# RELATIONAL DATABASE THEORY

## PAOLO ATZENI

UNIVERSITY OF ROME

### VALERIA De ANTONELLIS

#### UNIVERSITY OF MILAN



THE BENJAMIN/CUMMINGS PUBLISHING COMPANY, INC.

REDWOOD CITY, CALIFORNIA • MENLO PARK, CALIFORNIA READING, MASSACHUSETTS • NEW YORK • DON MILLS, ONTARIO WOKINGHAM, U.K. • AMSTERDAM • BONN • SYDNEY SINGAPORE • TOKYO • MADRID • SAN JUAN

## Contents

| Chapter 1: The Relational Model of Data                 | 1   |
|---------------------------------------------------------|-----|
| 1.1 Relations                                           | 2   |
| 1.2 Formal Definition of the Relational Model           | 6   |
| 1.3 Integrity Constraints                               | 8   |
| 1.4 Query Languages                                     | 13  |
| 1.5 Flat and Nested Relations                           | 21  |
| 1.6 Relations in Boyce-Codd Normal Form                 | 23  |
| Exercises                                               | 28  |
| Comments and References                                 | 31  |
| Chapter 2: Relational Query Languages                   | 33  |
| 2.1 Basic Notions                                       | 34  |
| 2.2 Relational Algebra                                  | 35  |
| 2.3 The Expressive Power of Relational Algebra          | 43  |
| 2.4 Relational Calculus: Introduction                   | 53  |
| 2.5 Domain Relational Calculus                          | 54  |
| 2.6 Domain Independence                                 | 62  |
| 2.7 The Expressive Power of Relational Calculus         | 68  |
| 2.8 Tuple Relational Calculus                           | 74  |
| 2.9 Limitations of Relational Query Languages           | 79  |
| Exercises                                               | 87  |
| Comments and References                                 | 90  |
| Chapter 3: Dependency Theory: Part 1                    | 93  |
| 3.1 Integrity Constraints: Basic Concepts               | 94  |
| 3.2 Inference Rules for Functional Dependencies         | 101 |
| 3.3 The Implication Problem for Functional Dependencies | 108 |
| 3.4 Keys and Functional Dependencies                    | 115 |
| 3.5 Covers of Functional Dependencies                   | 117 |
| Exercises                                               | 126 |
| Comments and References                                 | 128 |

| Contents |
|----------|
|----------|

| Cha | pter 4: Dependency Theory: Part 2                          | 131 |
|-----|------------------------------------------------------------|-----|
| 4.1 | Tableaux and the Chase                                     | 132 |
| 4.2 | FDs and Lossless Decompositions                            | 143 |
| 4.3 | FDs as Interrelational Constraints                         | 146 |
| 4.4 | Multivalued Dependencies                                   | 152 |
| 4.5 | Inclusion Dependencies                                     | 161 |
| 4.6 | Unrestricted and Finite Implication and Their Decidability | 167 |
|     | Exercises                                                  | 170 |
|     | Comments and References                                    | 173 |
| Cha | pter 5: The Theory of Normalization                        | 175 |
| 5.1 | Adequacy and Equivalence of Transformations                | 176 |
| 5.2 | Adequacy of Vertical Decompositions                        | 182 |
| 5.3 | Boyce-Codd Normal Form and Third Normal Form               | 193 |
| 5.4 | Algorithms for Normalization                               | 197 |
| 5.5 | Further Normal Forms and Decompositions                    | 205 |
| 5.6 | Domain-Key Normal Form: the Ultimate Normal Form           | 208 |
|     | Exercises                                                  | 213 |
|     | Comments and References                                    | 216 |
| Cha | pter 6: The Theory of Null Values                          | 219 |
| 6.1 | Types of Null Values                                       | 220 |
| 6.2 | Query Languages and Null Values                            | 230 |
| 6.3 | Integrity Constraints and Null Values                      | 239 |
|     | Exercises                                                  | 248 |
|     | Comments and References                                    | 249 |
| Cha | pter 7: The Weak Instance Approach                         | 251 |
| 7.1 | Query Answering with Weak Instances                        | 252 |
| 7.2 | Equivalence and Completeness of Database Instances         | 257 |
| 7.3 | Weak Instances and Adequacy of Decompositions              | 263 |
| 7.4 | Updates Through Weak Instances                             | 266 |
| 7.5 | The Weak Instance Approach and First-Order Logic           | 274 |
| 7.6 | Interpretation of Nulls in the Weak Instance Approach      | 280 |
|     | Exercises                                                  | 288 |
|     | Comments and References                                    | 289 |

viii

#### Contents

| Cha  | pter 8: Generalizing Relations  | 291 |
|------|---------------------------------|-----|
| 8.1  | Beyond the Relational Model     | 292 |
| 8.2  | Nested Relations                | 294 |
| 8.3  | Languages for Nested Relations  | 299 |
| 8.4  | Extending Nested Relations      | 310 |
| 8.5  | Complex Objects with Identity   | 318 |
|      | Exercises                       | 326 |
|      | Comments and References         | 327 |
| Cha  | pter 9: Logic and Databases     | 331 |
| 9.1  | Databases and Knowledge Bases   | 331 |
| 9.2  | Mathematical Logic              | 335 |
| 9.3  | Logical Approaches to Databases | 342 |
| 9.4  | Deductive Databases             | 347 |
| 9.5  | Datalog                         | 351 |
|      | Exercises                       | 359 |
|      | Comments and References         | 360 |
| Bibl | iography                        | 363 |
| Inde | x                               | 377 |