
Relational link-based ranking

Floris Geerts ∗ Heikki Mannila Evimaria Terzi

Laboratory for Foundations Basic Research Unit
of Computer Science Helsinki Institute for Information Technology
School of Informatics Department of Computer Science

University of Edinburgh, UK University of Helsinki, Finland
fgeerts@inf.ed.ac.uk {mannila,terzi}@cs.helsinki.fi

Abstract

Link analysis methods show that the intercon-
nections between web pages have lots of valu-
able information. The link analysis methods
are, however, inherently oriented towards an-
alyzing binary relations.

We consider the question of generalizing
link analysis methods for analyzing relational
databases. To this aim, we provide a general-
ized ranking framework and address its prac-
tical implications.

More specifically, we associate with each rela-
tional database and set of queries a unique
weighted directed graph, which we call the
database graph. We explore the properties of
database graphs. In analogy to link analysis
algorithms, which use the Web graph to rank
web pages, we use the database graph to rank
partial tuples. In this way we can, e.g., ex-
tend the PageRank link analysis algorithm to
relational databases and give this extension a
random querier interpretation.

Similarly, we extend the HITS link analysis al-
gorithm to relational databases. We conclude
with some preliminary experimental results.

∗Work done while at the Basic Research Unit, Helsinki In-
stitute for Information Technology, Department of Computer
Science, University of Helsinki

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

1 Introduction

Methods for ranking elements have been widely dis-
cussed in a variety of settings. In the context of
database systems the motivation for ranking has in-
creased along with the size of databases. In huge
databases the users that pose a query would like to see
the top-k partial tuples that satisfy their query rather
than thousands of tuples ordered in a completely unin-
formative way. Additionally, the necessity of ranking
the query results goes far beyond the functionality of
the existing ORDER BY operator, which sorts the results
only according to the values in the specified attributes.
A variety of algorithms that efficiently handle the top-
k selection [15, 19] and top-k join queries [20, 24] have
been proposed.

Ranking is a notion that has appeared also in the
context of Web search applications. The natural need
in this context is to rank the web pages returned as
a result to a user query. In this case the pages are
ranked such that the more relevant the page is to the
query, the higher it is ranked. Furthermore, among
the web pages that are equally relevant those that are
more “important” should precede the less “important”
ones. Many ranking algorithms for web pages have
been developed ([11, 6, 22, 9, 25]) with the most pop-
ular among them being the HITS algorithm proposed
by Kleinberg [22] and the PageRank algorithm pro-
posed by Brin et.al [11]. The latter has led to the
popular Google search engine.

Web pages are categorical data, and thus the prob-
lem of ranking them as such is not trivial since they
do not have an intrinsic numerical value on which a
ranking could be based on. However, all the ranking
algorithms developed for them exploit the hyperlink
information, i.e. the structure of the Web graph, in
order to assign to each web page a rank value and ob-
tain a ranking based on these values. In contrast to
web pages, the assignment of rank values to categori-
cal data in relational databases has not yet been much

552

investigated. In this paper, we do exactly this. More
specifically, we address the problem of automated as-
signment of rank values to categorical partial tuples.
Based on this assignment we produce useful rankings
of partial tuples. We will construct database graphs
using queries and try to exploit their structure to ob-
tain rank values.

These rank values can be used in a variety of
database applications: First, one can get ranked an-
swers to queries. Second, they can serve as input to
the existing top-k algorithms mentioned above. Un-
til now, the top-k algorithms are mainly applied to
databases with non-categorical attributes and the top-
k algorithms use these values as input. The rank val-
ues we obtain for categorical data can be used in a
similar way. Finally, the obtained rank values can be
helpful in providing ranked keyword search results in
relational databases. How exactly the obtained values
are going to be used is beyond the scope of this paper.
Here we only consider how such rank values can be
obtained.

More specifically, we present a general framework
for obtaining such rank values for partial tuples of re-
lational databases. The goal is to define those rank
scores and find the algorithms to calculate them. For
this we exploit information about the interconnections
of the partial tuples in the database, as these can be
discovered using relational algebra queries.

To obtain rankings for partial tuples we mimic the
principles of link analysis algorithms. The well-studied
algorithms ([11, 6, 22, 9, 25]) for the Web show that
the structure of the interconnections of web pages has
lots of valuable information. For example, Kleinberg’s
HITS algorithm [22] suggests that each page should
have a separate “authority” rating (based on the links
going to the page) and “hub” rating (based on the
links going from the page). The intuition behind the
algorithm is that important hubs have links to impor-
tant authorities and important authorities are linked
by important hubs. Brin’s PageRank algorithm [11],
on the other hand, calculates globally the PageRank
of a web page by considering a random walk on the
Web graph and computing its stationary distribution.
The PageRank algorithm can also be seen as a model
of a user’s behavior where a hypothetical web surfer
clicks on hyperlinks at random with no regard towards
content. More specifically, when the random surfer is
on a web page, the probability that he clicks on one
hyperlink of the page depends solely on the number
of outgoing links the latter has. However, sometimes
the surfer gets bored and jumps to a random web page
on the Web. The PageRank of a web page is the ex-
pected number of times the random surfer visits that
page if he would click infinitely many times. Impor-
tant web pages are ones which are visited very often
by the random surfer.

We now rephrase the random surfer in the relational

a

a

a

a

a

a

π2σ1=bW π2σ1=aW

a

a

a

b

b

b

b

c

b

c

b

cb

b

b b

b

b

b b b

π1W ∪ π2W

d d d

Figure 1: Random walk of random surfer using only 2
kinds of queries.

database setting. Consider the fragment of the Web
shown as the binary table W in Figure 1. In the same
figure we have shown the surf trail b → a → b → d of
the random surfer. In order to walk along the partial
tuples (pages) in W , the random surfer needs only two
kinds of queries: The first is simply the query which
returns all pages present in W . This can be expressed
by the expression π1W ∪ π2W . The second kind are
queries expressed by π2σ1=vW , in which v is a page
present in W . In other words, these queries ask for
all pages reachable from a certain page v. After the
random surfer has evaluated one of these queries, he
selects a random tuple out of the query result and
repeats this procedure again. An important restriction
is that while π1W ∪π2W may be asked by the random
surfer independent of the current page, π2σ1=vW may
only be asked when the surfer is at page v. In Figure 1
we have shown which queries are asked in order to
obtain the shown surf trail.

We use this observation to extend the random
surfer model to the random querier, which generalizes
random-walk based link analysis algorithms by provid-
ing the random surfer with a different set of queries at
his disposal. Additionally, the model facilitates exten-
sions that allow for using this model for ranking partial
tuples.

Seeing the Web as a database allows us to see a hy-
perlink between two web pages to exist due to queries
that connect the two web pages. E.g., in Figure 1 the
link between page b and page a can be seen to exists
due to the fact that a is in the query result π2σ1=bW .
This idea generalizes to arbitrary databases D and any
finite set of queries {q1, . . . , qn}: There exists a link
between two partial tuples ~s and ~t of a database D if
there exists an i = 1, . . . , n such that ~t is in the query
result of qi when evaluated on D and where the selec-
tion parameters of qi are instantiated with constants
in ~s.

We augment these links with weights relative to
some preference function on the queries and frequency
information of tuples in the query results. In this way
we obtain a weighted directed graph which we call the
database graph. The database graph is a natural gen-
eralization of the graphs used in link analysis.

The database graph enables any graph-based link

553

analysis method to be used for ranking partial tuples.
For example, both the PageRank and HITS algorithms
can be generalized to operate on the database graph;
the generalizations provide tuple ranking algorithms
for relational databases.

The contributions of this paper are the following:

• We define the database graph for a given
database, set of queries and preference function
and explore its theoretical properties.

• We study random walks on the database graph
and show that they can be interpreted as the
walks of a random querier. We use the stationary
distribution of the random walks to assign rank
values to partial tuples.

• We show that the random querier generalizes
many well-known link analysis algorithms.

• As a second application of the database graph,
we extend the HITS algorithm to relational
databases and use it to assign rank values as well.

• We experimentally evaluate the use of the ob-
tained rank values to rank query results.

Related work

The problem of assigning rank values to partial tuples
in the relational framework is related to the problem
of ranking web pages. The latter has been extensively
investigated and several link analysis algorithms have
been developed for this [11, 6, 22, 9, 25]. Even some
unifying frameworks for link analysis algorithms ex-
ist [12].

Interesting work on ranking elements in relational
databases based on measures from Information Re-
trieval (IR) is described in [3], however the notion of
“link” provided by the queries has not been considered
there.

The representation of a database as a graph and
link-based ranking appears in the context of keyword
search in [5, 18, 2]. The nodes in the graph are the
database tuples and the directed relationships between
the nodes are induced by foreign key or other con-
straints. The ranking values are related to the inverse
of the path distance between nodes.

Graph representations of databases and random
walks on them are considered also in the context of
similarity of categorical attributes. Both [26] and [21]
construct a graph where the nodes are the constants in
the database and two nodes are linked when they ap-
pear in the same tuple. They perform different random
walks on them in order to obtain a similarity measure
for the values. A related iterative approach is the idea
of hyperedges connecting tuples based on values [17].
The main difference that we use partial tuples instead
of tuples and that we use queries to connect them.

A random walk approach to ranking on (semi-
)structured data is proposed in [4]. Although the ap-
proach to ranking is very similar to ours, the graph
construction is heavily dependent on the presence of
(semi-)structured data.

Organization

The rest of this paper is organized as follows. In
Section 2 we define databases and query languages.
In Section 3, we formally define the database graph
and prove some of its properties. We then define the
random walk on the database graph and the random
querier in Section 4. In Section 5 we extend PageRank
and HITS algorithm to relational databases using the
database graph. Section 6 describes some experimen-
tal results. We conclude the paper in Section 7.

2 Preliminaries

We refer to [1, 16] for a more detailed description of ba-
sic database notions. For simplicity of exposition, we
assume that the database schema S consists of a single
relation name R of arity n. However, all definitions
and results generalize directly to arbitrary database
schemas.

Let D be a database instance over S. The active
domain of D, denoted by adom(D), consists of all con-
stants in D. For a tuple ~t ∈ D of size n, we denote
the value of its i-th attribute by ti ∈ adom(D). The
active domain of a tuple ~t ∈ D, denoted by adom(~t),
is the set {t1, . . . , tn}.

The standard query language is the relational al-
gebra, or equivalently the relational calculus, over the
database schema S. We denote this query language
by RA. Relations and queries are interpreted using
the bag semantics, i.e., duplicate tuples are allowed.
The reason for this is that we need the notion of fre-
quency which disappears if we do not allow for dupli-
cates. We will not distinguish between queries and the
RA expressions expressing them. We denote the query
result of q on D by q(D).

Let q ∈ RA be an n-ary query and denote the set of
attributes in the query result by I. We will partition
I in source attributes ~x and the target attributes ~y.
We always assume that this partition is specified for
each query q we encounter. We make this explicit by
writing q(~y|~x) instead of simply q.

Let ~s ∈ adom(D)k where k = |~x| and let ` = |~y|.
Then we define the RA expression

q(~y|~s) ≡ πy1,...,y`
σx1=s1,...,xk=sk

q(~y|~x).

We will denote the query result of q(~y|~s) on D by
q(D, ~s).

We extend the RA with the duplicate elimination
operator δ for transforming bags into sets if necessary.

Given a tuple ~s and a query q ∈ RA the support of
~s in q(D), denoted by supp(~s, q(D)), is the number of

554

times ~s appears in q(D). The frequency of ~s in q(D)

is defined as freq(~s, q(D)) = supp(~s,q(D))
|q(D)| , where |q(D)|

denotes the size of q(D).

3 The database graph

As already mentioned in the Introduction, one can con-
sider the web as a database D over a binary relation
W . Then following a hyperlink from a page v can
be seen as first querying the database using the query
q(y|x) ≡ W (x, y), and then selecting a page out of
q(D, v). Two web pages v and w are now linked by
the query q iff w ∈ q(D, v). We generalize this idea to
arbitrary databases and queries.

Definition 1 (Link). For a given database D and
query language L ⊆ RA, a tuple ~s ∈ adom(D)k is
L-linked to a tuple ~t ∈ adom(D)` iff there exists a
query q(~y|~x) ∈ L such that |~x| = k, |~y| = `, and
~t ∈ q(D, ~s).

From now on we assume that L consists of a finite
number of queries.

Let M = 〈D,L, f〉 where D is a database, L ⊆
RA, and f is some preference function f : L → Q+.
Here, Q+ denotes the set of strictly positive rational
numbers.

We now define the database graph. The definition
is rather technical but the intuition behind it is very
natural. Indeed, the vertices of the database graph
correspond to the active domain of tuples in the an-
swers to queries in L. The reason why we work with
the active domains instead of the tuples themselves is
that a constant appearing in some attribute can pos-
sibly be used in other attributes as well. So instead
of storing a constant for each possible attribute sepa-
rately, we store it only once. This slightly complicates
the formal definition (see below) of database graph
since many different tuples can correspond to the same
vertex. The edge relation is based on Definition 1. Fi-
nally, we will assign weights to the edges corresponding
to the preferences of the queries establishing this edge
(or link) and the support of the tuples consistent with
the target vertex in the query results. More formally,

Definition 2 (Database graph). Given M =
〈D,L, f〉 the corresponding database graph is the
weighted directed graph GM = (VM , EM , λM) where,

• The set of vertices VM is constructed as follows:
For each query q(~y|~x) ∈ L we instantiate the
parameters ~x with tuples ~s ∈ adom(D)k, where
k = |~x|. For each ~t ∈ q(D, ~s), we add the vertex
v = adom(~t) to VM , if not already included. Note
that v is a set of constants. Thus, VM is

{

adom(~t) | q(~y | ~x) ∈ L, |~x| = k

~s ∈ adom(D)k,~t ∈ q(D, ~s)}.

For a vertex v ∈ VM , we denote by vk the set of
all k-tuples formed from constants in v.

• The set of edges EM is equal to all ordered pairs
of vertices (v, w) such that there exists a tuple
~s ∈ vk which is L-linked to a tuple ~t ∈ adom(D)`

such that w = adom(~t); and

• The weight function λM : EM → Q+ is defined as
λM (v, w) =

∑

q(~y|~x)∈L

f(q)(
∑

~s∈vk,k=|~x|
~t∈w`,`=|~y|

freq(~t, q(D, ~s))).

We illustrate the concept of database graph by the
following examples.

Example 1. Let D be the database given by the table
in Figure 2. The language L consists of the queries
q1(y|x) ≡ π1,2R(x, y, z) and q2(y, z|x) ≡ R(x, y, z).
Then for any constant a appearing in the first at-
tribute q1(D, a) equals {b | (a, b) ∈ q1(D)}. Sim-
ilarly, for any constant a, q2(D, a) consists of the
pairs {(b, c) | (a, b, c) ∈ q2(D)}. This shows that q1
will link the first attribute to the second one, while
q2 links the first attribute to the second and third
one, as can be seen in Figure 2. We define the pref-
erence function as f(q1) = f(q2) = 1. The com-
plete database graph is shown in Figure 2. E.g., the
weight on the edge from {v2} to {t2, v3} is equal to
f(q2)freq((t2, v3), q2(D, v2)) = 1.

When we disregard the weights, another example is
the Gaifman graph of finite model theory [13].

Example 2. Let D be a database over an n-ary
relation R. Consider the language L consisting of
qi,j(xj |xi) ≡ πi,jR(x1, . . . , xn) and f(qi,j) = 1 for all
i, j = 1, . . . , n. The database graph has as vertices
the constants in adom(D) and there is an edge be-
tween two constants iff they appear in the same tuple
in D.

The database graph is a well-defined object. Indeed,
we call 〈D,L, f〉 and 〈D′,L, f〉 isomorphic, denoted
by 〈D,L, f〉 ∼= 〈D′,L, f〉, if there exists a bijection b :
adom(D)→ adom(D′) such that for all q(~y|~x) ∈ L and
~s ∈ adom(D)k for k = |~x|, we have for any ~t ∈ q(D, ~s)
that

freq(~t, q(D, ~s)) = freq(b(~t), q(D′, b(~s))),

where b is extended to tuples ~x as b(~x) =
(b(x1), . . . , b(xk)).

Theorem 1. If M = 〈D,L, f〉 and N = 〈D′,L, f〉
such that M ∼= N , then GM is isomorphic to GN .

555

D =

v1 v2 t1
v1 v3 t1
v1 v4 t1
v2 v3 t2
v4 v1 t2
v4 v3 t2

t2, v1 t2, v3 t1, v4 t1, v3 t1, v2

v4 v3 v2 v1

1/2 1/2

1/2 1 1/3

1/3 1/3 1/3
1

1/2

1/3
1/3

Figure 2: The database D (left) and the database graph GM of M = 〈D,L, f〉 of Example 1 (right).

Proof. We refer for the proof to the full paper.

We also have a monotonicity property with respect
to taking sub-languages.

Theorem 2. If M = 〈D,L, f〉 and N = 〈D,L′, f ′〉
such that L′ ⊆ L and f(q) = f ′(q) for any q ∈ L′,
then GN is isomorphic to a subgraph of GM .

Proof. The proof is analogous to the proof of Theo-
rem 1.

In general, the reverse of Theorem 1 is not true as
can be seen from the following example.

Example 3. Consider the databases D and D′ shown
in Figure 3. Here, different symbols denote different
constants. Let L consist of the queries

q0(x|) ≡ π1R(x, y, z, u, v),

q1(y|x) ≡ π1,2σ3=5R(x, y, z, u, v),

q2(y|x) ≡ π1,2σ3=4R(x, y, z, u, v),

q3(y|x) ≡ π1,2σ36=4R(x, y, z, u, v).

The preference function f assigns weight 1 to each
query. It is easily verified that the graphs GM and
GN are isomorphic and correspond to the graph shown
in Figure 3. However, there is no bijection mak-
ing 〈D,L, f〉 and 〈D′,L, f〉 isomorphic. Indeed, from
q1(D, s) and q1(D

′, s) the bijection b should map
b(t1) = t1, while from q2(D, s), q2(D

′, s), q3(D, s) and
q3(D

′, s) it follows that b(t1) = t2.

The database graph is defined without taking into
account any semantic relationships between attributes
or additional schema constraints. However, this can be
easily incorporated in the queries used in the language
L.

In the next section we define a random walk on the
database graph. In order for the random walk to have
nice convergence properties (see the next section), the
underlying graph should be strongly connected and
non-bipartite. This property turns out to be undecid-
able.

Theorem 3. Given a query language L, it is undecid-
able whether the database graph is strongly connected
and non-bipartite for all D and preference functions f .

Proof. First, we remark that the topology of the graph
is independent of f . So, we can disregard the prefer-
ence function in what follows. We use a reduction to
the undecidability of satisfiability of relational algebra
expressions on binary relations [8]. We construct for
each q(x1, . . . , xk) ∈ RA the language L = {q1, q2, q3}
where,

q1(u, z|x, y) ≡ if(∃x1 · · · ∃xkq(x1, . . . , xk|))

then

σ1 6=2∧1=3∧2=4R(x, y)×R(u, z)

q2(y|) ≡ if(∃x1 · · · ∃xkq(x1, . . . , xk|))

then π2R(x, y)

q3(z|) ≡ if not(∃x1 · · · ∃xkq(x1, . . . , xk|))

then π1R(z, u) ∪ π2R(u, z)

By construction, for any D and f , the database graph
associated with 〈D,L, f〉 will be connected and non-
bipartite iff q is not satisfiable.

Indeed if q is not satisfiable then L collapses to
q3. For any D and f , the database graph associated
with 〈D, q3, f〉 is the complete graph with vertex set
adom(D). This is clearly always a strongly connected
and non-bipartite graph.

For the other direction, suppose that there exists D
and f such that the graph associated with 〈D,L, f〉 is
disconnected or bipartite. We need to show that this
implies that on D the query q is satisfiable. Therefore,
we show that for any D and f , the database graph as-
sociated with 〈D, {q1, q2}, f〉 is disconnected. W.l.o.g.,
we may assume that D only consists of tuples (s, t)
such that s 6= t. Indeed, if |adom(D)| > 1 (The case
when |adom(D)| = 1 can be disregarded), applying
first the query π14R × R ensures that D always con-
tains (s, t) with s 6= t. We then select only those pairs
(s, t) from D such that s 6= t. So, the database graph
will be not connected because there is an edge in the
database graph from vertex {s, t} to vertex {t} by q2,
but no edge exists from {t} to {s, t}. This is because q1
only links {t} to vertex {t, t}, which is by construction
not in D.

4 Random walks on databases

Let G = (V,E, λ) be a weighted directed graph. We
next define the random walk on this graph, and then
show how the concept applies to database graphs.

556

D =

s t1 α α α
s t1 α γ α
s t1 α γ α
s t2 β γ α
s t2 β β α
s t2 β β α

D′ =

s t1 α α α
s t1 α α α
s t1 α γ α
s t2 β γ α
s t2 β γ α
s t2 β β α s

t1

t2

2

1

1

1

Figure 3: Two non-equivalent databases (left) giving the same database graph (right) for L of Example 3.

Definition 3 (RW on a graph, [7]). A simple
random walk on G is the following random pro-
cess: Start in a randomly selected vertex v ∈ V .
Next, jump to an adjacent vertex w with probability

λ(v, w)/
(

∑

(v,w′)∈E λ(v, w′)
)

. This is then repeated

starting from vertex w.

A random walk on G can also be seen as a
Markov chain with state space V where the tran-
sition probabilities are represented by a stochas-
tic1 |V | × |V |-matrix PG = (Pvw), where Pvw =

λ(v, w)/
(

∑

(v,w′)∈E λ(v, w′)
)

.

Theorem (Fundamental Theorem of Markov
Chains, [23]). If G is strongly connected and non-
bipartite, then the Markov chain given by PG has the
following properties. There exists a unique stationary
distribution ~p, i.e., ~p = ~pPG and

∑

i pi = 1. Moreover,
let N(v, k) be the number of times the Markov chain
visits v in k steps, then

lim
k→∞

N(v, k)

k
= pv.

The stationary distribution is a description of the
steady-state behavior of the Markov Chain. The sta-
tionary distribution will be used to obtain rank values
for partial tuples in the next section.

Definition 4 (RW on database). The random walk
on M = 〈D,L, f〉 is the simple random walk on the
database graph GM .

We now define the random querier. When in certain
vertex of the database graph, the random querier will
select a query compatible with the vertex in which he
currently is. The probability of selecting such query
depends on a given preference function. Once the
query is asked a random tuple is selected as input pa-
rameter for the query and a random tuple is selected
from the output. We make this more formal in what
follows.

Let s ⊆ adom(D). We denote by Ls all queries
q(~y|~x) ∈ L for which there exists ~s ∈ sk for k = |~x|

1A stochastic matrix is a matrix in which for each row the
elements in the row sum up to one.

such that q(D, ~s) is nonempty. For a query q(~y|~x) ∈ L
and s ⊆ adom(D), let Γ(q, s) be the set of tuples ~s ∈ sk

for k = |~x| such that q(D, ~s) is nonempty. Moreover,
let γ(q, s) = |Γ(q, s)|.

Definition 5 (Random Querier). The (L, f)-
random querier on D is the following random process:
An initial element s is selected randomly from the set
of vertices VM from the database graph. Next, a query
q is chosen from Ls with probability

γ(q, s)f(q)/(
∑

q′∈Ls

γ(q′, s)f(q′)),

and a tuple ~s ∈ Γ(q, s) is chosen uniformly at random.
Finally, a tuple ~t is selected randomly from q(D, ~s).
This is then repeated starting from adom(~t).

Theorem 4. The random walk performed by the
(L, f)-random querier on D is the same random walk
as the random walk on the database graph GM of
M = 〈D,L, f〉.

Proof. We refer for the proof to the full paper.

Example 4. A well-known example of a random
walk is the random surfer introduced by Brin [10].
The random surfer is the same as the (L, f)-random
querier on the Web database D, with L = {q1(y|x) ≡
W (x, y), q2(x|) ≡ δ(π1W (x, y) ∪ π2W (y, x))} and
f(q1) = 1 − p and f(q2) = p. Let V = adom(D).
The transition matrix P = (Pvw) of the random surfer
is given by

Pvw =

{

p
|V | +

(1−p)
outdeg(v) if (v, w) ∈ D

p
|V | otherwise.

In the database graph corresponding to 〈D,L, f〉 we
have an edge (v, w) for any pair of vertices. The weight
of an edge (v, w) is given by the sum of

f(q2)freq(w, q2(D)) = p
1

|V |
,

and f(q1)freq(w, q1(D, v)) which is equal to
{

1−p
outdeg(v) if (v, w) ∈ D

0 otherwise.

Hence, the (L, f)-random querier on D has the same
transition matrix as the one of the random surfer.

557

Also other link analysis algorithms fit perfectly in
the random queries framework.

Example 5 (sHITS, [6]). The stochastic HITS al-
gorithm has as transition matrix

Pvw =
|{x ∈ V |(x, v) ∈ E ∧ (x,w) ∈ E}|

∑

y∈V |{x ∈ V |(x, v) ∈ E ∧ (x, y) ∈ E}|
.

A simple computation shows that the (L, f)-random
querier with L = {q(z|x) ≡ π2,4σ1=3W (u, x) ×
W (y, z)} and f(q) = 1 results in the same random
walk.

We are primarily interested in the stationary dis-
tribution of the random walks. By the Fundamen-
tal Theorem of Markov Chains, this can be obtained
by computing the matrix and solving the eigenvector
problem. However, for undirected graphs we have a
closed form expression for the stationary distribution.

Theorem ([23]). Let G = (V,E) a connected, non-
bipartite, undirected and un-weighted graph and let
m = |E|. Then the stationary distribution (pv)v∈V of
the simple random walk on G is given by deg(v)/2m.

We have the following result.

Theorem 5. It is decidable for a given weighted di-
rected graph G = (V,E, λ), whether there exists an
undirected multi-graph Gu = (Vu, Eu) such that the
simple random walks on G and Gu have the same tran-
sition matrix. Moreover, the graph Gu can be com-
puted, if it exists.

Proof. (Sketch) Note that weighted directed graph G
can be transformed in a graph with integer weights by
the multiplying for each vertex V all weights of edges
starting in v with the least common multiplier (l.c.m)
of the denominators of weights of the edges starting
in v. So, we may assume that G has integer weights.
Also note that for each node v ∈ V we are allowed to
multiply the weights of all outgoing edges by the same
integer nv without affecting the random walk. We get
rid of the integer weights by replacing each edge (v, w)
with integer weight k, by k edges (v, w) of weight 1.
We abuse notation and call this edge set also E. So,
in order to decide whether G can be replaced by an
undirected multigraph we need to check whether there
exist integers (nv) with v ∈ V such that the indegree
becomes equal to the outdegree for every vertex v, or
for every v,

∑

w:(v,w)∈E

nvλ(v, w) =
∑

w:(w,v)∈E

nwλ(w, v). (1)

This can be decided using standard integer program-
ming techniques [27]. So the answer to the decision
problem is yes iff there exists a solution to equation (1).
In case there exists a solution, we define Gu = (Vu, Eu)
as Vu = V and Eu contains an undirected edge (v, w)
for every pair of edges (v, w) and (w, v) in E.

The importance of the previous result is that be-
fore starting computing the stationary distribution of
a random walk, one can decide whether the walk cor-
responds to a walk on an undirected graph. In this
case the stationary distribution can be computed much
more efficiently, using the Fundamental Theorem of
Markov Chains.

For some languages it can be shown that there exists
integers nv such that Equation (1) holds for any D.

Example 6. Consider the database D consisting of
a single relation R, and let L = {qi,j(xj |xi) ≡
πi,jR(x1, . . . , xn) | 1 ≤ i ≤ n, 1 ≤ j ≤ n}. All queries
have preference 1. Let G be the database graph. Then
there exists an undirected graph Gu satisfying the
property stated in Theorem 5. Indeed, for each s and
each t such that t ∈ qi,j(D, s) we have an edge (s, t) of
weight freq(t, qi,j(D, s)). The l.c.m. of the denomina-
tors for all outgoing edges from s is |qi,j(D, s)|, so we
get the integer weight

λ(s, t) = freq(t, qi,j(D, s))|qi,j(D, s)|

= |{~u ∈ D | ui = s ∧ uj = t}|.

We get the same integer weight for the edge (t, s), so
λ(s, t) = λ(t, s) and hence Equation (1) holds for ns =
1 for all s. This reasoning is clearly independent from
D.

5 Rank algorithms

In this section we describe two methods for obtain-
ing rank values for partial tuples. Both are based on
eigenvector computations. The first one, RelWalk,
is based on the stationary distribution of a random
walk on the database graph similarly to PageRank.
The second, RelHITS, uses the mutual reinforcement
technique of HITS. Therefore, the assignement of rank
values is based on the normalized principal eigenvec-
tor of a matrix associated to a certain subgraph of the
database graph. Both algorithms output rank values
of partial tuples which can serve either directly as a
ranking of query results, or as input for top-k selec-
tion and join algorithms.

5.1 RelWalk

The RelWalk algorithm takes as input the database
D, a language L and preference function f , and com-
putes the rank values for subsets s ⊆ adom(D). The
rank value of s corresponds to the value ps in the
stationary distribution ~p of the random walk on the
database graph GM of M = 〈D,L, f〉. The Funda-
mental Theorem of Markov Chains says that ps gives
the probability that the (L, f)-random querier on D
visits s, given that he was allowed to ask the queries in
L for infinite long time. Intuitively, frequently visited
states are regarded as more important. We compute

558

the stationary distribution ~p by solving the eigenvec-
tor problem ~pP = ~p where P is the transition matrix
of the random walk.

The database graph must be strongly connected and
non-bipartite in order for the stationary distribution
to exist. Of course, not every database graph has this
property. However, we can alter the query language
such that we always end up with a strongly connected
and non-bipartite database graph. Indeed, we simply
add queries of the form q(xi1 , . . . , xik

|) ≡ πi1,...,ik
R

where the projections are chosen such that no new
vertices are introduced in the database graph. The
database graph is now strongly connected since all
vertices are connected to each other. It is also non-
bipartite since all vertices have a self-loop. Note that
the PageRank algorithm uses the same adaptation by
adding the query q2(x|) ≡ π1R(x, y) ∪ π2R(y, x).

5.2 RelHITS

In contrast to RelWalk, RelHITS is query depen-
dent. Therefore, RelHITS algorithm takes as input
M = 〈D,L, f〉 and an imposed query q. The algo-
rithm considers the database graph GM and selects
the subgraph G′M = (V ′M , E′M , λ′M) where

E′M = {(v, w) ∈ E | w ⊆ adom(Q(q,D))},

and V ′M consists only of nodes connected by edges in
E′M . The weight function λ′M is the restriction of λM

to E′M . From the graph G′M we form the m×n matrix
Q = (Qvw) = (λ′M (v, w)), where m = |H = {v ∈ V ′M |
∃w ∈ V ′M (v, w) ∈ E′M}| and n = |A = {w ∈ V ′M | ∃v ∈
V ′M (v, w) ∈ E′M}|. The elements in the sets H and
A can be thought of as the hubs and the authorities
in the context of the HITS algorithm and therefore
RelHITS scores hj and aj are computed iteratively
as follows.

{

ht
j ←

∑

(j,i)∈E′

M
λ′M (j, i)h

(t−1)
i

at
j ←

∑

(i,j)∈E′

M
λ′M (i, j)a

(t−1)
i

(2)

The main idea is that important hubs are related to
important authorities and vice versa. Moreover, the
update schema (2) converges to the principal eigenvec-

tor ~h of QQT for the hub scores, while the authority
scores converge to the principal eigenvector ~a of QTQ
([22]). The RelHITS normalizes these eigenvectors
and outputs them.

6 Experimental evaluation

In this section we describe our implementation for con-
structing the database graph and obtaining rank val-
ues of partial tuples. We give the setup of our experi-
ments and present the corresponding results.

We implemented the database graph construction
on top of the Postgres relational database manage-
ment system. JDBC has been used for connecting to

the database system. We ran the RelWalk and the
RelHITS algorithm on the bibliography database 2.
This database D consists of a single relation R with at-
tributes paper title, author, conference, and year.
There are 7 677 tuples in the database, 3 062 unique
paper titles and 4 203 unique authors.

The main goal of the experiments is to show that for
different query languages there are different rankings
obtained. These rankings are closely related to the
queries used for the construction of the database graph
and in all the cases have a meaningful interpretation in
terms of these queries. The experiments also show the
flexibility of our general framework. Any weighted set
of queries can be used to construct a database graph
from D. This raises the question which queries should
be used and this is a very challenging problem to ex-
plore indeed. Computing the rank values of partial
tuples for a given query language is only preprocess-
ing step. Once the rank values are computed they can
be used for ranking tuples in the answer of queries im-
posed on the database. We illustrate this for simple
query languages and queries in the next sections.

6.1 Experimental setup

For the purpose of the experiments we have con-
structed the database graphs and obtained partial tu-
ple rankings using both the RelWalk and RelHITS

algorithms. For each one of the algorithms we con-
structed the corresponding database graphs using two
different query languages, namely L1 and L2 for Rel-

Walk and L′1 and L′2 for RelHITS. The languages
were selected in such a way that L1 (and L2) is ex-
pected to show similar rankings to L′1 (and L′2).

In the sequel we show the ranked outputs (along
with the rank values) we obtained when the following
two queries were imposed to the database: q(x2|) ≡
π2R and q′(x2|) ≡ π2σ6=‘H. Garcia-Molina’σ1=5R × R.
Query q is a simple projection on all the authors of
the database, while query q′ is a projection on all the
authors of the database that are co-authors of “H.
Garcia-Molina”. The selection of q and q′ is made
mainly for two reasons. First, their output consists of
partial tuples already assigned a rank value from our
ranking algorithms and thus we do not need to employ
any other additional procedure for ranking aggregates.
Second, the output of the queries demonstrates the dif-
ferent features of the proposed ranking algorithms.

Query languages for RelWalk

The first language used for obtaining RelWalk rank-
ings was L1 = {q1(xj |xi), q2(x|)} where q1(xj |xi) ≡
πi,jR(x1, x2, x3, x4) with i 6= j and preference f1 = 0.9
and q2(x|) ≡ π1R ∪ π2R ∪ π3R ∪ π4R with preference
f2 = 0.1. The intuition behind L1 is exactly what one

2The data set is available at http://liinwww.ira.uka.de/
bibliography/

559

expects the random querier to do when he has the free-
dom to do a random walk on partial tuples of size one.
Query q2 makes sure that the constructed database
graph is strongly connected and non-bipartite. There-
fore, there is an underlying stationary distribution.
Additionally, notice that for L1 we can apply the re-
sult of Example 6 and we can show that the degree
of nodes in the corresponding undirected graph, and
hence the stationary distribution, are frequency re-
lated. The database graph constructed by RelWalk

when language L1 was considered consists of a total
number of 7 294 nodes (partial tuples of size 1) and
50 434 edges (relational links taken into consideration
for obtaining the ranking) when query q1 is considered.
The query q2 makes the graph a complete graph.

The second language used for obtaining RelWalk

rankings was L2 = {q1(xj |xi), q2(x2|x6), q3(x|)} where
q1(xj |xi) ≡ πi,jR(x1, x2, x3, x4) with i 6= j and prefer-
ence f1 = 0.45, q2(x2|x6) ≡ π2,6σ1=5,26=6R × R with
preference f2 = 0.45 , and finally q3(x|) ≡ π1R∪π2R∪
π3R∪π4R with preference f3 = 0.1. For this language
the results of Example 6 do not apply and thus we
expect the obtained rankings to be not related to fre-
quency. This is due to the co-author query q2 that has
been included in the language. The database graph
constructed using language L2 has 7 294 nodes and
68 012 edges when queries q1 and q2 are only consid-
ered. Query q3 again in this case makes the graph a
complete graph.

Query languages for RelHITS

The two languages used for obtaining the RelHITS

rankings are L′1 and L′2 and are selected such that they
have similar flavor to L1 and L2 used for RelWalk.
This means that they are expected to give similar rank-
ings. Language L′1 = {q1(x2|x3), q2(x2|x4)} consists of
q1(x2|x3) ≡ π2,3R(x1, x2, x3, x4) with preference f1 =
0.5 and q2(x2|x4) ≡ π2,4R(x1, x2, x3, x4) with prefer-
ence f2 = 0.5. The intuition behind L′1 is that, as in
L1, partial tuples of size 1 and direct links between
them are again included in the database graph. Lan-
guage L′2 = {q1(x2|x3, x6)} on the other hand consists
of a single query q1(x2|x3, x6) ≡ π2,3,6σ26=6,1=5R × R
with preference equal to 1. This apparently is the co-
author query so that there is a relationship between L′2
and L2 and thus the comparison between the obtained
rankings makes sense. For the case of RelHITS the
size of the constructed database graph depends not
only on the query languages (L′1 and L′2) used for the
graph construction, but also on the imposed queries
q and q′ the results of which we want to rank. So in
the case of L′1 and query q the constructed database
graph consists of 4 232 nodes and 11 375 edges, while
for the same language but for query q′ the correspond-
ing graph of RelHITS consists of only 86 nodes and
171 edges. For language L′2 the database graph that
corresponds to q consists of 4 203 nodes and 24 620

edges while the one that corresponds to q′ has only
144 nodes and 393 edges.

6.2 Experimental results

The ranked output for q when RelWalk ranking algo-
rithm is used is shown in Tables 1 and 2 for the query
languages L1 and L2 respectively. Rankings obtained
by using L1 are related to frequency and thus are used
as a baseline case. On the other hand, the effect on the
co-author query in L2 appears in the obtained rank-
ings. For example, “Nicolas Adiba” is included in the
most highly ranked authors, though he appears to have
a single paper in the database. However, he partici-
pates in a paper with 18 other co-authors among which
there are “Michael J. Carey” (ranked first) with 47 en-
tries and “Daniela Florescu” with 16 entries. The same
holds for “Steve Kirsch” and “Michael Blow” who are
all authors of the same 18-author paper.

The results obtained for q using the rankings of the
RelHITS algorithm are shown in Tables 3 and 4
for query languages L′1 and L′2 respectively. There,
we can make the similar observations as those made
for the rankings obtained using the RelWalk algo-
rithm. For example, “Eugene J. Shekita” appears to
have much less entries in the database than authors
ranked after him. This is due to the fact that “Michael
J. Carey” (first in the ranking) appears to be among
his co-authors.

A comparison plot for our rankings is shown in Fig-
ure 4. Each pair of rankings r, r′ is compared by
taking the first k authors of each ranking (x-axis)
and forming the sets r(k), r′(k). The y axis is the

value of |r(k)∩r′(k)|
k

and is used as a similarity be-
tween the two rankings. For the results of the query
q(y|) ≡ π2R(x, y) we use the first 200 ranked authors.
In the plot the subscripts in the names of the algorithm
correspond to the language used for the ranking.

We performed similar experiments for ranking
the co-authors of “H. Garcia-Molina”. Tables 5
and 6 for RelWalk and Tables 7 and 8 for
RelHITS show highest ranked authors that are
co-authors of H. “Garcia-Molina” (query q′ ≡
π2σ6=‘H. Garcia-Molina’σ1=5R × R). As before the lan-
guages L1 (L′1) and L2 (L′2) were used for construct-
ing the corresponding graphs. Phenomena analogous
to the previous experiment appear here as well. For
example in Table 6, “Edward Chang” has only two pa-
pers in the database but still he is ranked 5th. The
same for “Svetlozar Nestorov” who is highly ranked
though he has only 3 entries in the database. This is
due to his co-author list which contains very highly
ranked authors like S. Abiteboul, J. Widom, R. Mot-
wani and J. Ullman.

In Figure 5 we show an overall comparison plot of
the rankings for elements which are answers to the
query q′ The assumptions and notation are the same
as those followed in the previous experiment. For the

560

comparisons presented in Figure 5 we only used the 70
highest ranked authors (out of the 104).

RelWalk Ranking
Language: L1 = {q1(xj |xi), q2(x|)}
with: q1(xj |xi) ≡ πi,jR(x1, x2, x3, x4) with i 6= j f1 = 0.9

q2(x|) ≡ π1R ∪ π2R ∪ π3R ∪ π4R f2 = 0.1

H. Garcia-Molina 1.608E-4
Michael J. Carey 1.608E-4
H. V. Jagadish 1.569E-4
David J. DeWitt 1.552E-4
S. Abiteboul 1.530E-4
Rakesh Agrawal 1.513E-4
C. Faloutsos 1.508E-4
Surajit Chaudhuri 1.502E-4
Michael Stonebraker 1.502E-4
Raghu Ramakrishnan 1.497E-4
Jeffrey F. Naughton 1.497E-4
Jennifer Widom 1.491E-4
Yannis E. Ioannidis 1.486E-4
A. Levy 1.480E-4

Table 1: RelWalk ranking for all the authors in the
database using L1.

6.3 Discussion

The experiments conducted and described in the pre-
vious subsection show that the obtained rankings are
highly dependent on the query languages that are used
for constructing the database graphs. For example
when the co-author query was included in the language
L2 the ranking was highly influenced by co-author re-
lationships, meaning that authors with less papers but
with more (or highly-ranked) co-authors appear high
in the obtained rankings. Additionally, the second ex-
periment gives an idea of how different RelWalk and
RelHITS are, since the latter is query dependent and
it only considers the part of the database that is re-
lated to the imposed query. This difference although
not apparent in the first experiment where the imposed
query was considering all the authors in the database,
it becomes obvious in the second case where only the
co-authors of “H. Garcia-Molina” are to be considered.
The corresponding comparison Figures 4 and 5 also
imply this difference in the behavior of the two rank-
ing algorithms for different queries.

7 Conclusions

We have shown how to associate with each database,
query language, and preference function a unique
database graph and explored some of its interesting
properties. The database graph provides a nice frame-
work for extending existing and creating new link anal-
ysis algorithms for the Web and relational databases.
The flexibility of the framework is provided by the use
of relational algebra queries. The database graph also
enables us to define the random querier which per-
forms a random walk on databases by asking queries
in each step of the walk. We applied our concepts to

RelWalk Ranking
Language: L2 = {q1(xj |xi), q2(x2|x6), q3(x|)}
with: q1(xj |xi) ≡ πi,jR(x1, x2, x3, x4) with i 6= j f1 = 0.45

q2(x2|x6) ≡ π2,6σ1=5,2 6=6R×R f2 = 0.45
q3(y|) ≡ π1R ∪ π2R ∪ π3R ∪ π4R f3 = 0.1

Michael J. Carey 2.695E-4
S. Abiteboul 2.142E-4
A.Cichocki 1.990E-4
V. Kashyap 1.990E-4
R. Brice 1.990E-4
J. Fowler 1.990E-4
W. Bohrer 1.990E-4
R. J. Bayardo 1.990E-4
David J. DeWitt 1.983E-4
H. Garcia-Molina 1.919E-4
Daniela Florescu 1.915E-4
Steve Kirsch 1.844E-4
Michael Blow 1.844E-4
Nicolas Adiba 1.844E-4

Table 2: RelWalk ranking for all the authors in the
database using L2.

RelHITS Ranking
Language: L′

1
= {q1(x2|x3), q2(x2|x4)}

with: q1(x2|x3) ≡ π2,3R(x1, x2, x3, x4) f1 = 0.5
q2(x2|x4) ≡ π2,4R(x1, x2, x3, x4) f2 = 0.5

H. Garcia-Molina 0.007572
Michael J. Carey 0.006437
H. V. Jagadish 0.006081
Surajit Chaudhuri 0.004740
David J. DeWitt 0.004603
Rakesh Agrawal 0.004291
A. Levy 0.004283
Jennifer Widom 0.004207
S. Abiteboul 0.004179
C. Faloutsos 0.004056
Raghu Ramakrishnan 0.003795
Jeffrey F. Naughton 0.003765

Table 3: RelHITS rankings for all the authors in the
database using L′1.

obtain two algorithms that provide rank values on par-
tial tuples. These values are interesting on their own,
but can also serve as input for top-k selection and join
algorithms to obtain ranking of query results.

We point out some interesting questions and open
problems:

• How can the database graph be used to define
measures of similarity between categorical data?
Possible measures include the shortest path be-
tween tuples and the commute distance between
nodes on the database graph.

• Is there a more close connection between the ex-
pressive power of L and the database graph and
random querier? What are the properties of the
random querier with memory ([14]).

• Finally, is there an objective way of selecting the
query language used for defining the database
graph.

561

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P
er

ce
nt

ag
e

of
 s

ha
rin

g
in

 r
an

ki
ng

s

Number of highest ranked elements considered

RelWalk_1 vs RelWalk_2
RelHITS_1 vs RelHITS_2
RelWalk_1 vs RelHITS_2

RelWalk_1 vs RelHITS1
RelWalk_2 vs RelHITS_2
RelWalk_2 vs RelHITS_1

Figure 4: Comparison of rankings for all authors in
the database.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

P
er

ce
nt

ag
e

of
 s

ha
rin

g
in

 r
an

ki
ng

s

Number of highest ranked elements considered

RelWalk_1 vs RelWalk_2
RelHITS_1 vs RelHITS_2
RelWalk_1 vs RelHITS_2
RelWalk_1 vs RelHITS_1
RelWalk_2 vs RelHITS_2
RelWalk_2 vs RelHITS_1

Figure 5: Comparison of rankings for all co-authors of
’H. Garcia-Molina’.

RelHITS Ranking
Language: L′

2
= {q1(x2|x3, x6)}

with: q1(x2|x3, x6) ≡ π2,3,6σ26=6,1=5R×R f1 = 1.0

Michael J. Carey 0.55364
David J. DeWitt 0.02967
Jeffrey F. Naughton 0.02593
H. Garcia-Molina 0.02593
Yannis E. Ioannidis 0.02266
Miron Livny 0.01887
Raghu Ramakrishnan 0.01659
H. Pirahesh 0.01442
Michael J. Franklin 0.01086
Eugene J. Shekita 0.01047
Jennifer Widom 0.01042
Praveen Seshadri 0.00925

Table 4: RelHITS rankings for all the authors in the
database using L′2.

Acknowledgment

We would like to thank Aris Gionis for helpful discus-
sions.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations
of Databases. Addison-Wesley, 1995.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBX-
plorer: A system for keyword-based search over
relational databases. In ICDE, 2002.

[3] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis.
Automated ranking of database query results. In
CIDR, 2003.

[4] A. Balmin, V. Hristidis, and Y. Papakonstanti-
nou. ObjectRank: Authority-based keyword
search in databases. In VLDB, 2004.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe,
S. Chakrabarti, and S. Sudarshan. Key-
word searching and browsing in databases using
BANKS. In ICDE, 2002.

RelWalk Ranking
Language: L1 = {q1(xj |xi), q2(x|)}
with: q1(xj |xi) ≡ πi,jR(x1, x2, x3, x4) with i 6= j f1 = 0.9

q2(x|) ≡ π1R ∪ π2R ∪ π3R ∪ π4R f2 = 0.1

S. Abiteboul 1.530E-4
Raghu Ramakrishnan 1.497E-4
Jennifer Widom 1.491E-4
A. Silberschatz 1.480E-4
J. Ullman 1.425E-4
Rajeev Motwani 1.408E-4
Anand Rajaraman 1.391E-4
Luis Gravano 1.391E-4
Anthony Tomasic 1.375E-4
Ramana Yerneni 1.375E-4
Vasilis Vassalos 1.375E-4
Yannis Papakonstantinou 1.375E-4
Narayanan Shivakumar 1.375E-4
Sergey Brin 1.375E-4
Janet L. Wiener 1.375E-4
Kenneth Salem 1.375E-4

Table 5: RelWalk rankings for all co-authors of ’H.
Garcia-Molina’ using L1.

[6] K. Bharat and M. Henzinger. Improved algo-
rithms for topic distillation in a hyperlinked envi-
ronment. In SIGIR, 1998.

[7] B. Bollobás. Modern Graph Theory. Springer-
Verlag, 1998.

[8] E. Börger, E. Grädel, and Y. Gurevich. The Clas-
sical Decision Problem. Springer-Verlag, 1997.

[9] A. Borodin, J. S. Rosenthal, G. O. Roberts, and
P. Tsaparas. Finding authorities and hubs from
link structures on the World Wide Web. In
WWW, 2001.

[10] S. Brin, R. Motwani, L. Page, R. Motwani, and
T. Winograd. What can you do with the web in
your pocket? Data Engineering Bulletin, 1998.

[11] S. Brin and L. Page. The anatomy of a large-
scale hypertextual Web search engine. Computer
Networks and ISDN Systems, 30:107–117, 1998.

562

RelWalk Ranking
Language: L2 = {q1(xj |xi), q2(x2|x6), q3(x|)}
with: q1(xj |xi) ≡ πi,jR(x1, x2, x3, x4) with i 6= j f1 = 0.45

q2(x2|x6) ≡ π2,6σ1=5,26=6R×R f2 = 0.45
q3(x|) ≡ π1R ∪ π2R ∪ π3R ∪ π4R f3 = 0.1

S. Abiteboul 2.142E-4
Jennifer Widom 1.771E-4
A. Silberschatz 1.736E-4
Raghu Ramakrishnan 1.703E-4
Edward Chang 1.619E-4
J. Ullman 1.531E-4
Rajeev Motwani 1.498E-4
Roy Goldman 1.498E-4
Anand Rajaraman 1.490E-4
Svetlozar Nestorov 1.479E-4
Ramana Yerneni 1.443E-4
Yannis Papakonstantinou 1.439E-4
Luis Gravano 1.432E-4
Vasilis Vassalos 1.428E-4
Joachim Hammer 1.423E-4
Ming-Chien Shan 1.419E-4

Table 6: RelWalk rankings for all co-authors of ’H.
Garcia-Molina’ using L2.

RelHITS Ranking
Language: L′

1
= {q1(x2|x3), q2(x2|x4)}

with: q1(x2|x3) ≡ π2,3R(x1, x2, x3, x4) f1 = 0.5
q2(x2|x4) ≡ π2,4R(x1, x2, x3, x4) f2 = 0.5

Jennifer Widom 0.0552
Ramana Yerneni 0.0487
Narayanan Shivakumar 0.0417
Joachim Hammer 0.0390
Luis Gravano 0.0365
Anthony Tomasic 0.0326
Chen-Chuan K. Chang 0.0298
Yannis Papakonstantinou 0.0294
Junghoo Cho 0.0291
Yue Zhuge 0.0262
Vasilis Vassalos 0.0258
Janet L. Wiener 0.0254
Sudarshan S. Chawathe 0.0245
Jeffrey Ullman 0.0238

Table 7: RelHITS rankings for all co-authors of ’H.
Garcia-Molina’ using L′1.

RelHITS Ranking
Language: L′

2
= {q1(x2|x3, x6)}

with: q1(x2|x3, x6) ≡ π2,3,6σ26=6,1=5R×R f1 = 1.0

Jennifer Widom 0.0514
Narayanan Shivakumar 0.0456
Ramana Yerneni 0.0424
Luis Gravano 0.0352
Joachim Hammer 0.0350
Yannis Papakonstantinou 0.0330
Wilburt J. Labio 0.0285
Chen-Chuan K. Chang 0.0258
Junghoo Cho 0.0254
Vasilis Vassalos 0.0249
Anthony Tomasic 0.0233
Chen Li 0.0223
Jeffrey Ullman 0.0223
Yue Zhuge 0.0203

Table 8: RelHITS rankings for all co-authors of ’H.
Garcia-Molina’ using L′2.

[12] C. Ding, X. He, P. Husbands andH. Zha, and H.D.
Simon. PageRank, HITS and a unified framework
for link analysis. In SIGIR, 2002.

[13] H. D. Ebbinghaus and J. Flum. Finite Model The-
ory. Springer-Verlag, 1995.

[14] R. Fagin, A. Karlin, J. Kleinberg, P. Raghavan,
S. Rajagopalan, R. Rubinfeld, M. Sudan, and
A. Tomkins. Random walks with “back but-
tons”. Annals of Applied Probability, 11(3):810–
862, 2001.

[15] R. Fagin, A. Lotem, and M. Naor. Optimal ag-
gregation algorithms for middleware. In PODS,
2001.

[16] H. Garcia-Molina, J. Ullman, and J. Widom.
Database Systems, The Complete Book. Prentice
Hall, 2002.

[17] D. Gibson, J. Kleinberg, and P. Raghavan. Clus-
tering categorical data: An approach based on
dynamical systems. In VLDB, 1998.

[18] V. Hristidis and Y. Papakonstantinou. DIS-
COVER: Keyword search in relational databases.
In VLDB, 2002.

[19] V. Hristidis and Y. Papakonstantinou. Algo-
rithms and applications for answering ranked
queries using ranked views. VLDB Journal, 2003.

[20] I. F. Ilyas, W. G. Aref, and A. K. Elma-
garmid. Supporting top-k join queries in rela-
tional databases. In VLDB, 2003.

[21] G. Jeh and J. Widom. SimRank: a measure of
structural-context similarity. In KDD, 2002.

[22] J. Kleinberg. Authoritative sources in a hyper-
linked environment. Journal of ACM, 46, 1999.

[23] R. Motwani and P. Rhaghavan. Randomized Al-
gorithms. MIT Press, 1995.

[24] A. Natsev, Y.-C. Chang, J.R. Smith, C.-S. Li, and
J.S. Vitter. Supporting incremental join queries
on ranked inputs. In VLDB, 2001.

[25] A. Ng, A. Zheng, and M. Jordan. Stable algo-
rithms for link analysis. In SIGIR, 2001.

[26] C. R. Palmer and C. Faloutsos. Electricity based
external similarity of categorical attributes. In
PAKDD, 2003.

[27] A. Schrijver. Theory of Linear and Integer Pro-
gramming. John Wiley & Sons, 1998.

563

