
21

Relational Query Coprocessing on
Graphics Processors

BINGSHENG HE

Microsoft Research Asia

MIAN LU

Hong Kong University of Science and Technology

KE YANG

Microsoft Corporation

RUI FANG

Highbridge Capital Management LLC, USA

NAGA K. GOVINDARAJU

Microsoft Corporation

and

QIONG LUO and PEDRO V. SANDER

Hong Kong University of Science and Technology

Graphics processors (GPUs) have recently emerged as powerful coprocessors for general purpose
computation. Compared with commodity CPUs, GPUs have an order of magnitude higher com-
putation power as well as memory bandwidth. Moreover, new-generation GPUs allow writes to
random memory locations, provide efficient interprocessor communication through on-chip local
memory, and support a general purpose parallel programming model. Nevertheless, many of the
GPU features are specialized for graphics processing, including the massively multithreaded archi-
tecture, the Single-Instruction-Multiple-Data processing style, and the execution model of a single
application at a time. Additionally, GPUs rely on a bus of limited bandwidth to transfer data to
and from the CPU, do not allow dynamic memory allocation from GPU kernels, and have little
hardware support for write conflicts. Therefore, a careful design and implementation is required
to utilize the GPU for coprocessing database queries.

In this article, we present our design, implementation, and evaluation of an in-memory re-
lational query coprocessing system, GDB, on the GPU. Taking advantage of the GPU hardware
features, we design a set of highly optimized data-parallel primitives such as split and sort, and
use these primitives to implement common relational query processing algorithms. Our algorithms

The work of Ke Yang was done while he was visiting HKUST, and the work of Bingsheng He and
Rui Fang was done when they were students at HKUST.
This work was supported by grant 616808 from the Hong Kong Research Grants Council.
Authors’ address: Bingsheng He; email: savenhe@microsoft.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0362-5915/2009/12-ART21 $10.00
DOI 10.1145/1620585.1620588 http://doi.acm.org/10.1145/1620585.1620588

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:2 • B. He et al.

utilize the high parallelism as well as the high memory bandwidth of the GPU, and use parallel com-
putation and memory optimizations to effectively reduce memory stalls. Furthermore, we propose
coprocessing techniques that take into account both the computation resources and the GPU-CPU
data transfer cost so that each operator in a query can utilize suitable processors—the CPU, the
GPU, or both—for an optimized overall performance. We have evaluated our GDB system on a
machine with an Intel quad-core CPU and an NVIDIA GeForce 8800 GTX GPU. Our workloads
include microbenchmark queries on memory-resident data as well as TPC-H queries that involve
complex data types and multiple query operators on data sets larger than the GPU memory. Our
results show that our GPU-based algorithms are 2–27x faster than their optimized CPU-based
counterparts on in-memory data. Moreover, the performance of our coprocessing scheme is similar
to, or better than, both the GPU-only and the CPU-only schemes.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing,

relational databases

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Relational database, join, sort, primitive, parallel processing,
graphics processors

ACM Reference Format:

He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N. K., Luo, Q., and Sander, P. V. 2009. Relational
query coprocessing on graphics processors. ACM Trans. Datab. Syst. 34, 4, Article 21 (December
2009), 39 pages. DOI = 10.1145/1620585.1620588 http://doi.acm.org/10.1145/1620585.1620588

1. INTRODUCTION

Graphics processing units (GPUs) are specialized architectures traditionally
designed for gaming applications. They have approximately 10x the compu-
tational power and 10x the memory bandwidth of CPUs. Moreover, new gen-
eration GPUs, such as AMD R600 and NVIDIA G80, have transformed into
powerful coprocessors for general purpose computing (GPGPU). They provide
general parallel processing capabilities, including support for scatter operations
and interprocessor communication, as well as general purpose programming
languages such as NVIDIA CUDA1. Recent research has shown that GPUs
can be designed as accelerators for individual database operations such as sort
[Govindaraju et al. 2005, 2006] and joins [He et al. 2008]. In this article, we
present a query coprocessing system for in-memory relational databases on
new-generation GPUs.

Similar to multicore CPUs, GPUs are commodity hardware consisting of mul-
tiple processors. However, these two types of processors differ significantly in
their hardware architecture. GPUs provide a massive number of lightweight
hardware threads (contexts) on over a hundred SIMD (single instruction mul-
tiple data) processors whereas current multicore CPUs typically offer a much
smaller number of concurrent threads on a much smaller number of MIMD
(multiple instruction multiple data) cores. Moreover, the majority of GPU tran-
sistors are devoted to computation units rather than caches, and GPU cache
sizes are 10x smaller than CPU cache sizes. As a result, GPUs deliver an order
of magnitude higher computational capabilities in terms of total GFLOPS (giga
floating point operations per second) than current commodity multi-core CPUs.

1http://developer.nvidia.com/object/cuda.html.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:3

While GPUs have been used to accelerate individual database operations,
we have identified the following three challenges in developing our full-fledged
GPU-based query coprocessor, GDB. The first one is how to exploit the GPU
hardware features to develop a common set of relational query operators, given
that parallel programming is a difficult task in general and programming the
GPU for query processing is an unconventional task. To guarantee correctness
and efficiency, high-level abstractions and carefully designed patterns in the
software are necessary. The second challenge is the cost estimate of the GPU.
The CPU-based cost model for in-memory databases [Manegold et al. 2002]
may not be directly applicable to the GPU, due to the architectural differences
between the CPU and the GPU. The third challenge is how to effectively coor-
dinate the GPU and the CPU, two heterogenous processors connected with a
bus of limited bandwidth for full-fledged query workloads. In particular, GPUs
lack support for non-numeric data types, execute a single application at a time,
and rely on the CPU for dynamic memory allocation and I/O handling.

With these challenges in mind, we develop a GPU-based query coprocessor
to improve the overall performance of relational query processing. To address
the programming difficulty, we propose a set of data-parallel primitives and
use them as building blocks to implement a common set of relational query
operators. Most of these primitives can find their functionally equivalent CPU-
based counterparts in traditional databases, but our design and implementa-
tion are highly optimized for the GPU. In particular, our algorithms for these
primitives take advantage of three advanced features of current GPUs: (1) the
massive thread parallelism, (2) the fast inter-processor communication through
local memory, and (3) the coalesced access to the GPU memory among concur-
rent threads.

To enable query optimization for the GPU coprocessing, we develop a cost
model to estimate the total elapsed time of evaluating a query on the GPU.
The model estimates the total elapsed time as the sum of three components:
the time for transferring the input and the output data, and the time for GPU
processing. The GPU processing time is further divided into two parts, memory
stalls and computation time. The memory stalls are estimated using analytical
models on the cost of fetching data from the GPU memory, and the GPU com-
putation time using a calibration-based method. The calibration on the GPU
differs from that on the CPU in the way that memory stalls are hidden—on the
CPU memory stalls are hidden mainly when input data fit into CPU caches2

whereas on the GPU they can be hidden either by on-chip local memory or by
thread parallelism.

With query processing operators and cost models for the GPU, we propose
GPU coprocessing techniques for evaluating a query. Each operator can be eval-
uated in one of the three modes, namely, on the CPU only, on the GPU only, or
on both processors. The choice on the coprocessing mode is made taking costs
into account in order to improve the overall performance. To allow GPU copro-
cessing for full-fledged SQL query workloads, we implement support for string

2More recent CPUs such as Sun Niagara II provide multiple contexts within a core for hiding the
memory latency to some extent.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:4 • B. He et al.

and date data types on the GPU and handle data sizes that are larger than the
GPU memory (also known as the device memory).

We have implemented the entire GDB system, including the GPU-based op-
erators and cost models, their CPU-based counterparts, and the coprocessing
schemes. We evaluated our system on a PC with an NVIDIA GeForce 8800 GTX
GPU (G80) and an Intel quad-core CPU. We used queries from the TPC-H bench-
mark with data sizes that either fit or exceed the device memory to evaluate
the overall performance, and micro benchmarks on in-memory data for detailed
studies. Our results show that: (1) our cost model for the GPU is highly accu-
rate in estimating the total elapsed time for evaluating a query on the GPU;
(2) for TPC-H queries on disk-based data, our GPU-based query processing al-
gorithms have insignificant performance impact, since the bottleneck is disk
I/O. As for in-memory data, our GPU-based query processing algorithms are
2–27x faster than their CPU-based counterparts, excluding the data transfer
time between the GPU memory and the main memory. If the data transfer time
is included, the speedup is 2–7x for computation-intensive operations such as
joins, whereas the slowdown is 2–4x for simple operations such as selections.
(3) Our coprocessing scheme assigns suitable workloads to the CPU and the
GPU for improved overall performance.

The contributions of this article are as follows. First, we design and imple-
ment the first full-fledged query processor on the GPU. It includes a set of highly
optimized primitives and a common set of relational operators on the GPU. Sec-
ond, we develop cost models for estimating query execution time on the GPU.
The query plan is optimized based on our cost models. Third, we implement
support for the GPU to handle non-numeric data types and data sizes that are
larger than the device memory, and propose coprocessing schemes for the GPU
to improve the overall query performance.

The remainder of this article is organized as follows. In Section 2, we briefly
introduce the background on the GPU architecture, and discuss related work
on GPGPU techniques and architecture-aware query processing. In Section 3,
we give an overview of our design and implementation of GDB. We present
our cost model and coprocessing schemes in Sections 4 and 5, respectively. We
experimentally evaluate our model and algorithms in Section 6. Finally, we
discuss the issues of using current GPUs for query processing in Section 7, and
conclude in Section 8.

2. BACKGROUND AND RELATED WORK

In this section, we introduce the GPU architecture and discuss related work on
GPGPU techniques and architecture-aware query processing.

2.1 GPU

GPUs are widely available as commodity components in modern machines.
They are used as coprocessors for the CPU [Ailamaki et al. 2006]. GPU pro-
gramming languages include graphics APIs such as OpenGL3 and DirectX

3http://www.opengl.org.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:5

Fig. 1. The GPU architecture model.

[Blythe 2006], and GPGPU languages such as NVIDIA CUDA, AMD CTM,4

Brook [Buck et al. 2004] and Accelerator [Tarditi et al. 2006]. The graphics
APIs are used to program graphics hardware pipelines, whereas the GPGPU
languages view the GPU as a general purpose processor. With the GPGPU
languages, we can develop GPU programs without the knowledge of graphics
hardware pipelines. For more details on the GPU and its programming tech-
niques, we refer the reader to a recent book edited by Nguyen [2008].

The GPU architectural components that are relevant for GPGPU program-
ming are illustrated in Figure 1. Such architecture is a common design for both
AMD and NVIDIA GPUs. At a high level, the GPU consists of many SIMD
multiprocessors. At any given clock cycle, each processor of a multiprocessor
executes the same instruction, but operates on different data. The GPU sup-
ports thousands of concurrent threads. GPU threads have low context-switch
and low creation-time compared with CPU threads. The threads on each mul-
tiprocessor are organized into thread groups. Threads within a thread group
share the computation resources such as registers on a multiprocessor. A thread
group is divided into multiple schedule units that are dynamically scheduled
on the multiprocessor. Due to the SIMD execution restriction, if threads in a
schedule unit must perform different tasks, such as going through branches,
these tasks will be executed in sequence as opposed to in parallel. For example,
branch divergence in a schedule unit causes each satisfying branch to be exe-
cuted one after another on the processor. Additionally, if a thread is stalled by
the memory access, the entire schedule unit will be stalled until the memory
access is done.

The GPU device memory is typically in the amount of hundreds of megabytes
to several gigabytes. The device memory has both a high bandwidth and a high
access latency. For example, the G80 GPU has an access latency of 200 cycles
and the memory bandwidth between the device memory and the multiproces-
sors is around 86 GB/second. Due to the SIMD property, the GPU can apply co-

alesced access to exploit the spatial locality of memory accesses among threads:
when the threads in a thread group access consecutive memory addresses, these
memory accesses are grouped into one. Additionally, each multiprocessor usu-
ally has a fast on-chip local memory, which is shared by all the processors in a
multiprocessor. The size of this local memory is small and the access latency is
low.

To develop GPU programs, developers write two kinds of code, the kernel
code and the host code. The host code runs on the CPU to control the data

4http://ati.amd.com/products/streamprocessor/.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:6 • B. He et al.

Table I. Notations Used in This Article

Parameter Description

b The memory block size of the device memory (bytes)

Bh, Bl The memory bandwidth with and without coalesced
access optimization, respectively

R, S Outer and inner relations of the join

r, s Tuple sizes of R and S (bytes)

|R|, |S| Cardinalities of R and S

‖R‖, ‖S‖ Total sizes of R and S (bytes)

transfer between the GPU and the main memory, and to start kernels on the
GPU. The kernel code is executed in parallel on the GPU. The general flow for
a computation task on the GPU consists of three steps. First, the host code
allocates GPU memory for input and output data, and copies input data from
the main memory to the GPU memory. Second, the host code starts the kernel
on the GPU. The kernel performs the task on the GPU. Third, when the kernel
execution is done, the host code copies results from the GPU memory to the
main memory.

Notation. The notations used throughout this article are summarized in Ta-
ble I.

2.2 GPGPU

GPGPU has been emerging in accelerating scientific, geometric, database, and
imaging applications. For an overview of GPGPU techniques, we refer the
reader to the recent survey by Owens et al. [2007]. We focus on the works
that are most related to our study and the recent works that are not covered in
the survey.

We first briefly survey the techniques that use GPUs to improve the per-
formance of database operations. Prior to GPGPU languages, graphics APIs
such as OpenGL/DirectX were utilized to accelerate database operations us-
ing the GPU. Sun et al. [2003] used the rendering and search capabilities of
GPUs for spatial selection and join operations. Bandi et al. [2004] implemented
GPU-based spatial operations as external procedures to a commercial DBMS.
Govindaraju et al. [2004] presented novel GPU-based algorithms for relational
operators including selections, aggregations, for sorting [Govindaraju et al.
2006], and for data mining operations such as computing frequencies and quan-
tiles for data streams [Govindaraju et al. 2005]. The existing work mainly maps
data structures and algorithms to textures and graphics hardware pipelines,
and develops OpenGL/DirectX programs to exploit the specialized hardware
features of GPUs.

GPGPU languages improve the programmability of the GPU. For example,
CUDA provides C-like programming interfaces, and supports two debugging
modes: CPU-based emulated execution and direct debugging on the GPU. There
is much research effort in exploiting the computation power of the GPU using
these languages. Sengupta et al. [2007] implemented segmented scan using
the scatter. Lieberman et al. [2008] implemented a similarity join using CUDA.
CUDPP [Harris et al. 2007], a CUDA library of data parallel primitives, was

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:7

released for GPGPU computing. We proposed a multipass scheme to improve
the locality of the scatter and the gather operations on the GPU [He et al. 2007].
Moreover, we [He et al. 2008] proposed a set of primitives including map, split,
and sort, and used the primitives to compose the four basic join algorithms in-
cluding the nested-loop join with and without indexes, the sort-merge join and
the hash join. In this article, we adopt the implementation of the primitives and
joins [He et al. 2007, 2008], and further develop two primitives—reduce
and filter—to implement a common set of relational operators such as selection
and aggregation. Different from the previous studies on accelerating individual
operators on the GPU, this study focuses on the design and implementation of a
full-fledged query coprocessor on the GPU. In particular, we develop cost models
for primitives and operators to facilitate query coprocessing on the GPU. More-
over, we propose coprocessing techniques between the CPU and the GPU for
effectively utilizing the computation resources within a commodity machine.

2.3 Architecture-Aware Query Processing

Most of the traditional query processing techniques are designed for the CPU
architecture [Graefe 1993]. They are optimized for a single processor, multiple
processors, or a processor with multiple cores. There has also been a rich body
of work on optimizing query processing performance for the memory hierarchy,
especially for CPU caches.

Cache-conscious techniques [Shatdal et al. 1994; Boncz et al. 1999; Rao and
Ross 1999] were proposed to reduce memory stalls by designing data structures
and algorithms that better utilize CPU caches. They require the knowledge of
cache parameters such as cache capacity and cache line size. In comparison,
cache-oblivious algorithms [Frigo et al. 1999; He and Luo 2008] do not assume
any knowledge of cache parameters but utilize the divide-and-conquer method-
ology to improve data locality. Our GPU-based primitives and operators are
optimized for the on-chip local memory.

Parallel database systems were proposed for shared-nothing [Schneider and
DeWitt 1989; Liu and Rundensteiner 2005] or shared-memory architectures [Lu
et al. 1990]. These systems exploit data parallelism as well as pipelined par-
allelism in database workloads and utilize the aggregate computation power
of multiple processors to improve performance. Hong and Stonebraker [1991]
proposed a two-phase optimization strategy to reduce the search space for op-
timizing a parallel query execution plan. First, an optimized sequential query
execution plan is created at compile time. Next, they optimize the paralleliza-
tion of the sequential plan chosen from the first phase. We adopt this two-phase
approach in our GPU coprocessing technique.

Recently, parallel database techniques have been investigated for multi-
core CPUs, including common relational operators on SMT processors [Zhou
et al. 2005], data or computation sharing on chip multiprocessors [Johnson
et al. 2007], and parallel adaptive aggregation in the presence of contention
[Cieslewicz and Ross 2007].

In addition to query processing on CPUs, there has been recent work propos-
ing query processing techniques on specialized architectures, including simple

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:8 • B. He et al.

Fig. 2. The architecture of coprocessing in GDB.

query operators on network processors [Gold et al. 2005], a multi-thread hash
join on the Cray MTA-2 architecture [Cieslewicz et al. 2006], as well as column
databases [Héman et al. 2007], and stream joins and sorting [Gedik et al. 2007]
on the cell processor. Different from previous work focusing on individual op-
erators, this article provides a detailed description of the architectural design
and implementation issues of query coprocessing on the GPU.

3. DESIGN AND IMPLEMENTATION OF GDB

In this section, we describe the architectural design and implementation of our
query coprocessor, GDB. On the one hand, the GPU has 10x more computation
power and memory bandwidth than the CPU. On the other hand, it relies on
the CPU for task initiation, data transfer, and I/O handling. As a result, even if
the execution time of a task on the GPU is much shorter than that on the CPU,
the overall performance may not be improved, due to the CPU-GPU transfer
cost for input data and result output.

We model the CPU and the GPU as two heterogenous processors connected
with a bus of limited bandwidth. The communication between the CPU and
the GPU requires explicit data transfer via the bus. For simplicity, we consider
the machine consisting of one GPU and one multi-core CPU, which is a typical
configuration on the current commodity machine.

In this study, we focus on optimizing a single query using the CPU and the
GPU and leave multi-query optimization for future work. This simple execution
model matches the GPU execution model of a single application at a time as
well as the recent trend on simplifying the database engine architecture using
a single-task execution model [Harizopoulos et al. 2008]. Figure 2 shows the
architecture of our coprocessing scheme. We first use a Selinger-style optimizer
[Selinger et al. 1979] for plan generation. Then, given a query plan, the copro-
cessing module is responsible for dividing the workload between the CPU and
the GPU, and merging the results from the two processors if both processors
are involved. It uses the CPU- and the GPU-based cost estimators to facilitate
the workload partitioning. As a result, an operator in the query plan may be
executed by the GPU worker, the CPU worker, or both.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:9

Fig. 3. The execution engine of the GPU worker in GDB.

In the remainder of this section, we focus on the GPU worker, since the design
and implementation of the CPU worker is similar to that in previous work [He
and Luo 2008].

3.1 GPU worker

Figure 3 shows the layered design of the execution engine of the GPU worker in
GDB. We design the execution engine with four layers from bottom up, including
the storage, primitives, access methods, and relational operators. Primitives are
common operations on the data or indexes in the system. Our access methods
and relational operators are developed based on primitives. This layered design
has high flexibility. When a layer is modified, the design and implementation
of the other layers requires little modification. Moreover, with the building
blocks provided in the lower layer, the operations in the higher layer are easy
to implement and optimize.

The system does not support online updates. Instead, it rebuilds a relation
for batch updates. As in previous work [Boncz et al. 1999],5 we focus on read-
only queries. Since current GPUs do not support dynamic allocation and deal-
location of the device memory within GPU kernel code, we use preallocated
arrays to store relations. With the array structure, we implement our query
processing algorithms on the column-based model for read-optimized perfor-
mance [Stonebraker et al. 2005].

The engine supports both fixed- and variable-sized columns. The supported
fixed-size columns include integer, floating point numbers, and date, and the
variable-sized columns include bit and character strings. We implement a
variable-sized column using two arrays, values and start. Array values stores
the values of the column. Array start stores the pair of the record identifier
and the start position in the values array for each tuple. In the remainder of
the article, we focus on the algorithms for fixed-sized columns for simplicity of
presentation. We have extended these algorithms for variable-sized columns in
our system.

5http://monetdb.cwi.nl/.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:10 • B. He et al.

Table II. Primitive Definitions

Primitive Input Output Function

Map Rin[1, . . . , n], a map
function fcn

Rout[1, . . . , n] Rout[i] = fcn(Rin[i])

Scatter Rin[1, . . . , n],
L[1, . . . , n′]

Rout[1, . . . , n′] Rout[L[i]] = Rin[i], ∀i ∈ [1, n′] (n′ ≤ n)

Gather Rin[1, . . . , n],
L[1, . . . , n′]

Rout[1, . . . , n′] Rout[i] = Rin[L[i]], ∀i ∈ [1, n′] (n′ ≤ n)

Reduce Rin[1, . . . , n], a reduce
function

⊙

Rout[1] Rout[1] =
⊙n

i=1 Rin[i]

Prefix scan Rin[1, . . . , n], a binary
operator

⊕

Rout[1, . . . , n] Rout[i] =
⊕

j<i(Rin[j])

Split Rin[1, . . . , n], a
partition function
fcn(Rin[i]) ∈ [1, . . . , F],
i ∈ [1, n]

Rout[1, . . . , n] {Rout[i], i ∈ [1, n]} = {Rin[i], i ∈ [1, n]} and
fcn(Rout[i]) ≤ fcn(Rout[j]), ∀i, j ∈

[1, n], i ≤ j

Filter Rin[1, . . . , n], a filter
function
fcn(Rin[i]) ∈ {0, 1},
i ∈ [1, n]

Rout[1, . . . , n′] {Rout[i], i ∈ [1, n′]} = {Rin[i]|fcn(Rin[i]) =

1, i ∈ [1, n]}

Sort Rin[1, . . . , n] Rout[1, . . . , n] {Rout[i], i = 1, . . . , n} = {Rin[i], i = 1, . . . , n}

and Rout[i] ≤ Rout[j], ∀i, j ∈ [1, n], i ≤ j

3.1.1 Primitives. We aim at designing and implementing a complete set
of data parallel primitives on the GPU for query processing. The definitions of
these primitives are shown in Table II.

Our primitive-based approach allows us to use different primitive implemen-
tations. For example, we can adopt the implementation from previous studies
[He et al. 2007, 2008], or from CUDPP [Sengupta et al. 2007; Harris et al.
2007]. Since the implementation in previous studies has been used for imple-
menting joins and their efficiency has been carefully studied [He et al. 2007,
2008], we mainly adopt their implementation of primitives and joins. Specif-
ically, we adopt scatter, gather, and hash search [He et al. 2007], map, split,
sort, and GPU-based CSS-Tree indexing and joins [He et al. 2008], and the
prefix scan from CUDPP [Sengupta et al. 2007; Harris et al. 2007]. To make
our presentation self-contained, we briefly review the implementation of these
primitives and query-processing algorithms.

The primitives have the following features:

(1) They exploit the GPU hardware features, especially the high thread paral-
lelism and the fast local memory to reduce the memory stalls.

(2) They are scalable to hundreds of processors, because all primitives are de-
signed without locks and the synchronization cost is low by using the fast
local memory.

—Map. A map operation is defined the same as a mapping function in Lisp.
Given an array of data tuples and a function, a map applies the function to
every tuple. An example of the map operator is to evaluate a predicate on

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:11

a relation. We adopt the implementation [He et al. 2008] for the map. The
map uses multiple thread groups to scan the relation. Each thread group is
responsible for a segment of the relation. The access pattern of the threads
in each thread group is designed to exploit the coalesced access feature on
the GPU.

—Scatter and gather. A scatter operation performs indexed writes to a relation,
for example, hashing. The location array, L, defines a distinct write location
for each input tuple. A gather primitive performs indexed reads from a re-
lation. It can be used, for instance, when fetching a tuple given a record ID,
and probing hash tables. The location array, L, defines the read location for
each output tuple. When locations are sequential, the scatter and the gather
are the same as the map operation. When locations are random, the scatter
and the gather have bad memory locality due to the random accesses. We
implemented the scatter and the gather using the multipass optimization
scheme [He et al. 2007]. In each pass, the scatter writes to a certain region
in the output array; the gather reads the data from a certain region in the
input array. The multipass optimization improves the temporal locality of
the scatter and the gather.

—Prefix scan. A prefix scan operation applies a binary operator to the input
relation. An example of prefix scan is the prefix sum, which is an important
operation in parallel databases [Blelloch 1990]: given an input relation (or
array) Rin, the value of each output array tuple Rout[i] (2 ≤ i ≤ |Rin|) is
obtained from the sum of Rin[1], . . . , and Rin[i − 1] (Rout[1] = 0). We adopt
the implementation from CUDPP [Sengupta et al. 2007; Harris et al. 2007],
which is highly parallel and efficient on the GPU.

—Split. A split primitive divides a relation into a number of disjoint partitions
according to a given partitioning function. The result partitions are stored in
the output relation. Splits are used in hash partitioning or range partitioning.

We adopt the lock-free implementation for the split [He et al. 2008]. It uses
histograms to compute the write location for each tuple (stored in the array
L) and scatters Rin to Rout according to the array L. Since each thread knows
its target position to write, the write conflicts among threads are avoided.
Without locks, the synchronization of all threads is implicitly performed as
the creation and termination of the kernels in the implementation.

In the algorithm, each thread is responsible for a portion of the relation.
Given the total number of threads, #thread, and the split fanout, F , the
split primitive works in the following five steps. First, each thread constructs
its local histogram from Rin. The thread stores the histogram in the array
tHist[t][1, . . . , F]. Second, each thread writes its histogram to L. For thread
t, we have L[(p − 1) ∗ #thread + t] = tHist[t][p] (1 ≤ p ≤ F). Third, the
algorithm performs a prefix sum on L. The result is stored in L. Fourth, each
thread updates its local offset array. The thread t has a local offset array
tOffset[t][1, . . . , F] so that tOffset[t][p] = L[(p−1)∗#thread+ t] (1 ≤ p ≤ F).
Finally, each thread scatters its tuples to Rout based on its local offset array.
The five steps are implemented using our other primitives. The first step
is implemented using a map primitive; the third a prefix scan; the fourth a

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:12 • B. He et al.

Fig. 4. One pass of the reduce primitive.

gather; and the other two a scatter. Since the histogram and the offset array
are accessed frequently, we store them in the local memory.

—Sort. The sort operation transforms an array of unordered data into an array
of ordered data. It is used in a number of operators such as order-by and join
operators. We adopt the quick sort on the GPU [He et al. 2008]. The quick
sort is implemented using the split primitive. The quick sort has two steps.
First, given a set of pivots, the algorithm uses the split primitive to divide
the relation into multiple chunks. The pivots are chosen randomly. The split
process goes recursively until each chunk is smaller than the local memory
size. In the second step, multiple chunks are sorted in parallel, and each
chunk is sorted using the bitonic sort.

To implement a full set of relational operators, we implement two more
primitives: reduce and filter. We optimize the primitives and the operators
on the GPU so that they exploit the thread parallelism of the GPU, and take
advantage of coalesced access for spatial locality and local memory optimiza-
tion for temporal locality.

—Reduce. A reduce operation computes a value based on the input relation. For
example, a reduction can be used to compute the sum of all the key values
in a relation. We implement the reduce primitive as a multipass algorithm
by utilizing local memory optimization. Given the relation Rin, the reduce
primitive works in log M

r
|Rin| passes, where M is the local memory size per

multiprocessor (bytes). In each pass, we first divide the input data into mul-
tiple chunks and evaluate them in parallel. Each chunk has the size of the
local memory. The reduce operation on each chunk is performed entirely in
the local memory, thus improving temporal locality. The reduce operation of
each chunk has log2 C steps, where C is the number of tuples that can fit into
the local memory. In step i (0 ≤ i < log2 C), thread j computes the partial
reduction of Rin[j × 2i] and Rin[(j + 1) × 2i]. The computation of each pass is
shown in Figure 4. The reduction result of each chunk forms the input array
for the next pass.

—Filter. A filter primitive selects a subset of elements from a relation, and
discards the rest. It can be used in the selection operator. We use the map,
the prefix scan, and the scatter primitives to implement the filter. The filter
works in three steps. First, we use the map primitive to process the input
array and obtain the corresponding 0-1 result array. We use the filter function
as the map function. The result is stored in the array, flag[1, . . . , n]. Second,
we compute a prefix sum on flag, and store the prefix sum into another array

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:13

Fig. 5. An example of hash indexes.

ps. The sum of flag is the number of tuples generated by the filter. Third,
we scatter the result to the output array according to the flag and ps arrays.
For the ith tuple of the input array, if flag[i] = 1, ps[i] is the position for
outputting the tuple to the output array.

3.1.2 Access methods. The engine supports three common access methods,
including the table scan, the B+- tree, and the hash index.

—Table scan. The table scan is implemented using the map primitive. If the
relation is sorted, a binary search is performed on the relation according to
the sort key.

—B+-trees. We adopt the GPU-based CSS-Tree [He et al. 2008] as our tree
index. The CSS-Tree stores the entire tree in an array. This structure fits
well into our storage model on the GPU. Additionally, the tree traversal on
the CSS-Tree is performed via address arithmetic. This effectively trades off
more computation for less memory access, which makes it a suitable index
structure to utilize the GPU’s computational power.

The tree search consists of two major steps, searching for the first occur-
rence of matching tuples in the indexed relation, and then accessing the
indexed relation for matching results. Multiple keys are processed in paral-
lel on the tree. The search starts at the root node and steps one level down
the tree in each iteration until it reaches the data nodes on the bottom.

—Hash indexes. The GPU-based hash table consists of two arrays, namely head-
ers and buckets [He et al. 2007]. Each element in the header array maintains
the start position to its corresponding bucket. Each bucket stores the key
values of the records that have the same hash value, and the pointers to the
records. An example of the hash table is illustrated in Figure 5.

The hash search uses a thread for one search key. The hash search is per-
formed in four steps. First, for each search key, the algorithm uses the map
primitive to compute its corresponding bucket ID and the gather primitive
to fetch the (start, end) pair indicating the start and end locations for the
bucket. Second, it scans the bucket and determines the number of matching
results. Third, based on the number of results for each key, the algorithm
computes a prefix sum on these numbers to determine the start location at
which the results of each search key are written, and then outputs the record
IDs of the matching tuples to an array, L. Fourth, a gather is performed
according to L to fetch the actual result records.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:14 • B. He et al.

3.1.3 Relational Operators. The engine supports the following common
query processing operators.

—Selection. In the absence of indexes, the selection is directly implemented
using the filter primitive. The predicate evaluation is the filter function. In
the presence of indexes, if the selectivity is high, a filter primitive on the
relation is performed. Otherwise, the B+-tree index or the hash index can be
used.

—Projection. Given an array of record IDs, the projection operator extracts the
tuples from the relation. We implement the projection using the gather prim-
itive. The read locations are given by the record IDs. If duplicate elimination
is required, we use sorting to eliminate the duplicates for the projection.

—Ordering. We implement order-by operator using the sort primitive.

—Grouping and aggregation. We use the sort primitive to perform grouping
and the reduce primitive for aggregation.

—Joins. We adopt the four joins [He et al. 2008], including the nested-loop join
with or without indexes, the sort-merge join, and the hash join.

To avoid the conflicts between concurrent writes in the result output, all joins
use a three-step output scheme [He et al. 2008]. First, each thread counts the
number of join results for the partitioned join it is responsible for. Second, we
compute a prefix sum on the counters to get an array of write locations, each of
which is the start location in the device memory for the corresponding thread to
write. Third, the host code allocates a memory area of the exact size of the join
result and each thread outputs the join results to the device memory according
to its start write location. This three-phase scheme is lock-free, and does not
require the hardware support of atomic functions.

For simplicity, we consider the join on two relations R and S, and assume
‖R‖ ≤ ‖S‖.

—Non-indexed NLJs (NINLJ). The nested-loop join is blocked nested-loops that
can be naturally mapped to our GPU model. Each thread group computes the
join on a portion of R and S, denoted as R ′ and S′, respectively. The size of S′

is set to the local memory size. Within a thread group, each thread processes
the join on one tuple from R ′ and all tuples from S′.

—Indexed NLJs (INLJ). The process of INLJ is the same as the tree search.
Each thread is responsible for searching one key against the tree index.

—Sort-merge joins (SMJ). Similar to the traditional sort-merge join, we first
sort the two relations and then perform a merge step on these two sorted
relations. The merge is performed in three steps. First, we divide the smaller
relation, S, to be Q chunks (Q =

‖S‖

M
). The size of each chunk (except the last

chunk) is M , so that each chunk fits into the local memory. Second, we use
the key values of the first and the last tuples of each chunk in S to identify
the start and the end positions of its matching chunks in R. Third, we merge
each pair of the chunk in S and its matching chunk in R in parallel.

—Hash joins (HJ). The GPU-based HJ is a parallel version of the radix hash
join [Boncz et al. 1999]. The HJ has two phases. First, both R and S are split

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:15

into the same number of partitions using radix bits so that most S partitions
fit into the local memory. The join on R and S is decomposed into multiple
small joins on an R partition and its corresponding S partition. In the second
phase, multiple small joins are evaluated in parallel using NINLJ.

4. COST ESTIMATION FOR THE GPU

We develop a cost model for estimating the elapsed time of evaluating a query
on the GPU. The total elapsed time of evaluating a query on the GPU may in-
clude the data transfer time between the device memory and the main memory,
depending on whether the input and the output data are stored in the device
memory. We estimate the total elapsed time of evaluating a query on the GPU
as Toverall in Equation 1.

Toverall = Tmm dm(I) + TGPU + Tdm mm(O). (1)

The total cost is the sum of three components:

(1) Tmm dm(I) is the time for copying the input data from the main memory to
the device memory. I denotes the set of input data.

(2) TGPU is the time of evaluating the query, given the input data already in
the device memory. The output data are stored in the device memory.

(3) Tdm mm(O) is the time for copying the query result from the device memory
to the main memory. O denotes the set of output data.

If the input and the output data are in the device memory, we exclude the time
for the data transfer between the device memory and the main memory.

Similar to a previous CPU-based cost model [Manegold et al. 2002], our model
estimates the elapsed time on the GPU in two parts, namely the memory access
time and the computation time. Equation 2 gives the estimation on TGPU, where
TMem and Tcomputation denote the memory access time and the computation time,
respectively.

TGPU = TMem + Tcomputation. (2)

It is challenging to develop an accurate cost model for the time components on
the GPU, since the GPU is a massively parallel processor. Moreover, unlike CPU
vendors, GPU vendors do not expose much detail about the GPU architecture.
Due to the architectural difference between the two processors, the CPU-based
cost models on TMem and Tcomputation [Manegold et al. 2002] are not applicable
to the GPU. To address these challenges, we categorize the time components
in our cost model into two kinds. The estimation of the first kind, including
Tmm dm, Tdm mm, and TMem can be derived using an analytical method given a
small set of hardware parameters. For the second kind, Tcomputation, we treat
the GPU as a black box and use a calibration-based approach to estimate the
cost.

4.1 Estimating Tmm dm and Tdm mm

We first develop the cost model for the data transfer between the main memory
and the device memory. We use the same model for Tmm dm and Tdm mm, and

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:16 • B. He et al.

assume the bandwidth from the main memory to the device memory is the
same as that from the device memory to the main memory. We denote this
bandwidth to be Band bytes/sec.

We model the cost of a data transfer between the main memory and the
device memory as the sum of two parts, the initialization cost of invoking the
transfer and the time for transferring the data. Given the size of the data chunk
to be transferred, x bytes, the cost of transferring the data chunk from the main
memory to the device memory is given by Equation 3. This formula applies to
estimating Tdm mm as well.

Tmm dm(x) = T0 +
x

Band
. (3)

In the model, T0 is the initialization cost of invoking the transfer (in seconds).
After the initialization, the data chunk is transferred at Band bytes/sec, fully
utilizing the memory bandwidth.

4.2 Estimating Tcomputation

Due to the highly parallel architecture of the GPU, we propose a calibration-
based method using micro benchmarks to estimate the computation cost for the
GPU. This calibrated computation time includes the access time for the local
memory in addition to the pure computation time.

Specifically, we view the GPU as a black box and measure the unit cost of
our query processing algorithms. The unit cost of an algorithm is defined to be
the total cost divided by the work complexity, O(N1, . . . , Nq), with a constant
factor of one (q is the number of relations involved in the algorithm, and Ni is
the total number of tuples in the ith relation). For example, the unit cost of a
map is the total time of a map divided by |R|, and the unit cost of an NINLJ is
the total time of the NINLJ divided by |R| × |S|.

The key issue of calibrating the computation time is to determine the suit-
able input sizes so that the memory stalls are zero. The CPU-based calibration
[Manegold et al. 2002] assumes the memory stall is zero only when the input
fits into the cache. This assumption holds on the CPU where thread parallelism
is relatively low. In contrast, memory stalls can be hidden by the on-chip local
memory as well as by the massive thread parallelism on the GPU. Thus, on
the GPU we need to find the input sizes with which the memory stalls can be
fully hidden by both factors. In general, due to the massive thread parallelism,
the input sizes for calibrating the GPU costs are larger than those obtained
from considering only the local memory size. As such, adopting the traditional
approach may overestimate the computation cost for the GPU.

We experimentally measured the unit cost of our query processing algorithms
with the data size varied. The experimental setup is described in Section 6.
Figure 6 shows the unit cost of the map, the quick sort, and the NINLJ. The map
has the lowest computation cost, the NINLJ the highest, and the quick sort is
in the middle. We observe similar performance trends for other algorithms with
the data size varied. The unit cost is very high for small data sets (e.g., smaller
than eight thousand tuples), and decreases as the data set size increases. This
is because the memory stalls are not fully hidden when the data size is small,

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:17

Fig. 6. The measured unit cost. The unit cost is very high for small data sets, and decreases as
the data set size increases.

and more memory stalls are hidden as the data size increases. The unit cost
reaches the minimum at a balanced point. As the data size increases from the
balanced point, the unit cost may increase until it becomes almost constant.
The balanced point varies with different algorithms. The balanced points for
the map, quick sort, and the NINLJ are 2 MB, 8 MB, and 256 KB, respectively.

Based on the performance trend, we use micro benchmarks to find the bal-
anced point for each algorithm. Given the balanced point (n0, . . . , nq) for the
sizes of the q inputs to the algorithm, we estimate the unit cost of the algorithm
to be µ, where T 0

GPU
is the estimated computation cost.

µ =
T 0

GPU

O(n0, . . . , nq)
. (4)

We estimate T 0
GPU

by subtracting the estimated memory cost and the memory
transfer cost from the calibrated total cost.

Given the unit cost in the computation of an algorithm, µ, we estimate the
computation time of the algorithm in Equation 5.

Tcomputation = µ · O(N1, . . . , Nq). (5)

4.3 Estimating TMem

We first derive the analytical cost model for the primitives and then for the
query processing algorithms. The basic idea of estimating the memory access
time TMem is to estimate the total size of data accesses to the device memory.
We compute the time to be the ratio of the data size and the bandwidth of the
device memory. We exclude the accessing cost of the local memory from TMem,
since the local memory cost is already included in Tcomputation.

When deriving the cost model for the memory access time, we distinguish
the coalesced and noncoalesced access patterns, because the coalesced access
pattern has a higher memory bandwidth than the noncoalesced one.

Equation 6 gives the cost of the map primitive, Cmap, where Bh is the memory
bandwidth of coalesced accesses to the device memory.

Cmap =
‖Rin‖ + ‖Rout‖

Bh

. (6)

Since the locality of data accesses is important for the scatter and the gather
[He et al. 2007], we estimate their cost in two aspects in Equations 7 and 8,
respectively. When the locations are sequential, accesses to the input array, the

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:18 • B. He et al.

location array and the output array are coalesced. The costs of both the scatter

and the gather are estimated to be
‖Rin‖+‖Rout‖+‖L‖

Bh
. When the locations are

random, accesses to the output array in the scatter have low locality. Each write
results in an access to the device memory, and the accesses are not coalesced.

Thus, we estimate the scatter cost to be
‖Rin‖+‖L‖

Bh
+

|Rout|·b

Bl
, where b is the block

size of the device memory (in bytes). Similarly, we obtain the cost of the gather

to be ‖Rout‖+‖L‖

Bh
+

|Rin|·b

Bl
. When there is no knowledge about whether the locations

are random or sequential, we assume the access locations are random for worst-
case estimation.

Cscatter =

{ ‖Rin‖+‖Rout‖+‖L‖

Bh
, L is sequential

‖Rin‖+‖L‖

Bh
+

|Rout|·b

Bl
, otherwise.

(7)

Cgather =

{ ‖Rin‖+‖Rout‖+‖L‖

Bh
, L is sequential

‖Rout‖+‖L‖

Bh
+

|Rin|·b

Bl
, otherwise.

(8)

The reduce primitive has log M
r

|Rin| passes. In pass i, the reduce primitive

reads the array sized ‖R‖

M i bytes, and writes the array sized ‖R‖

M i+1 bytes, which
subsequently becomes the input array for the next pass. The reads are coa-
lesced, whereas the writes are not. Equation 9 gives the cost estimation of the
reduce primitive.

Creduce =
‖Rin‖

M − 1
·

(

M

Bh

+
1

Bl

)

. (9)

Since the prefix scan consists of a reduce and a down-sweep, and the down-
sweep stage is similar to the reduce stage, we estimate the total cost of the
prefix scan as twice of the cost of the reduce primitive (Eq. 10).

Cpscan = 2 · Creduce. (10)

We estimate the cost of the split as the sum of the five steps’ costs. The first

step is a sequential read on the input array with a cost of
‖Rin‖

Bh
. Step 2 is a

coalesced write for the histogram array. Suppose the total size of histograms
is H bytes, the cost of Step 2 is H

Bh
. In our experiments, each element in the

histogram is an integer of four bytes. Given the split fanout, F , H = 4·#thread·F

in our experiment. Step 3 is a prefix sum on the histogram array of #thread · F

integers. The cost is Cpscan. Step 4 loads the array storing the prefix sum into

the local memory, resulting in a cost of 4·#thread·F
Bh

. Step 5 is a random scatter,

and the cost is Cscatter . Thus, the total cost of the split primitive is given by Csplit

in Equation 11.

Csplit =
‖Rin‖

Bh

+
4 · #thread · F

Bh

+ Cpscan +
4 · #thread · F

Bh

+ Cscatter. (11)

We estimate the cost of the filter as the sum of a map, a prefix sum and a
sequential scatter, as shown in Equation 12.

Cfilter = Cmap + Cpscan + Cscatter. (12)

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:19

The quick sort consists of logF
‖Rin‖

M
passes of split. For simplicity, we estimate

the cost of each pass to be the same. Additionally, sorting the chunks generated
by the split requires fetching the entire relation into the local memory and
storing the sorted relation into the device memory. The total cost of the quick
sort is given as Cqsort in Equation 13.

Cqsort = logF

‖Rin‖

M
· Csplit + 2

‖Rin‖

Bh

. (13)

Given the fanout of the tree index, f , the height of the tree index is log f |R|.
Denote the number of levels of the tree index that can fit into the local memory to
be lmax = log f (M

z
·(f −1)+1), where z is the tree node size in bytes. The average

number of levels of the tree index accessed by each search is (log f |R| − lmax).
Since accesses to the tree index are not coalesced, the average cost of a search
over the tree index is Ctree in Equation 14.

Ctree =
z ·

(

log f |R| − log f

(

M
z

· (f − 1) + 1
))

Bl

. (14)

Suppose the number of buckets of the hash table is #bucket. Denote the entry
size of the header array and the bucket array to be h and e bytes, respectively.
The average number of records in a bucket is |R|

#bucket
. Due to the random access

pattern of the hash search, the accesses in hash search, except those to the
header array, are not coalesced. Thus, the average cost of a search over the
hash table is Chash in Equation 15.

Chash =
h

Bh

+

(

b · ⌈ 2e
b
⌉ + ⌈ r

b
⌉ ·

|R|

#bucket

)

Bl

. (15)

Since all our joins use the three-step output scheme, we first estimate the cost
of the output scheme. Since the matching cost depends on the join algorithm,
we estimate the cost of the output scheme excluding the matching cost. Suppose
the total number of threads in the output scheme is T , the first step writes T

integers and the third step reads T integers. These accesses are coalesced. The
total cost is 2 · 4·T

Bh
= 8·T

Bh
. The cost of the second step is Cpscan. Suppose the total

size of join results is O bytes. Since the writes in the output are not coalesced,
the cost is O

Bl
.

Coutput =
8 · T

Bh

+
O

Bl

. (16)

Since each thread group accesses R ′ and S′ only once from the device memory,
the total volume of data transfer between the GPU and the device memory is
|R|·|S|

|R ′|·|S′|
(‖R ′‖+‖S′‖) =

|R|·|S|

T ·M
(T · r · s + M · s). The counting step in the three-step

output scheme doubles the cost [He et al. 2008]. The cost of performing NINLJ
on R and S is given by Cninlj in Equation 17.

Cninlj = 2 ·
|R| · |S|

T · M · Bh

(T · r · s + M · s) + Coutput. (17)

We estimate the cost of INLJ, SMJ, and HJ in Equations 18, 19 and 20,
respectively. We estimate the cost of the matching step to be ‖R‖+‖S‖

Bh
for the

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:20 • B. He et al.

three joins. Additionally, the counting step in the three-phase output scheme
doubles the matching cost.

Cinlj = |S| · Ctree + 2 ·
‖R‖ + ‖S‖

Bh

+ Coutput (18)

Csmj = CR
sort + CS

sort + 2 ·
‖R‖ + ‖S‖

Bh

+ Coutput (19)

Chj = CR
split + CS

split + 2 ·
‖R‖ + ‖S‖

Bh

+ Coutput. (20)

5. GPU COPROCESSING

Assigning an operator to suitable processor(s) is important for the effective
utilization of computation resources. Since the GPU has a much higher com-
putation capability and memory bandwidth than the CPU, GPU processing is
potentially more efficient than CPU processing when the input data resides in
the GPU device memory. However, if we include the cost of data transfer be-
tween the main memory and the GPU memory, GPU processing can be slower
than CPU processing, for example, on some simple operators such as selections.
Finally, in the case of involving both the CPU and the GPU for an operator, the
data partitioning scheme between the two processors needs to be determined.
Therefore, we propose a coprocessing scheme that assigns each operator in a
query plan to suitable processors.

Given a query plan, the coprocessing scheme determines how each opera-
tor in a query plan is evaluated using a cost-based approach. There are three
modes of evaluating an operator: on the CPU only, on the GPU only, and using
both processors, denoted as EXEC CPU, EXEC GPU, and EXEC COP, respec-
tively. The intuition for coprocessing is that EXEC CPU is suitable for simple
operators such as selections, whereas EXEC GPU and EXEC COP are suitable
for complex operators such as joins. Evaluating an operator in EXEC COP and
EXEC GPU may require partitioning the input data. In EXEC GPU, when the
data is larger than the GPU device memory, the input needs to be partitioned in
order to fit into the GPU device memory. In EXEC COP, the workload is divided
between the CPU and the GPU.

When generating a coprocessing plan, we adopt the two-phase ap-
proach [Hong and Stonebraker 1991]: first we generate a query plan using
a Selinger-style optimizer [Selinger et al. 1979] for the CPU, and then for each
operator we determine whether to assign it to the CPU, to the GPU, or parti-
tion it to both the CPU and the GPU. For each operator, the cost model takes
into consideration whether the input data is in the main memory or already
in the device memory. If a query plan consists of a small number of nodes (the
threshold is ten in our experiment), we consider all the combinations, and pick
the plan with the minimum cost. Otherwise, we decompose the query plan into
multiple subqueries, each of which has a small number of nodes less than the
threshold. We determine the optimal query plans for the subqueries in their post
order, and obtain the final plan as the combined plan from all the subqueries.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:21

This is a tradeoff between the optimality of the query plan and the efficiency of
generating the optimal plan.

As described in the coprocessing algorithm, partitioning is required in eval-
uating an operator in EXEC GPU or EXEC COP. Following the divide-and-
conquer methodology, the evaluation has three steps:

(1) Partitioning. We divide the operator into multiple independent suboper-
ators. The memory footprint of the suboperator executing on the GPU is
bounded by the device memory. Moreover, we consider the performance dif-
ference of evaluating the operator on the CPU and on the GPU to determine
the granularity of the suboperators.

(2) Suboperator execution. We execute the corresponding suboperators on the
CPU or the GPU.

(3) Merging. We merge the results generated by the suboperators into the final
result on the CPU.

Partitioning and merging are well studied techniques in parallel databases
[DeWitt and Gray 1992]. We now briefly describe our implementation on the
sort and the join. Since the EXEC GPU scheme is similar to the EXEC COP
scheme, we present the implementation for EXEC COP scheme only.

We design the sort in EXEC COP as a merge sort. Suppose the maximum
number of tuples that can be sorted on the GPU is c0. Let p be the ratio of
the estimated elapsed time of sorting c0 tuples on the GPU over that on the
CPU. We set the task sizes for the CPU and the GPU to be (c0 × p) and c0,
respectively. When either processor becomes available, we assign a task with
the corresponding size to that processor. Finally, we merge the sorted chunks
into a sorted relation with the CPU-based merge sort. The merge sort is efficient
on the CPU, because it requires only a single sequential scan on the two sorted
input relations.

The EXEC COP scheme for the NLJs with and without indexes both perform
a horizontal partitioning on the outer relation. The partition sizes are deter-
mined similar to that for the sort. Thus, the NLJs are divided into multiple
subjoins. In each subjoin, the NINLJ and the INLJ use a chunk of the outer
relation to join the inner relation via nested loops or the tree index. Finally, we
combine the results generated by the subjoins into the final result on the CPU.

The EXEC COP scheme in the SMJ sorts the two input relations with
EXEC COP, and the merge phase is performed on the CPU.

The EXEC COP scheme of HJ involves a hash partitioning on both R and S

into a small number of partitions. We choose both processors to handle the par-
titioning on one relation for parallel processing, and then merge the generated
partitions on the CPU. After the hash partitioning, the hash join is decomposed
into multiple subjoins on R partitions and their corresponding S partitions.
We dynamically assign the subjoins to the processors. The task assignment is
based on the performance ratio of evaluating the hash join on the CPU only
and on the GPU only. If the GPU-based hash join is faster than its CPU-based
counterpart, we assign the subjoin with the largest estimation cost to the GPU
and the subjoin with the smallest estimation cost to the CPU.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:22 • B. He et al.

Table III. Hardware Configuration

GPU CPU(Quad-core)

Processors 1350MHz×8×16 2.4 GHz × 4

Data cache (local memory) 16KB ×16 L1: 32KB×4, L2: 4096KB×2

Cache latency (cycle) 2 L1: 2 , L2: 8

DRAM (MB) 768 2048

DRAM latency (cycle) 200 300

Bus width (bit) 384 64

Memory clock (GHz) 1.8 1.3

A final note is that, even though coprocessing involving both the CPU and the
GPU for a query operator utilizes the aggregate power of both processors, the
overall performance improvement may be insignificant due to two factors. The
first factor is the relative performance of the GPU- and CPU-based algorithms.
If a GPU-based algorithm is much faster than its CPU-based counterpart, little
load will be given to the CPU, and the performance gain of partitioning will
be low. The second factor is the runtime overhead of partitioning, including
dividing the workload, merging the intermediate and final results, and the
synchronization between the CPU and the GPU workers.

6. EXPERIMENTAL RESULTS

We study the overall performance of GDB using TPC-H benchmark queries on
disk-resident data in comparison with a commercial database engine. We then
perform detailed studies on our cost model and individual algorithms using
micro benchmarks on memory-resident data.

6.1 Experimental Setup

We have implemented and tested our algorithms on a PC with an NVIDIA
GeForce 8800 GTX GPU and a recently-released Intel Core2 Duo processor.
The hardware configuration of the PC is shown in Table III. The GPU uses a
PCI-EXPRESS bus to transfer data between the main memory and the device
memory with a theoretical bandwidth of 4 GB/s.

We compute the theoretical bandwidth to be the bus width multiplied by
the memory clock rate. The GPU and CPU have theoretical bandwidths of 86.4
GB/s and 10.4 GB/s, respectively. Based on our measurements, the G80 achieves
a memory bandwidth of around 69.2 GB/s whereas the quad-core CPU has
5.6 GB/s.

We use both the TPC-H benchmark and micro benchmarks to evaluate the
performance of GDB. The experiments using the TPC-H benchmark are to com-
pare the overall performance, and those on micro benchmarks to assess the
effectiveness of individual techniques in GDB.

We choose a subset of queries from the TPC-H benchmark such that the
queries cover different data types such as date and string, and complex op-
erators such as joins and sorting. Specifically, we choose Q1 and Q3 in our
evaluation. Q1 has selections on the date type, and grouping and sorting on
attributes with two characters. Q3 has two joins, selections on string and date
types, and a grouping on three attributes.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:23

Table IV. Queries of DBmbench

µSS µNJ µIDX

SELECT distinct (a3) SELECT avg (T1.a3) SELECT avg (a3)
FROM T1 FROM T1, T2 FROM T1
WHERE Lo < a2 < Hi WHERE T1.a1=T2.a1 AND Lo < T1.a2 < Hi WHERE Lo < a2 < Hi
ORDER BY a3

Table V. SQL Queries on Our Homegrown Data Sets

Name Query

SEL SELECT R.a1 FROM R WHERE Lo ≤ R.a1 ≤ Hi

AGG SELECT max(R.a1) FROM R

ORD SELECT R.a2 FROM R WHERE Lo ≤ R.a1 ≤ Hi ORDER BY R.a1

GRP SELECT max(R.a1) FROM R GROUP BY R.a2

NEJ SELECT R.a1 FROM R,S WHERE R.a1≤S.a1 AND ... AND R.an≤S.an
AND Lo ≤ R.a2 ≤ Hi AND Lo′ ≤ S.a2 ≤ Hi′

EJ SELECT R.a1 FROM R,S WHERE R.a1=S.a1

We used the standard data generator6 from the TPC-H Web site to generate
TPC-H data sets. We used the scale factors (SF) of 1 and 10 for the data sets,
with total data sizes of about 1 and 10 GB, respectively. These two scales cover
two cases. The data set with SF = 1 fits into the main memory, but exceeds
the device memory, whereas the data set with SF = 10 is larger than both the
main memory and the device memory.

We used our homegrown micro benchmarks as well as DBmbench [Shao et al.
2005] for detailed studies. DBmbench consists of three queries, including a scan-
dominated query (µSS), a join-dominated query (µNJ) and an index-dominated
query (µIDX). Table IV shows the queries in DBmbench. DBmbench consists
of two relations, T1 and T2, each with three integer attributes: a1, a2 and
a3; and the padding field. Attribute a1 of T2 has a reference key constraint
with attribute a1 of T1. Following previous studies [Ailamaki et al. 1999; Shao
et al. 2005], we set the length of “padding” to make a record 100 bytes long.
The values of a1, a2, and a3 are uniformly distributed between 1 and 150,000,
between 1 and 20,000, and between 1 and 50, respectively. The parameters in
the predicate, Lo and Hi, are used to obtain different selectivities. In our study,
we set the selectivity of µSS to be 10%, the join selectivity of µNJ to be 20%,
and the selectivity of µIDX to be 0.1%. These settings for DBmbench represent
the characteristics of TPC benchmarks’ best [Shao et al. 2005].

Our homegrown workload contains various queries on relations R and S.
Both tables contain n fields, a1, . . . , an, where ai is a randomly generated 4-
byte integer. The value range of a2 is a parameter with a range [0, A2] for testing
the group-by operator (the default value for A2 is |R|), and the other fields with
range of [0, 231 − 1]. Additionally, we varied n to increase or decrease the tuple
size.

Table V shows the SQL queries on our homegrown data sets. Our workloads
use parameters in the predicate to control the selectivity. The queries include
simple ones such as selection and aggregations, and complex ones such as joins.

6http://tpc.org/tpch/.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:24 • B. He et al.

The selection queries in our own workloads have two forms. One is the range
selection (Lo<Hi) and the other the point selection (Lo = Hi). We use table
scans to evaluate SQL queries unless specified. Since we focused on the selection
performance, we set (Hi-Lo) to a small constant, such as ten, in the non-equality
predicate.

The join queries in our own workloads have two forms. One of the two join
queries is an equi-join and the other a non-equijoin. The equi-join takes R.a1 =

S.a1 as the predicate and the non-equijoin R.a1 < S.a1 and ...and R.an < S.an.
All fields of each table are involved in the non-equijoin predicate so that an
entire tuple is brought into the cache for the evaluation of the predicate. We
used the non-indexed NLJ to evaluate the non-equijoin and used the indexed
NLJ, the sort-merge join, or the hash join to evaluate the equi-join.

We run each experiment five times, and report the average value. Among
these five runs, we observed stable performance results (with the coefficient of
variance smaller than 5%).

—Implementation details on the cost model. On the CPU, we have adopted the
CPU-based cost model in the previous study [Manegold et al. 2002]. On the
GPU, we implemented micro benchmarks to calibrate the parameters in the
cost model. The calibration is specific to the architectural features of the GPU.
We measure the initialization overhead for invoking a memory transfer, T0,
to be the time for transferring one byte of data from the main memory to
the device memory. The memory bandwidth Band between the GPU device
memory and the main memory is calibrated by transferring a large data
array—one half of the device memory size. The coalesced and non-coalesced
device memory bandwidths, Bh and Bl , are measured from the map primitive
with and without the coalesced access optimizations, respectively. Note, the
map primitive is with thread parallelism optimization. We run the calibration
ten times and choose the average calibration value as the value used in the
cost model. Through calibration, we obtain the following parameter values:
T0 = 0.015 ms, Band = 3.1 GB/sec, Bh = 64 GB/sec, Bl = 32 GB/sec, and the
memory block size (b) is 256 bytes.

—Implementation details on CPU. For comparison, we have implemented
highly optimized CPU-based primitives and query processing algorithms.
These CPU-based parallel query processing algorithms are adopted from the
OpenMP7 implementation in the previous study [He and Luo 2008] and are
rewritten using our optimized primitives. We use cache optimization tech-
niques [Shatdal et al. 1994], to fine tune the performance of the parallel
implementation. With these optimized primitives, we implement query op-
erators, including four join algorithms—the blocked NINLJ [Shatdal et al.
1994], the INLJ with the CSS-tree index [Rao and Ross 1999], the SMJ with
the optimized quick sort [LaMarca and Ladner 1997] and the radix HJ [Boncz
et al. 1999]. Note that, due to the dynamic memory allocation capability of
the CPU, the CPU-based algorithms do not use the three-step output scheme

7http://www.openmp.org/.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:25

of the GPU-based algorithms. Each worker thread outputs its results in its
local memory buffer, and the results in these memory buffers are merged into
the final result. We compiled our implementation using MSVC 8.0 with full
optimizations. In general, the parallel CPU-based primitives and query pro-
cessing algorithms are 2–4x faster than the sequential ones on the quad-core
CPU.

—Implementation details on GPU. We implemented our primitives and join
algorithms using CUDA. CUDA is a GPGPU programming framework for
recent NVIDIA GPUs. In the CUDA programming API, the developer can pro-
gram the GPUs without any knowledge of graphics-rendering APIs. Similar
abstractions are also available on AMD GPUs using their compute abstrac-
tion layer (CAL) API. Both of these APIs expose a general purpose, massively
multi-threaded parallel computing architecture and provide a programming
environment similar to multi-threaded C/C++. We use the same tuning on
the parameters such as the number of threads for each thread group and the
number of thread groups as the previous study [He et al. 2007, 2008].

—Implementation details on coprocessing. The coprocessing scheme uses the
implementation from the CPU and the GPU ends. To hide the complexity
of different processors, we implemented the CPU and the GPU ends as two
DLLs (Dynamic Linked Libraries). We declared and implemented similar
interfaces for the primitives and the relational operators in both DLLs. Our
coprocessing scheme calls the interfaces provided in the DLLs without the
knowledge of the processor. We studied the overhead of initializing the DLLs
by comparing the performance of different implementations with and without
wrapping the interfaces into DLLs, and found that the initialization overhead
was negligible. Since the current GPU does not support multi-tasking, we add
a lock on the GPU to ensure the synchronized accesses to the GPU. That is,
before entering the code region for processing on the GPU, we acquire the
lock, and release the lock once leaving the code region. In our experiments,
we found that this locking overhead was negligible due to the large task
granularity for the GPU.

When the input data is stored in the external storage, we perform the I/O
operation with the assistance of the CPU, since current GPUs cannot directly
access the data in the hard disk. We perform the file I/O on the CPU and load
the file data chunk by chunk into a buffer in the main memory. The chunk size
is bounded by the main memory.

6.2 TPC-H Performance Evaluation

Figure 7 shows the query plans of TPC-H queries Q1 and Q3 in GDB when
SF = 1 and SF = 10. Each operator in the query plan is represented in one
of the four execution modes as the combinations with or without partitioning,
and CPU or GPU processing. Among these four execution modes, the CPU
processing with partitioning is for data whose size is larger than the main
memory, and the other three are GPU coprocessing modes of GDB.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:26 • B. He et al.

Fig. 7. Query plans of evaluating Q1 and Q3 in TPC-H benchmark.

Table VI. Performance (in Seconds) of TPC-H Queries

SF = 1 SF = 10

Q1 Q3 Q1 Q3

DBMS X 14.0 3.8 DBMS X 859 1880

CPU 1.01 0.79 CPU 244.0 250.9

GDB 0.89 0.66 GDB 241.4 250.2

Table VI shows the performance of running the three queries. For compari-
son, we also show the performance of our CPU-based engine as well as as well
as a commercial DBMS (denoted as DBMS X). The buffer pool size of DBMS
X is set to be 1 GB. All the results are obtained in a warmed buffer, where
we ran the query multiple times until the execution time of a query become
stable. Both the CPU and the GDB engines outperform DBMS X by over 13.8
times and 3.5 times when SF = 1 and SF = 10, respectively, which demon-
strates the efficiency of our implementation. The overall performance of GDB
is only slightly faster than the CPU-based engine. Detailed studies on the time
breakdown of both engines show that disk I/O time contributes 98% to the to-
tal execution time when SF = 10. In such I/O-dominant workloads, the GPU

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:27

80

100

120

140

160

180

E
la

p
se

d
 t
im

e
(m

s)

Measured

Estimated

0

20

40

60

16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB

E
la

p
se

d
 t
im

e
(m

s)

Block size

Fig. 8. Data transfer time from the main memory to the device memory (‖R‖ = 128MB). When
the block size is larger than 4MB, the peak bandwidth is 3.1 GB/sec.

acceleration has an insignificant impact on the overall performance. We further
examine the computation time that is estimated by subtracting the I/O time
from the total elapsed time in the TPC-H queries. When SF = 10, GDB takes
23% and 13% less computation time than the CPU-based engine on Q1 and Q3,
respectively.

6.3 Micro-Level Performance Evaluation

We have two sets of experiments for micro-level evaluation of GDB. The first set
of experiments is to evaluate our cost model, including data transfer between
device memory and main memory and execution time on the GPU. The sec-
ond set of experiments focuses on the performance evaluation using the micro
benchmarks.

We varied the characteristics of the data sets in our homegrown micro bench-
marks. By default, the measured results for non-indexed NLJs were obtained
when |R| = |S| = 1M and r = s = 128 bytes, and the measured results for other
operations and queries were obtained when |R| = |S| = 16M and r = s = 8
bytes.

6.3.1 Cost Models. Data transfer between device memory and main mem-

ory. Figure 8 shows the estimated and measured memory copy times from the
main memory to the device memory. Similar results are obtained for data trans-
fer from the device memory to the main memory. Given a certain block size, we
transfer the data block by block. Due to the overhead associated with each
transfer, both the measured and the estimated copy times increase as the block
size decreases. When the block size is larger than 4 MB, the copy time remains
almost constant. That means when the relation size is larger than 4 MB, the
bandwidth is fully utilized. Our cost model on the memory transfer accurately
predicts the measured performance.

Execution time on the GPU. Figure 9 shows the measured and estimated
execution times of the four join algorithms on the GPU. The estimation methods
include our model and the traditional model [Manegold et al. 2002], denoted as
“Estimation” and “Estimation(old),” respectively. We fixed the tuple size to be
8 bytes and varied the number of tuples in both relations.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:28 • B. He et al.

Fig. 9. Model validation on the execution time of the GPU.

Fig. 10. The estimated time breakdown of the four joins for the GPU.

For NINLJ, the traditional approach and our model have the same estima-
tions. For the other three join algorithms, including INLJ, SMJ, and HJ, the
cost estimations with the traditional approach overestimates the elapsed time.
In contrast, our model is more accurate than the model with the traditional
approach on these three joins. This difference between the estimation accu-
racy for NINLJ and the other three joins can be explained from the estimated
time breakdown of the four joins, as shown in Figure 10. In NINLJ, memory
stalls are almost completely hidden, whereas in the other three joins memory

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:29

Fig. 11. The break-even point for GPU-based over CPU-based sort.

stalls constitute 30–40% of the elapsed time. Both models estimate computa-
tion highly accurately, but our estimation of memory stalls is relatively less
accurate due to the runtime dynamics of memory accesses in a massively par-
allel execution environment. This difference between the estimation accuracy
for computation versus memory stalls results in the difference between NINLJ
versus the other three joins. It is also the reason for the traditional model to
fail on estimating the cost for the three joins other than NINLJ.

Overall, our estimation approximates the measurement well for the four join
algorithms. It correctly predicts the order of relative performance of the four
join algorithms. For example, our model predicts that INLJ is the most efficient
and NINLJ is the least efficient among the four join algorithms.

Break-even points for GPU processing. Our cost model is used to determine
the break-even point between the GPU- and the CPU-based evaluations. Fig-
ure 11 shows the measured and estimated elapsed times for the GPU-based
and the CPU-based quick sorts. When R contains 1000 tuples of a total size of
8 KB, the transfer time is over 40% of the total elapsed time of the GPU-based
sort. This ratio decreases to 10% when |R| is 256K. The break-even point for
the quick sort is |R| = 16K . The calculation based on the cost model correctly
predicts this break-even point.

6.3.2 Processing Algorithms. We perform detailed studies on processing
algorithms. First, we evaluate individual processing algorithms in GDB, includ-
ing primitives, access methods, and coprocessing schemes. In these studies, we
focus on the elapsed time in the GPU-based operations and exclude the time of
data transfer between the GPU and the CPU. These measurements are mean-
ingful since GPU-based primitives and operators are executed in a query after
their input data are already in the device memory and their output data are
stored in the device memory as input to subsequent primitives and operators.

Second, we measure the end-to-end performance of the queries in the mi-
cro benchmarks. For both CPU- and GPU-based algorithms, we measure the
elapsed time from the moment of issuing the query to the moment of obtaining
the query result.

Primitives. We studied the three optimization techniques on the GPU: the
thread parallelism, the coalesced access, and local memory optimizations. We

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:30 • B. He et al.

Table VII. Elapsed Time for Primitives and Joins (ms)

Primitive CPU GPU Speedup

Map 109 4 27.3

Scatter 1312 104 12.6

Gather 1000 103 9.7

Prefix scan 141 14 10.1

Reduce 31 11 2.8

Filter 62 37 1.7

Split 813 125 6.5

Sort(qsort) 2313 945 2.4

Operators CPU GPU Speedup

Selection 63 36.08 1.7

Projection 20 0.86 23.3

OrderBy 2500 1000 2.5

GroupBy 2323 945 2.5

Aggr. 32 11.62 2.8

NINLJ 528.0 × 103 75.0 × 103 7.0

INLJ 4235 649 7.0

SMJ 5030 1946 2.6

HJ 2550 1327 1.9

obtained similar results on the optimization techniques as previous studies [He
et al. 2008].

Table VII shows the performance comparison between the CPU- and GPU-
based optimized primitives and joins. We define the speedup to be the ratio
of the execution time on the CPU to that on the GPU. Overall, the GPU-
based algorithms achieve a performance speedup of 2–27x over the CPU-
based algorithms. We obtained similar performance speedup with different data
sizes.

We have the following observations. First, the average bandwidth of the op-
timized map primitive is 2.4 GB/sec and 64 GB/sec on the CPU and the GPU,
respectively. The speedup of the optimized GPU map is 27x over the CPU-based
map. Additionally, it has a high bus utilization of 75%, given the theoretical
bandwidth of 86 GB/sec. Second, the scatter and the gather have much lower
bandwidths than the map due to their random access nature. Third, in the split
on both the GPU and the CPU, the scatter takes over 70% of the total execution
time. Fourth, the speedup of the GPU-based quick sort algorithm is 2x over
the optimized quick-sort on the quad-core CPU. Comparing the two GPU-based
sorting algorithms, we find that the quick sort is around 30% faster than the
bitonic sort (the result on bitonic sort is not shown in the table). This result
is consistent with the fact that the quick sort has a lower complexity than the
bitonic sort. We used the quick sort as our sorting primitive in the CUDA imple-
mentation. Fifth, the GPU-based operators achieve a performance speedup of
1.7–23.3x over their CPU-based counterparts due to the highly efficient primi-
tives. In particular, the GPU-based NINLJ and INLJ are over six times faster
than their CPU-based counterparts, because their computation maps well to
the GPU architecture.

Handling various data types. To demonstrate the feasibility of handling var-
ious data types in GDB, we studied the performance of the GPU- and the CPU-
based filters on four different data types, namely integer, float, date, and string.
The first three types are of a fixed length, and strings have variable sizes (with
an average length of eight). Figure 12 shows performance comparisons when
the number of tuples is 16 million, and the filter selectivity is around 1%. On
these four data types, the GPU-based filter is around 1.6–5.5x faster than its
CPU-based counterpart. We also varied the average length of the string, and
got similar performance speedups.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:31

Fig. 12. The performance of filters with different data types.

Fig. 13. The performance of map with the number of arithmetic operations varied.

Comparing the performance of numeric types on the GPU and the CPU, we
find that GDB exploits the high floating point computation capability of the
GPU. We evaluated a map primitive with a map function consisting of mul-
tiple arithmetic operations including multiplications and divisions. We varied
the amount of computation by the number of arithmetic operations in a map.
Figure 13(a,b) shows the performance of the GPU- and the CPU-based maps
with integers and floats, respectively. The GPU-based maps outperform their
CPU-based counterparts by over an order of magnitude. As the number of arith-
metic operations increases, the performance speedup is stable for integers, and
increases for floats. Also, we observe that the GPU-based map with floats is
faster than that with integers. This indicates that floating point computation
fits better than integers on the GPU.

Access methods. We construct the tree index and the hash index on the field a1

of R. We evaluated our access methods including the B+-tree and the hash index
using a number of selection queries. Figures 14(a) and (b) show the performance
comparison of evaluating SEL the tree search and the hash search on the CPU
and the GPU. Each SEL instance is with Lo and Hi equal to a random generated
integer. For each access method, we fixed the number of searches to be one
million and varied the number of records in the index. The GPU-based tree

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:32 • B. He et al.

Fig. 14. Performance comparison of the CPU- and the GPU-based access methods.

Fig. 15. Performance of evaluating an Operator with Partitioning on both CPU and GPU.

searches and hash searches are 3.5 and 2.6 times faster than their CPU-based
counterparts.

Coprocessing with data partitioning between CPU and GPU. We studied the
performance impact of evaluating an operator with partitioning on both pro-
cessors. Figure 15 shows the elapsed time of the four joins in our homegrown
queries with and without partitioning. The evaluation without partitioning is
performed on the GPU only. The performance impact of partitioning is insignif-
icant on the four joins. The performance improvement ratio is smaller than the
ratio of the overall processing power (CPU+GPU) divided by the GPU or the
CPU.

We analyzed the performance of the four joins in two cases. First, in NINLJ
and INLJ, the GPU-based algorithms are much faster than their CPU-based
counterparts, and the partitioning overheads are relatively small. As such, in-
volving the CPU helps little. Second, in SMJ and HJ, the CPU gets 25% and
30% of data for processing respectively, but the performance gain is still in-
significant. Our detailed studies show that the runtime overhead of partition-
ing contributes to over 20% of the total elapsed time for these two joins. The
performance improvement of partitioning is offset by the run-time overhead of
the partitioning. We have conducted experiments on other operators, and also
observed insignificant performance improvement by partitioning.

Queries in micro benchmarks. Table VIII shows the performance of evalu-
ating the queries in our homegrown workload and DBmbench, respectively.
We use INLJ, SMJ and HJ to evaluate the EJ query, denoted as EJ(INLJ),
EJ(SMJ), and EJ(HJ), respectively. For comparison, we show the performance

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:33

Table VIII. Elapsed Time of Evaluating the Queries on Micro Benchmarks (ms)

CPU ONLY GPU ONLY Coprocessing SpeedupL SpeedupH

SEL(point) 47 375 48 0.98 7.81

SEL(range) 172 407 175 0.98 2.33

AGG 16 266 16 1.00 16.63

ORD 3609 1735 1703 1.02 2.12

GRP 3984 1797 1594 1.13 2.50

NEJ 45578 3906 3828 1.02 11.91

EJ(INLJ) 4000 891 880 1.01 4.54

EJ(SMJ) 5562 2809 2709 1.04 2.05

EJ(HJ) 3640 1687 1642 1.03 2.21

uSS 62 219 63 0.98 3.48

uNJ 1828 500 455 1.10 4.02

uIDX 79 125 78 1.01 1.60

Fig. 16. Time breakdown for micro benchmarks with GPU ONLY.

of evaluating the queries with the CPU only (“CPU ONLY”), the GPU only
(“GPU ONLY”), and coprocessing (“Coprocessing”). For each query, let the
total elapsed time, including data and result transfer time, of CPU ONLY,
GPU ONLY, and Coprocessing to be t1, t2, and tc, respectively. We calculate
SpeedupL and SpeedupH for Coprocessing to be min(t1,t2)

tc
and max(t1,t2)

tc
, respec-

tively. SpeedupH is the performance gain of our cost-based coprocessing over
that when the wrong processor is chosen, and SpeedupL for the performance
gain over the better scheme between CPU ONLY and GPU ONLY.

Comparing the performance of CPU ONLY and GPU ONLY, we find that, for
simple queries, the GPU-based algorithms are much slower than their CPU-
based counterparts. This is mainly because data transfer time between the main
memory and the device memory is the major bottleneck for the GPU-based algo-
rithms evaluating these simple queries. Figure 16 shows the time breakdown of
processing the queries with GPU ONLY, dividing the total execution time of a
GPU-based algorithm into two components including the total time for copying
input data into the device memory and result output to the main memory, and
the GPU computation time. For complex queries, the GPU-based algorithms
are faster than their CPU-based counterparts. The data transfer time between
the main memory and the device memory is insignificant for evaluating these
queries.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:34 • B. He et al.

For all queries, SpeedupL is between 0.98 and 1.13 (most of them are larger
than one), and SpeedupH is between 1.60 and 16.63. SpeedupL is slightly
smaller than one on simple queries such as SEL, due to the overhead of cost
estimation. Mostly, Coprocessing achieves a performance similar to or better
than than the best one of processing on the GPU only and the CPU only. Based
on the cost models, Coprocessing chooses suitable processors to execute an op-
erator. For instance, the NEJ query with Coprocessing is slightly faster than
both the CPU ONLY and the GPU ONLY algorithms, through choosing the
CPU to evaluate the selections and coprocessing with partitioning to evaluate
the NINLJ on the selection results. Compared with the CPU ONLY algorithm,
Coprocessing offloads the NINLJ to the GPU. Compared with the GPU ONLY
algorithm, Coprocessing performs the selection on the CPU and reduces the
memory transfer between the device memory and the main memory.

6.4 Summary

In summary, with GPU acceleration, GDB achieves a significant performance
improvement on memory-resident data and has a comparable performance to
our optimized CPU-based engine on disk-based data. Specifically, on TPC-H
benchmark queries with data sets larger than the memory, GPU coprocessing
reduces the computation time up to 23%, even though the overall performance
improvement is insignificant due to the disk I/O bottleneck. In contrast, on
in-memory data our GPU-based primitives and query processing algorithms
achieve a speedup of 2–27x over their optimized CPU-based counterparts. With
data transfer time between the CPU and the GPU included, our GPU-based
algorithms achieve a 2–7x performance speedup over their CPU-based coun-
terparts for complex queries such as joins, and are 2–4x slower than their CPU-
based counterparts for simple queries such as selections. With the cost-based
GPU coprocessing scheme, the overall performance is similar to or better than
using the CPU or using the GPU only.

7. DISCUSSION

The main motivation for studying GPU coprocessing on relational databases
is that GPUs have a highly parallel hardware architecture that fits extremely
well with data-parallel query processing. Devoting most die area to compu-
tation units, the GPU has a high computation capability, and is suitable for
computation-intensive applications. Additionally, the device memory has a high
bandwidth, and the massive thread parallelism and the fast on-chip local mem-
ory on the GPU hides the memory latency well. These architectural features can
produce significant performance gains when using the GPU as a coprocessor.

While our study focuses on utilizing the GPU processor and device memory
for query coprocessing on memory-resident data, we have made initial efforts
on GPU coprocessing of disk-based data. As expected, the GPU is under-utilized
on disk-based data. Nevertheless, increases in the main memory as well as de-
vice memory will help further utilize the computation power of the GPU. One
trend is that memory-resident databases are getting even more significant: as
memory capacities increase, most frequently accessed data items in relational

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:35

databases are likely to fit into the main memory. Another trend in GPU hard-
ware development is that the device memory size is increasing as well, for
example, the NVIDIA Tesla S1070 GPU has a 16 GB device memory.

Although there have been quite a few studies on accelerating individual oper-
ators using the GPU [Lieberman et al. 2008; He et al. 2008], we find implement-
ing a full-fledged query on the use of a coprocessor on the GPU a challenging
task. In particular, we have identified the following challenging issues for im-
plementing query coprocessing on the current GPU. While these issues are chal-
lenging at the current status, they may be addressed with the combined efforts
from hardware vendors and developers. For example, we previously considered
that supporting high precision numbers on the GPU was challenging [He et al.
2008]. Current GPUs have already supported double-precision floating point
numbers, which addresses that challenge.

First, with the exposure of the massively multi-threaded hardware architec-
ture on the GPU, the complexity of GPU programming becomes a major hurdle
for developing correct and efficient GPU programs. While current debugging
facilities on the GPU can reduce the debugging effort, it is still tedious to ef-
fectively find bugs such as concurrency bugs in the massively multi-threaded
implementation.

Second, while pipelined execution parallelism is attractive on the CPU for
its small memory footprint, finer-grained pipelined execution, such as on a per-
tuple basis, on the GPU would be inefficient. The reason is that current GPUs
do not support dynamic memory allocation within kernel execution, and there-
fore we need to precompute the result size for each chunk of processing. In other
words, the pipelined execution needs to be synchronized for each data chunk,
which hurts the original pipelined parallelism. Note that our GPU query copro-
cessing algorithm can be considered as a special kind of pipelined processing
with a large data chunk granularity that is bounded by the GPU memory ca-
pacity.

Third, the data transfer between the GPU device memory and the main
memory can be a performance bottleneck for GPGPU applications. In our ex-
periments, processing simple queries on the GPU can be much slower than the
CPU-based algorithm due to the cost of this data transfer. Currently, we use
a cost model to determine whether the cost of the data transfer between the
GPU device memory and the main memory can be compensated by the perfor-
mance gain of GPU processing over CPU processing. As future work, we plan
to investigate compression techniques [Zukowski et al. 2006; Abadi et al. 2006]
in GDB to reduce the overhead of data transfer between the main memory and
the GPU memory. Additionally, since recent GPUs support asynchronous data
transfer between the GPU memory and the main memory, we can utilize this
support to hide the stall with useful computation on the GPU or on the CPU.
Note, our cost model needs to adapt to the overlaps between the computation
and the data transfer.

Finally, current GPUs do not support multitasking, and therefore execute
one query at a time. This execution model together with the SIMD processing
style makes the GPU unable to efficiently execute concurrent queries to mul-
tiple users. One possible alternative to having GPU coprocessing of multiple

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:36 • B. He et al.

concurrent queries is to let the CPU batch up queries into a single GPU ker-
nel for execution. We hope that future GPUs will add support for multitasking,
which will subsequently allow a more thorough study of GPU-based concurrent
execution of multiple queries.

Addressing the challenges, we find the following two methodologies most
effective for developing GDB. These two methodologies are essential for paral-
lel programming, and should be taken into account for other general parallel
computing platforms such as OpenCL.8

First, the primitive-based methodology has a high flexibility for GPU pro-
gramming. With the divide-and-conquer nature, the primitive-based method-
ology breaks the query processing algorithms into a set of simple primitives,
which allows us to tune and optimize them independently, thus reducing the
programming complexity. Moreover, these primitives can be used to develop
higher-level primitives and other applications. Additionally, the primitive-
based approach allows us to easily replace the existing implementation of a
certain primitive with a more efficient one whenever applicable.

Second, the cost-based approach is essential for the effectiveness of GPU
coprocessing. We develop calibration-based and analytical cost models to decide
whether to offload the task to the GPU. Unlike previous work focusing on the
cost of individual operations such as scatter and gather [He et al. 2007], our
cost models are sufficiently general in estimating the cost in three parts: the
data transfer between the main memory and the device memory, the accesses
to the GPU device memory, and the GPU computation. We believe our models
can be adopted to other GPU coprocessing tasks, and other data types such as
double-precision floating numbers on more recent GPUs.

8. CONCLUSION

Graphics processors have become an attractive alternative for general purpose
high performance computing on commodity hardware. The continuing advances
in hardware and the recent improvements on programmability make GPUs a
promising platform for database query processing. In this study, we present
our design, implementation, and evaluation of our GPU-based relational query
processor, GDB. To the best of our knowledge, GDB is the first GPU-based re-
lational query processor for main memory databases. Furthermore, we propose
coprocessing techniques that take into account both the computation resources
and the GPU-CPU data transfer cost so that each operator in a query can
utilize a suitable processor, either the CPU or the GPU, for optimized overall
performance. We have performed experiments on both memory-resident mi-
cro benchmarks and disk-resident TPC-H workloads. Our results show that
our GPU-based algorithms are 2–27x faster than their optimized CPU-based
counterparts on in-memory data. Moreover, the performance of our coprocess-
ing scheme is similar to or better than both the GPU-only and the CPU-only
schemes.

The GDB packages are available on our project site.9

8http://www.khronos.org/opencl/.
9http://www.cse.ust.hk/gpuqp.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:37

REFERENCES

ABADI, D., MADDEN, S., AND FERREIRA, M. 2006. Integrating compression and execution in column-
oriented database systems. In Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD’06). ACM, New York, NY, 671–682.
AILAMAKI, A., DEWITT, D. J., HILL, M. D., AND WOOD, D. A. 1999. DBMSs on a modern processor:

Where does time go? In Proceedings of the 25th International Conference on Very Large Data

Bases (VLDB). Morgan Kaufmann Publishers Inc., San Francisco, CA, 266–277.
AILAMAKI, A., GOVINDARAJU, N., HARIZOPOULOS, S., AND MANOCHA, D. 2006. Query co-processing on

commodity processors. In Proceedings of the International Conference on Very Large Data Bases

(VLDB).
BANDI, N., SUN, C., AGRAWAL, D., AND ABBADI, A. E. 2004. Hardware acceleration in commercial

databases: a case study of spatial operations. In Proceedings of the 30th International Conference

on Very Large Data Bases (VLDB). VLDB Endowment, 1021–1032.
BLELLOCH, G. E. 1990. Prefix sums and their applications. Tech. rep. CMU-CS-90-190, Carnegie

Mellan University.
BLYTHE, D. 2006. The direct3d 10 system. SIGGRAPH, ACM Press, NY.
BONCZ, P. A., MANEGOLD, S., AND KERSTEN, M. L. 1999. Database architecture optimized for

the new bottleneck: Memory access. In Proceedings of the 25th International Conference on

Very Large Data Bases (VLDB). Morgan Kaufmann Publishers Inc., San Francisco, CA, 54–
65.

BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN, K., HOUSTON, M., AND HANRAHAN, P. 2004.
Brook for gpus: Stream computing on graphics hardware. SIGGRAPH, ACM Press, NY.

CIESLEWICZ, J., BERRY, J., HENDRICKSON, B., AND ROSS, K. A. 2006. Realizing parallelism in database
operations: insights from a massively multithreaded architecture. In Proceedings of the 2nd

International Workshop on Data Management on New Hardware (DaMoN). ACM, New York.
CIESLEWICZ, J. AND ROSS, K. A. 2007. Adaptive aggregation on chip multiprocessors. In Proceedings

of the 33rd International Conference on Very Large Data Bases (VLDB). VLDB Endowment,
339–350.

DEWITT, D. AND GRAY, J. 1992. Parallel database systems: the future of high performance database
systems. Comm. ACM 35, 6, 85–98.

FRIGO, M., LEISERSON, C. E., PROKOP, H., AND RAMACHANDRAN, S. 1999. Cache-oblivious algorithms.
In Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE Computer Society, Washington, DC, 285.

GEDIK, B., BORDAWEKAR, R. R., AND YU, P. S. 2007. Cellsort: High performance sorting on the cell
processor. In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB).
VLDB Endowment, 1286–1297.

GEDIK, B., YU, P. S., AND BORDAWEKAR, R. R. 2007. Executing stream joins on the cell processor.
In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB). VLDB
Endowment, 363–374.

GOLD, B., AILAMAKI, A., HUSTON, L., AND FALSAFI, B. 2005. Accelerating database operators using
a network processor. In Proceedings of the 1st International Workshop on Data Management on

New Hardware (DaMoN). ACM, New York, NY, 1.
GOVINDARAJU, N., GRAY, J., KUMAR, R., AND MANOCHA, D. 2006. Gputerasort: high performance

graphics co-processor sorting for large database management. In Proceedings of the ACM SIG-

MOD International Conference on Management of Data (SIGMOD). ACM, New York, NY, 325–
336.

GOVINDARAJU, N., LLOYD, B., WANG, W., LIN, M., AND MANOCHA, D. 2004. Fast computation
of database operations using graphics processors. In Proceedings of the ACM SIGMOD In-

ternational Conference on Management of Data (SIGMOD). ACM, New York, NY, 215–
226.

GOVINDARAJU, N. K., RAGHUVANSHI, N., AND MANOCHA, D. 2005. Fast and approximate stream mining
of quantiles and frequencies using graphics processors. In Proceedings of the ACM SIGMOD

International Conference on Management of Data. New York, NY, 611–622.
GRAEFE, G. 1993. Query evaluation techniques for large databases. ACM Comput. Surv. 25, 2,

73–169.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

21:38 • B. He et al.

HARIZOPOULOS, S., ABADI, D. J., MADDEN, S., AND STONEBRAKER, M. 2008. OLTP through the looking
glass, and what we found there. In Proceedings of the ACM SIGMOD International Conference

on Management of Data. ACM, New York, NY, 981–992.
HARRIS, M., OWENS, J., SENGUPTA, S., ZHANG, Y., AND DAVIDSON, A. 2007. CUDPP: CUDA data parallel

primitives library.
HE, B., GOVINDARAJU, N. K., LUO, Q., AND SMITH, B. 2007. Efficient gather and scatter operations

on graphics processors. In Proceedings of the ACM/IEEE Conference on Supercomputing. ACM,
New York, NY, 1–12.

HE, B. AND LUO, Q. 2008. Cache-oblivious databases: Limitations and opportunities. ACM Trans.

Datab. Syst. 33, 2, 1–42.
HE, B., YANG, K., FANG, R., LU, M., GOVINDARAJU, N., LUO, Q., AND SANDER, P. 2008. Relational

joins on graphics processors. In Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD). ACM, New York, NY, 511–524.
HÉMAN, S., NES, N., ZUKOWSKI, M., AND BONCZ, P. 2007. Vectorized data processing on the cell

broadband engine. In Proceedings of the 3rd International Workshop on Data Management on

New Hardware (DaMoN). ACM, New York, NY, 1–6.
HONG, W. AND STONEBRAKER, M. 1991. Optimization of parallel query execution plans in xprs. In

Proceedings of the 1st International Conference on Parallel and Distributed Information Systems

(PDIS). IEEE Computer Society Press, Los Alamitos, CA, 218–225.
JOHNSON, R., HARIZOPOULOS, S., HARDAVELLAS, N., SABIRLI, K., PANDIS, I., AILAMAKI, A., MANCHERIL,

N. G., AND FALSAFI, B. 2007. To share or not to share? In Proceedings of the 33rd International

Conference on Very Large Data Bases (VLDB). VLDB Endowment, 351–362.
LAMARCA, A. AND LADNER, R. E. 1997. The influence of caches on the performance of sorting. In

Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Society
for Industrial and Applied Mathematics, Philadelphia, PA, 370–379.

LIEBERMAN, M. D., SANKARANARAYANAN, J., AND SAMET, H. 2008. A fast similarity join algorithm using
graphics processing units. In Proceedings of the International Conference on Data Engineering

(ICDE).
LIU, B. AND RUNDENSTEINER, E. A. 2005. Revisiting pipelined parallelism in multi-join query pro-

cessing. In Proceedings of the 31st International Conference on Very Large Data Bases. VLDB
Endowment, 829–840.

LU, H., TAN, K.-L., AND SAHN, M.-C. 1990. Hash-based join algorithms for multiprocessor com-
puters with shared memory. In Proceedings of the 16th International Conference on Very Large

Databases. Morgan Kaufmann Publishers Inc., San Francisco, CA, 198–209.
MANEGOLD, S., BONCZ, P., AND KERSTEN, M. 2002. Generic database cost models for hierarchical

memory systems. In Proceedings of the 28th International Conference on Very Large Data Bases

(VLDB).
NGUYEN, H. 2008. GPU gems 3. Addison-Wesley.
OWENS, J. D., LUEBKE, D., GOVINDARAJU, N., HARRIS, M., KRUGER, J., LEFOHN, A. E., AND PURCELL,

T. J. 2007. A survey of general-purpose computation on graphics hardware. Comput. Graph.

Forum 26.
RAO, J. AND ROSS, K. A. 1999. Cache conscious indexing for decision-support in main memory.

In Proceedings of the 25th International Conference on Very Large Data Bases (VLDB). Morgan
Kaufmann Publishers Inc., San Francisco, CA, 78–89.

SCHNEIDER, D. A. AND DEWITT, D. J. 1989. A performance evaluation of four parallel join algorithms
in a shared-nothing multiprocessor environment. SIGMOD Rec. 18, 2, 110–121.

SELINGER, P. G., ASTRAHAN, M. M., CHAMBERLIN, D. D., LORIE, R. A., AND PRICE, T. G. 1979. Access
path selection in a relational database management system. In Proceedings of the ACM SIGMOD

International Conference on Management of Data (SIGMOD). ACM Press, New York, NY, 23–
34.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D. 2007. Scan primitives for gpu computing.
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware.

SHAO, M., AILAMAKI, A., AND FALSAFI, B. 2005. DBmbench: Fast and accurate database
workload representation on modern microarchitecture. In Proceedings of the Conference of

the Centre for Advanced Studies on Collaborative Research (CASCON). IBM Press, 254–
267.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

Relational Query Coprocessing on Graphics Processors • 21:39

SHATDAL, A., KANT, C., AND NAUGHTON, J. F. 1994. Cache conscious algorithms for relational query
processing. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB).
Morgan Kaufmann Publishers Inc., San Francisco, CA, 510–521.

STONEBRAKER, M., ABADI, D. J., BATKIN, A., CHEN, X., CHERNIACK, M., FERREIRA, M., LAU, E., LIN, A.,
MADDEN, S., O’NEIL, E., O’NEIL, P., RASIN, A., TRAN, N., AND ZDONIK, S. 2005. C-store: A column-
oriented dbms. In Proceedings of the 31st International Conference on Very Large Data Bases.
VLDB Endowment, 553–564.

SUN, C., AGRAWAL, D., AND ABBADI, A. E. 2003. Hardware acceleration for spatial selections and
joins. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
ACM, New York, NY, 455–466.

TARDITI, D., PURI, S., AND OGLESBY, J. 2006. Accelerator: using data parallelism to program GPUS
for general-purpose uses. In Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems.
ZHOU, J., CIESLEWICZ, J., ROSS, K. A., AND SHAH, M. 2005. Improving database performance on

simultaneous multithreading processors. In Proceedings of the 31st International Conference on

Very Large Data Bases. VLDB Endowment, 49–60.
ZUKOWSKI, M., HEMAN, S., NES, N., AND BONCZ, P. 2006. Super-scalar RAM-CPU cache compres-

sion. In Proceedings of the 22nd International Conference on Data Engineering (ICDE). IEEE
Computer Society, Washington, DC, 59.

Received August 2008; revised March 2009, July 2009; accepted August 2009

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 21, Publication date: December 2009.

