Relational Differential Prediction Houssam Nassif¹, Vítor Santos Costa², Elizabeth S. Burnside¹, and David Page¹ 2 University of Porto, Portugal University of Wisconsin, Madison, USA

Data with stratifying attribute

							`	/	
		One target rule						M	
		clean			noisy			clea	
	Size	BASE	MF	DPS	BASE	MF	DPS	BASE	M
	100	0.73	0.83	0.62	0.57	0.62	0.54	0.61	0.
	1000	0.87	0.90	0.88	0.63	0.80	0.87	0.75	0.
		1						L	

Breast Cancer Diagnosis

- Aim: discover older in situ differential predictive rules BASE method didn't return any rule MF method returned rules pertaining to theme number 1 \blacktriangleright DPS method returned rules pertaining to themes 1 – 5 DPS provides a more complete picture than MF
- Lift: Number of positives in top ranking fraction p Uplift curve : Range $p \in [0, 1]$, plot $\{p, Lift_t - Lift_o\}$ DPS uplift curve consistently outperforms MF

0.4

Fraction of total mammograms

0.6