
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Relational Learning for Joint Head and Human Detection

Cheng Chi,1,3∗ Shifeng Zhang,2,3∗† Junliang Xing,2,3 Zhen Lei,2,3 Stan Z. Li,2,3,4 Xudong Zou1,3

1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
2CBSR & NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China

3University of Chinese Academy of Sciences, Beijing, China
4Macau University of Science and Technology, Macao, China

chicheng15@mails.ucas.ac.cn, {shifeng.zhang, jlxing, zlei, szli}@nlpr.ia.ac.cn, xdzou@mail.ie.ac.cn

Abstract

Head and human detection have been rapidly improved with
the development of deep convolutional neural networks.
However, these two tasks are often studied separately with-
out considering their inherent correlation, leading to that 1)
head detection is often trapped in more false positives, and
2) the performance of human detector frequently drops dra-
matically in crowd scenes. To handle these two issues, we
present a novel joint head and human detection network,
namely JointDet, which effectively detects head and human
body simultaneously. Moreover, we design a head-body rela-
tionship discriminating module to perform relational learning
between heads and human bodies, and leverage this learned
relationship to regain the suppressed human detections and
reduce head false positives. To verify the effectiveness of
the proposed method, we annotate head bounding boxes of
the CityPersons and Caltech-USA datasets, and conduct ex-
tensive experiments on the CrowdHuman, CityPersons and
Caltech-USA datasets. As a consequence, the proposed Joint-
Det detector achieves state-of-the-art performance on these
three benchmarks. To facilitate further studies on the head
and human detection problem, all new annotations, source
codes and trained models are available at https://github.com/
ChiCheng123/JointDet.

Introduction

Head and human detection are two important research topics
in computer vision field with various applications, such as
human behavior analysis, intelligent video surveillance and
automatic driving. Although great progress has been made
by deep convolutional neural networks (CNNs) on general
object detection (Ren et al. 2017; Dai et al. 2016; Lin et
al. 2017a; Liu et al. 2016; Lin et al. 2017b; Zhang et al.
2018b), research in the realm of these two subtasks remains
challenging due to their characteristics.

Head detection has experienced tremendous development
in recent years. The context-aware CNN model (Vu, Osokin,
and Laptev 2015) employs a pairwise CNN to model pair-
wise relations among heads. The HeadNet (Chen et al. 2018)
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(a) Remove head false positives (b) Recall suppressed bodies

Figure 1: Effectiveness of JointDet. (a) Remove head false
positives: red bounding boxes are the head detection results,
and yellow dotted bounding boxes are the removed false
positives. (b) Recall missing bodies: red bounding boxes are
the human detection results after NMS, and green bounding
boxes are the recalled results from suppressed detections.

utilizes spatial semantic relations between pedestrian head
and other body parts. However, how to reduce the false pos-
itives, such as hair, hands and elbows shown in Figure 1(a),
still remains an active research direction. Tracing the main
cause, the lack of adequate features and contextual informa-
tions is the main difficulty.

As for human detection, occlusion is one of the main
challenges, especially in the crowded scenes (Zhang et al.
2019b). Some efforts have been made to handle occlusion.
The repulsion loss proposed in (Wang et al. 2018) pushes
each proposal not only to approach its designated target,
but also to keep it away from the other ground truth ob-
jects and their corresponding designated proposals. The at-
tention model (Zhang, Yang, and Schiele 2018) employs an
attention network employing an attention mechanism across
channels with guidances. The Bi-box model (Zhou and Yuan
2018) proposes a network to simultaneously detect pedes-
trian and estimate occlusion by regressing two bounding
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boxes for full body and visible part estimation respectively.
These methods can alleviate the occlusion issue to some ex-
tent. However, while it comes to extremely crowded scenes
where the overlaps between humans become large, the Non-
Maximum Suppression (NMS) post-process method will re-
sult in missing a very large portion of targets, as shown in
Figure 1(b).

In this paper, we propose a novel joint head and human
detection network, namely JointDet, which detects head and
human body simultaneously and performs relational learn-
ing between them to improve the performance of both two
tasks. As shown in Figure 2, we tile a small quantity of an-
chors with only one scale and one aspect ratio in each pyra-
mid level to generate head proposals in RPN and then a sta-
tistical ratio is applied on head proposals to obtain human
body proposals, which significantly accelerates both train-
ing and inference. These two classes of proposals are sent
into two parallel R-CNN to perform second-stage detection.
Moreover, we design a head-body Relationship Discrimi-
nating Module (RDM) to predict the relationship between
heads and bodies. Since even in extremely crowded scenes,
the occlusion between heads is not very serious, we utilize
the head location to regain the suppressed body detections.
On the other hand, due to the lack of adequate features,
head detection usually has false positives on elbows, hands
and knees. The proposed post-process strategy also reduces
these head false positives via the learned relationship.

As mentioned above, both head and human body annota-
tions are necessary for the proposed method, and only the
CrowdHuman dataset (Shao et al. 2018) is publicly avail-
able to conduct experiments. To further verify the effec-
tiveness of the proposed model, we annotate head bounding
boxes of CityPersons (Zhang, Benenson, and Schiele 2017)
and Caltech-USA (Dollár et al. 2009). However, the com-
monly used 10× training annotations (Zhang et al. 2016b)
of Caltech-USA are refined automatically with relatively
poor quality, it is hard to annotate head bounding boxes
based on the original annotations. Therefore, we also re-
annotate Caltech-USA with the full-body bounding-box and
the visible-region bounding-box, which serves as a satisfied
version of Caltech-USA.

To summarize, this work has five main contributions: 1)
proposing an effective framework for joint detection of head
and human; 2) designing a RDM to perform relational learn-
ing between head and human; 3) introducing a post-process
strategy to recall suppressed human detections and reduce
head false positives simultaneously; 4) providing the re-
annotated body annotations of Caltech-USA, and the head
annotations of CityPersons and Caltech-USA; 5) achieving
state-of-the-art performance on CrowdHuman, CityPersons
and Caltech-USA.

Related Work
Generic Object Detection. Early generic object detectors
rely on the sliding window paradigm based on hand-crafted
features and classifiers to find objects of interest. In recent
years, a new generation of more effective object detectors
based on deep convolutional neural network (CNN) sig-
nificantly improve the state-of-the-art performances, which

can be roughly divided into two categories, i.e., the one-
stage approach and the two-stage approach. The one-stage
approach (Liu et al. 2016; Lin et al. 2017b) directly pre-
dicts object class label and regresses object bounding box
based on the pre-tiled anchor boxes using deep CNNs. The
main advantage of the one-stage approach is its high com-
putational efficiency. In contrast to the one-stage approach,
the two-stage approach (Ren et al. 2017; Dai et al. 2016;
Lin et al. 2017a) always achieves top accuracy on several
benchmarks, which first generates a pool of object propos-
als by a separated proposal generator, and then predicts the
class label, accurate location and size of each proposal.

Head Detection. Early head detectors are used for crowd
counting. Merad et al. (Merad, Aziz, and Thome 2010) com-
bine positive points of all previous techniques in the head
detector. Venkatesh et al. (Venkatesh, Descamps, and Carin-
cotte 2012) train a head detector using a cascade of boosted
integral features. However, their performance is severely af-
fected under high scene and scale variations because of the
usage of handcrafted features. With the arrival of deep learn-
ing, some CNN-based methods are proposed. Stewart et al.
(Stewart, Andriluka, and Ng 2016) introduce a proposal-free
head detector that is produced from CNN encoders, where
the regression is generally composed of LSTM so that the
variable length output prediction is possible. Le et al. (Le et
al. 2018) introduce a pairwise head detector based on key
parts context of the human head and shoulder, and assisted
by priority of scene geometry structure. Vu et al. (Vu, Os-
okin, and Laptev 2015) predict the scales and the positions
of the head directly from the image, then model the pair-
wise relationships among the objects. Recently introduction
of context information is attractive to improve performance.
Some methods (Chen et al. 2016) exploit depth informa-
tion for head detection with depth images. Nghiem et al.
(Nghiem, Auvinet, and Meunier 2012) conduct head detec-
tion on 3D data as first step for a fall detection system.

Human Detection. One of the key challenges in human
detection is occlusion. Several methods (Tian et al. 2015)
use part-based model to describe the pedestrian in occlu-
sion handling, which learn a series of part detectors and
design some mechanisms to fuse the part detection results
to localize partially occluded pedestrians. Besides the part-
based model, Zhou et al. (Zhou and Yuan 2017) propose to
jointly learn part detectors to exploit part correlations and re-
duce the computational cost. Wang et al. (Wang et al. 2018)
introduce a novel bounding box regression loss to detect
pedestrians in the crowd scenes. Zhang et al. (Zhang, Yang,
and Schiele 2018) propose to utilize channel-wise attention
in convnets allowing the network to learn more representa-
tive features for different occlusion patterns in one coherent
model. Zhang et al. (Zhang et al. 2018a) design an aggre-
gation loss to enforce proposals to be close and locate com-
pactly to the corresponding objects. Zhou et al. (Zhou and
Yuan 2018) design a method to detect full body and visible
part estimation simultaneously to further estimate occlusion.
Although numerous pedestrian detection methods (Zhang et
al. 2019a) are presented in literature, how to robustly de-
tect each individual human in extremely crowded scenarios
is still one of the most critical issues for human detectors.
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Figure 2: Network structure of JointDet. It consists of RPN, Head R-CNN, Body R-CNN and RDM. RPN only generates head
proposals, then a statistical head-body ratio is applied to obtain full-body proposals. After that, head and full-body proposals
are sent into two parallel R-CNN branches to obtain temporary results. These temporary results are further processed to get
final results as follows: (1) matching them using the proposed strategy to output the matched body-head pairs as Pair 1 to Pair
N; (2) extracting corresponding features of each pair for RDM to discriminate their relation (i.e., whether they belong to the
same person); (3) according to the learned relationship to reduce head false positives and recall suppressed human detections.

JointDet

Framework Overview

The overall framework is shown in Figure 2. We first uti-
lize RPN to generate head proposals, then apply a statisti-
cal head-body ratio on these head proposals to obtain full-
body proposals. The specific head-body ratio is shown in
Figure 3(a) that is statistically obtained based on all human
head-body pairs in the CrowdHuman dataset. After that, the
head and full-body proposals are sent into two parallel R-
CNN branches, respectively. Since the body proposals are
obtained coarsely according to the head proposals, we adopt
the cascade training strategy proposed by (Cai and Vas-
concelos 2018) for the full-body R-CNN branch to regress
more accurate results, where the full-body branch is passed
through twice in the training and inference phases. The ad-
vantages of this framework can be summarized as follows:

• A more efficient way to get head and human proposals.
The aspect ratio of head is almost fixed and we just need
to tile anchors with one aspect ratio to obtain head pro-
posals. In contrast, the human body has a wide range of
aspect ratios because of its deformability and various pos-
tures. Tiling anchors to generate human proposals needs
to preset a couple of aspect ratios that greatly reduce effi-
ciency. To solve this issue, we use a statistical head-body
ratio on head proposals to directly obtain human propos-
als for free.

• Decoupling the classification task. The two parallel R-
CNNs only concentrate on detection of one class of ob-
ject, i.e., head or human body. This design decouples
two tasks into separate branches, which is beneficial to
make targeted optimization respectively, e.g., using cas-
cade strategy to improve the accuracy of calculated hu-
man proposals.

(a) Statistical head-body ratio (b) Examples

Figure 3: (a) The statistical head-body ratio to calculate the
human body proposal based on the head proposal. (b) Red:
head proposals; Green: inferred body proposals from head
proposals via the statistical head-body ratio.

Relationship Discriminating Module

RDM is designed to learn to discriminate the relationships
between the head-body pairs with larger Intersection over
Head-box (IoH). The detail expression of IoH is as below:

IoH =
Area of Overlap

Area of Head-box
. (1)

The structure of RDM is three stacked fully-connected
layers, whose channel setting is same as the classification
branch in R-CNN. The process of head-body pair matching
and relationship prediction is described in Line 1 to 9 of Al-
gorithm 1. During training, when the matched pair belongs
to one person, its ground-truth is 1, otherwise 0. We use the
binary cross-entropy loss to optimize RDM. In addition, we
set the batch size to be 512, where the proportion of positive
and negative examples is set as 1:3.
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In the inference phase, we gather the mismatched head de-
tections that have low relationship score or are not matched
through IoH, which is demonstrated in Line 10 to 12 of Al-
gorithm 1. There are two situations with the mismatched
head detection: 1) The human body corresponding to this
head is suppressed by NMS; 2) This head detection is a
false positive without a corresponding body. Therefore, we
use these mismatched heads and the body detections before
NMS to perform matching and relationship discrimination
again, as described in Line 14 to 22 of Algorithm 1. If one
mismatched head gets strong relationship response in the
second time, then we recall the corresponding body detec-
tion (described in Line 23 to 25). In contrast, if one mis-
matched head fails again, then we treat it as a false positive,
removing it from the results (described in Line 26 to 28).

Implementation Detail

Anchor Design. At each location of the detection layer, we
only associate one specific scale of anchors (i.e., 2S, where
S represents the downsampling factor of the detection layer)
and one aspect ratio (i.e., 1.25). In total, there are A = 1
anchors per level and they cover the scale range 8 − 128
pixels across different levels with respect to the input image.

Sample Matching. During training, anchors and propos-
als need to be divided into positive and negative samples.
Specifically, samples are assigned to ground-truth boxes us-
ing an IoU threshold of θp, and to background if their IoU
is in [0, θn). If an anchor is unassigned, which may hap-
pen with overlap in [θn, θp), it is ignored during the training
phase. We set θn = 0.3 and θp = 0.7 for the RPN stage, and
θn = 0.5 and θp = 0.5 for the R-CNN stage.

Loss Function. The whole network is optimized by L =
LRPN + λ1LHead + λ2LBody + λ3LRDM, where LRPN, LHead

represent the classification and regression loss of RPN and
the head R-CNN branch, which are the same as those pro-
posed in (Ren et al. 2017). LBody contains two-stage clas-
sification and regression loss as Cascade R-CNN (Cai and
Vasconcelos 2018). LRDM is the log softmax loss over two
classes, which indicates whether the head-body pair belong
to one person. The loss weight coefficients λ1, λ2 and λ3 are
used to balance different loss terms and we empirically set
them as 1 in all the experiments.

Initialization. The backbone network is initialized by the
ImageNet (Russakovsky et al. 2015) pretrained ResNet-50.
The parameters of newly added layers in RPN are initial-
ized by the normal distribution method, and the parameters
in R-CNN are initialized by the MSRA normal distribution
method (He et al. 2015).

Optimization. We fine-tune the model using SGD with
0.9 momentum, 0.0001 weight decay. The proposed Joint-
Det is trained on 16 GTX 1080Ti GPUs with a mini-batch 2
per GPU for CrowdHuman and Caltech-USA, and the mini-
batch size for Citypersons is 1 per GPU. Each mini-batch
involves 512 RoIs per image. Multi-scale training and test-
ing are not applied to ensure fair comparisons with previous
methods. We implement JointDet using the PyTorch library.
The specific settings of training process for different datasets
are described in next sections.

Algorithm 1 Relationship Discriminating Module

Require: H, B1, B2, F , λ, β1, β2

H is a set of head detections after NMS
B1, B2 are a set of body detections before and after
NMS
F is the feature map of the P2 level in the FPN structure
λ is the IoH threshold while matching
β1, β2 are the low and high relationship score thresholds

Ensure: Dh, Db

Dh, Db are final head and body detections after post
process
/*- - - - - - -Find Mismatched Head for Post-process- - -
- - -*/

1: Hm ← ∅ (Hm is the set of mismatched head detec-
tions)

2: for hi ∈ H do
3: Score ← ∅

4: for bj ∈ B2 do
5: if IoH(hi, bj) > λ then
6: Feat ←

Concat(RoIPool(F , hi),RoIPool(F , bj))
7: Score ← Score ∪ {RDM(Feat)}
8: end if
9: end for

10: if max(Score) < β1 or Score = ∅ then
11: Hm ← Hm ∪ hi

12: end if
13: end for

/*- - - - - - - - - - - - -Post-process Method- - - - - - - - - -
- - -*/

14: Dh ← H, Db ← B2

15: for hi ∈ Hm do
16: Score ← ∅

17: for bj ∈ B1 do
18: if IoH(hi, bj) > λ then
19: Feat ←

Concat(RoIPool(F , hi),RoIPool(F , bj))
20: Score ← Score ∪ {RDM(Feat)}
21: end if
22: end for

/*- - - - - - -Recall Suppressed Body Detections- - - - -
-*/

23: if max(Score) > β2 then
24: Db ← Db∪ {b is the body detection with

max(Score)}
25: end if

/*- - - - - - - -Remove Head False Positives- - - - - - - -
-*/

26: if max(Score) < β1 or Score = ∅ then
27: Dh ← Dh \ {hi}
28: end if
29: end for
30: return Dh, Db

Evaluation Metric. Following (Dollár et al. 2009), the log-
average miss rate over 9 points ranging from 10−2 to 100

FPPI (i.e., MR−2) is used to evaluate the performance of the
detectors. We report the detection performance for instances
in head and full-body (i.e., human) categories.
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Table 1: MR−2 performance of different methods on Crowd-
Human. Lower MR−2 mean better performance.

Source Method Head Human

CrowdHuman
FPN-Head 52.1 -

FPN-Human - 50.4

Ours

FPN-Head 48.9 -
FPN-Human - 49.7

FPN-Human-Cascade - 49.2
JointDet w/o RDM 48.7 47.0

JointDet 48.3 46.5

Experiments

In this section, we perform extensive experiments on the
CrowdHuman, CityPersons and Caltech-USA datasets to
verify the effectiveness of the proposed framework.

CrowdHuman Dataset

CrowdHuman is a benchmark dataset to better evaluate de-
tectors in crowd scenarios. It is large, rich-annotated, high-
diversity and contains 15, 000, 4, 370 and 5, 000 images for
training, validation and testing subsets, respectively. There
are totally 470k human instances from the training and val-
idation subsets, and 22.6 persons per image, with various
kinds of occlusions in the dataset. Each human instance is
annotated with a head bounding-box, human visible-region
bounding-box and human full-body bounding-box. The im-
ages and annotations of the training and validation subsets
are made freely available to academic for scientific use,
while only the images of the testing subset are released and
the corresponding annotations are held-out. Since the online
evaluation server is not available until now, all our models
are trained on the CrowdHuman training subset and tested
on the validation subset. During the training phase, the input
images are resized so that their short edges are at 800 pix-
els while the long edges should be no more than 1333 pixels
at the same time. We train JointDet with the initial learning
rate 0.04 for the first 16 epochs, and decay it by 10 and 100
times for another 6 and 3 epochs.

Baseline. Before delving into our proposed framework of
joint head and human detection, we first build two strong
baselines based on FPN (Lin et al. 2017a) for these two
tasks, respectively. We set anchor scale to 2S in the head
baseline and 8S in the full body baseline, where S repre-
sents the stride size of each pyramid level. After considering
the human body shape, we modify the height vs. width ratios
of anchors as {0.5:1, 1:1, 2:1} for all the experiments related
to human detection. While for head detection, the ratios are
set to 1.25:1. As shown in Table 1, the baseline of head de-
tection, denoted as FPN-Head, achieves 48.9% MR−2 that
is 3.2% better than the head detection baseline in Crowd-
Human (i.e., 52.1%). And the baseline of human detection,
denoted as FPN-Human, obtains 49.7% MR−2 that is 0.7%
better than the full-body detection baseline in CrowdHuman
(i.e., 50.4%). Thus, the detectors trained for the head and
human respectively are two strong baselines to verify the ef-
fectiveness of our proposed framework.

Ablation Study on Joint Detection. As illustrated in Table
1, after jointing head and human detection in a single detec-
tion framework, we achieve 48.7% MR−2 for head detec-
tion and 47.0% MR−2 for human detection. Comparing to
the baselines that each task is executed with a separate net-
work, the proposed joint framework not only merges these
two tasks into a single network so as to greatly improve
the detection efficiency, but also has better MR−2 perfor-
mance, i.e., from 48.9% to 48.7% for head detection and
from 49.7% to 47.0% for human detection. The 2.7% im-
provement on human detection demonstrates the effective-
ness of proposed proposal generation method. Notably, we
use the cascade training strategy on the full-body R-CNN
branch in our joint framework. To have a fair comparison,
we train another human detection baseline, denoted as FPN-
Human-Cascade, where the R-CNN branch is also passed
through twice in the training and inference phases. FPN-
Human-Cascade obtains 49.2% MR−2, which still has a
large gap with the joint result of human detection. These re-
sults demonstrate the effectiveness of the joint framework of
head and human detection.

Ablation Study on RDM. The final model of our proposed
method is formed by adding the RDM on the joint frame-
work of head and human detection. All the training and test-
ing settings are consistent with previous experiments. The
three hyperparameter is set as below: matching IoH thresh-
old λ is set to 0.7, relationship score thresholds β1 and β2

are set to 0.1 and 0.9, respectively. As demonstrated in Ta-
ble 1, after utilizing the head location information to recall
the suppressed human bounding boxes, the MR−2 of human
detection is improved from 47.0% to 46.5%. The advance-
ment indicates that the proposed RDM does recall some hu-
man detections suppressed by NMS as shown in Figure 4(a),
making our JointDet robust to heavy occlusion in human de-
tection. On the other hand, using the learned head-body rela-
tionship can also reduce some head false positives as shown
in Figure 4(b), boosting the MR−2 of head detection from
48.7% to 48.3% and allowing our head detector to perform
well in complex scenarios.

CityPersons Dataset

CityPersons serves as a widely used benchmark dataset for
pedestrian detection, which is built upon the semantic seg-
mentation dataset Cityscapes. It is recorded across 18 dif-
ferent cities in Germany with 3 different seasons and var-
ious weather conditions. The dataset includes 5, 000 im-
ages (2, 975 for training, 500 for validation, and 1, 525 for
testing) with ∼35, 000 manually annotated persons plus ∼
13, 000 ignore region annotations. Both the bounding boxes
and visible parts of pedestrians are provided and there are
approximately 7 pedestrians in average per image. For each
annotated pedestrian instance, we additionally label the
corresponding head bounding box. The newly annotated
head bounding box is within the scope of the original body
bounding box. If the head is partly occluded, the annota-
tors are asked to complete the invisible part. Some illus-
trations of additional head annotations are shown in Figure
5. The proposed JointDet detector is trained on the train-
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(a) Human

(b) Head

Figure 4: Qualitative results of JointDet on CrowdHuman. Red bounding boxes represent original results. Green bounding
boxes represent recalled human results via RDM. Yellow bounding boxes represent removed head results via RDM.

Figure 5: Illustrations of additional head annotations of
CityPersons dataset. Green: original pedestrian annotations.
Red: additional head annotations.

ing set and evaluated on the validation set. Following the
experiment settings in previous works (Wang et al. 2018;
Zhang et al. 2018a), we enlarge input images by 1.3 times.
The initial learning rate is set to 0.02 for the first 26 epochs,
and is decreased to 0.002 and 0.0002 for another 9 and 5
epochs, respectively.

We compare JointDet with TLL(MRF) (Song et al. 2018),
Adapted FasterRCNN (Zhang, Benenson, and Schiele
2017), ALFNet (Liu et al. 2018), Repulsion Loss (Wang
et al. 2018), PODE+RPN (Zhou and Yuan 2018), OR-CNN
(Zhang et al. 2018a) on the CityPersons validation subset in
Table 2. Similar with previous works, we evaluate the final
model on the Reasonable subset of the CityPersons dataset.
The proposed method surpasses all published methods and
reduces the MR−2 of state-of-the-art results from 11.0% to
10.23% with 0.77% improvement compared with the second
best method (Zhang et al. 2018a), demonstrating the superi-
ority of the proposed method in pedestrian detection.

Table 2: MR−2 performance on the CityPersons validation
set. The scale indicates the enlarge number of original im-
ages in training and testing.

Method Backbone Scale Reasonable

TLL(MRF) ResNet-50 - 14.40
Adapted FasterRCNN VGG-16 ×1.3 12.97

ALFNet VGG-16 ×1 12.00
Repulsion Loss ResNet-50 ×1.3 11.60

PODE+RPN VGG-16 - 11.24
OR-CNN VGG-16 ×1.3 11.00

JointDet (Ours) ResNet-50 ×1.3 10.23

Caltech-USA Dataset

Caltech-USA is one of the most popular and challenging
datasets for pedestrian detection, which comes from ap-
proximately 10 hours 30Hz VGA video recorded by a car
traversing the streets in the Los Angeles. The training and
testing sets contain 42, 782 and 4, 024 frames, respectively.
The commonly used 10× training annotations (Zhang et al.
2016b) of Caltech-USA are refined automatically with only
16, 376 poor-quality instances in the training set. We re-
annotate the dataset manually, with a total of 32, 273 in-
stances in the training set and 1, 123 instances in the test-
ing set. The labeling rule and method are consistent with
the original ones (Dollár et al. 2009). With the help of new
pedestrian annotations, we also label their correspond-
ing head bounding boxes. Figure 6 shows the compari-
son of our new annotations and the annotations provided by
(Zhang, Benenson, and Schiele 2015). It is obvious that the
quality of our new annotations is higher. The detailed anal-
ysis of the impact of our new annotations is described be-
low and we use the new annotations to analyze the proposed
method in next section. Following the experiment settings
in (Wang et al. 2018; Zhang et al. 2018a), we train the pro-
posed method using 2× scale of the image size. The initial
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Refined Annotations New Annotations

Figure 6: Left: refined annotations provided by Zhang et al.
Right: our new pedestrian body and head annotations. For
simplicity, we do not draw the annotations of visible regions.

learning rate is 0.04 for the first 4 epochs, and is reduced by
10 and 100 times for another 2 and 1 epochs.

Table 3: Effects of different training annotations on differ-
ent validation annotations of the Caltech-USA dataset. We
use the FPN baseline detector for clarification. ‘Refined An-
notation’ indicates the refined annotations by (Zhang et al.
2016b). ‘New Annotation’ indicates our new annotations.

Training

MR−2 Testing
Refined Annotation New Annotation

Refined annotation 4.31 16.52
New annotation 3.26 14.26

Here we first analyze the effect of our sanitised version of
the annotations. As shown in Table 3, using the refined an-
notations provided by Zhang et al. (Zhang et al. 2016b) for
training, the FPN detector achieves 4.31% MR−2 on the re-
fined testing set. It is reduced to 3.26% with our re-annotated
annotations as training set, indicating our new annotations
possesses higher quality. When evaluating on our new test-
ing annotations, performances of both detectors drop sig-
nificantly, i.e., from 4.31% to 16.52% and from 3.26% to
14.26%, which also verify the higher quality of our testing
annotations. By statistics, our new annotations have a total
of 32, 273 and 1, 123 ground truths in training and testing
sets respectively, while the refined version in (Zhang et al.
2016b) only has 16, 376 and 912 instances. Since the bench-
mark of the original annotations are reaching saturation, our
new annotations can serve as a new evaluation metric.

Figure 7 shows the comparison of the JointDet method
with other state-of-the-art methods (Cai et al. 2016; Cai,
Saberian, and Vasconcelos 2015; Costea and Nedevschi
2016; Du et al. 2017; Li et al. 2018; Mao et al. 2017; Ohn-
Bar and Trivedi 2016; Tian et al. 2015; Wang et al. 2018;
Zhang et al. 2016a; Zhang, Benenson, and Schiele 2015) on
the Caltech-USA refined testing set. All the reported results
are evaluated on the widely-used Reasonable subset, which
only contains pedestrians with at least 50 pixels tall and oc-
clusion ratio less than 35%. The proposed method outper-
forms all other methods by producing 2.95% MR−2.

Discussion

Head and Human Annotation. The proposed method re-

Figure 7: Comparisons with the state-of-the-art methods on
the Caltech-USA dataset. The scores in the legend are the
MR−2 scores of the corresponding methods.

quires both head and human annotations, which is feasible
in practical applications and academic research with the con-
sideration of the following two aspects: 1) If the human or
the heads are annotated, another kind of annotations is easy
to obtain via the automatic labelling method (e.g., using a
trained head or human detector) or the semi-automatic la-
belling method (e.g., manual correcting after pre-labelling);
2) We release all new annotations of head and human to fa-
cilitate further studies of head and human detection.

Occluded Head. The proposed method generates the hu-
man proposals based on the corresponding head proposals.
The results of FPN-Human-Cascade (49.2%) and JointDet
w/o RDM (47.0%) in Table 1 have verify that this way of
generating human proposals is better than using the RPN
proposals. If the head is occluded, it maybe cause some hu-
man miss detection but has a slight impact due to: 1) Hu-
man with only head occluded is small number case, while
occluded body is more common; 2) With help of human
body context, RPN can generate proposals for some oc-
cluded heads. Thus, the occluded head has ignorable impact
and our state-of-the-art human detection performance also
confirms the above statement.

Conclusion

In this paper, we have presented a novel joint detection net-
work to detect head and human simultaneously, which uti-
lizes the learned relationship between heads and human bod-
ies to recall the suppressed human detections and reduce
head false positives. To sufficiently verify the effectiveness
of these proposed components, we have made some efforts
in the dataset: 1) providing a better version of Caltech-USA
annotations with full body and visible region; 2) annotating
the head bounding boxes of CityPersons and Caltech-USA.
Consequently, the proposed JointDet detector achieves state-
of-the-art performance on CrowdHuman, CityPersons and
Caltech-USA. All new annotations, source codes and trained
models are public to facilitate further studies.
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