
Relational Reasoning via SMT Solving

Aboubakr Achraf El Ghazi and Mana Taghdiri

Karlsruhe Institute of Technology, Germany
{elghazi,mana.taghdiri}@kit.edu

http://asa.iti.kit.edu/

Abstract. This paper explores the idea of using a SAT Modulo Theo-
ries (SMT) solver for proving properties of relational specifications. The
goal is to automatically establish or refute consistency of a set of con-
straints expressed in a first-order relational logic, namely Alloy, without
limiting the analysis to a bounded scope. Existing analysis of relational
constraints – as performed by the Alloy Analyzer – is based on SAT
solving and thus requires finitizing the set of values that each relation
can take. Our technique complements this approach by axiomatizing all
relational operators in a first-order SMT logic, and taking advantage of
the background theories supported by SMT solvers. Consequently, it can
potentially prove that a formula is a tautology – a capability completely
missing from the Alloy Analyzer – and generate a counterexample when
the proof fails. We also report on our experiments of applying this tech-
nique to various systems specified in Alloy.

Keywords: First-order relational logic, SAT Modulo Theories, Z3, Al-
loy, Relational specification, Constraint solving.

1 Introduction

Many computational problems can be specified declaratively as a set of con-
straints expressed in a first-order relational logic. Safety properties of structure-
rich systems, in particular, have been successfully expressed in Alloy [14], a
typed, first-order relational logic with a built-in transitive closure operator. Due
to its expressiveness and yet simplicity, Alloy has become a popular choice for de-
scribing high-level designs of various systems such as network configurations [24],
naming architectures [17], and file-systems [15, 20]. It has also been used as an
intermediate logic in many program checking tools such as Jalloy [27], JForge [7],
Karun [25], and TestEra [16].

Besides its expressiveness and intuitive syntax, Alloy’s fully automatic con-
straint solver – the Alloy Analyzer – is an important reason for its popularity.
The Analyzer checks a collection of Alloy constraints, looking for an instance
that satisfies all the constraints, but violates a property of interest. This analy-
sis, however, is always performed with respect to a bounded scope in which only
a finite number of values is considered for each type. This is because Alloy con-
straints are translated to a propositional logic and solved using a SAT solver.
Therefore, although the Alloy Analyzer can produce counterexamples efficiently,

2 A. A. El Ghazi, M. Taghdiri

it can never prove the correctness of a property – not even for the simplest con-
straints. Furthermore, since arithmetic expressions in Alloy are directly trans-
lated to SAT via bit blasting, they can be analyzed with respect to only a few
bits. Consequently, Alloy offers limited support for numerical constraints.

In order to overcome these limitations, we introduce a new approach in which
Alloy constraints are analyzed using an SMT solver rather than a SAT solver.
SMT solvers are particularly attractive because they can efficiently prove a rich
combination of decidable background theories without sacrificing completeness
or full automation. Furthermore, their increasing capability of handling quanti-
fiers [5, 12, 13] supports an intuitive, non-finitized translation of first-order rela-
tional logic. Similar to SAT solvers, many SMT solvers can produce satisfying
instances as well as unsatisfiable cores that improve their usability.

Our previous work [9] described how a subset of Alloy could be analyzed
using the Yices SMT solver [8]. That analysis could prove properties of certain
Alloy models, but it required type finitization for handling the transitive closure
operator. Therefore, a complete proof was impossible in the presence of transi-
tive closure. Our current technique, however, handles the whole Alloy language
without requiring any type finitization and thus is potentially capable of proving
properties of any Alloy model. Furthermore, it produces SMT formulas in the
standard SMT-LIB language, so they can be analyzed by various SMT solvers.

We mitigate the bounded-analysis problem of Alloy by specifying all rela-
tional operators as first-order axioms in SMT2 – SMT-LIB, version 2.0 [4] –
exploiting the increasing power of SMT solvers in handling quantifiers. How-
ever, since the Alloy logic is undecidable, axiomatizing certain Alloy constructs
such as its hierarchical type system, transitive closure, set cardinality, and mul-
tiplicity keywords is particularly challenging; a naive translation can generate
undecidable formulas that cannot be proven by SMT solvers. Therefore, we have
carefully developed our translation rules to ensure that (1) the translation is al-
ways sound, and (2) it performs well in practice, i.e. the SMT formulas resulting
from commonly-used Alloy idioms and patterns can be proven by the solver.

Due to our arbitrary use of quantifiers, our target logic is undecidable, and
thus the instance returned by the SMT solver may be marked as “unknown”.
This indicates that the instance may be spurious, and must be double-checked.
However, if the SMT solver outputs “unsat”, it is guaranteed that the set of
formulas is unsatisfiable. Consequently, our approach is a complement to the
Alloy Analyzer: when the Alloy Analyzer fails to find a counterexample, our
technique will translate the constraints to SMT2, aiming at proving the correct-
ness of the property of interest. Therefore, the user can benefit from both the
Alloy Analyzer’s sound counterexamples, and the SMT solvers’ sound proofs.

We report on the theoretical foundations of analyzing the Alloy relational
logic using an SMT solver. We describe the translation rules in detail and report
on our experiments of applying those rules to 8 systems already specified in Alloy.
We checked a total of 20 assertions using the Z3 SMT solver [6] and the results are
encouraging: out of the 15 valid assertions, 12 were successfully proven correct,
and sound counterexamples were generated for 4 out of the 5 invalid assertions.

Relational Reasoning via SMT Solving 3

problem ::= typeDcl∗relDcl∗fact∗[assertion]
typeDcl ::= sig identifier [in type]
relDcl ::= rel : type [[mult]→ [mult] type]∗

mult ::= lone | some | one | set
fact ::= formula
assertion ::= formula
exp ::= type | var | rel | none | exp + exp
| exp & exp | exp− exp | exp.exp
| exp→ exp |~exp |^exp | Int intExp

intExp ::= number | #exp | int var

| intExp intOp intExp | (sum [var : exp]+|intExp)

formula ::= exp in exp
| intExp intComp intExp
| not formula | formula and formula
| formula or formula
| all var : exp|formula
| some var : exp|formula

intOp ::= + | -
intComp ::= < | > | =
type ::= identifier | Int
rel ::= identifier
var ::= identifier

Fig. 1. Abstract syntax for the core Alloy logic

This suggests that although our motivation was to prove valid assertions, our
technique can be useful for invalid assertions too. The analysis time in most
cases was close to zero seconds, witnessing the efficiency of using SMT solvers.

2 Background

2.1 The Alloy Language

Alloy [14] is a typed, first order relational logic with an object-oriented-like
syntax. As shown in Figure 1, a problem expressed in Alloy is a collection of
type declarations, relation declarations, formulas marked as fact, and possibly
an assertion to check. The Alloy Analyzer looks for an instance that satisfies all
the facts, but violates the assertion. This analysis is performed with respect to
a finite scope, an upper bound on the number of elements of each type, and thus
absence of an instance does not constitute proof of correctness.

Type Declarations. Alloy types represent sets of atoms. The signature
sig A{} declares a top-level type named A whereas sig B in A{} declares a type
B as a subtype (subset) of the type A.

Relation Declarations. Relations are declared as fields of signatures. That
is, sig A {r : B → C} declares r as a relation of type A→ B → C. A relation can
be constrained by the multiplicity keywords lone (at most one), some (at least
one), one (exactly one), and set (any number). A declaration r : A m → n B
constrains r to associate each element of A with n elements of B, and each
element of B with m elements of A where m and n are multiplicity keywords.

Expressions. Basic Alloy expressions are relations. Sets are unary relations,
and scalars are singleton unary relations. The built-in relation none denotes
the empty set. Set operators union, intersection, and difference are denoted by
“+”, “&”, and “-” respectively. The “.” operator denotes relational join: for
two relations p and q with arities m and n, the expression p.q is defined as
{(p1, .., pm−1, q2, .., qn) | (p1, .., pm) ∈ p ∧ (q1, .., qn) ∈ q ∧ pm = q1}. The
expression p → q denotes Cartesian product of p and q, and ~ represents the
transpose of a binary relation, i.e. ~r = {(r2, r1) | (r1, r2) ∈ r}. The operator ^

denotes transitive closure, and is defined only on homogeneous binary relations.
Integer expressions denote primitive integers. The built-in type Int represents

the set of all atoms carrying primitive integers. The expression Int ie denotes

4 A. A. El Ghazi, M. Taghdiri

the atom carrying the integer denoted by the integer expression ie, whereas
int v denotes the integer value of the atom represented by the variable v. Inte-
ger expressions are obtained from constant numbers and set cardinality #, and
combined using arithmetic operators. These operators are distinguished from set
operators using the type information. The expression (sum x : A | ie) computes
the sum of the values that the integer expression ie can take for all distinct
bindings of the variable x in A.

Formulas. Basic Alloy formulas are formed using the subset operator in
and the integer comparison operators, and combined using logical operators. In
a quantified formula (Q x : e | F), the formula F is based on x, the expression
e bounds the values of x, and Q is either a universal or existential quantifier.

2.2 The SMT2 Language

We translate Alloy problems to SMT2 – the SMT-LIB standard, version 2.0 [4]
as supported by the Z3 SMT solver1 [6]. SMT-LIB supports various theories
and defines a common language for SMT problems. Our generated formulas use
the quantified theories of free sorts, linear integer arithmetic, and uninterpreted
functions with equality, and thus fit in the AUFLIA logic [4].

Declarations. The logic underlying SMT2 is a many-sorted first-order logic
with equality. It supports Int, Real, and Bool, and allows users to declare new
sorts (types) using the declare-sort command.

Functions are the basic building blocks of SMT formulas. The command
(declare-fun f (A1, · · · , An−1) An) declares f : A1 × · · · × An−1 → An.
All functions are total, i.e. they are defined for all elements of their domain.
Constants are functions that take no arguments, i.e. a constant v of type A is
declared as (declare-fun v () A).

Assertions. The command (assert f) asserts a formula f in the current
logical context. Basic formulas are function applications and can be combined
using the boolean operators and, or, not, and => (implies). Universal and exis-
tential quantifiers are denoted by (forall (a1 A1)..(an An) f) and (exists

(a1 A1)..(an An) f) respectively.
Analysis. We use the (set-logic l) command to tell the solver what com-

bination of theories is being used, and (check-sat) to instruct the solver to
check whether the conjunction of the given assertions is satisfiable or not.

3 Approach

We translate well-typed Alloy problems to SMT2 by specifying the semantics of
Alloy constructs as first-order axioms. Therefore, Alloy problems can be analyzed
without type finitization or sacrificing full automation. However, due to Alloy’s
undecidability and our extensive use of quantifiers, the resulting SMT formulas
can be undecidable. Thus the SMT solver may fail to establish or refute an

1 The syntax of Z3 is slightly different from SMT-LIB in the use of parentheses.

Relational Reasoning via SMT Solving 5

sig Name {}
sig Address {}
sig Book {}
sig AddrBook in Book {
addr: Name->lone Address

}

1. (declare-sort Name)
2. (declare-sort Address)
3. (declare-sort Book)
4. (declare-fun isName (Name) Bool)
5. (declare-fun isAddress (Address) Bool)
6. (declare-fun isBook (Book) Bool)
7. (declare-fun isAddrBook (Book) Bool)
8. (assert (forall (b Book) (=> (isAddrBook b) (isBook b))))
9. (declare-fun addr (Book Name Address) Bool)
10.(assert (forall (b Book)(n Name)(a Address)

(=> (addr b n a) (and (isAddrBook b)(isName n)(isAddress t)))))
11.(declare-fun oneAddr (Book Name) Address)
12.(assert (forall (b Book)(n Name)(a Address)

(=> (addr b n a) (= a (oneAddr b n)))))

Fig. 2. An example of translating Alloy declarations

assertion and can generate an “unknown” instance that may be invalid. We try
to minimize the chances of producing invalid instances in practice by choosing an
axiomatization that performs best for commonly-used Alloy patterns and idioms
according to our experiments.

3.1 Type and Relation Declarations

Since SMT2 does not support subtype declarations, we translate Alloy’s hier-
archical type system implicitly. Top-level Alloy types are translated to unin-
terpreted SMT2 sorts, but subtypes are specified only through axioms. Extra
axioms are needed for specifying those relations that are defined over subtypes.

Figure 2 provides an example. On the left, an address book is represented by
an Alloy relation addr: AddrBook -> Name -> lone Address where AddrBook
is a subtype of Book. On the right, our SMT2 translation is shown. The top-level
types Name, Address, and Book are declared as uninterpreted sorts in Lines 1-3.
Lines 4-7 declare an uninterpreted membership function for each Alloy type. A
membership function isT is defined over the top-level, supertype T ′ of a type T
to denote which elements of T ′ belong to T . Membership functions are necessary
for specifying the semantics of subtypes2. Line 8 specifies the subtype semantics,
i.e. all elements of AddrBook should belong to Book.

Since all SMT2 functions are total, arbitrary relations are specified using a
function with an additional boolean column whose value is true for the tuples
that are included in that relation, and false for all others. Line 9 declares addr

as a boolean-valued function over its top-level types. Line 10 constrains addr

to be defined only for the intended type of AddrBook × Name × Address. The
multiplicity keyword lone is specified by Lines 11-12. Line 11 declares an unin-
terpreted function oneAddr that maps each element of Book × Name to exactly
one element of Address. Line 12 constrains addr to be a subset of oneAddr, and
thus to map every element of Book × Name to at most one address.

Figure 3 gives the translation rules for Alloy type and relation declarations.
The main translation function D generates a collection of SMT commands for
an Alloy paragraph. This figure defines D only for Alloy declarations; facts and

2 Membership functions of top-level types are often avoidable. They are included in
this example for uniformity.

6 A. A. El Ghazi, M. Taghdiri

D : AlloyPar→ SMTCommand∗ S : Alloy type

Ti : AlloyExpr → SMTSort r : Alloy relation

E : AlloyExpr×
−−−−−−→
SMTV ar → SMTFormula v : SMT variable

E[S, v] = (isName[S] v)

E[r, <v1, .., vn>] = (name[r] v1 .. vn)

D[sig S] = {(declare-sort name[S]), If S is top-level

(declare-fun isName[S] (T1[S]) Bool)}
D[sig S1 in S2] = {D[sig S1], (assert (forall (v T1[S1]) (=> E[S1, v] E[S2, v])))}
D[r : S1-> .. ->Sn] = {(declare-fun name[r] (T1[S1] .. T1[Sn]) Bool),

(assert (forall (v1 T1[S1]) .. (vn T1[Sn])(=> E[r, <v1, .., vn>] (and E[S1, v1] .. E[Sn, vn]))))}
D[r : S1-> .. -> set Sn] = D[r : S1-> .. -> Sn]

D[r : S1-> .. -> lone Sn] = {D[r : S1-> .. -> Sn],

(declare-fun oneName[r] (T1[S1] .. T1[Sn−1]) T1[Sn]),

(assert (forall (v1 T1[S1]) .. (vn T1[Sn])(=> E[r, <v1, .., vn>] (= vn (oneName[r] v1..vn−1)))))}
D[r : S1 -> .. -> some Sn] = {D[r : S1 -> .. -> Sn],

(declare-fun oneName[r] (T1[S1] .. T1[Sn−1]) T1[Sn]),

(assert (forall (v1 T1[S1]) .. (vn−1 T1[Sn−1])

(=> (and E[S1, v1] .. E[Sn−1, vn−1]) E[r, <v1, .., vn−1, (oneName[r] v1 .. vn−1)>])))}
D[r : S1-> .. -> one Sn] = {D[r : S1-> .. -> lone Sn], D[r : S1-> .. -> some Sn]}

Fig. 3. Translation rules for Alloy type and relation declarations

assertions are covered in Sec. 3.2. For an Alloy expression e of type S1× ..×Sn,
the auxiliary function Ti[e] returns the SMT sort that corresponds to the top-
level, supertype of Si. Function E translates intermediate Alloy expressions.
E[e,−→v] returns an SMT formula that encodes that a list of SMT variables −→v
is included in the relation resulting from evaluating e. Figure 3 defines E as
needed by this set of rules. Other cases are covered in the next sections. Sorts
and functions declared in SMT2 are named using the functions name, isName,
and oneName. The function name returns a unique name for each Alloy type
and relation. isName denotes the type membership function, and oneName
denotes the helper function used for encoding multiplicity constraints.

As shown in Figure 3, an Alloy top-level type is translated to a sort in
SMT2. A membership function is declared for each Alloy type to represent the
elements that are included in that type. Subtypes are further constrained to
be subsets of their immediate supertypes. An Alloy relation is translated to a
boolean-valued SMT2 function. Since only top-level types are declared as sorts,
this function is declared over top-level types. An extra constraint ensures that
the relation is defined only for its intended types (and not their supertypes).
Multiplicity keywords can be desugared to basic Alloy constraints. For example,
r : S1 → lone S2 is equivalent to r : S1 → S2 with the additional constraint
all x : S1, y, z : S2 | ((y in x.r) and (z in x.r)) ⇒ (y = z). However, since
multiplicity applied to the last column is widely-used in Alloy, we optimize this
case. For a relation r : S1 → ..→ mult Sn with a multiplicity keyword mult, we
declare a function oneName[r] that maps every tuple of (T1[S1]× ..×T1[Sn−1])
to exactly one element of T1[Sn]. For lone, elements of r must be included in
oneName[r], for some, r must include all elements of oneName[r] that belong
to the intended type of S1 × ..× Sn, and for one, both conditions must hold.

Relational Reasoning via SMT Solving 7

F : AlloyFormula→ SMTFormula fact, assertion, f : Alloy formula
D[fact] = (assert F [fact]) e : Alloy expression
D[assertion] = (assert F [not assertion]) x : Alloy variable
F [not f] = (not F [f]) v, w : SMT variable
F [f1 and f2] = (and F [f1] F [f2])
F [f1 or f2] = (or F [f1] F [f2])
F [all x : e|f] = (forall (v T1[e]) (=> E[e, v] F [f][v/x]))
F [some x : e|f] = (exists (v T1[e]) (and E[e, v] F [f][v/x]))
F [e1 in e2] = (forall (v1 T1[e1]) .. (vn Tn[e1])(=> E[e1, <v1, .., vn>] E[e2, <v1, .., vn>]))
E[~e, <v1, v2>] = E[e, <v2, v1>]
E[e1 + e2, <v1, .., vn>] = (or E[e1, <v1, .., vn>] E[e2, <v1, .., vn>])
E[e1 & e2, <v1, .., vn>] = (and E[e1, <v1, .., vn>] E[e2, <v1, .., vn>])
E[e1 - e2, <v1, .., vn>] = (and E[e1, <v1, .., vn>] (not E[e2, <v1, .., vn>]))
E[e1 -> e2, <v1, .., vn, .., vn+m>] = (and E[e1, <v1, .., vn>] E[e2, <vn+1, .., vn+m>])
E[e1.e2, <v1, .., vn−1, vn+2.., vn+m>] = (exists (w Tn[e1])

(and E[e1, <v1, .., vn−1, w>] E[e2, <w, vn+2, .., vn+m>]))
E[none, v] = false
E[x, v] = (= x v)

Fig. 4. Translation rules for Alloy formulas

3.2 Formulas

Figure 4 gives the translation rules for Alloy facts (that are assumed to be true)
and assertions (that are intended to be checked). We negate an assertion so that
any instance found by the SMT solver will be a counterexample to the assertion.
If the solver finds no instances, the assertion is proven correct.

In addition to the translation functions defined in Figure 3, Figure 4 uses the
function F to translate Alloy formulas. Negation, conjunction, and disjunction
in Alloy are mapped to those in SMT2. A quantified Alloy formula (Q x : e|f) is
translated to an SMT formula that bounds x to T1[e], and uses either an impli-
cation (for universal quantifiers) or a conjunction (for existential quantifiers) of e
to constrain the values of x. The notation [v/x] substitutes v for all occurrences
of x3. The Alloy formula (e1 in e2) is well-formed only when arity[e1] = arity[e2]
and is translated by specifying that every element of e1 is included in e2.

E[e, <v1, .., vn>] produces an SMT formula that encodes that <v1, .., vn> is
included in the relation corresponding to e. Since the original Alloy constraints
are well-typed, n = arity[e]. Defining E for relational transpose, union, inter-
section, and difference is straightforward. An expression e1->e2 contains a tuple
<v1, .., vn, .., vn+m> iff e1 contains <v1, .., vn> and e2 contains <vn+1, .., vn+m>

where n = arity[e1] and m = arity[e2]. Relational join is similar except that it
requires an existentially quantified variable for the merged column of the two
relations. E[none, v] = false because none denotes the empty set, and the scalar
case of E[x, v] is defined as equality. Since in the expression E[x, v], the variable
x is declared in Alloy and v in SMT2, the formula (= x v) is not well-formed by
itself. However, the translation rules will substitute an SMT variable for x after
this formula is plugged in its enclosing formula.

3.3 Transitive Closure

The Alloy expression ^r computes the smallest symmetric and transitive relation
that contains r where r : S → S is a binary homogeneous relation. Since the Alloy

3 Alloy’s universal quantifiers cannot be applied to non-unary relations, and existential
quantifies over non-unary relations can be desugared using multiple unary relations.

8 A. A. El Ghazi, M. Taghdiri

1. (declare-fun trName[r] (Int T1[r] T2[r]) Bool)
2. (assert (forall (i Int) (v1 T1[r]) (v2 T2[r]) (=> (< i 1) (not (trName[r] i v1 v2)))))
3. (assert (forall (v1 T1[r]) (v2 T2[r]) (= (trName[r] 1 v1 v2) E[r, <v1, v2>])))
4. (assert (forall (i Int) (v1 T1[r]) (v2 T2[r]) (=> (> i 1)

(= (trName[r] i v1 v2) (or (trName[r] (- i 1) v1 v2)
(exists (w T1[r]) (and (trName[r] (- i 1) v1 w)E[r, <w, v2>])))))))

E[^r, <v1, v2>] = (exists (i Int) (trName[r] i v1 v2))

Fig. 5. Translation rules for the transitive closure of a relation r

Analyzer checks Alloy problems with respect to finite scopes, it soundly unrolls
^r to r+r.r+..+r(n) where n is the upper bound on the size of S. In our analysis,
however, types are infinite and so any finite unrolling of transitive closure will be
unsound. Figure 5 gives our axioms using an integer-based inductive definition.
In the interest of space, here we only describe the translation of ^r where r is a
relation explicitly declared in Alloy. The general case of ^e requires normalizing
the expression e and applying a generalized version of these rules.

Line 1 of Figure 5 declares a helper SMT function trName[r] to compute
transitive closure. For any integer i, (trName[r] i) denotes the expression r +
r.r + .. + r(i). This is specified inductively (on the value of i) using axioms 2-
4. Line 2 specifies that (trName[r] i) does not contain any elements if i < 1.
Line 3 constrains the base case of (trName[r] 1) to be equal to r, and Line 4
specifies (trName[r] i) in terms of (trName[r] (i − 1)) for i > 1. Finally, the
definition of E specifies that a pair <v1, v2> is included in the relation resulting
from evaluating ^r iff <v1, v2> is included in (trName[r] i) for some integer i.

3.4 Integer Expressions

Arithmetic expressions in Alloy are handled by bit blasting, using a fixed, user-
defined bitwidth (usually less than 7 [1]). Overflows are truncated silently. Better
handling of arithmetic expressions was needed in many applications [26]. Thus
we deviate from the Alloy’s behavior and translate integer expressions using the
SMT2 theory of linear integer arithmetic that supports infinite integers.

Figure 6 gives the rules. Function I translates an Alloy integer expression to
an SMT2 expression of type integer. Alloy’s built-in type Int is mapped to the
SMT2’s built-in sort Int. Unlike Alloy that distinguishes between integer atoms
and primitive integers, the SMT logic allows a single integer type. Comparison
and arithmetic operators in Alloy are translated to those in SMT2. E[Int ie, v]
specifies that a variable v corresponds to the atom carrying ie iff the (integer)
values of v and I[ie] are equal. The int operator becomes the identity function.

In the interest of space, we discuss the translation of #r where r is a unary
relation explicitly declared in Alloy. The general case of #e requires normalizing
the expression e and applying a generalized version of the rules. Our approach
allows the cardinality of a (possibly cyclic) relation to be arbitrarily large (but
finite). To compute #r, we define a mapping ordName[r] from every element of
r to one distinct integer i ≥ 1. We constrain the integers to be consecutive so
that #r is the largest integer used in the mapping. Lines 1-4 of Figure 6 define
the helper functions. Line 5 specifies that crdName[r] ≥ 0 and if it is 0, then r

Relational Reasoning via SMT Solving 9

I : AlloyIntExpr → SMTExpr ie : Alloy integer expression
T1[Int] = Int n : Number
F [ie1 intComp ie2] = (intComp I[ie1] I[ie2])
E[Int ie, v] = (= I[ie] v)
E[Int, v] = true if v is of type Int, false otherwise
I[n] = n
I[int x] = x
I[ie1 intOp ie2] = (intOp I[ie1] I[ie2])
I[#r] = crdName[r]
I[(sum x : r | ie)] = (sumName[r] 1 crdName[r])
1.(declare-fun crdName[r] () Int)
2.(declare-fun ordName[r] (T1[r]) Int)
3.(declare-fun invName[r] (Int) T1[r])
4.(declare-fun trgName[r] (Int) Bool)
5.(assert (and (>= crdName[r] 0) (=> (= crdName[r] 0)(forall (v T1[r]) (not E[r, v])))))
6.(assert (forall (v T1[r])(=> E[r, v] (and (<= 1 (ordName[r] v)) (<= (ordName[r] v) crdName[r])))))
7.(assert (forall (v T1[r])(=> E[r, v](= v (invName[r] (ordName[r] v))))))
8.(assert (forall (i Int)(=> (and (<= 1 i)(<= i crdName[r]))(= i (ordName[r] (invName[r] i))))))
9.(assert (forall (i Int)(=> (and (<= 1 i)(<=i crdName[r])) E[r, (invName[r]i)]):pat {(trgName[r] i)}))
10.(assert (=> (< 0 crdName[r]) (trgName[r] 1)))
11.(assert (forall (i Int)(=> (and (<= 1 i)(< i crdName[r]))(trgName[r](+ i 1))) :pat {(trgName[r] i)}))
12.(declare-fun sumName[r] (Int Int) Int)

Fig. 6. Translation rules for Alloy integer expressions

must be empty. Lines 6-9 specify that invName[r] is the inverse of ordName[r]
and that there is a one-to-one correspondence between the elements of r and
the integers 1 ≤ i ≤ crdName[r]. Thus crdName[r] = |r|. (The existence of
crdName[r] ensures that |r| is finite.) Since the Z3 SMT solver instantiates uni-
versal quantifiers based on the ground terms syntactically used in the formulas,
we introduce the helper function trgName[r] to ensure that the numeric axioms
are sufficiently instantiated. Lines 10 and 11 constrain (trgName[r] i) to be true
for 1 ≤ i ≤ |r| which triggers the instantiation of Axiom 9, which in turn triggers
the instantiation of the other axioms.

Leino et.al. [18] introduced efficient first-order axioms for comprehensions of
the form Q{L ≤ i < H, T} where Q is a function (e.g. sum, min), L and H are
the lower and upper bounds on the integer i, and T is an integer term based on
i. Alloy’s sum expressions are computed over integer-carrying relations. Thus no
integer bounds are explicitly available. However, using our cardinality axioms,
we have (sum x : r | ie) = sum{1 ≤ i ≤ |r|, I[ie][invName[i]/x]} which makes
Leino’s axioms and patterns directly applicable. Figure 6 declares sumName[r]
to compute this sum expression for the required integer bounds. Definition of
sumName[r] is based on Leino’s axioms and is skipped in the interest of space.

3.5 Simplifications

The SMT formulas generated by previous rules can be substantially simplified
while their semantics is preserved. Out of the 12 Alloy assertions proven success-
fully in our experiments (see Sec. 4), only 3 can be proven before simplification.

The simplification rules are given in Figure 7. Rule 1 simplifies the expressions
involving functional relations. For any Alloy relation r : S1 → .. → one Sn,
a tuple <v1, .., vn> is included in the corresponding function name[r] iff vn =
(oneName[r] v1, .., vn−1). Rule 2 simplifies cardinality for the obvious cases of
empty and singleton relations. This is determined syntactically based on the

10 A. A. El Ghazi, M. Taghdiri

1. (name[r] v1 .. vn) = (= vn(oneName[r] v1 .. vn−1)) if r is a function

2. cardName[none] = 0, cardName[e] = 1 if e is a singleton relation

3. (forall (v Sort[w]) (=> (= v w) f)) = f [w/v]

4. (exists (v Sort[w]) (and (= v w) f)) = f [w/v]

5. (and (forall (v T)(=> f1 f2)) (forall (w T)(=> f2 f1))) = (forall (v T)(= f1 f2))

Fig. 7. Simplification rules

type information. Rules 3 and 4 eliminate quantifiers based on the semantics of
scalar values. They substitute the free variable w for the quantified variable v
used in a formula f . These rules are valid because w represents a single value
in Sort[w]. Rule 3 holds since in any logical context, (∀v : Sort[w] | ((v =
w) =⇒ f)) ≡ (∀v ∈ {w} | f) ≡ f [w/v], and Rule 4 holds because
(∃v : Sort[w] | ((v = w)∧ f)) ≡ (∃v ∈ {w} | f) ≡ f [w/v]. Rule 5 converts the
equality hidden in bidirectional implications to an explicit equality. It is applied
when f1 and f2 are syntactically identical except possibly for the names of the
bound variables; no decision procedure calls are involved.

Simplification is done in multiple passes. The first pass applies Rules 1 and
2 to all formulas. Consecutive passes apply Rules 3-5 iteratively until no more
rules are applicable. Since these rules strictly reduce the number of quantifiers,
this process terminates.

3.6 Correctness

An Alloy problem is a structure AP =< Ttop, Tsub, R, F > where Ttop, Tsub, R,
and F respectively denote the set of top-level types, subtypes, relations, and
formulas4 declared in AP . An Alloy instance Ia = (Ua, va) defines a universe of
atoms Ua and a valuation va that maps every type and relation of AP to a set
of elements and tuples derived from Ua, respectively. Ia satisfies AP iff

– Types are well-formed. That is, (1) for t ∈ Tsub that is a subtype of t′ ∈ Ttop∪
Tsub, we have va(t) ⊆ va(t′), and (2) for t, t′ ∈ Ttop, we have va(t)∩va(t′) = ∅.

– Relations are well-formed. That is, for r ∈ R of type t1 → .. → [m] tn, we
have va(r) ⊆ va(t1)× ..× va(tn) and the multiplicity constraint of m holds.

– Any f ∈ F evaluates to true under Ia. That is, JfKIa = true where JKIa is
defined inductively on the grammar of Figure 1 (see [14]).

Similarly, an SMT2 problem is a structure SP =< S,G,A > where S, G, and
A respectively denote the set of sorts, functions, and assertions declared in SP .
An SMT instance Is = (Us, vs) defines a universe of elements Us and a valuation
vs that defines the values of sorts and functions. An instance Is satisfies SP iff

– Sorts are well-formed. That is, for s, s′ ∈ S, we have vs(s) ∩ vs(s
′) = ∅.

– Functions are well-formed. That is, for g ∈ G of type (s1 .. sn s), vs(g) gives
a total function from vs(s1)× ..× vs(sn) to vs(s).

– Any a ∈ A evaluates to true under Is. That is, JaKIs = true where JKIs is
defined inductively for SMT2 formulas (see [4]).

4 We assume that the assertion is negated and conjoined with the formula F .

Relational Reasoning via SMT Solving 11

Our analysis complements that of the Alloy Analyzer by providing proof
capability. Thus to show its soundness, it is sufficient to show that for any
Alloy problem AP , if our SMT2 translation D[AP] is unsatisfiable, implying
that the assertion in AP is a tautology, then AP is unsatisfiable too. But since
Alloy computes arithmetic with respect to a fixed bitwidth, mathematically valid
numeric formulas (based on infinite integers) may be invalid in Alloy due to
overflows5. Thus unsatisfiability of D[AP] implies unsatisfiability of AP only in
the absence of integer overflows, or equivalently, the following theorem holds:

Theorem 1. If an Alloy problem AP =< Ttop, Tsub, R, F > has a satisfying
instance for which none of the arithmetic computations overflow, its translation
D[AP] =< S,G,A > has a satisfying instance too.

Proof. For any instance Ia = (Ua, va) that satisfies AP , we construct an instance
Is = (Us, vs) that satisfies D[AP]. Without loss of generality, we define Us = Ua,
and define vs as follows. For s ∈ S corresponding to t ∈ Ttop, define vs(s) =
va(t). For g ∈ G, (1) if g is a membership function for t ∈ Ttop ∪ Tsub, then
(vs(g)[u] = true) ⇔ (u ∈ va(t)) for all u ∈ Ua, (2) if g is a boolean-valued
function for r ∈ R, then (vs(g)[u1, .., un] = true) ⇔ (<u1, .., un> ∈ va(r)),
(3) if g is a multiplicity function for r ∈ R, then (vs(g)[u1, .., un−1] = un) ⇒
(<u1, .., un> ∈ va(r)) for multiplicities “some” and “one”, and (<u1, .., un> ∈
va(r)) ⇒ (vs(g)[u1, .., un−1] = un) for “lone”, (4) if g corresponds to ^r, then
for 1 ≤ i ≤ |Ua|, define vs(g)[i, u1, u2] = true⇔ <u1, u2> ∈ va(r)∪ va(r).va(r)∪
.. ∪ va(r)(i). For i > |Ua|, define vs(g)[i, u1, u2] = vs(g)[|Ua|, u1, u2], and (5) for
cardinality-related g, let vs(g) = |va(r)| if g is crdName[r], (vs(g)[ui] = i) ⇔
(va(r) = {u1, .., un}) if g is ordName[r], (vs(g)[i] = ui)⇔ (va(r) = {u1, .., un})
if g is invName[r], and (vs(g)[i] = true)⇔ (1 ≤ i ≤ |va(r)|) if g is trgName[r].
Sorts and functions are well-formed under Is because types and relations are well-
formed under Ia. The property JaKIs = true is proved by cases: it holds for the
assertions produced by each translation rule based on the semantics of Alloy and
SMT2. Absence of integer overflows ensures that any arithmetic computation
yields the same result in both logics. Details are skipped in the interest of space.

4 Experiments

We have evaluated our technique by checking 20 assertions in 8 Alloy prob-
lems6: the address book of an email client where aliases and groups are allowed,
the query interface and aggregation mechanism of Microsoft COM, the opera-
tions of a memory accessed by abstract addresses, a system for managing media
files, the mark and sweep garbage collection algorithm, the own-grandpa puzzle,
and a hand shaking protocol among spouses. The Alloy models of these problems
are included in the Alloy 4 distribution, and represent various combinations of
hierarchical types, nested relational joins, transitive closure, nested quantifiers,

5 For example, 2 + 2 > 2 does not hold in Alloy with a bitwidth of 3.
6 available at http://www.rz.uni-karlsruhe.de/~ kh133/alloyToSMT/

12 A. A. El Ghazi, M. Taghdiri

Alloy Analyzer Our Analysis by Z3

Problem Assertion Scope Time (sec) Time (sec) Result

address book delUndoesAdd 31 80.91 0.00 proved
addIdempotent 31 112.66 0.01 proved

COM theorem1 14 175.46 0.00 proved
theorem2 14 177.97 0.00 proved
theorem3 14 168.51 0.00 proved
theorem4a 14 174.89 0.00 proved
theorem4b 14 166.68 0.00 proved

abstract memory writeRead 44 179.44 0.00 proved
writeIdempotent 29 98.67 0.03 proved

media assets hidePreservesInv 87 86.03 0.00 proved
pasteAffectsHidden 29 138.34 0.00 proved

mark sweep soundness1 9 81.52 0.12 false CE
soundness2 8 28.84 0.11 false CE

completeness 7 32.52 0.14 false CE

nQueen solCondition 73 173.51 0.05 proved

address book addLocal 3 0.05 0.10 sound CE

media assets cutPaste 3 0.19 0.06 sount CE

own grandpa ownGrandpa 4 0.01 0.12 sound CE

nQueen 15Queens 15 4.95 13.53 sound CE

handshake puzzle 10 2.47 time out N/A
Table 1. Evaluation results

set cardinality, and arithmetic operations7. To further check our arithmetic rules,
we also translated the queens’ arrangement puzzle for an n× n chessboard [1].

We applied our translation and simplification rules to these models and used
Z3 2.16 to solve the resulting SMT formulas. Table 1 gives the results. It also
reports on the performance of the Alloy Analyzer 4 (AA). The time (in second)
is measured on an Intel Core2Quad, 2.8GHz, 8GB memory. The Alloy analysis
time is the total of the time spent on generating CNF and solving it using the
SAT4J solver. The Z3 analysis time is what it reports using the -st option.

The assertions in the top part of the table are expected to be valid, i.e.
their Alloy models contain developers’ comments that no counterexamples are
expected. The scope column in this case denotes the maximum scope for which
AA can check the assertion before reaching the time-out of 180 seconds. The re-
sult column gives the outcome of running Z3: proved if it returns “unsat” when
looking for a counterexample, implying that the assertion is successfully proven,
and false CE if it returns a spurious counterexample. Out of the 15 valid asser-
tions, 12 were proven correct by our analysis. However, none of the assertions
of mark sweep could be proven. As the scope column suggests, this problem
is structurally more complex than the other problems; AA cannot check those
assertions even for a scope of 10 before reaching time-out. This problem is partic-
ularly difficult because it simulates the recursion involved in the mark and sweep
algorithm by applying transitive closure to union and join of multiple relations.
These expressions occur within nested quantifiers or in both sides of the subset

7 Currently we do not support models that use Alloy’s utility library.

Relational Reasoning via SMT Solving 13

or intersection operators. Since such structures create deeply-nested quantifiers
in our translation, Z3 cannot readily prove those assertions. We are investigating
other translation possibilities to reduce the complexity of such cases.

The assertions in the bottom part of the table are invalid, i.e. AA generates
sound counterexamples for them. The scope column in this case gives the smallest
scope required by AA to find a counterexample. Although the main goal of our
approach is to prove valid assertions, we analyzed these invalid assertions to
evaluate our technique in case of a counterexample. For the first 4 assertions,
Z3 is capable of producing an instance that although marked as “unknown”, it
demonstrates a true counterexample (denoted by sound CE).

Since our approach requires no type finitization, its performance is always
independent of scope. Exceptions are the 15Queens and puzzle assertions that
hard-code the scope using set cardinality. We have chosen our translation rules
so that the generated SMT formulas are easy to solve, witnessed by the fact that
the Z3 analysis time in most cases is close to zero. However, when producing
a satisfying instance for formulas containing cardinality, Z3 has to deeply in-
stantiate all the cardinality helper functions. Therefore, its runtime for 15Queen
is worse than AA, and it times out for puzzle. This is not necessarily true for
provable assertions as witnessed by solCondition which also involves cardinality
constraints. Since AA performs well in finding small counterexamples, we sug-
gest that the user checks his intended assertion using AA first, and then runs
our analysis to prove potentially valid assertions.

5 Related Work

Previous attempts to prove Alloy properties used interactive theorem provers.
Dynamite [11] proves properties of Alloy specifications using the PVS theorem
prover [21], via a translation to fork algebra. It introduces a PVS pretty-printer
that shows proof steps in Alloy, reducing the burden of guiding the prover.
Prioni [3] integrates the Alloy Analyzer with the Athena theorem prover. To
overcome the challenge of finding proofs, Prioni provides a lemma library that
captures commonly-used Alloy patterns.

Compared to theorem provers that perform a complete analysis but are not
fully automatic, SMT solvers are fully automatic, but may fail to prove quanti-
fied formulas. Recent SMT solvers, however, have shown significant advances in
handling quantifiers. Z3 integrates the superposition calculus in the DPLL frame-
work [5, 13], and CVC3 uses improved E-matching instantiation strategies [12].
SMT solvers have been used to increase the automation level of many theorem
provers. The PVS [21] and Isabelle/HOL [10] logics, e.g., have been translated to
Yices input language [8]. Although such translations address higher-order logics
with a rich combination of types predicates, recursive data types, records, etc.,
they do not support constructs such as transitive closure and set cardinality.

Abadi, et. al. [2] verified some Alloy problems while identifying decidable frag-
ments of many-sorted first-order logic. However, they only support a restricted
form of transitive closure, and no integer arithmetic or cardinality. Lev-Ami,

14 A. A. El Ghazi, M. Taghdiri

et. al. [19] introduced a method for simulating reachability properties that arise
in program verification. Similar to our technique, they specify the semantics of
transitive closure using first-order axioms. However, they use additional (color-
ing) axioms to aid the underlying prover (SPASS [22]). The coloring axioms are
either provided by users or generated by heuristics. Although not immediately
clear, a similar approach may be applicable to translating Alloy’s transitive clo-
sure. Automated theorem provers (ATP) such as SPASS provide an unbounded
analysis based on superposition calculus, but their lack of support for linear
arithmetic makes them less attractive for reasoning about a rich logic like Alloy.

Suter, et. al. [23] presented a decision procedure for the quantifier-free Boolean
Algebra with Presburger Arithmetic (QFBAPA) capable of handling sets and
their cardinalities. They reduce QFBAPA to integer linear arithmetic (QFPA)
which is solved by the decision procedures of Z3. Set cardinality is computed us-
ing the integers that represent the cardinality of Venn regions – the regions built
by the maximal overlapping degree of a finite collection of sets. Since Alloy car-
dinality can be applied to arbitrary expressions (possibly containing variables)
with arbitrary arities, this technique is not readily applicable to our translation.

6 Conclusions

We presented a new approach for analyzing problems expressed in Alloy, a first-
order relational logic. Its main advantage is the ability to prove an assertion
correct, a capability totally missing from the Alloy Analyzer (AA). We suggest
our analysis be used to complement AA: when AA fails to find a counterexample,
our tool can be used to prove the assertion correct. We avoid type finitization
altogether and use the theories supported by SMT solvers instead.

Due to Alloy’s undecidability and our arbitrary use of quantifiers, resulting
SMT formulas can be undecidable. However, among different ways of axioma-
tizing an Alloy construct, we have carefully chosen the one that performs best
in practice. While more experiments on larger Alloy models are needed to fully
evaluate our technique, current results show that Z3 can correctly handle most
of the valid and invalid properties, witnessing the effectiveness of the approach.
Improving the cases that Z3 failed to handle is left for future work.

Although we focused on Alloy, our translation rules demonstrate a general
approach that can be applied in various contexts. In particular, we described
how to specify multiplicity constraints using uninterpreted functions, transitive
closure using the theory of linear integer arithmetic, and cardinality of (possibly
cyclic) relations using bijective integer functions.

AA provides some predefined library functions (e.g. ordering) that trigger
special optimizations in AA. Investigating an efficient translation of widely-used
Alloy libraries (e.g. ordering, graph, and relation) is left for future work. We will
also investigate how to use SMT solvers’ unsatisfiable cores and next satisfying
solution to improve the usability of our technique. Our current translation devi-
ates from Alloy semantics in handling arithmetic using infinite integers. While

Relational Reasoning via SMT Solving 15

we believe that this is more suitable for most system descriptions, we will also
provide an alternative fixed bitwidth arithmetic using bit-vectors in the future.

References

1. The Alloy community. http://alloy.mit.edu/community/.
2. A. Abadi, A. Rabinovich, and M. Sagiv. Decidable fragments of many-sorted logic.

Preprint submitted to Elsevier, 2009.
3. K. Arkoudas, S. Khurshid, D. Marinov, and M. Rinard. Integrating model checking

and theorem proving for relational reasoning. RELMICS, pages 21–33, 2003.
4. The satisfiability modulo theories library. http://goedel.cs.uiowa.edu/smtib.
5. M. P. Bonacina, C. Lynch, and L. Moura. On deciding satisfiability by DPLL and

unsound theorem proving. In CADE, pages 35–50, 2009.
6. L. de Moura and N. Bjorner. Z3 efficient SMT solver. In TACAS’08, pages 337–340.
7. G. Dennis, F. Chang, and D. Jackson. Modular verification of code with SAT. In

ISSTA, pages 109–120, 2006.
8. B. Dutertre and L. de Moura. The Yices SMT solver. tool document, 2006.
9. A. A. El Ghazi and M. Taghdiri. Analyzing Alloy constraints using an SMT solver:

A case study. In AFM, Edinburgh, United Kingdom, 2010.
10. L. Erkök and J. Matthews. Using Yices as an automated solver in Isabelle/HOL.

In AFM, 2008.
11. M. F. Frias, C. G. L. Pombo, and M. M. Moscato. Alloy Analyzer+PVS in the

analysis and verification of alloy specifications. In TACAS, pages 587–601, 2007.
12. Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using

satisfiability modulo theories. AMAI, 55(1):101–122, Feb. 2009.
13. Y. Ge and L. Moura. Complete instantiation for quantified formulas in satisfiabiliby

modulo theories. In CAV, pages 306–320, 2009.
14. D. Jackson. Software Abstractions: Logic, Lang. and Analysis. MIT Press, 2006.
15. E. Kang and D. Jackson. Formal modeling and analysis of a flash filesystem in

Alloy. In ABZ, 2008.
16. S. Khurshid. Generating Structurally Complex Tests from Declarative Constraints.

PhD thesis, MIT, 2003.
17. S. Khurshid and D. Jackson. Exploring the design of an intentional naming scheme

with an automatic constraint analyzer. In ASE, 2000.
18. R. Leino and R. Monahan. Reasoning about comprehensions with first-order SMT

solvers. In SAC, pages 615–622, 2009.
19. T. Lev-ami, N. Immerman, T. Reps, M. Sagiv, and et al. Simulating reachability

using first-order logic. IN CADE-20, pages 99–115, 2005.
20. T. Nolte. Exploring filesystem synchronization with lightweight modeling and

analysis. Master’s thesis, MIT, 2002.
21. S. Owre, N. Shankar, and J. Rushby. PVS: A prototype verification system. In

CADE-11, 1992.
22. Spass: Automated prover for FOL with equality. http://www.spass-prover.org/.
23. P. Suter, R. Steiger, and V. Kuncak. Sets with cardinality constraints in satisfia-

bility modulo theories. In VMCAI, 2011.
24. M. Taghdiri and D. Jackson. A lightweight formal analysis of a multicast key

management scheme. In FORTE, pages 240–256, 2003.
25. M. Taghdiri and D. Jackson. Inferring specifications to detect errors in code. JASE,

14(1):87–121, 2007.
26. E. Torlak. A Constraint Solver for Software Engineering. PhD thesis, MIT, 2009.
27. M. Vaziri. Finding Bugs in Software with Constraint Solver. PhD thesis, 2004.

