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Abstract The processing of complex data is admittedly among the major concerns

of knowledge discovery from data (KDD). Indeed, a major part of the data worth

analyzing is stored in relational databases and, since recently, on the Web of Data.

This clearly underscores the need for Entity-Relationship and RDF compliant data

mining (DM) tools. We are studying an approach to the underlying multi-relational

data mining (MRDM) problem, which relies on formal concept analysis (FCA) as a

framework for clustering and classification. Our relational concept analysis (RCA)

extends FCA to the processing of multi-relational datasets, i.e., with multiple sorts

of individuals, each provided with its own set of attributes, and relationships among

those. Given such a dataset, RCA constructs a set of concept lattices, one per object

sort, through an iterative analysis process that is bound towards a fixed-point. In do-

ing that, it abstracts the links between objects into attributes akin to role restrictions

from description logics (DLs). We address here key aspects of the iterative calculation

such as evolution in data description along the iterations and process termination. We

describe implementations of RCA and list applications to problems from software and

knowledge engineering.
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1 Introduction

Knowledge discovery from data (KDD) is the process of distilling useful facts from a

dataset. A KDD task is a multi-step process in which, beside the central step of data

mining (DM) which focuses on the mechanics of pure discovery, also covers the prior

data preparation as well as the subsequent interpretation of mining results [13]. As

a scientific discipline, primary concerns in DM are speed and scalability of methods

and the versatility of the practical tools, then proper processing of structure in data,

reflecting the available domain knowledge in the mining process, etc. Furthermore,

KDD addresses the intelligibility of discovered patterns and integration of newly dis-

covered knowledge with existing sources.

Among the current research topics in DM, the work presented here pertains to

two major trends: (1) processing of data of ever increasing structural complexity

and (2) exploration of domain knowledge, in particular, meta-data about the seman-

tics of the data, to achieve more topical and precise analysis. For instance, alterna-

tives to introduce structure into the basic DM data format – transactions with de-

scriptors that are valued attributes or set of atomic items – have been made. On one

hand, various topological structures on the set of items, e.g., sequences [2] or general

graphs [36, 9], have been examined with the corresponding pattern languages. On the

other hand, descriptions of patterns based on first-order logic (FOL), i.e., with vari-

ables for items, predicates and quantifiers, have been studied within the relational

learning and data mining [12, 26] trend. Variants thereof comprise Datalog [10],

description logics (DLs) [19], and even datasets corresponding to entire relational

databases [11]. The latter approach, called multi-relational data mining (MRDM), is

particularly appealing since a large proportion of the data worth analyzing is nowa-

days stored in relational databases. Recently, such data has been gradually pumped

into the Web, where various datasets are published and interlinked with other pub-

lished data using a graph-based format, the Resource Description Framework (RDF),

and the encompassing Linked Data technology1.

Domain knowledge, in turn, has typically been incorporated in the mining process

as a taxonomy on items, thus giving rise to generalized patterns [32]. Further popular

formats for expressing such knowledge are sets of logical rules and ground facts [26]

(ch. 5), or, alternatively, a fully-blown domain ontology [1]. It is noteworthy that

the availability of taxonomies or richer ontologies is independent to the presence

of structure in the data. Within a multi-relational dataset, an important part of the

background knowledge is the underlying data schema. Moreover, when mining the

individuals of a particular relation, the links to individuals of other relations provide

further knowledge about the context of the mined data.

Recently, we designed a MRDM framework, on top of the standard formal concept

analysis (FCA) [15]. In FCA, the input data, a [individuals× attributes] cross-table

or context, is transformed into a hierarchy of all conceptual abstractions combining

1 www.w3.org/standards/semanticweb/data
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sets of individuals with the sets of shared attributes. Through the unique structure

of its output, FCA simultaneously addresses two DM tasks: (conceptual) clustering

and pattern mining. Various attempts have been made at extending the FCA to data

of complex structure: In [17, 20], the formal objects are graphs, whereas in [29, 14]

they are described by logical formulae.

In our own approach, called relational concept analysis (RCA) [27], we focus on

dataset compatible with the Entity-Relationship model or, alternatively, with the Re-

source Description Framework (RDF). In RCA, the input is made of several contexts,

each corresponding to a specific type of individuals. Moreover, additional cross-tables

describe [individuals× individuals] binary relations. Our analysis method extends

the basic FCA mechanisms in many respects starting with the processing of multiple

sorts of individuals. In doing that, the links between individuals are propositionalized

– in a way inspired by DLs roles – and end up describing the output concepts much

like the initially available attributes. Thus, new attributes are gradually inferred from

links at several levels of depth. The resulting iterative analysis process deals smoothly

with the circular links in the input data, a known source of difficulties for DM meth-

ods. In summary, RCA is an original framework for extracting conceptual knowledge

from multi-relational data which successfully addresses problems such as dealing

with arbitrary relations (incl. circular ones), effective construction and maintenance

of the concept lattices (Hasse diagrams thereof) and intelligible representation of the

extracted knowledge.

This paper extends previous work [16] with emphasis put on theoretical and al-

gorithmic aspects of RCA including the dynamics of contexts, the concept formation

principles, and the properties of the overall analysis process. It thus provides for-

mal definitions for scaling operators that help propositionalize the initial relational

descriptions of the formal objects. The iterative analysis process is then analytically

expressed and its convergence demonstrated.

The remainder of the paper is organized as follows. First we recall basic no-

tions from FCA (section 2). Then the basic RCA framework is described in section 3,

whereas the iterative analysis process and the MULTI-FCA method are introduced in

section 4. Related work is discussed in section 5 while a conclusion with future work

ends the paper.

2 Formal concept analysis

FCA provides a framework for designing concepts and conceptual hierarchies related

to a context [15]. Below we recall the fundamental notions of FCA and pinpoint some

difficulties in processing relations in data.

2.1 Motivating example

Throughout the paper, we use a pharmacovigilance dataset as a running example.

Pharmacovigilance as a discipline studies the adverse reactions to drugs (ADR) by

analysing data collected by reporting systems and stored in case report databases [21].
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A pharmacovigilance case database contains a collection of ADR reports, also known

as case reports. Generally, a well-documented case report captures suspected and

concomitant product therapy details, description of the ADR or disease experience,

including set of signs or symptoms. Further information covers the patient charac-

teristics, including demographic information (e.g., age, race, gender), relevant family

history of diseases, baseline medical condition prior to product therapy, etc. Table 1

depicts a fragment of a hypothetical case report database representing AIDS patients

and the anti-HIV drugs they have taken.

Patient Age Gender Observed adverse drug reactions

Farley 63 Male Oedema, Hives, Headache, Nausea, Heart failure,

Hair loss

Lane 27 Female Fatigue, Oedema, Hives, Hair loss, Bleeding

Shana 33 Female Fatigue, Oedema, Hair loss

Trudy 41 Male Fatigue, Breath disorder, Nausea,

Heart failure, Bleeding, Vomiting

Table 1 A fragment of a case report database in pharmacovigilance showing AIDS patients with the ob-

served adverse reactions that appeared after taking anti-HIV drugs.

Healthcare providers involved in the treatment of HIV patients examine the re-

sponse to therapy in different categories of patients in order to successfully devise a

new therapy. An analysis of the above table may yield combinations of several drugs

with a single ADR, called drug interactions. Drug protocols, i.e., concomitant use of

drugs that may cause several reactions, can be discovered as well. In our example, the

known ADR of anti-HIV drugs are provided in Table 2 below. For instance, antiretro-

viral Dactinomycin and Isentress are known to cause {Breathdisorder, Fatigue,

Hairloss} and {Diarrhoea, Headache, Nausea}, respectively. In the following sec-

tion, we introduce FCA as a method for analyzing such data and drugs interactions.

2.2 FCA basics

FCA is a mathematical framework for designing conceptual descriptions from a set

of individuals described by unary attributes (similar to unary predicates). Formally, a

formal one-valued context K associates a set of objects (O) to a set of attributes (A)

through an incidence relation I ⊆ O ×A. A sample context2, called KP , is depicted

on Table 2 where formal objects are anti-HIV drugs, and attributes their expected

ADR such as Nausea, Headache, Hairloss, Rash, Liverdamage, etc. Further attributes

represent the respective active agents behind the drugs.

A pair of derivation operators, both denoted ′, are applied to objects and attributes.

On objects, the operator ′ is defined on ℘(O) → ℘(A) such as for X ∈ ℘(O), X ′ =
{a ∈ A | oIa for all o ∈ X}. On attributes, the operator ′ is defined on ℘(A) → ℘(O)
such as for Y ∈ ℘(A), Y ′ = {o ∈ O | oIa for all a ∈ Y }. For instance, in the context

2 Adapted from MEDEFFECT, the dataset of Canada pharmacovigilance database.
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Dactinomycin × × × ×
Isentress × × × ×
Kaletra × × × × × × × ×
Selzentry × × ×
Sustiva × × × × ×
Viread × × × × ×

Table 2 Context KD of anti-HIV drugs involved into HAART therapy with the associated expected ADR.

of drugs KD depicted on Table 2, {Sustiva, Viread}′ = {Diarrhea, Vomiting} and

{Nausea, Headache}′ = {Isentress, Kaletra}.

The ′ operators induce a Galois connection [6] between ℘(O) and ℘(A), whence

the compound operators ′′ are closure operators over ℘(O) and ℘(A). For instance,

in KD depicted on Table 2 {HeartFailure}′′ = {HeartFailure, Maraviroc, Rash}
whereas {Sustiva, Viread}′′ = {Sustiva, Viread, Kaletra}. Thus, ′ operators in-

duce two closure families Co ⊆ ℘(O) and Ca ⊆ ℘(A) which, provided with set-

inclusion order, form two complete lattices which are dually-isomorphic.

A pair (X,Y ) of sets where X ⊆ O, Y ⊆ A, X = Y ′, and Y = X ′, is called a

(formal) concept [37] with X is called extent and Y is called intent. For example, in

the drug context KD, ({Sustiva, Kaletra}, {Diarrhea, Fatigue, Rash, Vomiting})
is a formal concept. The set CK of all concepts from K ordered by extent inclusion

forms a complete lattice, LK = 〈CK,≤K〉, which is termed the concept lattice [37]

of the context (or the Galois lattice [6] of the binary relation I).

The lattice LK is represented by a Hasse diagram where nodes represent the con-

cepts provided with the respective intent and extent, while segments represent the

specialization relation (or subsumption) between concepts. It is noteworthy that the

lattice represents in an exhaustive manner the structure sharing among objects of the

context: two objects “join” each other in a non-trivial concept extent iff they share at

least one attribute.

A labeling mode of the diagram known as simplified or reduced labeling is used,

where each attribute (resp. object) appears once, in the maximal (resp. minimal) con-

cept –in term of size of extent– having that attribute (resp. object). The concept lattice

LD of context KD is drawn in Figure 1. The full extent (resp. intent) of a concept is

the union of all objects (resp. attributes) whose labels are reachable starting from this

concept and by taking downward paths (resp. upward). Thus, the concepts represent

all maximum factorizations of the attributes between objects. For example, the for-

mal concept c#5 represents the NRTI drug class grouping Kaletra and Viread that

are known to cause severe liver problems, nausea, diarrhea and vomiting.

As many practical applications involve richer data descriptions, many-valued con-

texts were introduced. In such a context K = (O,A, V, J), an object o is described
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Fig. 1 Concept lattice LD of the drug context given in Table 2. The reduced intents and extents are drawn

on both sides of a node representing a concept.

by a set of attribute value pairs (a, v) where v ∈ V . Thus, J is a ternary relation

J ⊆ O × A × V . Table 1 illustrates a many-valued context, called KP , encoding a

set of AIDS patients and their features such as age, gender, and adverse reactions to

anti-HIV drugs.

Before being processed using standard FCA algorithms, a many-valued context

has to be transformed into a one-valued context, a transformation known as scaling

[15]. Basically, the scaling encodes a many-valued attribute as a set of predicates

ranging on attribute values. For example, the “Age” attribute, whose values are nu-

merical, can be substituted by the attributes Adult (predicate Age ≤ 60, ordinal scal-

ing in [15]) and Senior (predicate Age > 60). Hence, the object Farley is assigned

Senior while other objects are assigned Adult, as illustrated in Table 3. Similarly,

Gender in Table 1 is nominally scaled with predicates Female and Male. The predi-

cates on a many-valued attribute compose a scale. One-valued context KP showing

the scaling on patients is illustrated in Table 3 while the corresponding lattice is de-

picted in Figure 2. For example, the formal concept c#9 = ({Farley, Trudy}, {Male,

Nausea, HeartFailure}) represents male patients having nausea and heart disorder.
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Farley × × × × × × × ×
Lane × × × × × × ×
Shana × × × × ×
Trudy × × × × × × × ×

Table 3 One-valued context KP encoding AIDS patients with the observed ADR (discrepancies with Ta-

ble 1 persist due to the small size of the patient sample).



 

 



 

 



 

 



 

 



 

 


 

 



 

 



 

 



 

 



 

 



 

 

Fig. 2 Concept lattice LP of context of AIDS patients given in Table 3.

3 Relational Concept Analysis

RCA was designed for the construction of formal concepts on top of multiple object

sets described by both proper attributes and relations [16, 27]. Below we recall the

formal background of RCA, including representational and analytical aspects.
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3.1 Bringing relations to FCA

The ever increasing complexity of data to be analyzed has rapidly pushed the stan-

dard context-based conceptual methods to their limits. As an illustration, consider

the lattices in Figure 1 and Figure 2 which represent all possible attribute sharing be-

tween objects in the respective contexts. They provide useful insights on what might

be the classes of anti-HIV drugs and profiles of AIDS patients. Yet an integrated ap-

proach to the management of both populations of patients and anti-HIV drugs, i.e.,

for better targeted therapies, requires that profiles of patients are linked to the appro-

priate classes of drugs. Conversely, the drug class is more useful when it reflects the

observed ADR depending on the profile of the target patients.

The mutual dependency between patients and anti-HIV drugs, triggers the intro-

duction of links between the corresponding objects into the analysis process. This

specific type of data, known as relational data as it connects objects among them-

selves, is not accessible for mainstream concept analysis.

Indeed, a thorough processing of relations between different sorts of objects chal-

lenges several core aspects of the FCA task, among them the use of a unique context,

the static set of attributes in a context, the one-shot lattice construction process, etc.

These limitations of core FCA motivate the design of specific methodologies for con-

cept analysis of relational data. As an illustration of the target knowledge structures,

consider the analysis of the pharmacovigilance dataset illustrated in Table 1 and Ta-

ble 2. Using a tool that properly processes relational links between data items, the

following remarkable fact could be gleaned: The combination of Dactinomycin and

Isentress causes several new ADR that need to be investigated such as Bleeding,

Vomiting, and HeartFailure, although both drugs share no direct ADR in Table 2.

This fact is beyond the reach of existing statistics- and FCA-based analysis methods:

Its discovery would require a multi-step process, involving human experts to connect

different knowledge sources. With RCA-based analysis, this is a basic building block

of the final result that could be explored in the design of new combined medications

that cause minimal interactions or adverse reactions.

In what follows, we present our own approach to the above issue, which is called

relational concept analysis (RCA), and provide some fundamental results on the

method and on its computational mechanisms.

3.2 Input data format

In RCA, input data is organized as a pair made of a set of objects-to-attributes contexts

K = {Ki}i=1,...,n and a set of objects-to-objects binary relations R = {rk}k=1,...,m.

Here, a relation r ∈ R links two object sets from two contexts, i.e., there are i1, i2 ∈
{1, . . . , n} (possibly i1 = i2) such that r ⊆ Oi1 × Oi2 . Both contexts from K and

relations from R are introduced as cross-tables3. The resulting structure, called a

relational context family (RCF) can be likened to a relational database with a schema-

like part comprising context, attribute and relation names, and an instance-like part

3 Although this might be the result of scaling upon some of the attributes.
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comprising the objects and the inter-object links that populate contexts and relations,

respectively.

Definition 1 (Relational Context Family (RCF))

An RCF is a pair (K,R) where:

– K = {Ki}i=1,...,n is a set of contexts Ki = (Oi, Ai, Ii) and

– R = {rk}k=1,...,m is a set of relations rk where rk ⊆ Oi1 × Oi2 for some

i1, i2 ∈ {1, . . . , n}.

It is noteworthy that, in the above definition, all object sets Oi (i ∈ {1, . . . , n})

are pair-wise disjoint. Moreover, Oi1 (domain of rk) and Oi2 (range of rk) are the

object sets of the contexts Ki1 and Ki2 , respectively.
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Dactinomycin

Isentress

Kaletra × ×
Selzentry ×
Sustiva × ×
Viread ×

Table 4 Left: Binary relation takes linking AIDS patients to anti-HIV drugs. The relation

is taken by (henceforth referred to as itb) is derived from takes (takes−1).

Right: Binary relation interacts with (iw) that models interactions among drugs.

Table 4 depicts the takes and is taken by (itb) relations on patient and drug

objects, as well as the relation interacts with (iw) that models antiretroviral in-

teractions within the drug context. Drug-drug interactions occur when two or more

drugs react with each other. This drug-drug interaction may cause patient to expe-

rience an unexpected adverse reaction. Relations takes, itb and iw together with

the respective contexts KD (Table 2) and KP (Table 3) form the RCF of our running

example.

For practical reasons, we shall process a relation r ⊆ Oi1 × Oi2 in the form of a

set-valued function r : Oi1 → ℘(Oi2). Moreover, we introduce here some auxiliary

functions to support relation-centric reasoning. First we define formally the domain

and the range of a function from the RCF.

Definition 2 (The dom(r) and ran(r) functions for relations)

Let (K,R) be an RCF. A pair of functions map relations in R to respective domain

and range object sets from the object set family O = {O|K = (O,A, I) ∈ K}.

– The domain function is dom : R → O where dom(r) = Oi1 iff for all (x, y) ∈ r,

x ∈ Oi1 ,
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– The range function is ran : R → O where ran(r) = Oi2 iff for all (x, y) ∈ r,

y ∈ Oi2 .

Next, we provide a way to gather functions w.r.t. their domain, i.e., the context

function rel.

Definition 3 (The rel(K) function for contexts)

The family of relations originating at a given context is defined by:

– rel : K → ℘(R) where rel(K = (O,A, I)) = {r ∈ R | dom(r) = O}.

Before addressing the key question of how inter-object links can be put into con-

cept intents, some important conventions must be adopted. These are mainly about

identifying the elements of an RCF along the analysis process. In fact, unlike core

FCA, in RCA some of the manipulated entities evolve. Evolution is brought by the

transformation of links into descriptors for formal objects: The sets Ai of attributes

in the contexts of a RCF are extended by new members. Hence, strictly speaking, the

resulting contexts are not the same constructs as the initial ones, just as a scaled con-

text is not equivalent to its original many-valued counterpart. In contrast, respective

object sets Oi remain unchanged, so they provide a basis for identifying the contexts:

We consider the extended attribute sets to simply define a new version of the same

contexts that share the Oi object sets. Thus, unless an explicit distinction is necessary,

all of these versions will be denoted by Ki.

Similarly, concepts c = (X,Y ) from the initial contexts of the RCF, are to be op-

posed to concepts from the respective extended versions of these contexts. As it will

become clear in section 3.3.4, there is a significant continuity between the former and

the latter, due to a correspondence based on extent preservation. Consequently, the

concepts from different versions of a context having the same extent are here consid-

ered to be the subsequent versions of the same concept. They are therefore assigned

the same identifier in all the respective lattices (see an example in section 3.3.4).

To sum up, we identify the contexts by their respective object sets and concepts

by their extents. In the following, we use simple indexes for contexts and concepts as

identifiers. These are capital letters and numbers, respectively.

3.3 Scaling upon relations

The question of how to factor in relations when constructing concept descriptions

admits a variety of answers that fit our conceptual analysis goals to diverging degrees.

In the following, we first motivate our particular way of turning links into attributes

and then provide a formal expression of the corresponding constructs.

3.3.1 A naive approach

A straightforward, and somewhat naı̈ve, way of reflecting object links would be to

assimilate links to standard one-valued attributes. In other words, for each K =
(O,A, I) ∈ K, we extend A with attributes ar,ō corresponding to the pairs made

of a relation originating at the context, r ∈ rel(K), and an object ō from its targets,
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Farley × × . . . × ×
Lane × × × . . . × ×
Shana × × . . . × ×
Trudy × × × × . . . × × ×

Table 5 One-valued context KP encoding AIDS patients with the observed ADR and drugs taken.

i.e., (o, ō) ∈ r for some o ∈ O. To illustrate this construct, observe the context in

Table 5.

It should be noticed that to increase readability within the above table, we have

skipped the name of the relation, takes, in the names of the new attributes. Thus, they

are only identified by the target objects, i.e., the drugs taken by a patient. As it is the

only relation that starts at the contexts of patients, this does not lead to any confusion.

However, with more than one such relations going to the same range context, the

object names are not enough to uniquely define the corresponding attributes.

The concept lattice corresponding to Table 5 is given in Figure 3. A quick exami-

nation of this lattice and the lattice in Figure 1 indicates that the former contains three

extra concepts. In particular, the patient Shana is now located in a concept that is im-

mediately above the bottom concept. This corresponds to the intuitive idea that the

larger the attribute set of the context the (potentially) preciser the conceptual struc-

ture induced by them. While the new concepts constitute a clear gain with respect

to Figure 1, the abstraction potential of the underlying attributes is rather limited4.

Indeed, in order for two patients to share such an attribute, both of them must have

taken the underlying drug. However, drugs, even without being completely identical,

may have similar behaviour, e.g., in terms of ADR.

To translate the intake of similar drugs –instead of identical ones– a higher-level

abstraction would be necessary that allows for some properties to be shared among

the drugs taken by each patient from a given set X . Hence, a more purposeful pro-

cessing of the links might seem to lay in the transfer of properties from the target

objects to the source ones, i.e., here, from drugs to patients. Spelled differently, while

the Table 5 is a mere join of Table 3 and the one in the left-hand-side of Table 4, one

may imagine a more sophisticated procedure of bringing the attributes of the drug

context into the patient contexts while using the takes relation as a filter. While such

a solution has its merits, it is still insufficient for our purposes, in particular, since

it would work poorly with: (i) chains of relations between a larger set of contexts

(e.g., with a context of drug producers in our example), and (ii) relations of identical

domain and range contexts (e.g., interacts-with for drugs).

4 As an indication of the limits, compare the lattice here to the one drawn in Figure 5.
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Fig. 3 The lattice of patients with drugs translated as one-valued attributes.

We therefore turn to the knowledge representation languages to look for ways

of expressing links and find suitable abstractions that are both precise and shareable

between the source objects of a relation. Such expressions are common in the logical

representation formalisms as we discuss below.

3.3.2 Role restrictions, from DLs to RCA

Description logic-based formalisms [5] are nowadays the de facto standard for knowl-

edge representation, especially in ontology engineering and on the semantic web.

Such formalisms help to organize the knowledge about a domain by focusing on rel-

evant domain abstractions, i.e., concepts and their relations called roles. The DLs offer

a collection of constructors to express relational information on the schema level. Be-

side defining domains and ranges for roles, such constructors allow finer constraints

on the outgoing links of data objects to be asserted such as the exact type of the target

objects, the number of links per object, etc.

Technically speaking, relational information is modelled upon role restrictions

from DLs [5]. In DLs, two types of knowledge are expressed at the schema level,

concepts and roles. By properly restricting the roles of a given concept, one can easily

define a sub-concept thereof. Typical constructs for role restriction include existential

quantification (∃R.C), universal quantification (∀R.C), strict universal quantification

(∀∃R.C), cardinality restriction (≥n R), qualified cardinality restriction (≥n R.C ), etc.

Here R stands for a role, i.e., the equivalent of a relation from an RCF, whereas C is

a conceptual expression that might be either a name or a formula involving logical
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connectors on sub-formula(s). Moreover, C works like a filter on the range of the role

R: the role restriction as a whole is a predicate satisfied by the objects in the domain

of R that are appropriately connected (depending on the restriction constructor) to

objects from the extension (aka interpretation) of C.

Following strictly the DLs definitions of role restriction constructors, r(o), the

image by r of an object from Oi1 = dom(r), must be compared to the extent of

some concept c from Ki2 = (Oi2 , Ai2 , Ii2) where Oi2 = ran(r). Some constructors

can be easily envisaged in RCA:

– (i) universal - r(o) is included in the extent of c,

– (ii) existential - r(o) has a non-void intersection with the extent of c.

Further ones are discussed below. These constructors yield a set of new descrip-

tors that apply to all objects from the range context of r and behave like standard

formal attributes. Since the underlying encoding of links is kin to scaling of categor-

ical attributes, it was named relational scaling and the constructors scaling schemes.

Such an approach is beneficial in many respects, in particular, it requires no new

definitions of concepts nor lattices, hence all the results from FCA, both theoretical

and algorithmic hold.

3.3.3 Scaling a relation from an RCF

From a mathematical point of view, the scaling of Ki along r ∈ rel(Ki) with ran(r) =
Oi2 and with respect to a lattice Li2 extends Ai by adding a set of new attributes and

completes Ii accordingly. In order to formalize this, we first introduce the auxil-

iary function ρ that maps each relation to a given scaling operator. It is defined as

ρ : R → Q with Q = {∃, ∀, ∀∃,≥,≥q,≤,≤q}. Now, each new attribute has the

form “q r:c” where r is the relation (name), c stands for a concept from Li2 and q is

the relational constructor associated to r, i.e. ρ(r). We chose the “:” separator instead

of “.”, the one used in DLs, in an analogy to standard type definitions for variables

from object-oriented languages. For example, assume a ∃-based scaling on r, i.e.,

ρ(r) = ∃. The resulting operator S(r,∃),Li2
, has the following effect: For each object

o from dom(r) and each concept c, o is incident to the attribute “∃r : c” whenever

r(o) shares at least one object with the extent of c.

Definition 4 (The existential scaling operator)

Given K = (O,A, I) and r ∈ rel(K), let ir be such that ran(r) = Oir where

Kir = (Oir , Air , Iir ). Let also Lir be the lattice of Kir . The existential scaling

operator S(r,∃),Lir
maps K into the derived context K+ = (O+, A+, I+), where:

– O+ = O

– A+ = {∃r : c | c ∈ Lir}, where each ∃r : c is a relational attribute

– I+ = {(o, ∃r : c) | o ∈ O, c ∈ Lir , r(o) ∩ Ext(c) 6= ∅}

In other terms, scaling a context along a relation consists in integrating this relation to

the context in the form of one-valued attributes using a scaling operator. For instance,

let us detail how the context of anti-HIV drugs KD can be scaled along relation itb

given in the left-hand side of Table 4 with respect to the lattice of patients depicted
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in Figure 2. The anti-HIV drug object Kaletra –whose image upon the relation itb is

{Farley, Shana}– will have the attributes ∃itb:ci, with i ∈ {0, 2, 4, 5, 6, 7, 9} in the

lattice LP (Figure 2), since extents of concepts c0, c2, c4, c5, c6, c7 and c9 have a

non-empty intersection with the image set itb (Kaletra). Table 6 provides the result

of scaling existentially the drug context KD upon itb.
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Dactinomycin × × × × ×
Isentress × × × × ×
Kaletra × × × × × × ×
Selzentry × × × × × × ×
Sustiva × × × × × × ×
Viread × × × × × × ×

Table 6 The existential scaling of the anti-HIV drug context KD along the relation itb using the lattice

LP of AIDS patients (Figure 2). Observe that ∃ itb:c1 is skipped as c1 is the bottom concept whose extent

is void.

Similarly, we define the universal scaling operator with respect to r and Lir ,

denoted by S(r,∀),Lir
. The difference is that instead of non-empty intersection, the

object image r(o) must be completely included in the extent of c in order for o to get

the relational attribute ∀r : c:

I+ = {(o, ∀r : c)|o ∈ O, c ∈ Lir , r(o) ⊆ Ext(c)}.

For instance, universal scaling of relation itb using the concept lattice given in Fig-

ure 2 will assign relational attributes ∀itb:c4 and ∀itb:c6 to the drug object Kaletra

since the respective extents of both concepts c4 and c6 comprise {Farley, Shana},

the image set of Kaletra for itb.

Yet the above definition presents on the well-known empty image problem: ob-

jects with no links for a relation r get all universally quantified attributes with r. To

illustrate this, consider a universal scaling of the relation iw (see the right-hand side

of Table 4) with the concept lattice of drugs in Figure 1. Now observe that both drug

objects Isentress and Dactinomycin have empty-set image following the relation

iw. Thus, a universal scaling of iw will assign every one of the resulting relational

attributes to Isentress and Dactinomycin.

Clearly, the mere universal quantification is of little practical use. Therefore, we

introduced a more constrained version called strict universal scaling which addi-

tionally requires that at least one link of r starts at the source object o. The scaling

scheme, denoted S(r,∀∃),Lir
under the above assumptions, comprises a slightly mod-

ified definition for the attributes ∀∃r : c:

I+ = {(o, ∀∃r : c)|o ∈ O, c ∈ Lir , r(o) ⊆ Ext(c) and r(o) 6= ∅}.

It is noteworthy that ∀∃r : c corresponds to the DLs expression ∀R.C ⊓ ∃R.

Based on the role restrictions from DLs, further scaling operators are defined. Table 7
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presents the current set of such operators together with their notation, the form of the

generated relational attributes and the condition for assigning them to an object. We

assume a relation r and a lattice L on its range set of objects.

Operator Notation Attribute form Constraint in I+

Universal (wide) S(r,∀),L ∀ r : c r(o) ⊆ Ext(c)

Existential S(r,∃),L ∃ r : c r(o) ∩ Ext(c) 6= ∅

Universal strict S(r,∀∃),L ∀∃ r : c r(o) ⊆ Ext(c) and r(o) 6= ∅

Cardinality restriction (max) S(r,≥),L ≥ n r : ⊤L |r(o)| ≥ n

Cardinality restriction (min) S(r,≤),L ≤ n r : ⊤L |r(o)| ≤ n

Qualified card. restriction (max) S(r,≥q),L ≥ n r : c r(o) ⊆ Ext(c) and |r(o)| ≥ n

Qualified card. restriction (min) S(r,≤q),L ≤ n r : c r(o) ⊆ Ext(c) and |r(o)| ≤ n

Table 7 Operators for the relational scaling in RCA.

3.3.4 Scaling upon all outgoing relations of a context

In RCA, at each step, a context K is scaled upon all the relevant relations which we

assume here to be all those that originate at the context, i.e., the respective set rel(K).
To formally express the context obtained by augmenting K with all the resulting

relational attributes, what we call the complete relational extension of K, one needs

to factor in the available lattices on the respective range contexts of the relations in

rel(K). Let the set of lattices corresponding to the contexts in K be denoted simply

by L. Let also rel(K) = {rl}l=1,...,mK
and, for each rl, let Lil ∈ L be the lattice

on Oil = ran(rl). Under these assumptions, the complete relational extension of K
with respect to ρ and L, denoted Eρ,L, is defined as the apposition of K with the

respective results of the scaling upon each r from rel(K). The apposition operator on

two contexts K1 and K2, as defined in [15], requires that these share the same set of

objects whereas its result, denoted K1|K2, is a context over these objects where the

attribute set and the incidence are obtained by union of the respective components of

the argument contexts. Formally:

Definition 5 (Complete relational extension of a context)

Given a RCF (K,R), with a set of lattices L, a scaling constructor mapping ρ, and a

context K ∈ K with rel(K) = {rl}l=1,...,mK
, the complete relational extension of K

w.r.t. ρ and L is

Eρ,L(K) = K | S(r1,ρ(r1)),Li1
(K) | . . . | S(rmk

,ρ(rmk
)),Limk

(K)

For instance, consider the result of the complete extension of the drug context

Ks
D = Eρ,L(KD) where ρ ={(itb,∃), (iw,∃), (takes,∃)} and L = {LP ,LD}. The

corresponding context Ks
D may be obtained by putting side-by-side the initial drug

context KD (Table 2), and the respective results of existentially scaling its relations

is-taken-by and interacts-with. These are given in Table 6 and Table 8, respec-

tively. Observe that in Table 8, the attribute ∃ iw:c1 is missing from the table. In fact,
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Dactinomycin × × ×
Isentress × × × × ×
Kaletra × × × × × × × × × ×
Selzentry × × ×
Sustiva × × × × × × ×
Viread × × × × × ×

Table 8 The result of an existential relational scaling applied to the anti-HIV drug context KD upon the

relation iw and using its own lattice LD (Figure 1). The attribute ∃ iw:c1 is skipped as c1 is the bottom

concept.

c1 is the bottom concept and here it is of an empty extent, hence no object could get

the attribute.

The lattice Ls
D corresponding to the above context is given in Figure 5. A first

observation is that it is strictly larger than the initial lattice LD in Figure 1 as no

extent from the latter is missing in it. The intuitive explanation is that by adding

some attributes to a context, one cannot destroy the extents from the initial context.

Thus, it is by no means a coincidence, that concepts with the same identifier in both

figures have the same extents (e.g., c8 whose extent comprises Selzentry, Sustiva

and Kaletra).

Let us elaborate on the relationship between an initial context and its extended

version as well as between their respective lattices. Thus, let – under the hypotheses

of Definition 5 – Ks = Eρ,L(K) for some K from the RCF and consider the lattices

L and Ls. Since Ks is an apposed context of K, it has a larger set of attributes yet the

same set of objects. In [34], it was shown that each extent of K is also an extent of

Ks which means the lattice L is “blended” in Ls. Formally,

Property 1 (Lattices of apposed contexts, [34])

Given contexts K, K1 and K2 such that K = K1|K2, the respective lattices L, L1

and L2 satisfy that for each concept (X,Y ) ∈ Li (i = 1, 2), there is an equivalent

concept (X,Z) ∈ L where Y ⊆ Z.

This basically means that by extending a context through relational scaling, its

lattice expands while preserving its initial conceptual structure as a sub-order. This

sub-order is witnessed by concept extents: whatever the extension of the context,

its concept set will always comprise, for each concept from the initial context K,

a concept with the same extent, yet of a possibly larger intent. We therefore shall

establish concept identities throughout evolving versions of the same initial context

on the basis of their respective entities: two concepts from different versions whose

extents coincide will be considered two versions of the same concept.
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Fig. 4 The lattice Ls
D

of the relationally extended Drug context Ks
D

(quantifiers omitted in relational

attributes).

3.3.5 Scaling the entire RCF

The above extension operator may now be expanded to reach over the entire set of

contexts of an RCF. Here again, ρ and L are parameters of the multi-context operator

on the set K which works as follows:

Definition 6 (Complete relational extension of an RCF)

Given a RCF (K,R) whose context set is K = {K1, . . . ,Kn} and whose set of

lattices is L, and a scaling constructor mapping ρ, the complete relational extension

of K is a set of contexts defined as

E
∗

ρ,L(K) = {Eρ,L(K1), . . . ,Eρ,L(Kn)}.

For instance, the result of the above operator on our initial RCF unfolds whenever

one adds to the above three tables representing the complementary parts of the Drug

context, the initial Patient context in Table 3 and its respective image by existential

relational scaling w.r.t. takes (Table 9).

Clearly, applying E
∗ to a context set yields a set of extended contexts where each

individual context is an attribute-wise extension of its counterpart in the initial set.

Then, to each of the extended contexts corresponds a potentially larger lattice. In our
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Farley × × × × × × × × × × ×
Lane × × × × × × × ×
Shana × × × × × × × × × × ×
Trudy × × × × × × ×

Table 9 The existential scaling of KP upon takes and the lattice LD (Figure 1).

example, the lattice of Ks
P , the Patient context completely extended w.r.t. the initial

lattice on drugs LD, is drawn in Figure 5.

Fig. 5 The lattice Ls
P

of the relationally extended Patient context Ks
P

(quantifiers omitted).

Let us notice that the lattice in Figure 5 is substantially different from the one

in Figure 3. For instance, the extent of concept c12 from Figure 5 groups Shana and

Trudy while there is no such extent in Figure 3: the smallest extent comprising these

patients is in c9 and has also Lane. What distinguishes both former patients w.r.t.

the latter one is that each of them took at least one drug from the extents of drug

concepts c2 and c4 (see Figure 1). These concepts cover the drugs causing Headache

and Nausea, respectively. Conversely, one could observe that any extent from Figure 3
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is also present in Figure 5. We feel that the additional conceptual knowledge gained

through relational scaling vindicates the technique as well as the entire RCA approach.

3.3.6 Refining the scales

The above Property 1 states that the lattices of the relationally extended contexts,

albeit different conceptual structures, encompass all the conceptual information from

the respective lattices of the initial contexts. Indeed, comparing Ls
D from Figure 4

to LD (see Figure 1), one notices that eight new concepts have emerged as a result

of the relational scaling, e.g., concept c17 that groups Selzentry and Sustiva. Now

a natural question arises: Given that there might be additional concepts in some of

the expanded lattices, i.e., concepts without a counterpart in the initial lattice, should

not these be reused in a new round of scaling? In other terms, should one proceed by

repeating the scaling step, this time with a more thorough conceptual information to

use as scaling basis? In our example, knowing Ls
D could help make the scaling upon

takes even more precise. Indeed, beside the attributes corresponding to (extents of)

concepts from LD (see Table 9), eight new attributes translating the aforementioned

additional concepts are yielded by the scaling. These attributes are shown in Table 10.
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Farley × × ×
Lane × × × × ×
Shana × × ×
Trudy × × × × × ×

Table 10 The existential scaling of KP upon takes and the lattice Ls
D

(Figure 4). Only the differential

part w.r.t. Table 9 is given.

Using the total set of attributes from Table 9 and from Table 10 clearly results in

a further extension of the KP that has a strictly larger set of attributes than Ks
P , and

hence, a potentially larger set of concepts. This amounts to inserting the previously

discovered conceptual knowledge into the analysis process in order to refine its results

(by refining the lattice-shaped scales).

Obviously, the process needs not stop at step two and could potentially go to

an arbitrary number of such scaling/lattice construction iterations. Then, one needs

to consider the termination problem for the iterative process that arises in this way:

Could one guarantee that the process would converge into a well-defined result?

Further to the idea of iterating upon ever expanding contexts and lattices, we

define a general method that constructs the ultimate result of the analysis task on an

RCF.
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4 Context dynamics and the iterative RCA method

4.1 Iterative context expansion

As stated previously, we capture the evolution of each context Ki ∈ K in a sequence

Kp
i whose zero member K0

i = (O0
i , A

0
i , I

0
i ) is the input context. From there on, each

member of the sequence is obtained from the previous one by a complete relational

expansion upon the relations r from rel(Ki) while using the respective constructors

from ρ, i.e., ρ(r), and the lattices of the p-th iteration in Lp. The set of contexts in the

p-th iteration may be recursively defined as follows:

Definition 7 Given a RCF (K,R) and a mapping ρ, the vector of contexts at the step

p+ 1 is

K0 = K

Kp+1 = E
∗

ρ,Lp(Kp)

Now each of the contexts from the fix point member K∞ is similarly defined:

Definition 8 Given a RCF (K,R), a mapping ρ, and some i ∈ {1, . . . , |K|} the i-th

context at the step p+ 1 is the extension of the context of the same rank at step p:

K0
i = Ki

Kp+1
i = Eρ,Lp(Kp

i )

A first observation is that the fix point members of the context sequence are well-

defined. In other terms, for each i ∈ {1, . . . , |K|} the context K∞
i is the fixpoint of

the non-decreasing sequence (Kp
i ).

Lemma 1 Given a RCF (K,R) and a mapping ρ, for each i ∈ {1, . . . , |K|} and

p ≥ 0, let Kp
i = (Op

i , A
p
i , I

p
i ) and Kp+1

i = (Op+1
i , A

p+1
i , I

p+1
i ), then

O
p
i = O

p+1
i , A

p
i ⊆ A

p+1
i and I

p
i ⊆ I

p+1
i .

To prove the above fact, we need an intermediate step that focuses on lattices:

Lemma 2 Given a RCF (K,R) and a mapping ρ, for each i ∈ {1, . . . , |K|} and

p ≥ 0
∀(X,Y ) ∈ Lp

i , ∃(X,Z) ∈ Lp+1
i .

The fact that contexts can only grow or remain the same is readily proved by induction

on p where the basic case is expressed as in Property 1.

This now allows us to assert that the relational attributes in Kp
i for some i and p

chosen as above, are included in the relational attributes of Kp+1
i . Indeed, as indicated

at the end of section 3.2, we consider the concepts (X,Y ) and (X,Z) from Lemma 2

to be identical, which, given that only the shared extent X is used in the scaling

process, constitutes no real limitation.

To demonstrate that each context sequence converges, it is now enough to ob-

serve that for a lattice sequence Lp
i , there is a natural upper bound represented by the
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Boolean lattice5 of Oi. And since the set of all extents from Lp
i does not decrease

when p grows up to ∞ (as shown in Lemma 2), it necessarily converges. We can now

state the convergence of the context sequence:

Theorem 1 Given a RCF (K,R) and a mapping ρ, the sequence (Kp) converges

toward a well-defined set of maximally extended contexts K∞.

To sum up, K∞ is obtained from K0 through an iterative process of concept

construction and attribute generation using the data in R and a user-provided set of

(relation,constructor) pairs in ρ. Moreover, being a fix point of an expanding process,

it is the closure of K0 for the implicit closure operator associated to the method.

4.2 The MULTI-FCA method

The MULTI-FCA method describes the step-wise construction of the fix point solu-

tion from the initial RCF. The logic of our analysis method is iterative one: Whenever

the contexts of a RCF are extended, their corresponding lattices expand as well. More-

over, it represents a computational schema rather than a precise algorithm as many

algorithmic choices are left to the analyst.

1: proc MULTI-FCA(

2: In: (K,R) an RCF, ρ a constructor mapping

3: Out: L array [1, . . . , n] of lattices)

4: p ← 0 ; halt ← false

5: for i from 1 to n do

6: K0
i ← SCALE(Ki)

7: L′
〉
← BUILD-LATTICE(K0

i )

8: while not halt do

9: p = p+ 1
10: for i from 1 to n do

11: Kp

i
← EXTEND-CONTEXT(Kp−1

i
, ρ, L

p−1)

12: Lp
i
← UPDATE-LATTICE(Kp

i
,Lp−1

i
)

13: halt ←
∧

i=1,...,n ISOMORPHIC(L
p

i
,Lp−1

i
)

Algorithm 1: Producing a lattice for each context in an RCF.

Here we provide a detailed description of the algorithm.

At the initialization step (lines 4 − 7), each context K0
i is obtained from Ki by

applying a conceptual scaling to the many-valued attributes in Ki using the primitive

SCALE (line 6). The lattices L0
i are constructed using the primitive BUILD-LATTICE

(line 7). At the step p and for each relation rk ⊆ Oi × Oj, the lattice Lp−1
j of the

range context is used to extend the domain context Kp
i using the primitive EXTEND-

CONTEXT and then update the lattice of the domain context Lp
i using the primitive

UPDATE-LATTICE (lines 8− 13). For both primitives of lattice construction and lat-

tice update, the choice of the exact algorithms is free. The process ends whenever at

5 Thus, in the worst case L∞i may comprise all subsets of Oi as extents.
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two subsequent steps all the pairs of corresponding lattices Ln
i and Ln+1

i are isomor-

phic (checked by the primitive ISOMORPHIC, line 13).

For example, the MULTI-FCA method applied to the RCF composed of the two

contexts KP and KD, and the relations takes, itb and iw, all of them scaled with

an existential constructor, yields the final lattices L2
P and L2

D, shown in Figure 7 and

Figure 6, respectively. These have been obtained after two iterations.

Fig. 6 The final lattice of drugs (L∞
D

). Quantifiers are omitted in relational attributes due to visualization

limitation of GALICIA.

It is noteworthy that unlike concepts in Figure 5 and Figure 4, the ones of the final

lattices have undergone an additional round of label reduction. The underlying sim-

plification amounts to skip from the reduced intent of a concept relational attributes

“q r:c1” such that there is another attribute “q r:c2” with c2 ≤ c1. The intuition behind

this reduction is that whatever the constructor q, for any object o from the domain of

r, whenever o satisfies “q r:c2”, it will necessarily satisfy “q r:c1” as well. For in-

stance, the intent of patient concept c14 in Figure 5 comprises the takes:c4 attribute

that has been removed in the intent of the same concept in Figure 7. A simple check

in Figure 1 reveals that the drug concept c2 is a sub-concept of c4. In actuality, this

amounts to attribute-clarifying the parts of the fix-point context generated by scaling

upon individual relations while keeping for each set of equivalent attributes the ones

corresponding to minimal concepts from the relation range.

An important question focuses on the overall cost of the relational analysis of

a dataset, especially given the iterative nature of the MULTI-FCA method. In fact,
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in many cases there will be no necessity of iterating: A proper ordering of analysis

tasks for individual contexts should help avoid it. To see this, one should imagine the

“schema” of an RCF, i.e., the digraph made of contexts as vertexes and relations as

directed edges. Now, provided this graph is a DAG (no circuits), a topological sort

of the contexts would provide a total ordering that is compatible with the relation-

induced dependencies among contexts. Thus, analysing the contexts according to this

order will ensure a context K is only processed whenever all the lattices required for

scaling the relations in rel(K) have already been constructed up to their fixed point

form. Yet in order to cover the entire spectrum of possible RCF, inclusive circular

ones, we preserve the more general expression of MULTI-FCA that is bound toward

a fix point.

4.3 Interpreting relational concepts

New abstractions emerge in a relational lattice characterizing the sharing of links be-

tween the objects (as already discussed in § 3.1). For instance, the drug concept c#20

in L∞

D (Figure 6, labeled ({},{∃ itb : c10}) does not belong to the initial lattice L0
D

(Figure 1). It is a new relational concept whose objects, namely Dactinomycin and

Isentress, are described in a purely relational way indicating that both drugs were

taken by patients who experienced common adverse reactions, e.g., breath disorder,

heart failure, etc. (patient concept c#10 in LP ).

In addition, some intents from L0
D are extended by a relational part hence refining

the description of the member objects. In this way, the concept c#5 in L0
D (Figure 1)

represents NRTI drug class that causes liver disorder. In the final lattice of drugs L∞

D

(Figure 6), the intent of the same concept c#5, enriched with the relational attributes

∃iw : c13, ∃itb : c0 and ∃itb : c11 indicates that both NRTI drugs Kaletra and

Viread interact with Sustiva and cause some unexpected adverse reactions including

hair loss and oedema. More generally, the relational lattices of patients and drugs

provided by RCA link profiles of patients (case reports) with classes of drugs.

4.4 Complexity issues

The MULTI-FCA method iterates over a set of tasks for individual contexts: lattice

construction/maintenance, relational scaling, termination tests. Beside their individ-

ual complexity estimations, potential other factors include the number of iterations

and the size of the set K.

Lattice construction is a well-known listing problem. Unlike decision problems

which focus on a single yes/no solution, listing problems enumerate all such solu-

tions. As the number of such solutions may vary significantly among the instances of

the problem, it is more appropriate to assess the average cost of producing a solution

or, alternatively, to include the output size as a factor. The lowest known worst-case

time complexity for the concept lattice construction is O(nc ∗ no ∗ na) where nc,

na and no are the number of the concepts in the lattice, the number of the attributes

and the number of the objects in the context [18]. To get the overall cost for the lat-

tice construction in MULTI-FCA, one could merely multiply by the iteration number.
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Fig. 7 The final lattice of patients (L∞
P

). Quantifiers are omitted in relational attributes because of visual-

ization limitations of GALICIA.

Yet, if incremental construction is performed instead of batch one (recall algorithmic

choices are left to the user), the construction of the fix point lattice of a context could

be seen as a single task, split across the iterations. Its basic step is the incremental

insertion of a single attribute into a context followed by the lattice update which,

as argued in [35], amounts to a batch lattice construction at the same total cost of

O(nc ∗ no ∗ na).

A subtle difference here is that in MULTI-FCA the fix point lattices are computed

from the fix point contexts rather that the initial ones of the RCF. In a way, the fix

point contexts are part of the RCA output and there is no simple way of estimating

their sizes. We therefore rewrite the overall complexity of the lattice construction

part (inclusive the initializing part, line 7 of Algorithm 1) as follows. Let the size

of the largest lattice be ncm formal concepts, the maximal number of attributes in a

fix point context be nam
, and the maximal number of objects in a context be nom .

The overall construction time is thus O(ncm ∗ nam
∗ nom). Notice that the above

context number factor was skipped as it is expected to be modest (typically, less than

7). Furthermore, this computation offsets the necessity to factor in –hence to know–

the number of iterations: only the set of attributes in the fix point context matters, the

way their creation is split among the iterations is immaterial.

The cost factor due to scaling is assessed similarly: First, a concept c = (X,Y )
from the output contributes to attribute construction only at the iteration following its

creation. With the incremental approach, at subsequent iterations the scaling would
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ignore c. Its contribution to scaling effort depends on the number of relations r whose

ran(r) is object set behind X , the size of each dom(r) and the cost of the incidence

test for qr : c and an object o ∈ dom(r). The first one is small (in the low digits)

and hence vanishes. The third factor is linear in the sizes of r(o) and X and hence of

ran(r). This puts the complexity estimation of the scaling at O(ncm ∗ n2
om

).

Finally, the termination (line 13 of Algorithm 1) is efficiently tested by simply

comparing the sizes of lattices on two subsequent iteration (due to the sub-order prop-

erty). Thus, its cost factor could be neglected.

In summary, when lattice construction and scaling are performed by incremental

algorithms, the overall time complexity function is in O(ncm ∗ nom ∗ (nam
+ nom)).

The other important aspect of MULTI-FCA is its convergence, i.e., the number of

steps till the fix point is reached. Intuitively, the process halts whenever there are no

more attributes from the original sets Ai that can be propagated backwards along the

chains of relational links, e.g., known ADR of a drug to the patient taking that drug.

Thus, the maximal length of such a chain is an indicator of the iterations MULTI-FCA

might need to converge. In fact, absent circuits in these chains, a proper ordering of

the contexts enables a single step construction of the fix point. However, the calcula-

tion of the exact number in the general case remains a challenging problem. Indeed,

with circularity in the links, the propagation could loop over a circuit for a number of

iterations (that depends on the length of the circuit). In the extreme cases, i.e., with

particularly unlucky configurations of the links in the dataset, the number of itera-

tions is bound from above by the product of the length of some comparable circuits6.

Fortunately, such cases are extremely rare: circuits, whenever present, tend to be of

minimal size (two or three).

5 Related work

Our RCA approach follows several trends within the fields it contributes to. First,

as an FCA-based framework, RCA relates to work on extending the standard input

data format by integrating non atomic attributes in formal contexts. This trend dates

back to the end of 90s, when studies on logical formulas as formal attributes were

initiated, in particular, description logic expressions as in [23]. Simultaneously, the

representation of relational information in FCA has been standardized in the form of a

power context family (PCF) [24]. Compared to the multi-step mechanics of RCA, the

core method here amounts to a static, i.e., single-step, scaling.

Independently, in [29], the relational exploration method has been defined that

expands the basic method towards a full set of DLs constructors, inclusive univer-

sal and existential quantifiers for role restrictions. A similarly founded approach has

been adopted in [14] within the Logical Concept Analysis trend. Indeed, despite some

terminological differences the basic hypotheses and mechanisms remain essentially

the same. Indeed, the relational descriptors in concept intents are borrowed from DLs

whereas the main result relies on reasoning about syntax with role depth providing

6 The precise function is the least common multiple (lcm) of the circuit lengths, hence the worst-of-the-

worst case is with circuits of unique lengths corresponding to prime numbers.
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the guidelines. The substantial difference with our approach is the relational format

of data that is taken into account and the resulting relational lattices.

In [17, 20], the processing of formal objects with graph-based descriptions is ex-

amined. Notwithstanding the effective extension of the FCA machinery to a variety of

data formats matching graphs, e.g., chemical compound models, the resulting meth-

ods are limited to output exclusively graph-based concept intents. Thus, they cannot

be easily tuned to produce the entity-centered concept descriptions studied here.

Finally, RCA shares a name with the relational FCA approach towards analysis

of lexical and semantic relationships between terms (synonymy, hyponymy, hyper-

onymy, etc.), as introduced in [25]. In this approach, relationships hold on entire

concepts rather than on individual objects. In contrast, RCA processes relations that

materialize as inter-object links and lifts them to the abstract level in the form of

relational attributes that are generated by a scaling mechanism.

RCA framework has been implemented within the open source platforms GALI-

CIA
7 and eRCA8. RCA has been successfully applied in software engineering and in

ontology engineering. In software engineering, RCA is used in the analysis of UML

artifacts [16, 3], detection and correction of design defects [22], model transformation

learning from transformation examples [30], and Web service classification and com-

position [4]. In ontology engineering, RCA has been applied for the construction [8]

and the refactoring [28, 31] of domain ontologies.

6 Conclusion and future work

RCA provides a relational framework that deals with datasets where object descrip-

tion is not restricted to one-valued contexts. The framework allows the derivation of

potentially useful abstractions based on the inter-objects links. Using an iterative gen-

eralization process, these links are propagated on the level of concepts thus yielding

to relational abstractions which describe in a generic way the links between objects.

In comparison to other extensions of FCA, these links are considered at the launch of

the concept formation process thanks to the original mechanism of relational scaling

whose scales come from concept lattices. We have shown how the process converges

and a description of the concrete method that implements it as well as an analytical

expression of the obtained solution were proposed.

RCA approach has been implemented in the GALICIA and eRCA platforms and

is currently operational for various applications. Scalability is an issue since the size

of the lattices can grow rapidly due to the cross-fertilization of contexts. Algorithmic

issues are our current primary concern as further progress can be realized with per-

formances through carefully combined techniques for iterative lattice maintenance

instead of plain construction.

At each step of the multi-FCA process, the concepts of a particular context, say

Ki, or its current relational extension Kp
i , are translated into additional attributes in-

volving the relations whose range is comprised in Ki. The new attributes go to the

contexts Kj that constitute the respective relation domains. There they get assigned

7 http://www.iro.umontreal.ca/˜galicia
8 http://code.google.com/p/erca/
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to the local objects o from Oj through the corresponding images r(o). Therefore, a

natural question to elucidate would be the exact dependency between object descrip-

tion and relational attribute, i.e., how do the former define the latter? Or, alternatively,

what properties of the former are reflected in the latter? In other terms, one need to ex-

amine the correctness of the iterative method, i.e., is every relational attribute rooted

in an element of the initial RCF, and its completeness, i.e., is every relation between

objects reflected by at least one such relational attribute.

Another challenging research track lays in the combination of RCA with other

FCA paradigms such as fuzzy FCA [7] and closed pattern mining [33].
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