
The resulting partitioning minimizes distributed transactions for the
workload trace. This phase assigns individual tuples to partitions,
this can be represented as look-up tables. However, for naturally
partitionable databases a more efficient representation exists.

The goal of the justification phase is to find such representation
as a set of predicates on the tuple attributes. The system extracts a
set of candidate attributes from the predicates used in the trace (e.g.,
the predicates appearing in the WHERE clauses), tests their correla-
tion to the partitioning labels derived by the agnostic partitioning,
and selects the highly correlated attributes. The values of this re-
duced set of attributes are fed into a decision tree algorithm together
with the partitioning labels. If the decision tree successfully gener-
alizes the partitioning via few simple rules, we have found a good
Justification for the agnostic partitioning. If no predicate-based ex-
planation is found, the system falls back to look-up tables or bloom
filters to represent the partitioning scheme.

The strength of this approach is its independence from schema
layout and foreign keys information, which allows us to discover
intrinsic correlations hidden in the data. As a consequence, this
approach is effective (see experiments in Section 3.1) in partition-
ing databases containing multiple n-to-n relationships—typical in
social-network scenarios. The system is also capable of suggesting
replication for read-mostly tables and hash-based partitioning for
tables accessed mainly via primary keys.

The primary disadvantage is the difficulty in scaling the graph

representation. The naive approach leads to a graph with N nodes
and up to N? edges, where N is the cardinality of the database.
Unfortunately, most graph partitioning algorithms scale only up to
few tens of millions of nodes. For this reason, we devised a series
of heuristics that effectively limit the graph size with minimal im-
pact on the quality of the partitioning. Among the most effective
heuristics we implemented are: (i) blanket statement removal: i.e.,
the exclusion from the graph of statements that are uncommon and
scan large portions of the DB, since they explode the graph size
without contributing with much information, (ii) low relevance fil-
ter: i.e., the removal of tuples that are never or rarely accessed”,
(iii) grouping of tuples with similar access patterns, (iv) sampling
(both for tuples and transactions) and (v) summarization. This al-
lows us to represent the workloads of databases with billions of
tuples within the scalability limits of graph partitioning algorithms.

The initial validation of this approach on the TPC-C benchmark
and a real-world workload shows very encouraging results, as dis-
cussed in Section 3.

2.3 Live Migration

The capability to reorganize the resources allocated to a work-
load, e.g., by moving a workload or a portion of a workload to a
new machine, is a key feature that enables elasticity and scalability,
two essential features of a cloud-based database service. Although
migration is important in other replicated database environments
(e.g., when adding a new replica), in a cloud setting it is particu-
larly important for migration to be performed efficiently as it may
be used frequently.

While moving data in a network environment is in itself not a
difficult problem, supporting transparent live migration is hard to
achieve. By transparent migration we mean migration that is: (i)
transactionally consistent, (ii) fault tolerant, and (iii) does not sub-
stantially affect running transactions and perceived performance.
Storage engine heterogeneity further complicates the process.

The naive migration solution involves suspending the service
(quiescing running transactions or waiting for them to finish), tak-
ing a snapshot of the portion of the database to be moved, moving
and loading the data onto the new node, and restarting processing
with the new configuration. We believe the performance overhead
of this solution is unacceptable, especially when migration is used
to adapt to short-lived spikes in load. In fact, significant research
has been devoted to this problem, as recently surveyed in [23].

In the Relational Cloud effort we are considering various strate-
gies to improve this naive approach, including: (i) partitioning the
data to be moved into a number of small partitions, and incremen-
tally migrating these smaller partitions, (ii) migrating an existing
snapshot/checkpoint and selectively rolling-forward logs, (iii) ex-
ploiting existing replicas to serve read-only queries during migra-
tion, (iv) prefetching of data to prepare warm stand-by copies.

The above techniques should all reduce the performance over-
head of migration. However, we believe it is possible to reduce this
overhead to near-zero by using a cache-like approach that works as
follows: when a new processing node is added to the pool serving
a certain workload, we immediately start routing transactions to it.
The new node fetches from the old node the data as needed for
processing each transaction, caches them in its local storage, and
processes reads and writes locally. Over time the new node will
accumulate a larger and larger portion of the data and will serve
more of the queries/updates locally, effectively reducing the load
on the old node. This approach has the advantage that the load

“This is possible thanks to the generalization step of the justifica-
tion phase, and similarly by a default partition assignment for tuples
not listed in the look-up tables.

on the old node is minimal (i.e., nothing more than the user work-
load is ever executed on it), and reduces over time. Furthermore,
as soon as all the write transactions running on the old node have
completed, the new node can exploit multiple read-only replicas
of the old node to fetch the data. This strategy requires manipula-
tion of the SQL statements (to fetch data), a careful management of
distributed transactions (to guarantee transactional consistency and
fault tolerance), and efficient data transfer mechanisms (for speed).
We believe all this can be implemented effectively within the ar-
chitecture we have designed, and is a key goal of our short-term
research agenda.

2.4 Adaptive Resource Allocation

Resource allocation is a recurring challenge in the engineering
of efficient software systems. In Relational Cloud, the primary
resource-related problems include: (i) static and dynamic charac-
terization of workloads, (ii) selection of optimal storage engines,
(iii) assignment of workloads to database instances, and (iv) as-
signment of database instances to physical nodes.

Each of these requires the ability to characterize the demands
of workloads and to understand storage engine interactions (e.g.,
whether two storage engines can co-exist without conflicts on phys-
ical node). As we show in Section 3.3, understanding these factors
is crucial to efficiently using all available resources. Furthermore,
different tenants have service level agreements imposing constraints
on performance, replication, and data placement.

The resource allocator must take into consideration all of these
concerns—hardware resources, storage engines, user workloads,
workload interactions, service level agreements, and replication
policies—and produce optimal allocations. We believe this prob-
lem can be effectively modeled as a linear programming optimiza-
tion problem, however deriving faithful cost models for all of the
above is an incredibly hard challenge. In practice, we believe that
tackling this problem requires both analytical models and on-line
dynamic adaptation. The large scale at which we operate exacer-
bates the challenges, but also enables interesting new opportunities,
as we anticipate having many different workloads with different re-
quirements, and a large, heterogeneous collection of hardware and
software that will enable fine-grained “packing” of workloads.

We have not begun to seriously address the problems of work-
load analysis and resource allocation, although they are a key part
of our research agenda. Instead, we have focused on measuring the
potential benefits of effective resource allocation (in particular, in-
telligent selection of storage engines and workload placement). As
shown in Section 3.3, those benefits are substantial.

3. EXPERIMENTS

In this section, we describe several experiments we have run on
our Relational Cloud prototype.

3.1 Partitioning

We validated the partitioning technique introduced in Section 2.2
on two cases studies, an OLTP benchmark derived from TPC-C
and a benchmark based on a real dataset from epinions.com [17].
These two tests aim at stress-testing two different aspects of our
technique. The TPC-C workload is amenable to partitioning as
shown in prior literature [25] via manual partitioning. The goal
of this test is thus to show that our partitioning scheme is capable
of completely automating the partitioning task with results similar
to careful manual partitioning, as demonstrated in the context of a
scalability test in Section 3.2.

The epinions.com experiment aims at challenging our system in
a case where no clear “good” partitioning exists, and thus is a way

of verifying our effectiveness in discovering intrinsic correlations
between data items that are not visible at the schema/query level.
The simplified epinions.com schema we consider contains four re-
lations: users, items, ratings, trust, where the ratings
relation represents an n-to-n relationship between users and items
(capturing user ratings of items), and the trust relation repre-
sents a n-to-n relationship between pairs of users indicating a bi-
nary “trust” value. The data was obtained in [17] via scraping of
the epinions.com website. We consider three common queries:

Ql. For logged-in users: given an item provide ratings from the
trusted users

Q2. Given a user show the list of the users (s)he trusts

Q3. For anonymous users: given an item provide the weighted
average of all the ratings

The partitioning is non trivial, since the access queries involve
multiple n-to-n relations with opposite requirements on how to group
tables and tuples (e.g., Q1 will access a single partition if the data
is partitioned by item and ratings and trust are stored with items,
while Q2 will access a single-partition if data is partitioned by user
and trust is stored with users.)

2 100 I Hash Partitioning
o 80 I:IGraph Partitioning
°

©

“’%' 60

E 40

g

S 20

® 0

Q3

Figure 2: Partitioning performance: the epinions.com test

Figure 2 shows the result of executing a uniform mix of 40 mil-
lion instances of queries Q1-Q3 against two equal-sized partitions
generated via hash-partitioning and semi-automatically by our tool.

The hard problem is the relative placement of users and items
in order to minimize cross-partition queries/transactions—we fully
automate this task. Our system succeeds in capturing the intrin-
sic correlations between certain groups of users and between cer-
tain users and items. In fact, assigning tuples to partitions as our
tool suggested (and directing queries to partitions via look-up tables
in the router) we win significantly against hash-based partitioning
with average improvements ranging from 28% to 314%. We also
tried standard predicate-based range partitioning, which yielded to
results comparable to hash-partitioning.

3.2 Scaling a Database

In order to show how Relational Cloud can scale a workload, we
ran an OLTP benchmark derived from TPC-C across a cluster of
machines. Each system has two 3.2 GHz Intel Xeon processors,
based on Intel’s Netburst architecture, and 2 GB of RAM. Each
system uses a single 7200 RPM SATA hard drive with 8 MB cache,
4.2 ms average seek time and 120 MB/s maximum data transfer
rate, according to the manufacturer’s specifications. The systems
are interconnected by a single gigabit Ethernet switch. We used
MySQL 5.4 as the underlying storage engine.

The workload is based on TPC-C scaled to 10 warehouses. We
used the partitioning algorithm described in Section 3.1 to divide
the database into 1, 2, and 5 partitions, with results almost indistin-
guishable from careful manual partitioning/replication. Each parti-
tion is hosted on a separate server. These partitions are very close to
the same size, and the TPC-C workload is uniform across them. We
then generated load at a fixed rate of desired transactions per sec-
ond, measuring the sustained throughput and the average latency

. = hi
N 0 g macnines
2.MACKINGS ..o st

50 0
30 1'machine ,r' B

Latency (ms)
B
o

0 200 400 600 800 1000

Applied Load (txns/s)
- 1000 T T T

)

€ 800

& / 5 machines
'g_ 600 / 2 machines

£ 400

= R oy, 1 machine

o 200 =

o

= 0 ;

0 100 200 300 400 500 600 700 800 900 1000
Applied Load (txns/s)

Figure 3: Latency and throughput with increasing TPC-C load

for each request. Latency and throughput are shown in Figure 3.

The throughput shows that a single server is able to achieve ap-
proximately 230 transactions per second, and the throughput scales
approximately linearly (2x speed-up for 2 servers, 3.5x for 5).
This shows that for a workload that can be partitioned cleanly,
Relational Cloud can scale with demand by distributing it across
more servers. Approximately 6% of the transactions access multi-
ple servers, which shows that the cost of distributed transactions is
not limiting our scalability for this experiment.

With very low load, the average latency is minimized with a sin-
gle database instance. Splitting the workload across two databases
increases the average latency, due to the additional latency of dis-
tributed transactions. For example, at 5 requests per second, one
partition has an average latency of 10 ms, while with two partitions
this increases to 14 ms. The latency generally increases linearly
with load, until the system approaches saturation. At this point,
for 1 and 2 servers, the latency increases sharply. This suggests
that average latency may be a useful “leading indicator” to trigger
corrective actions, such as redistributing data. Unfortunately, we
do not see this pattern for 5 servers, which leads us to believe that
there may be other bottlenecks in our experimental evaluation. We
are currently investigating latency and other indicators of database
overload over a range of workloads.

3.3 Adaptive Resource Allocation

To illustrate the potential gain from effective workload analysis
and resource allocation, we compared the performance of hetero-
geneous storage engine configurations running a fixed workload on
a single hardware configuration. The workload simulates a skewed
TPC-C workload over 50 warehouses. The target transaction load
of our hypothetical customer is 635 TPS with 95% of the load tar-
geting 8 “hot” warehouses. The hardware consists of a single eight-
core x64 server with 12 GB memory and a single 7200 RPM SATA
hard drive. The results are shown in Figure 4.

In the baseline configuration, the workload is executed by a sin-
gle MySQL instance given complete system resources, which yields
73 TPS®. Even ignoring distributed transactions we would need
more at least 9 machines to meet the user requirements. The system
is disk-bound, and there is plenty of CPU and RAM that could be
used more effectively. In our second configuration, the workload
is partitioned using the same strategy as the previous experiment,
and the “hot” partitions are stored into an increasing number of

3The performance difference from the previous experiments are
well-justified due to different test-machines, different TPC-C im-
plementations (trace-based vs clients), skewed/uniform workloads,
and different scale factors.

700

500 -

400 -

B KX —
200 - oot 00 15555353 ol B
osesatoros Il fote%es 5
Sosusoress [lstesetose sl So%etst Dasosesesest ’
petotetedd

100 -

Throughput in transactions per second

MySQL with 1 with 2 with 3 with 4 with5 with 6 with 7 with 8
HSQL HSQLSHSQLSHSQLSHSQLSHSQLSHSQLSHSQLS

Storage engine configurations

Figure 4: Packing multiple storage engines.

HyperSQL* main-memory storage engine instances’—the limit of
8 instances is due to RAM availability. This allows us to meet the
customer requirement of 635 TPS with no additional machines. It
is important to notice that the entire database cannot fit in RAM,
thus, a pure main-memory approach is not a viable option. We also
tested stacking multiple MySQL instances on the same machine.
This yielded no improvement, since MySQL is disk limited in this
configuration. The performance of each storage instance degrades
slightly as more instances are added due to processor and mem-
ory bandwidth contention. At the final configuration, we nearly
saturate all the machine’s resources. Not only is this the high-
est performance configuration, it will also be very power-efficient.
This experiment is designed to show how careful workload analysis
and allocation allows to increase performance/efficiency of almost
a factor nine, thus, showcasing the potential benefits of a fully de-
veloped workload analysis and allocation engine and justifying our
research effort in this direction.

4. RELATED WORK

We group related work into three categories: (i) scalable database
services, (ii) partitioning schemes, (iii) workload analysis.
Scalable database services. This is a widely researched area,
where substantial research and development efforts have been made
by academia as well as commercial and open-source communi-
ties. The conflicting goals of providing expressive query languages,
consistency, scalability, high-availability, ease of use and low op-
erational costs have been approached from various angles, often
significantly favoring one of this requirements over the others. We
place ourself in the center of this rich solution space, trying to com-
bine many recent advances in a balanced solution that aims at an-
swering Gassner’s call for a cloud-based fully-consistent relational
database service for the masses [12]. In contrast, BigTable [5],
PNUTS [6], Dynamo [9], S3, and their academic counterparts [4,
16] choose to sacrifice expressive power and/or consistency in fa-
vor of extreme scalability. Similarly Helland suggests a way of
designing applications to avoid distributed transactions in order to
better scale systems [14]. ElasTraS [7] aims at providing a scalable
and elastic data store in the cloud by limiting the type of transac-
tions. Recently Hyder promises to scale a database across mul-
tiple servers by relying on a very high performance shared disk
built from flash [3]. Commercial cloud-based relational services
are also starting to appear, as Amazon RDS, Microsoft SQL Azure,
and offerings from startups like Vertica. These services are a step
in the right direction, however they are effectively offering existing

‘See http://hsqldb.org/
Notice that the underlying replication guarantees persistency.

relational DBMSs virtualized in a public cloud, and thus lack the
elasticity and scalability features we are seeking to achieve.

Fartitioning Schemes. While we are designing our own work-
load partitioning algorithms, we plan to make use of several state of
the art algorithms for graph partitioning and clustering. Interesting
approaches include, but are not limited to: classical work on phys-
ical design and partitioning [27], recent works on workload-aware
partitioning [21], graph partitioning algorithms [15], the compre-
hensive study on clustering of Tsangaris and Naughton [26], and
recent efforts to scale social networks [20, 2]. Our approach differs
from the above by limiting distributed transactions in a multi-node
system through the use of novel schema-agnostic partitioning algo-
rithms that simplify attribute selection and handles n-to-n relations.

Workload Analysis. As already mentioned, the workload anal-
ysis engine in our system is still in the early stages. We are inves-
tigating several research directions inspired by recent advances on
workload optimization [18, 13, 10], allocation and prediction [11],
automatization of virtual machine configuration [1, 24, 22], and so-
phisticated caching strategies [8]. The problem we face combines
many of the above, plus storage-engine heterogeneity, inter-engine
interactions, and multi-tenancy in ways that call for novel solutions.

S. CONCLUSIONS

Cloud-based database services offer the potential to address sev-
eral serious limitations of existing relational databases related to
scalability, ease of use, and provisioning in the face of peak load. In
this position paper, we explored the main requirements and techni-
cal challenges to make the vision of a database service into a reality
and introduced the design and initial evaluation of our system.

Relational Cloud has been designed from scratch to adapt to the
peculiarities of the cloud-computing environment. By exploiting
multiple dedicated storage engines, providing high-availability via
replication, automating workload partitioning and balancing, au-
tomating data migration, and supporting distributed transactions we
showed that our initial prototype is able to effectively scale OLTP
workloads and achieve high-efficiency.

We see these results as an encouraging first step towards provid-
ing transactional relational databases as a service, and plan to de-
velop and evaluate our architecture into a full-fledged, open-source
cloud-based database platform.

6. REFERENCES

[1] A. Aboulnaga, K. Salem, A. A. Soror, U. F. Minhas,

P. Kokosielis, and S. Kamath. Deploying database appliances
in the cloud. IEEE Data Eng. Bull., 32(1):13-20, 2009.

[2] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,

B. Trushkowsky, J. Trutna, and H. Oh. SCADS:
Scale-independent storage for social computing applications.
In CIDR, 2009.

[3] P. Bernstein and C. Reid. Scaling out without partitioning: A
novel transactional record manager for shared raw flash. In
HPTS, October 2009.

[4] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and
T. Kraska. Building a database on S3. In SIGMOD, 2008.

[5] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable:
A distributed storage system for structured data. In OSDI,
2006.

[6] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. PNUTS: Yahoo!’s hosted data serving platform.
PVLDB, 1(2), 2008.

[7] S. Das, D. Agrawal, and A. E. Abbadi. ElasTraS: An elastic
transactional data store in the cloud. HotCloud, 2009.

[8] D. Dash, V. Kantere, and A. Ailamaki. An economic model
for self-tuned cloud caching. In ICDE, 2009.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. SIGOPS, 2007.

[10] S. Elnaffar and P. Martin. The Psychic—Skeptic Prediction
framework for effective monitoring of DBMS workloads.
Data & Knowledge Engineering, 68(4):393—-414, 2009.

[11] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox,

M. Jordan, and D. Patterson. Predicting multiple metrics for
queries: Better decisions enabled by machine learning. In
ICDE, 2009.

[12] P. Gassner. BigDB.com. In HPTS, October 2009.

[13] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi,
and A. Kemper. An integrated approach to resource pool
management: Policies, efficiency and quality metrics. In
DSN, 2008.

[14] P. Helland. Life beyond distributed transactions: an
apostate’s opinion. In Conference on Innovative Database
Research (CIDR), pages 132—141, January 2007.

[15] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Sci.
Comput., 20(1), 1998.

[16] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann.
Consistency rationing in the cloud: Pay only when it matters.
PVLDB, 2(1), 2009.

[17] P. Massa and P. Avesani. Controversial users demand local
trust metrics: an experimental study on epinions.com
community. In AAAI’05, 2005.

[18] N. W. Paton, M. A. T. Aragdo, K. Lee, A. A. A. Fernandes,
and R. Sakellariou. Optimizing utility in cloud computing
through autonomic workload execution. /[EEE Data Eng.
Bull., 32(1):51-58, 2009.

[19] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker. A comparison of
approaches to large-scale data analysis. In SIGMOD, 2009.

[20] J. M. Pujol, G. Siganos, V. Erramilli, and P. Rodriguez.
Scaling online social networks without pains. NetDB, 2009.

[21] T. Scholl, B. Bauer, J. Miiller, B. Gufler, A. Reiser, and
A. Kemper. Workload-aware data partitioning in
community-driven data grids. In EDBT, 2009.

[22] P. Shivam, A. Demberel, P. Gunda, D. E. Irwin, L. E. Grit,
A. R. Yumerefendi, S. Babu, and J. S. Chase. Automated and
on-demand provisioning of virtual machines for database
applications. In SIGMOD, 2007.

[23] G. H. Sockut and I. B. R. Online reorganization of databases.
ACM Comput. Surv., pages 1-136, 2009.

[24] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem,

P. Kokosielis, and S. Kamath. Automatic virtual machine
configuration for database workloads. In SIGMOD, 2008.

[25] M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos,

N. Hachem, and P. Helland. The end of an architectural era:
(it’s time for a complete rewrite). In VLDB, 2007.

[26] M. M. Tsangaris and J. FE. Naughton. On the performance of
object clustering techniques. In SIGMOD, 1992.

[27] D. C. Zilio. Physical database design decision algorithms and
concurrent reorganization for parallel database systems. In
PhD thesis, 1998.

