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Abstract. Relational reinforcement learning is presented, a learning technique that combines reinforcement
learning with relational learning or inductive logic programming. Due to the use of a more expressive representation
language to represent states, actions and Q-functions, relational reinforcement learning can be potentially applied
to a new range of learning tasks. One such task that we investigate is planning in the blocks world, where it is
assumed that the effects of the actions are unknown to the agent and the agent has to learn a policy. Within this
simple domain we show that relational reinforcement learning solves some existing problems with reinforcement
learning. In particular, relational reinforcement learning allows us to employ structural representations, to abstract
from specific goals pursued and to exploit the results of previous learning phases when addressing new (more
complex) situations.
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1. Introduction

Within the field of machine learning, both reinforcement learning (Kaelbling et al., 1996)
and inductive logic programming (or relational learning) (Muggleton & De Raedt, 1994;
Lavrač & Džeroski, 1994) have received a lot of attention since the early nineties. It is
therefore no surprise that both Leslie Pack Kaelbling and Richard Sutton (in their invited
talks at IJCAI-97, Nagoya, Japan) suggested to study the combination of these two fields.

From the reinforcement learning point of view, this could significantly extend the appli-
cation perspective. Most representations used in reinforcement learning are inadequate for
describing planning tasks such as the simple blocks world. Even reinforcement learning
work that involves generalization has largely employed an attribute-value representation.
Due to the use of variables in relational representations, it is possible to abstract from spe-
cific details of the learning tasks, such as the specific goal pursued. Indeed, when learning
to plan in the blocks world, one would expect that the results of learning how to stack block
a onto blockb would be similar to stackingc ontod. Current approaches to reinforcement
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learning have to retrain from scratch if the goal is changed in this manner, while for relational
reinforcement learning such retraining is unnecessary. Relational reinforcement learning
also allows us to exploit and apply the results of learning in a simple domain when learning
in a more complex domain (e.g., going from 3 blocks to 4 blocks in the blocks world).

From the inductive logic programming point of view, it is important to address domains
such as reinforcement learning. So far, inductive logic programming has mainly studied
concept-learning, and largely ignored the rest of machine learning. By demonstrating the
potential of relational representations for reinforcement learning, we hope to show that the
relational learning methodology does not only apply to concept-learning but to the whole
field of machine learning.

With this in mind, we present an approach to relational reinforcement learning and apply
it to simple planning tasks in the blocks world. The planning task involves learning a policy
to select actions. Learning is necessary as the planning agent does not know the effects of
its actions. Relational reinforcement learning employs the Q-learning method (Watkins &
Dayan, 1992; Kaelbling et al., 1996; Mitchell, 1997) where the Q-function is learned using
a relational regression tree algorithm (see (De Raedt & Blockeel, 1997; Kramer, 1996)). A
state is represented relationally as a set of ground facts. A relational regression tree in this
context takes as input a relational description of a state, a goal and an action, and produces
the corresponding Q-value. The Q-learning method can also be adapted in order to learn the
P-function, an explicit representation of the policy implicitly represented by the Q-function.
The P-function, which is represented as a first order logical decision tree, takes as input a
state, an action, and a goal and predicts whether the action is optimal or not.

The paper is organized as follows. In Section 2, we view planning (under uncertainty)
as a reinforcement learning task. In Section 3, we briefly review Q-learning and show how
Q-learning can be used to learn a P-function. Section 4 briefly reviews decision trees while
focusing on logical decision trees. Section 5 introduces relational reinforcement learning
that combines Q-learning and logical regression trees, as well as P-learning and logical
decision trees. Section 6 presents a variety of experiments aimed at exploring the potential
of relational reinforcement learning. Section 7 concludes, touches upon related work and
discusses avenues for further work.

2. Problem specification

2.1. Reinforcement learning

The typical reinforcement learning task using discounted rewards can be formulated as
follows:

Given

– a set of possible statesS.
– a set of possible actionsA.
– anunknown transition functionδ : S× A→ S.
– anunknown real-valued reward functionr : S× A→ R.
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Find a policyπ∗ : S→ A that maximizes

Vπ (st ) =
∞∑

i=0

γ i r t+i

for all st where 0≤ γ < 1.
At each point in time, the reinforcement learning agent can be in one of the statesst of

S and selects an actionat = π(st ) ∈ A to execute according to its policyπ . Executing
an actionat in a statest will put the agent in a new statest+1 = δ(st ,at ). The agent also
receives a rewardrt = r (st ,at ). It will be assumed that the agent does not know the effects
of the actions, i.e.δ is unknown to the agent, and that the agent does not know the reward
function r . The task of learning is then to find an optimal policy, i.e., a policy that will
maximize the discounted sum of the rewards.

This formulation of reinforcement learning is typical (cf. (Mitchell, 1997; Kaelbling
et al., 1996)). The key contribution ofrelational reinforcement learning is that relational
representations will be used to represent states, actions and policies. Also, relational learners
(as offered by inductive logic programming) will be employed as generalizers.

2.2. Reinforcement learning for planning

Planning with incomplete knowledge can be be recast as an instance of the reinforcement
learning task sketched above. The main differences between typical planning tasks (as e.g.
considered in STRIPS (Fikes & Nilsson, 1971)) and reinforcement learning are that

– in planning, one knows the effects of one’s actions, i.e., the transition functionδ is known
to the agent,

– in planning, a known precondition-condition functionpre:S×A→ {true, false} is given,
which specifies in which states it is legal to apply which actions.

– in planning, one is given agoal functiongoal : S→ {true, false}, which characterizes
the target states.

– in planning, the aim is to start from a states1 and to find a sequence of actionsa1, . . . ,an

(ai ∈ A) such that

• goal(δ(. . . δ(s,a1)) . . . ,an−1),an) = true, and
• pre(δ(. . . δ(s,a1)) . . . ,ai−1),ai ) = true.

This close relation between reinforcement learning and planning can be exploited in
order to define a problem of learning to plan under incomplete knowledge. The setting is
essentially that of reinforcement learning where

– A policy π has to be learned.
– The functionδ is unknown to the agent.
– The reward at timet is rt = r (st ,at ). We will assume here thatrt = 1 if goal(δ(st ,at )) =

trueandst 6= δ(st ,at ); otherwisert = 0. The reward functionr is unknown to the learner
as it relies on the unknownδ. The reward function only gives a reward in goal states.
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– The state at timet + 1 is st+1 = δ(st ,at ) if goal(st ) = false; otherwisest+1 = st . This
captures the idea that goal states are absorbing states, i.e., once the agent reaches a goal
state, it stays there.

The optimal policyπ∗ allows us to compute the shortest plan to reach a goal state. So,
learning the optimal policy (or approximations thereof) will allow us to improve planning
performance.

2.3. An example

The type of learning task outlined above has been also considered by Pat Langley in his
book (Langley, 1996). He uses it to illustrate reinforcement learning and as an example task
he employs the blocks world.

Consider the situation where we have three blocks calleda, b andc, and the floor. Blocks
can be on the floor or can be stacked on each other. Each state can be described by a set
(list) of facts, e.g.,s1 = {clear(a), on(a, b), on(b, c), on(c, floor)}. The available actions
are thenmove(x, y) wherex 6= y andx ∈ {a, b, c}, y ∈ {a, b, c, floor}.

It is then possible to define the preconditions and effects of actions. The Prolog code in
Table 1 definespre andδ respectively. The predicatepre defines the preconditions for the
actionmove(X,Y) while the predicatedelta defines its effects:delta(S,A,S1) succeeds
when δ(S, A) = S1. States are represented as lists of facts and the auxiliary predicate
holds(S,Query) succeeds whenQuery would succeed in the knowledge base containing
the facts inSonly. The goal is to stacka ontob, i.e.,goal(S) :- member(on(a,b),S).
Note that names starting with capitals denote variables in Prolog: thusa in on(a, b) is a
constant denoting a specific block andA in on(A, b) is a variable denoting any block.

3. Q-learning and P-learning

Here we summarize Q-learning, one of the most common approaches to reinforcement
learning, which assigns values to state-action pairs and thus implicitly represents policies.
We then introduce the approach of P-learning which in addition represents policies explicitly.

3.1. Q-learning

In the setting sketched in Section 2.1, Q-learning allows us to approximate the optimal
policy. The optimal policyπ∗ will always select the action that maximizes the sum of the
immediate reward and the value of the immediate successor state, i.e.,

π∗(s) = arg max
a
(r (s,a)+ γVπ∗(δ(s,a)))

With this formulation ofπ∗ we can acquire the optimal policy by learningVπ∗ , provided
perfect knowledge ofδ andr . In our setting, however, the learner does not knowδ andr .
Therefore, even if we learnedVπ∗ , we would not be able to obtainπ∗ from it.
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Table 1. A Prolog definition of the functionspreandδ.

pre(S,move(X,Y)) :-
holds(S,[clear(X), clear(Y), not X=Y, not on(X,floor)]).

pre(S,move(X,Y)) :-
holds(S,[clear(X), clear(Y), not X=Y, on(X,floor)]).

pre(S,move(X,floor)) :-
holds(S,[clear(X), not on(X,floor)]).

holds(S,[]).
holds(S,[ not X=Y | R ]) :-
not X=Y, !, holds(S,R).

holds(S,[ not A | R ]) :-
not member(A,S), holds(S,R).

holds(S,[A | R]) :-
member(A,R), holds(S,R).

delta(S,move(X,Y), NextS) :-
holds(S,[clear(X), clear(Y), not X=Y, not on(X,floor)]),
delete([clear(Y),on(X,Z)],S,S1),
add([clear(Z),on(X,Y)],S1,NextS).

delta(S,move(X,Y), NextS) :-
holds(S,[clear(X), clear(Y), not X=Y, on(X,floor)]),
delete([clear(Y),on(X,floor)],S,S1),
add([on(X,Y)],S1,NextS).

delta(S,move(X,floor), NextS) :-
holds(S,[clear(X), not on(X,floor)]),
delete([on(X,Z)] ,S,S1),
add([clear(Z),on(X,floor)],S1,NextS).

The Q-function for policyπ is defined as follows:

Qπ (s,a) = r (s,a)+ γVπ (δ(s,a))

Knowing Q∗, the Q-function for the optimal policy, allows us to rewrite the definition of
π∗ as follows:

π∗(s) = arg max
a

Q∗(s,a)

This rewrite is important as it shows that if the agent can learn the functionQ∗ instead
of theVπ∗ function, it will still be able to act optimally. In the following, we will callQ∗

simply Q or the Q-function. For a fixedgoal, an approximation to the Q-function,̂Q, in the
form of a look-up table, is learned by the algorithm in Table 2, cf. (Mitchell, 1997). Note
that one can reduce the complexity of Q-learning by using an action-penalty representation
or by setting initial Q-values to be different from zero (Koenig & Simmons, 1996).

It is common in Q-learning to select actiona in states probabilistically so thatPr(a | s)
is proportional toQ̂(s,a), e.g.,

Pr(ai | s) = T−Q̂(s,ai )

/∑
j

T−Q̂(s,aj ) (1)



12 DŽEROSKI, DE RAEDT AND DRIESSENS

Table 2. The basic Q-learning algorithm.

for eachs, a do
initialize the table entryQ̂(s,a) = 0
e := 0

do forever
e := e+ 1
i := 0
generate a random states0

while notgoal(si ) do
select an actionai and execute it
receive an immediate rewardri = r (si ,ai )

observe the new statesi+1

i:=i+1
endwhile
for j=i−1 to 0do

updateQ̂(sj ,aj ) := r j + γmaxa′ Q̂(sj+1,a′)

Lower values of the parameterT (temperature) give stronger preference to actions with
high values ofQ̂ causing the agent to exploit what it has learned, while higher values ofT
reduce this preference allowing the agent to explore actions that currently do not have high
values ofQ̂. Selecting actions according to this scheme will be called theQ exploration
strategy.

3.2. P-learning

The Q-function encodes the optimal policy in a complex manner as it assigns a Q-value to
all the possible state-action pairs. It will turn out useful to represent the optimal policy in a
simpler way. This is realized by the P-function, which we define as follows:

if a ∈ π∗(s) thenP(s,a) = 1 elseP(s,a) = 0

Instead of assigning different real values to the state-action pairs, the P-function only
decides whether the state-action pair is optimal (1) or not (0). In general, P-functions can be
represented more compactly than Q-functions. Indeed, the Q-function implicitly encodes
knowledge about the distance (number of steps) from the current state to the goal states,
whereas the P-function does not. Examples of this, in the context of planning will be given
later in this paper. This point is important as both functions will be represented by logic
programs within relational reinforcement learning.

As the P-function is defined in terms of the optimal policyπ∗, which in turn can be
defined as a function of theQ-function, we can also express the P-function in terms of the
Q-function in a straightforward manner:

if a ∈ arg max
a

Q(s,a) thenP(s,a) = 1 elseP(s,a) = 0
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This also means that any approximationQ̂ of Q has a corresponding approximation
P̂ of P. As a consequence, the above algorithm for Q-learning can be extended into an
algorithm for P-learning by adding an extra step that definesP̂ in terms ofQ̂ at the end of
the algorithm.

Instead of the Q exploration strategy it is now also feasible to use the functionP̂ to select
the actions to execute in given states. This is then done using the following probabilities:

Pr(ai | s) = T−P̂(s,ai )

/∑
j

T−P̂(s,aj ) (2)

The corresponding strategy is called theP exploration strategy.

4. Top-down induction of logical decision trees

4.1. Decision trees

Decision trees are among the most popular representations for learning and data mining,
see e.g. (Mitchell, 1997; Quinlan, 1986; Quinlan, 1993; Breiman et al., 1984). The term
decision trees refers to classification trees and regression trees, although it is often used as a
synonym for classification trees. The leaves of decision trees contain a prediction, which is
a discrete class value in the case of classification (decision) trees or a continuous (real) class
value (or a function yielding real values) in the case of regression trees. Each internal node
of a decision tree contains a test. Furthermore there will be one subtree for each possible
outcome of a test in the tree. In this way, decision trees partition the whole example space
and assign class values to each example. To make predictions with a decision tree one starts
in the root of the tree and applies the root’s test to the example. Then one takes the branch
that corresponds to the outcome of the test in the example and propagates the example to
the corresponding subtree. If the resulting subtree happens to be a leaf, one reads off the
prediction, otherwise one applies the procedure recursively on the example and the subtree.
For instance, the decision tree shown in figure 1 can be used to classify states with three
blocks named a, b and c into the classesstackedandunstacked. As an illustration, consider
a state in whichclear(a) = true, clear(b) = false, andclear(c) = true. This
example would be classified in the third leaf (classstacked).

Classification and regression trees are typically induced using a divide and conquer
algorithm, called top-down induction of decision trees (TDIDT). To induce trees, one starts
from a set of examples and considers all possible tests in the root of the tree and selects the
test that performs best according to a certain heuristic (e.g. information gain in the case of
classification and variance reduction for regression). One then splits the data set according
to the outcome of the test in the examples and one propagates the examples to the resulting
subtrees. For each subtree, one then decides whether to turn the subtree into a leaf or to
recursively call the induction procedure. This process continues until the tree is completed.

Fully grown trees are sometimes pruned to increase the reliability of their predictions
on unseen cases. Various implementations of tree induction exist, cf. e.g. (Quinlan, 1986;
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Figure 1. A decision tree to predict whether there is a stack in the 3 blocks world.

Quinlan, 1993; Breiman et al., 1984), using different heuristics and extensions of the basic
TDIDT approach.

4.2. Logical decision trees

Classical decision trees employ propositional or attribute value representations. Recently,
however, these representations have been upgraded towards first order logic, resulting in
the frameworks of logical classification and regression trees (Kramer, 1996; Blockeel &
De Raedt, 1998). As the work on logical decision trees has been extensively published
elsewhere, we introduce only the key differences with classical decision trees. For full
details of these logical decision tree methods we refer to (Blockeel & De Raedt, 1998;
Blockeel et al., 1998; Kramer, 1996).

One key difference between logical and classical decision trees is that classical decision
trees work with examples in attribute value form. This means that each example is described
by a single feature vector (or single tuple in a table). In logical decision trees, an example is
essentially a relational database (or a Prolog knowledge base) described by a set of facts. As
an illustration consider Table 4, where each example corresponds to a state description in
the block’s world. States are assumed to be fully described, i.e. the closed-world assumption
applies.

The other main difference is that logical decision trees employ (Prolog)-queries as tests
in the internal nodes of the decision trees, e.g.on(A,c) (is there any block A on block c?).
Since the outcome of a query in an example is either true or false, the resulting trees are
always binary. Furthermore, the queries can contain variables, and these variables may be
shared among several nodes of the trees. When variables are shared among several nodes of
the tree they refer to the same object. Consider the tree shown in figure 2. This tree contains
two queries:on(A,B) andon(B,C). In order to classify an example with this tree, one will
first test whetheron(A,B) succeeds in the example for someA andB. If so, one will then test
whether the queryon(A,B), on(B,C) succeeds in the example. This shows that variables
shared among multiple nodes in logical trees are supposed to bind to the same objects. Due
to this property it is only meaningful to propagate the variables of a node to the succeeding
branches of the subtree (labeled yes). Consider the failing branch ofon(A,B) in figure 2.
Given that there is noA andB such thaton(A,B) it does not make sense to refer toA or B
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Figure 2. A logical decision tree that predicts whether there is a stack in the blocks world.

in the failing subtree ofon(A,B). The semantics of the tree is completely characterized
by the corresponding Prolog program shown in figure 2. Due to the complications that
arise one needs to employ cuts (the !) in the Prolog program. Because of the cuts, different
rules in the program behave as in an if-then-else program. To classify an example one tries
whether the condition part of the first rule is satisfied. If it is, one uses the corresponding
prediction, otherwise one tries the second rule. This process continues until a rule is found
whose condition is satisfied. The use of cuts in the Prolog program closely corresponds
to so-called first order decision lists introduced by Mooney and Califf (Mooney & Califf,
1995). These and other aspects of the representation of logical decision trees are explored
in detail in (Blockeel & De Raedt, 1998).

We will use logical decision trees as implemented in the programs TILDE (Blockeel &
De Raedt, 1998) (for classification) and TILDE-RT (Blockeel et al., 1998) (for regression).
From a practical point of view, TILDE can be viewed as an extension of the C4.5 (Quinlan,
1993) system for induction of decision trees. It uses the same heuristics to select tests in
internal nodes, as well as the same mechanisms for tree pruning. For our purposes, TILDE-
RT should be regarded as an extension of propositional regression tree learners, such as
CART (Breiman et al., 1984). Nevertheless, TILDE-RT employs different heuristics (see
(Blockeel et al., 1998) for details). The basic TILDE and TILDE-RT algorithms are outlined
in Appendix A. TILDE and TILDE-RT employ the typical well-known top-down induction
of decision trees (TDIDT) algorithm. The only difference lies in the generation of candidate
tests to be put in the nodes. This will be explained in the next subsection.

4.3. Declarative bias

Because first order representations are more expressive than attribute value representations
the search space explored by inductive logic programming systems is much larger (and
often infinite). To focus the search on the most relevant hypotheses and to eliminate useless
hypotheses from the search space, nearly all inductive logic programming systems employ
some kind of declarative bias mechanism, see (Nedellec et al., 1996) for an overview.
Declarative bias is often implemented by means of so-called mode and type declarations.
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Type declarations specify the types of the arguments of the predicates involved and re-
strict the types of queries and clauses to be type conform. Consider the predicateson/2 and
numberofblocks/1. The type of arguments 1 and 2 of the predicateon/2 is object (block)
and the type of the only argument ofnumberofblocks/1 is integer. Under these declara-
tions the query?-on(X,Y), numberofblocks(X) is not type conform as it requires that
X is of both type object and integer.

Modes specify properties about the calling patterns of predicates in clauses, queries or
conditions to be induced. For example, the modeon(+,-) specifies that at the time of
calling the predicateon/2, the first argument should be bound (or instantiated, it is of type
+) whereas the second argument should be free (not instantiated, it is of type−). One can
also combine these modes and write for instanceon(+-,+-) stating that all calling patterns
are permitted.

Modes are useful because they can focus the hypothesis language on interesting clauses
or queries by excluding useless ones. For example, it can be used to exclude clauses/queries
such as?-height(X,XH), XH < YH. by using the mode+ < +. This mode specifies that
the two arguments of predicate ‘less than’ (</2) should be instantiated and guarantees in this
context that the numbers would be bound before testing whether one is smaller than the other.
Another type of mode is # which specifies that the resulting argument should be bound in the
clause/query to a constant, e.g.on(-,#)would require that the last argument is instantiated.
The rmode formalism employed by TILDE and TILDE-RT implements and slightly extends
the above notions of type and mode declarations, cf. (Blockeel & De Raedt, 1998).

The main point where TILDE and TILDE-RT differ from propositional decision tree
algorithms is the generation of tests to put in the internal nodes. The tests that are considered
in a node depend on 1) the declarative bias, and 2) the tests in nodes higher in the tree
(on succeeding branches). Roughly speaking, TILDE collects all literals in succeeding
ancestors (including the root) of the node and then applies a so-called refinement operator
to generate the tests. The refinement operator employs the declarative bias specifications.
As an illustration of this, consider first the root node in the tree of figure 2 and its succeeding
branch. The test in the root ison(A,B). Given only the mode declarationon(+, -), two
refinements would be generated, i.e.,on(A,B), on(A,C) andon(A,B), on(B,C). This
results in two candidate tests for the succeeding branch:on(A,C) andon(B,C). Suppose
the heuristic chooses as best the latter one (as in the actual tree in figure 2) and also that the
resulting node should be further split. Then the tests considered in the succeeding branch
of the nodeon(B,C) in figure 2 would beon(A,D), on(B,D) andon(C,D). On the other
hand, in the failing branch of the nodeon(B,C), one would consider onlyon(A,D) and
on(B,D) because it does not make sense to refer to the variableC there.

4.4. Background knowledge

Another key issue when using inductive logic programming is background knowledge.
Background knowledge consists of the definitions of general predicates that can be used in
the induced hypotheses. It thus influences the concepts that can be represented.

Unlike the predicates that are used to describe training examples (state/action/qvalue
or state/action/optimality triples in our case), such ason(A,B), background knowledge
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predicates specify knowledge that is generally valid across the whole domain, i.e., for all
training examples. The predicateabove(A,B) (cf. Appendix B) defines when blockA is
above blockB in terms of the predicateon(A,B). This knowledge holds over all states in
the blocks world.

It is well-known that the representation language is a crucial parameter in machine
learning. Given an adequate language, learning will be effective, and given an inadequate
one learning will be difficult if not impossible. Applied to inductive logic programming this
means that it is important to specify the right predicates in the background knowledge.

One advantage of inductive logic programming in this context is that the combination of
background knowledge and declarative bias allows the user to influence the learning process
and results. For instance, as we will see in the experiments, it is sometimes necessary to
employ the predicatenumberofblockson(A,N) to learn effective policies. This predicate
specifies that there are exactlyN blocks above blockA.

Another issue related to our experiments is that of block identities: if one knows that
the absolute identities of blocks are not important as opposed to their relative ones, then
one can specify this using the modes (only allowing for a combination of+ and− and not
for #). While learning will not necessarily be unsuccessful without this knowledge, it can be
much slower. To illustrate this, we have performed some relational reinforcement learning
experiments for the stack and unstack goals (see Section 6.2). Without the assumption that
policies are independent of block identities, TILDE uses block identities in the policies
learned in early episodes, but does not reference block identities in the policies learned after
a larger number of episodes. However, the time needed for learning the policies was three
times longer as compared to the case when block identities were not used at all.

This illustrates the flexibility of inductive logic programming. If the user has partial
knowledge, intuitions or expectations about the hypotheses to be induced, they can be
elegantly encoded using a combination of background theory and declarative bias. If one
does not possess such knowledge, one may have to search a larger space, may require more
examples and time to identify the target concept, and in the worst case, learning might be
unsuccesfull.

5. Relational reinforcement learning

5.1. The need for relational representations

Given the framework for Q- and P-learning presented in Section 3, we could now learn to
plan in the blocks world sketched earlier. Using the approach as it stands we could store
all the state-action pairs encountered and memorize/update the correspondingQ values,
having in effect an explicit look-up table for state-action pairs. This is how Pat Langley
initially addresses the relational reinforcement learning task in his book (Langley, 1996), cf.
also Section 7.2. TheP values could then be derived from this. This approach has however
a number of disadvantages:

– It is impractical for all but the smallest state-spaces. Furthermore, using look-up tables
does not work for infinite state spaces which could arise when first order representations
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are used (e.g., if the number of blocks in the world is unknown or infinite the above
method does not work).

– Despite the use of a relational representation for states and actions, the above method is
unable to capture the structural aspects of the planning task.

– Whenever the goal is changed from sayon(a, b) to on(b, c) the above method would
require retraining the wholeQ function.

– Ideally, one would expect that the results of learning in a world with 3 blocks could be
(partly) recycled when learning in a 4 blocks world later on. It is unclear how to achieve
this with the lookup table.

The first problem can be solved by using an inductive learning algorithm (e.g., a neural
network as in (Langley, 1996)) to approximateQ andP. The three other problems can only
be solved by using arelational learning algorithm that can abstraction from the specific
blocks and goals using variables. We now present such a relational learning algorithm
called RRL. The main contribution of this paper is to address thegeneralizationproblem
for reinforcement learning in a relational setting.

5.2. The task of relational reinforcement learning

We have already considered reinforcement learning (Section 2.1), its application to planning
(Section 2.2), and relational learning (Section 4). We give a more precise definition of
the relational reinforcement learning (RRL) task below. The RRL task is a reinforcement
learning task (items 1 to 4), where states, actions and policies are represented relationally,
and consequently, background knowledge and declarative bias are employed during learning
(items 5 and 6). We illustrate the task formulation within the blocks world that will be used
in our experiments. We want to emphasize though that RRL is a general approach and is
applicable to domains other than planning in the blocks world.

The RRL task is specified as follows:
Given are:

1. A set of possible states S, described in a relational language.States are represented as
sets of basic facts that hold in a state. The closed-world assumption is applied to state
descriptions. In the blocks world, the basic facts concern the predicateson(A, B) and
clear(A). The RRL algorithm encounters states one by one and does not see the entire
set a priori.

2. A set of possible actions A, also represented in a relational language.In the blocks
world, one can move one block onto anothermove(A, B) or to the floormove(A, floor).
Not all actions are applicable in all states. The RRL algorithm sees only the actions
applicable in a given state, as specified by the functionpre:S× A→ {true, false}. It is
defined in Table 1 for the blocks world.

3. A transition functionδ: S× A→ S. For the deterministic block world, this function is
defined in Table 1. The RRL algorithm, however, does not rely on knowledge about this
function. It only uses it to execute actions and move to new states. This function can in
principle be nondeterministic (e.g., a move action might actually fail and not change the
current state).
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4. A real-valued reward functionr : S× A → R. At present we use the goal function
goal:S→ {true, false} to definer : r (S,a) = 1 if goal(δ(S,a)) = true, r (S,a) = 0
otherwise.

5. Background knowledge generally valid about the domain(states in S). This includes
predicates that can derive new facts about a given state. In the blocks world, a predicate
above(A, B) may define that a blockA is above another blockB.

6. Declarative bias for learning relational representations of policies. Together with the
background knowledge, this specifies the language in which policies are represented. In
the blocks world, e.g., we do not allow policies to refer to the exact identity of blocks.

The task is tofind a policy for selecting actionsπ : S→ A that maximizes the expected
discounted reward. Policies can be either represented as real-valued Q-functions or as binary
(optimal/non-optimal) classifier policies (P-functions).

5.3. The Q-RRL algorithm

The relational reinforcement learning (Q-RRL) algorithm is obtained by combining the
classical Q-learning algorithm with stochastic selection of actions and a relational regres-
sion algorithm. Instead of having an explicit lookup table for the Q-function, an implicit
representation of this function is learned in the form of a logical regression tree, called a
Q-tree.

The Q-RRL algorithm is given in Table 3. The main point where RRL differs from the
algorithm in Section 3.2 is in the for-loop where theQ̂-function is modified.

The initial treeQ̂0 assigns zero value to all state-action pairs. From each goal stateg
encountered, an example (g,a,0) is generated for each actiona whose preconditions are
satisfied ing. The rationale for this is that no reward can be expected from applying an
action in an absorbing goal state.

A possible initial episode (e= 1) in the blocks world with three blocksa, b, andc, where
the goal is to stacka on b (i.e.,goal(on(a, b))) is depicted in figure 3. The discount factor
γ is 0.9 and the reward given is one on achieving a goal state, zero otherwise.

The examples generated by RRL use the actions and the Q-values listed above the arrows
representing the actions. The actual format of these examples is listed in Table 4. It is exactly

Figure 3. A blocks-world example for relational Q-learning.
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Table 3. The Q-RRL algorithm for relational reinforcement learning.

Initialize Q̂0 to assign 0 to all(s,a) pairs
Initialize Examples to the empty set.
e := 0
do forever

e := e+ 1
i := 0
generate a random states0

while not goal(si ) do
select an actionai stochastically

using the Q-exploration strategy from Equation (1)
using the current hypothesis for̂Qe

perform actionai

receive an immediate rewardri = r (si ,ai )

observe the new statesi+1

i:=i+1
endwhile
for j=i−1 to 0do

generate examplex = (sj ,aj , q̂ j ),
whereq̂ j := r j + γmaxa′ Q̂e(sj+1,a′)

if an example(sj ,aj , q̂old) exists in Examples, replace it withx,
else addx to Examples

updateQ̂e using TILDE-RT to produceQ̂e+1 using Examples

Table 4. Examples for TILDE-RT generated from the blocks-world Q-learning episode in figure 3.

Example 1 Example 2 Example 3 Example 4

qvalue(0.81). qvalue(0.9). qvalue(1.0). qvalue(0.0).

move(c,floor). move(b,c). move(a,b). move(a,floor).

goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). goal(on(a,b)).

clear(c). clear(b). clear(a). clear(a).

on(c,b). clear(c). clear(b). on(a,b).

on(b,a). on(b,a). on(b,c). on(b,c).

on(a,floor). on(a,floor). on(a,floor). on(c,floor).

on(c,floor). on(c,floor).

this input that is used by TILDE-RT to generate the Q-treeQ̂1. TILDE-RT (De Raedt &
Blockeel, 1997; Blockeel et al., 1998) is an algorithm for learning logical regression trees
(as described in Section 4).

TILDE-RT is not incremental, so we currently simulate the update ofQ̂ by keeping all
(s,a) pairs encountered1 (not just those encountered in episodee) and the most recent̂q
value for each pair. In non-deterministic domains, it would probably be a good idea to
average thêq values instead of keeping only the most recent value. A relational regression
tree Q̂e is induced from the(s,a,q) examples after each episodee. The treeQ̂e is then
used to select actions in episodee+ 1.
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Figure 4. A relational regression tree and its equivalent Prolog program generated by TILDE-RT from the
examples in Table 4.

In order to apply TILDE-RT to induce a Q-tree, the input for TILDE-RT is a set of
state-action pairs together with the corresponding Q-values, represented as sets of facts.
From these, TILDE-RT induces (using the techniques sketched in Section 4) a relational
regression tree in which the predictions correspond to the real numbered Q-values.

To illustrate the above notions, consider the episode shown in figure 3. The examples
for TILDE-RT generated by the RRL algorithm are given in Table 4. The corresponding
relational regression tree induced by TILDE-RT from these examples, using the background
knowledge listed in Appendix B, is shown in figure 4. This tree is a logical regression tree as
described in Section 4. There is one slight difference with the trees introduced in Section 4
and this is the use of the root of the tree. The root of the tree in all decision trees shown
below contains a query that succeeds in all examples. The reason for having a root is that
this allows to bind the relevant variables (in this case the goal, possibly the numberofblocks,
and the action under consideration). Because the root query succeeds for all examples it is
propagated to all nodes in the decision trees. Furthermore it appears in all Prolog clauses
derived from the decision trees.

To find the Q-value corresponding to a state-action pair, one has to construct a Prolog
knowledge base containing the Prolog program (corresponding to the tree), all facts in the
state, the action, and the goal. Running the query?-qvalue(Q) will then return the desired
result. E.g., the Q-tree above will return a Q-value of zero for all actions if the goal is
on(A, B) andon(A,B) holds in the state (goal states are absorbing). On the other hand, if
the goalon(A, B) does not yet hold andA is clear, all actions get a value of one.
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Figure 5. An optimal Q-tree generated by Q-RRL in the three blocks world.

Figure 5 lists the Prolog rewrite of a Q-tree that is optimal for the three blocks world
and has been induced by Q-RRL after 10 episodes. The tree was induced using the back-
ground knowledge listed in Appendix B. The settings used for TILDE-RT can be found in
Appendix C. It is important to note that the individual blocks are not referred to in the tree
itself directly, but only through the variables of the goal. This means that the tree represents
the optimal policy not only for achieving the goalon(a, b), but alsoon(b, c) andon(c,a).
This is one of the major advantages of using a relational representation for Q-learning.

5.4. The P-RRL algorithm

In the previous sections, we showed how the Q-function could be approximated by Q-trees.
In this section, we show how an approximation of the P-function, called the P-tree, can be
obtained.

One approach to approximating the P-function would be to directly apply the definition of
the P-function in terms of the Q-function, where the Q-function in the definition is replaced
by the induced Q-tree as sketched in Section 3.3. However, as the Q-function is typically
more complex than the P-function, this would lead to an unnecessarily complex and indirect
definition of the P-function. As the definitions of both P and Q will be learned it may well
turn out easier and more effective to learn P than to learn Q. This will only be the case when
the induced P-function does not refer to the Q-function. The P-function can be represented
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Table 5. Learning P-trees from Q-trees within the P-RRL algorithm.

for j=i−1 to 0do
for all actionsak possible in statesj do

if state action pair (sj ,ak) is optimal according toQ̂e+1

then generate example (sj ,ak, c) wherec = 1
elsegenerate example (sj ,ak, c) wherec = 0

updateP̂e using TILDE to produce ˆPe+1 using these examples (sj ,ak, c)

as a logical decision tree, a P-tree, that predicts whether the state action pair is optimal
(P-value is 1) or non-optimal (P-value is 0). The P-RRL algorithm learns P-trees in addition
to Q-trees. It is identical to the Q-RRL algorithm with the following two exceptions: 1) to
learn the P-tree, the code in Table 5 is added at the end of thedo forever loop in Table 3
and 2) the P-exploration strategy as defined by Eq. (2) is used to select actions.

All state-action pairs for which the state was encountered in the last episode are classified
as optimal or non-optimal according to the induced Q-tree. The resulting examples are then
fed into the TILDE system that will induce a logical decision tree. The only difference
between a logical decision tree and a logical regression tree is the information in the leaves.
The leaves of regression trees contain real numbers, whereas those of decision trees contain
classes.

The initial tree P̂0 assigns value one to all state-action pairs. From each goal stateg
encountered, an example (g,a,0) is generated for each actiona whose preconditions are
satisfied ing. The rationale for this is that no reward can be expected from applying an
action in an absorbing goal state, hence no action in a goal state is optimal.

If we look back at the examples of figure 3, and apply the P-RRL part of the algorithm,
the examples in Table 6 would be generated. These could then be fed into the TILDE system
that could then induce a logical decision tree.

A P-tree in Prolog format generated by P-RRL from the examples in Table 6 is shown in
figure 6. The same background knowledge is used as for inducing Q-trees. Although induced
from one episode only, this tree comes close to the correct optimality tree for this domain. If
the goal ison(A,B) and there is a block aboveA (above(D,A)) it is optimal to moveD away
(action move(D,E)). The only exception to this is when we moveD toB: this exception is
provided for by the first clause of the tree in figure 7, which was induced by TILDE during
the experiments described in Section 5 and is equivalent to the correct tree.

Figure 6. A P-tree for the three blocks world generated from the examples in Table 6.
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Table 6. Examples for learning a P-tree by TILDE generated from the blocks-world Q-learning episode in
figure 3.

Example 1 Example 2-1 Example 2-2 Example 2-3

optimal. optimal. optimal. nonoptimal.

move(c,floor). move(b,c). move(b,floor). move(c,b).

goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). goal(on(a,b)).

clear(c). clear(b). clear(b). clear(b).

on(c,b). clear(c). clear(c). clear(c).

on(b,a). on(b,a). on(b,a). on(b,a).

on(a,floor). on(a,floor). on(a,floor). on(a,floor).

on(c,floor). on(c,floor). on(c,floor).

Example 3-1 Example 3-2 Example 3-3 Example 4

optimal. nonoptimal. optimal. nonoptimal.

move(a,b). move(b,a). move(b,floor). move(a,floor).

goal(on(a,b)). goal(on(a,b)). goal(on(a,b)). goal(on(a,b)).

clear(a). clear(a). clear(a). clear(a).

clear(b). clear(b). clear(b). on(a,b).

on(b,c). on(b,c). on(b,c). on(b,c).

on(a,floor). on(a,floor). on(a,floor). on(c,floor).

Figure 7. An optimal P-tree generated by P-RRL in the three blocks world.

Note that while we have chosen to use the logical decision and regression tree inducers
TILDE and TILDE-RT, other relational regression (Karalic & Bratko, 1997; Kramer, 1996)
and classification (Quinlan, 1990; Kramer, 1996) approaches can be used to induce relational
representations of Q-functions and policies in the Q-RRL and P-RRL algorithms.



RELATIONAL REINFORCEMENT LEARNING 25

6. Experiments

6.1. Questions addressed

The experiments described in this section will attempt to answer several questions about
relational reinforcement learning. We will focus on the following ones:

1. Is relational reinforcement learning effective for different goals?
2. Can P-RRL and Q-RRL learn optimal policies for state spaces with a fixed number of

blocks?
3. Can P-RRL and Q-RRL learn optimal policies for state spaces with different numbers

of blocks?
4. Can P-RRL and Q-RRL learn from experience in which the number of blocks is varied?
5. Is P-RRL to be preferred over Q-RRL?
6. Under which conditions does relational reinforcement learning work?

6.2. Experimental setup

We performed two different sets of experiments. In the first set of experiments, the poli-
cies were learned from state spaces in which the number of blocks was held constant, cf.
Section 6.3. In the second set of experiments, discussed in Section 6.4, we varied the number
of blocks while learning.

In both sets of experiments we tried out different goals such as stacking, unstacking and
on(a, b) (cf. Section 6.2.1 for a discussion on the goals pursued) and used the background
knowledge and parameter settings discussed in Section 6.2.2, except for the experiments
described in Section 6.6.

6.2.1. Setup: The tasks.The following goals in the block’s world were pursued:

– stack: goal reached if all blocks are on one stack
(?- not (on(A,floor), on(B,floor), not A=B) in Prolog)

– on(a, b): goal reached if blocka is on blockb
– unstack: goal reached if all blocks are on the floor

(?- not (on(A,B), not B=floor))

Prolog code specifying the optimal policies for achieving these goals is given in Table 7.
The optimal policy for unstacking is the simplest: moving any block (that is not already on
the floor) to the floor is optimal. The policy for stacking is a bit more complex: moving a
block to the highest stack is optimal. The policy for achievingon(a, b) is the most complex:
if possible,a should be moved tob; otherwise, a block abovea or b should be moved away
(but not to the stack whereb or a are).

The above ordering of the three goals also corresponds to the number of reachable goal
states, in decreasing order. A reachable goal state is a goal state (where the goal is satisfied)
and which can be reached from a non-goal state in a single step (by applying one action).
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Table 7. Optimal policies for three goals in the blocks world.

optimal(unstack,move(A,floor)) :-
on(A,B),
B\=floor.

optimal(stack,move(A,B)) :-
height(B,HB),
not (height(C,HC), HC > HB).

optimal(onab,move(A,B)) :-
goal(on(A,B)).

optimal(onab,move(X,Y)) :-
goal(on(A,B)),
above(X,A), not above(Y,B).

optimal(onab,move(X,Y)) :-
goal(on(A,B)),
above(X,B), not above(Y,A).

Table 8. Number of states and number of reachable goal states for three goals and different numbers of blocks.

No. of blocks No. of states RGS stack RGS on(a,b) RGS unstack

3 13 6 2 1

4 73 24 7 1

5 501 120 34 1

6 4 051 720 209 1

7 37 633 5 040 1 546 1

8 394 353 40 320 13 327 1

9 4 596 553 362 880 130 922 1

10 58 941 091 3 628 800 1 441 729 1

For the goalon(a,b), e.g., the states1 = {clear(a), on(a, b), on(b, c), on(c, floor)} is a
reachable goal state, whiles2 = {clear(c), on(c,a), on(a, b),on(b, floor)} is not a reachable
goal state.

For the unstack goal and a fixed number of blocks there is only a single state that satisfies
the goal. For the stack goal, givenn blocks there aren! goal states. The number of possible
states increases exponentially with the number of blocks. This is summarized in Table 8.

One point that should be clear from this table is that for some of the goals (e.g., un-
stacking with 10 blocks) the reinforcement learning algorithm described in Section 3.2 is
inapplicable: the probability of reaching the goal state by random exploration is extremely
low (given only 1 goal state in 58 941 091). Another point that this table demonstrates is the
difficulty of learning policies in the blocks world. Despite the fact that the blocks world is
an artificial toy domain, policy learning can become very complex due to the large number
of possible states.

Note also that for unstack, the number of possible actions increases as one gets closer
to the goal states: one step away from the goal state there are(n− 1)(n− 2)+ 1 possible
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actions. For stack, on the other hand, there are only two possible actions if we are one step
away from a goal state.

6.2.2. Background knowledge and parameters.The background knowledge and the
settings used by TILDE-RT and TILDE are listed in Appendix B and C. It includes
the predicatesabove(A,B) (block A is above block B, transitive closure of the relation
on(A,B)), eq(A,B) (equality,A=B), height(A,H) (the height of blockA is H), num-
berofblocks(N), numberofstacks(M) anddiff(X,Y,Z) (subtraction,Z=X-Y). The
same background knowledge is used for both TILDE and TILDE-RT. There is a slight
difference in the settings: when learning policies, TILDE is not allowed to use constants for
the heights of stacks and the number of stacks. E.g., it can compare the heights of two stacks
(needed for the stacking policy), but cannot check directly if there is a stack of height 4. The
same background knowledge and settings are used for the three problems, with the only
difference of placing the corresponding goal literal in the root of the tree (goal on(A,B)
for on(a, b), goal stack for stack,goal unstack for unstack).

In the following sections, we describe experiments with the P-RRL algorithm, which
subsumes the Q-RRL algorithm. The P-exploration policy was used throughout. The starting
temperature was set to 5 in Eq. (2).

6.3. Fixed number of blocks while learning

Our first set of experiments investigates whether relational reinforcement learning can find
optimal policies for the three goals mentioned above when keeping the number of blocks
fixed during learning. The learned policies can then be evaluated in two ways depending
on whether the number of blocks is fixed during evaluation or not.

6.3.1. Evaluating learned policies on fixed number of blocks.Three learning experiments
were conducted for each goal, one with 3, one with 4 and one with 5 blocks. Within each
scenario, 5 runs of 30 episodes each of the P-RRL algorithm were performed. The quality
criteria described below were recorded after each episode and averaged over the five runs,
e.g., over the first episode of each run, over the second episode, etc. It is these averages that
are depicted in the graphs on the figures below.

For each of the three tasks and each number of blocks, the learned policies were evaluated
on the same number of blocks (same state space) they were learned on. Two different quality
criteria were applied, which are feasible to calculate for small numbers of blocks.

The first is the Root Mean Square (RMS) of the error between the value function defined
by the learned Q-function and the optimal value function. The second is the accuracy of the
policy represented by the learned Q-function. The accuracy is defined as the percentage of
state action pairs that are correctly classified as optimal or non-optimal by using the learned
Q-function. For reference, the accuracy of the random policy (that selects an applicable
action at random) is given in Table 9.

The learning curves for the RMS error and the policy accuracy are depicted in figure 8.
For the latter, standard deviations are also given. These results clearly show 1) that optimal
or close to optimal policies are rapidly learned in the case of stacking and unstacking; and 2)
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Table 9. Accuracy of the random policy.

3 Blocks 4 Blocks 5 Blocks

Stacking 42.9 37.6 32.2

Unstacking 66.7 55.1 49.0

On(a,b) 61.7 55.6 50.9

Figure 8. Learning curves for three different goals in the blocks world. The RMS of the error between the optimal
and learned value function and the accuracy of the learned policy are measured. For the latter, standard deviations
are also given.

that the difficulty of the learning task increases and the performance of the learner decreases
with the number of blocks (e.g., for stack and especiallyon(a, b) with 5 blocks).

One important point about relational reinforcement learning is that for the goalon(a, b)
the results remain exactly the same when the goal is varied to sayon(c, d). This is because
the P- and Q-trees abstract away the name of the blocks by using variables.
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6.3.2. Evaluating learned policies on varying number of blocks.As the number of blocks
increases, the number of states in the blocks world increases very fast (cf. Table 8) and it
becomes impractical to calculate the RMS of the value function and the policy accuracy
over the entire state space. We thus take a random sample of states. Exploiting the learned
policy, we start in each of the selected states and generate a plan for achieving the selected
goal by choosing an optimal action proposed by the policy. A plan generated in this fashion
is optimal if it has the same number of actions as a plan generated for the same starting state
and goal by using the optimal policy (see Table 7). The quality measure that we consider
here is optimality, defined as the percentage of states in the sample for which an optimal
plan is generated.

To estimate the optimality, we randomly generated 3 samples of 156 states, one for each
goal, where states could have 3 to 10 blocks. We took 3*n states withn blocks where the
goal pursued was not satisfied. We thus took 3∗ 3= 9 states with 3 blocks, 12 states with
4 blocks,. . . , and 30 states with 10 blocks, a total of 156 states.

We exploited the policies represented by the Q- and P-functions (referred to as Q-policies
and P-policies) learned by the P-RRL algorithm in the previous subsection. The policies
were tested on the set of 156 states appropriate for the selected goal and the accuracy was
recorded as the percentage of states in which the goal was reached in the optimal number
of steps. As in the subsection above, the results were averaged over the 5 runs. The learning
curves for the Q-policies and P-policies are given in figure 9.

From this figure, we can conclude that:

1. Note first that both the Q-policies and the P-policies tested here perform well on the state
spaces where they were learned (with fixed number of blocks—3, 4, or 5, cf. figure 8).
Here we are testing them on a new, much larger state space than the one they were trained
on and it is natural that they will perform worse.

2. When learning from 3 blocks, the Q-policies rapidly converge to those optimal for 3-
block states and reach a plateau (between 20% and 40%) of optimality. The reason for
this low performance is that the Q-values basically encode the number of steps from the
goal when executing the specified action in the given state. These numbers depend—
of course—on the number of blocks. When learning from 4 and 5 blocks, optimality
improves as the number of episodes increases, albeit slowly, and reaches around 60%.
The notable exception is learning stacking with 4 blocks, where optimality of over 90%
is reached.

3. The P-policies seem to converge to optimal or close to optimal strategies when learning
with a sufficiently large number of blocks (4 or 5), with convergence being fastest for
unstacking and slowest foron(a, b). A look at the optimal policies for each goal (listed
in Table 7) makes this easier to understand: the unstacking policy is simplest and the
on(a, b) policy the most complicated of the three. When learning with 3 blocks, policies
that are optimal for three-block states are learned, which however do not generalize to
states with higher numbers of blocks (except for unstacking). When learning with higher
number of blocks convergence to the optimal or close to optimal strategies slows down.
Furthermore, the P-function does not get stuck on plateaus. The P-function foron(a, b)
does not reach optimality in the 30 episodes, but makes constant progress. We take a
closer look at theon(a, b) problem in Section 6.6.
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Figure 9. Learning curves for three different goals in the blocks world. The same policies as in figure 8 are
evaluated. The percentage of optimal plans generated for a sample of 156 starting states with different numbers
(3 to 10) of blocks is depicted.

4. The P-policies perform much better than the Q-policies on the new state space. This is
not surprising, as they do not make direct reference to the number of steps to a goal state
and thus depend less on the number of blocks.

For illustration, Appendix D lists the P- and Q-policies learned after the 30 episodes of
the last (fifth) run of each experiment. We can see immediately that the P-policies have a
much shorter representation. The P-policies for unstack and stack are recognizably optimal.
The P-policy for unstack states that an action is nonoptimal if it moves a block onto another
block (only blocks can be clear!), otherwise (action moves a block to the floor) the action
is optimal. The P-policy for stack states that an actionmove(B,C) is nonoptimal if the
stack withC on top is not the highest stack around (there is a stack withE on top that is
higher).
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6.4. Varying the number of blocks while learning

In a second set of experiments we varied the number of blocks while learning. Three
experiments were performed, one for each goal.

The results were averaged over 10 runs and each run consisted of 45 episodes. Each run
started with 5 episodes involving states with 3 blocks, followed by 15 episodes involving
states with 4 blocks, followed by 25 episodes involving states with 5 blocks. The temper-
ature was decreased by a factor 0.95 after every episode to stimulate the use of learned
knowledge when the learning problem becomes harder. The learned policies were evalu-
ated for a varying number of blocks, as described in Section 6.3.2. The results are shown in
figure 10.

Let us first look again at the results of stacking and unstacking. The graphs clearly
show that the learned P-trees are close to optimal even though the Q-trees are not optimal.
Furthermore, when increasing the number of blocks (after episodes 5 and 20) there is a
temporary decrease in performance of the learned policies (a small one for the P-trees and
a more significant one for Q-trees). This is due to the changes in the Q-function that occur
when the state-space changes. The Q-function depends on the number of steps to the goal
state. When the number of blocks is increased the possible distance to the goal also increases
and the Q-function has to be adapted. This is somewhat related to the notion of concept
drift (Widmer & Kubat, 1998).

After 30 episodes, the optimal P-function for stacking is learned, which was not the
case for learning from states with 3 or 5 blocks only. This seems to indicate that relational
reinforcement learning can bootstrap itself. The result of learning on easier tasks can—
indeed—be used to attack harder tasks. As indicated in Table 8, the probability of finding
the goal state in the world with 10 blocks can be close to zero. However, using the sketched
procedure, starting from simple states and gradually increasing the difficulty of the problem,
the optimal policies can be learned.

There is a notable decrease of performance of the P-policy foron(a, b) after switching
from 4 to 5 blocks (after episode 20). The fall in performance is not reversed in the remaining
25 episodes, although the Q-policy improves slowly but steadily. In fact, the performance
of the P-policies is worse than with learning from 4 or 5 blocks alone. We examine this
issue in more detail in Section 6.6. First, however, we try to explain the differences between
the P- and Q-trees.

6.5. Q-learning versus P-learning

The previous experiments clearly indicate that the P-trees almost consistently outperform
the Q-trees for stacking and unstacking. The explanation for this relies on two observations.
First, as already mentioned above, the Q-trees encode the number of steps from the goals,
whereas the P-trees only encode whether a certain step is optimal or not. The optimal action
in a given state typically does not rely on the number of blocks or the number of steps
from the goal, but rather on the properties of the state and action. This is evident from the
optimal policies listed in Table 7. Therefore, P-trees learned for states with a sufficiently
large number of blocks are likely to behave nicely on problems with a different number of
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Figure 10. Learning curves for three different goals in the blocks world, where the number of blocks is varied
during learning. The percentage of optimal plans generated for a sample of 156 starting states with different
numbers (3 to 10) of blocks is depicted. Error bars of one standard deviation are given.

blocks. This is not the case for Q-trees. This is somewhat related to the work on generalizing
numbers in explanation based learning (Mitchell et al., 1986).

Secondly, the P-trees are always simpler than the Q-trees because they only need to
distinguish two classes: optimal and not optimal, whereas Q-trees distinguish among many
values. Finally, the reader may wonder why the P-trees perform better than the Q-trees even
though the P-trees are derived from the Q-trees? To explain this, observe that the Q-trees
are close to optimal for states with the same fixed number of blocks as used in the episodes
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(with the exception ofon(a, b)). The P-trees then abstract away from this number of blocks
and the number of steps from the goal. This ability is entirely due to the use of inductive
logic programming and gives an indication where reinforcement learning may benefit from
using relational learning.

6.6. When does relational reinforcement learning work?

The previous experiments clearly showed that relational reinforcement learning works well
for stacking and unstacking but less so for achievingon(a, b).

The first question that arises is how good (or bad) the results onon(a, b) really are.
The analysis so far has only looked at optimal plans, a very stringent criterion. If a policy
takes one action longer than necessary, this has been considered a complete failure in the
accuracy figures presented so far. However, a non-optimal plan might still be of good quality.
To investigate the quality of the generated policies, we evaluated them along two further
criteria: 1) the proportion of states where the policy loops, and 2) the ratio of the numbers
of actions taken by the policy and the optimal plan, respectively.

The evaluation of the policies foron(a, b) learned as described in Section 6.4. along
these two criteria is depicted in figures 11 and 12. Figure 11 shows the percentage of cases
where more than 10 times the optimal number of number of steps were needed: the policy
was considered to loop in this case and its execution was stopped. After a few episodes, the
P-policies do not loop at all, while Q-policies still loop even after 45 episodes.

Figure 12 depicts ratio of the number of actions taken by the policy and the number
of actions in the optimal plan. So 100% is the best one can score on this criterion. If the
policy looped, it was stopped after 10 times the optimal number of steps. Even though the
P-policies are not optimal, they come very close to optimality. Once they stop looping (after

Figure 11. The percentage of states for which the learned policy for on(a,b) loops (takes more than 10 times the
optimal number of steps).
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Figure 12. The ratio of the number of steps taken by the learned policy for on(a,b) and the optimal number of
steps. Error bars of one standard deviation are given.

a few episodes), they take less than 1.5 times the optimal number of steps (on the average).
The Q-trees perform consistently worse than the P-trees, but not really bad. The number of
steps needed to reach the goal is about twice the optimal one in the late episodes.

Despite the fact that the problem withon(a, b) is not as bad as it appeared at first sight,
the question remains as to why relational reinforcement learning has problems learning
the optimal policy. One already mentioned reason for this is that the optimal policy to
achieveon(a, b) is more complex (cf. Table 7). Indeed, in order to achieveon(a, b) one
first has to cleara and b and then to movea onto b, which is more complex than the
other strategies. Though this fact might explain why learning foron(a, b) is slower than
for stacking or unstacking, it does not explain some other facts. In figure 10, the Q- and
P-trees foron(a, b) seem to perform equally well on states with a varying number of blocks.
From the experiments for stacking and unstacking one would expect the P-trees to perform
significantly better.

To investigate these anomalies, we performed some experiments where the goal of RRL
was a subgoal ofon(a, b) namelyclear(a). The results of this test are shown in the first two
curves in figure 13 (P-perc and Q-perc).

Although the P-tree performs a little better than the Q-tree, no optimal policy is learned.
We then investigated the resulting Q- and P-trees. The learned Q-tree was very complicated
and was clearly incorrect. The explanation for this is that—using the representation language
and background knowledge available—TILDE-RT cannot represent the correct Q-tree. The
reason is that the Q-tree actually implicitly encodes the number of steps from the goal
state. Forclear(a) this means that one has to know the number of blocks that are abovea.
This was partly confirmed in another experiment and is illustrated in figure 14. We tried to
learn the correct Q-function using a fixed number of blocks (4) and compared the generated
values with the real ones. Although RRL was able to predict the correct actions as optimal
or not (left part of figure 14), it was not able to represent the correct Q-values for the entire
state-space (right part of figure 14, RMS greater than zero).
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Figure 13. Learning curves for the goal clear(a) for the blocks world with a varying number of blocks during
learning. The curves denoted with+ are obtained using an additional background knowledge predicate.

Figure 14. Learning curves for the goal clear(a) in the 4 blocks world. The curves denoted with+ are obtained
using an additional background knowledge predicate.

To test this hypothesis, we ran the relational reinforcement learning algorithm P-RRL
again, but this time we added the predicatenumberofblockson(X,N) (there are N blocks
on top of block X) to the background theory and modified the mode and type declarations
accordingly. The results are shown in figure 13 under the Q+ and P+ curves. What is
surprising is that although the Q tree performs equally well as the Q+ tree, the P+ tree is
optimal.

A further experiment was carried out in which a Q+ tree was learned and tested on
states with a fixed number of blocks (4) (cf. figure 14). It turns out that the resulting Q+
trees outperform the Q-trees. More specifically, the Q+ trees forclear(a) were correct
for all states with four blocks (RMS equal to zero), whereas the Q-trees were not. This
experiment indicates that in order for relational reinforcement learning to work one must
first get the Q-trees correct for states with a fixed number of blocks, and then the P-trees will
abstract away to a variable number of blocks. This experiment also confirms that one needs
the right representations for learning. In the context of relational learning and relational
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Figure 15. Learning curves for the goal on(a,b) in the blocks world, where the number of blocks is varied during
learning. The curves denoted with+ are obtained using an additional background knowledge predicate.

reinforcement learning this translates to the requirement that the ensemble of background
theory and bias must allow to encode the Q- and P-trees.

Finally, let us take a look at the learning curves for the goalon(a, b) in the blocks world,
shown in figure 15 where the number of blocks is varied during learning and the additional
background knowledge predicate is used. With the new predicate in the background knowl-
edge, steady improvement of performance can be observed for the P-function after the 20-th
episode, which was not the case previously.

6.7. Efficiency

Concerning the efficiency of the relational reinforcement learning algorithm, one has to dis-
tinguish between the different goals. The number of training examples for TILDE/TILDE-
RT are different for the different goals. Figure 16 shows how the total number of learning
examples increases per episode for the different goals. For the P-trees, more learning ex-
amples are generated than for the Q-trees. This is because the examples for the P-tree are
generated looking at every possible action at every visited state, instead of just the actions
executed at that state in the case of the Q-tree.

There is also a large difference between the number of learning examples for the different
goals. The reason for this is the large difference in the number of possible actions when
one approaches the goal-state. As stated in Section 6.2.1, one step away from the goal in a
state space withn blocks there are(n− 1)(n− 2) + 1 possible actions when unstacking,
while there are only three actions when stacking. This difference is the reason for the large
difference in the number of learning examples for the different goals.

This difference also influences execution time. Where 30 episodes with three blocks
only take 6.25 minutes (total time required for learning) if the goal is stacking, the same
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Figure 16. Number of learning examples after each episode for each of the three goals.

experiment with the unstacking goal takes 8.75 minutes. The same experiment again but
with on(a, b) as a goal requires 20 minutes. The larger time for theon(a, b) experiment is
due to the need for larger trees for both the Q-function and the policy.

When increasing the state-space from 3 to 4 blocks, the learning time grows to 62.4 min-
utes for stacking. The same test with 5 blocks already takes 306 minutes. When compared
to the learning time for the experiment with a variable number of blocks (231 minutes, cf.
Table 10), the gain from bootstrapping on easier problems is obvious.

The other timing results can be found in Table 10. Actually, testing the learned policies
required more cputime than learning in the experiments we carried out. This justifies some
of the choices we made in the experimental setup (e.g. the use of ‘only’ 156 states). Testing
the generated trees takes a lot of time due to the same problem as discussed before. Testing
the P-trees is faster because the first optimal action (out of randomly generated possible
actions) is chosen, so not all actions have to be examined. The time needed for inducing
the trees depends largely on the number of State/Action pairs used for TILDE, so the last
tree induced uses the most cputime. RRL could be sped-up by making TILDE/TILDE-RT
incremental. Various incremental decision tree algorithm exist and could be adopted within
TILDE/TILDE-RT (e.g. (Utgoff et al., 1995)).

Table 10. Execution time of the RRL Algorithm on Sun Ultra 5/270 machines. The second column states the
total accumulated time required for learning during the 45 episodes, the third and fourth column state the time
required to test one Q- or P-tree, the last two columns list the time needed to induce the final P and Q-trees.

45 Episodes Testing Induction of Final
3→5 Blocks Q-tree P-tree Q-tree P-tree

Stacking 3.85 hrs 16.1 min 10.2 min 4.85 min 3.85 min

Unstacking 10.1 hrs 45.1 min 16.7 min 18.8 min 6.61 min

On(a,b) 12.4 hrs 24.5 min 13.3 min 21.5 min 15.6 min
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It should also be pointed out that special techniques have been developed within the
data mining community to handle large data sets. These techniques have recently been
incorporated in TILDE and TILDE-RT, cf. (Blockeel et al., 1999) and could improve the
efficiency of RRL.

6.8. Summary of experimental results

To illustrate the advantages and limitations of RRL, we try to give brief answers to the
questions posed in Section 6.1.

1. Is RRL effective for different goals?RRL was successfully used for stacking and un-
stacking, and after some representational engineering also foron(a, b). Policies learned
for on(a, b) can be used for solvingon(A, B) for any A andB.

2. Can P-RRL and Q-RRL learn optimal policies for state spaces with a fixed number of
blocks?Yes, though this becomes more difficult when the number of blocks increases.

3. Can P-RRL and Q-RRL learn optimal policies for state spaces with a varying number
of blocks?Q-functions optimal for state spaces with a fixed number of blocks are not
optimal for state spaces with a varying number of blocks. But we can learn optimal
P-functions from the Q-functions. These P-functions often are optimal for state spaces
with a varying number of blocks as well.

4. Can P-RRL and Q-RRL learn from experience in which the number of blocks is varied?
Learning with a fixed number of blocks is increasingly difficult when we increase the
number of blocks. Starting with a small number of blocks and gradually increasing this
number allows for a bootstrapping process, where optimal policies are learned faster.

5. Is P-RRL to be preferred over Q-RRL?If Q-RRL doesn’t work, then P-RRL won’t work
either. But once Q-RRL learns a Q-function that does the job right (even for states with
a fixed number of blocks), one is better off using the P-function learned from the Q-
function. The latter usually generalizes nicely to larger numbers of blocks than seen
during training.

6. Under which conditions does relational reinforcement learning work?As general rein-
forcement learning, RRL works less well for goals that require more complex policies.
However more appropriate background knowledge and more training might help in such
cases.

7. Discussion

We have presented an approach to planning with incomplete knowledge that combines rein-
forcement learning and relational learning into a technique called relational reinforcement
learning. The advantages of this approach include the ability to use structured represen-
tations, which enables us to also describe infinite worlds, and the ability to use variables,
which allows us to abstract away from specific details of the situations (such as, e.g., the
goal, the number of blocks). The ability to carry over the policies learned in simple situa-
tions (with few blocks) to more complex situations was demonstrated. It is hard to see how
this could be realized without the use of relational representations.

We continue the discussion by discussing scalability, related work and further work.
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7.1. Scalability

Even for standard reinforcement learning, scaling-up as the dimensionality of the problem
increases can be a problem. Using a richer description language may seem to make things
even worse. However, there are reasons to expect that using a richer representation actually
enables relational Q-learning to scale-up better than standard Q-learning. Let us illustrate
these on the blocks world.

First, in the representation employed, the relational theories learned abstract away the
block names, causing the number of states that are essentially different to decrease. For
instance, withgoal(on(a, b)) the states{on(a, c), on(c, b), on(b, floor), on(d, floor)} and
{on(a, d), on(d, b), on(b, floor), on(c, floor)} are essentially the same asc andd are inter-
changeable. In standard Q-learning, they would be considered different. In our 4-blocks
example, the number of states that essentially differ from one another is 73 for a stan-
dard Q-learner, but only 38 for a relational one. This ratio increases combinatorially
(since all blocks that do not occur in the goal have no special status and are thus in-
terchangeable, the ratio increases roughly with(n − 2)!, wheren is the total number of
blocks).

Second, the use of background knowledge makes it possible to abstract even further from
specific situations that do not essentially differ. For instance, whena has to be cleared in
order to be able to move it, it is not essential whether there are 1, 5 or 17 blocks abovea: the
top of the stack ona should be moved. Using background definitions such asabove(X,Y),
it is possible to state a rule such as “if there are blocks ona, move the topmost of those
blocks to the floor” which captures a very large set of specific cases.

However, the exact scale-up behavior of relational reinforcement learning has still to
be determined experimentally. The experimental evaluation of our approach done so far is
mainly intended to highlight the principal advantages of using a relational representation
for reinforcement learning. We hope that this paper will inspire further research into the
combination of relational and reinforcement learning, as much work remains to be done.
This includes considering more complex and demanding planning problems.

7.2. Related work

The main contribution of our work is to address the generalization problem in reinforcement
learning within a relational setting. The task of finding optimal plans within the blocks world
was already considered by Langley in his book (Langley, 1996), to illustrate reinforcement
learning. However, instead of using a relational learner for generalization he employs a
neural net using a fixed set of propositional features. Indeed, typical generalizers in rein-
forcement learning are based on neural nets, cf. e.g. (Tesauro, 1991), whereas we employ
decision trees.

The use of decision trees in a reinforcement context is not new. It was first proposed by
Chapman’s and Kaelbling’s (Chapman & Kaelbling, 1991), who developed an incremental
decision tree learning algorithm with special heuristics to cope with concept-drift (Widmer
& Kubat, 1998) in the reinforcement learning context. Our approach is distinguished from
the one by Chapman and Kaelbling by the use of a relational representation. However,
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it would be extremely useful to integrate algorithm by Chapman and Kaelbling (i.e. the
heuristics and the incremental aspect) with the representations provided by TILDE and
TILDE-RT.

Another piece of work that is very much related to our presentation of RRL is that
of Baum (Baum, 1996). He uses a kind of genetic approach to learning rules in the
blocks world for goals such as stacking and unstacking. To this aim he employs a spe-
cial rule language (at a level between propositional and first order logic) for expressing
policies and uses genetic ingredients to learn and modify the set of rules. Whereas this ap-
proach is elegant, it does not employ the basic principles oftemporal difference learningas
we do.

The combination of learning and planning has received a lot of attention in the artificial in-
telligence literature (see (Langley, 1996) for an excellent overview). Also, most approaches
to learning in a planning context do employ relational representations. It can be no surprise
that various types of learning tasks have been considered in this context.

– A first line of research attempts to improve the domain knowledge of the planner. This
corresponds to learning more accurate definitions of the operators, i.e. the effects, pre-
and post-conditions. This approach has been integrated in Prodigy, cf. (Carbonell & Gill,
1990). The planner then exploits the learned knowledge in order to construct better plans.
The difference with relational reinforcement learning is that our approach does not rely
on a planner. This is important as one might consider relational reinforcement learning
outside a planning context.

– A second line of research concerns the learning of control knowledge. E.g. the work on
LEX (Mitchell et al., l983) and SAGE (Langley, 1985) learned when to apply certain
operators. The goal of this work is thus similar to that of relational reinforcement learning.
However, the approach is quite different. E.g. to solve symbolic integration problems,
LEX would construct a search tree (a trace) in which all legal operators were applied
to a given integration problem until a solution was found at a certain depth. Once the
solution was found, LEX would label all applications of operators on the path leading
to the (optimal) solution as positive examples, and all applications diverging from this
path as negative examples. The examples were then fed into a kind of relational learning
algorithm and used to refine the control knowledge. So, the mechanism for learning is
quite different. The LEX and SAGE method does not apply in the context of autonomous
agents, because it assumes that one can backtrack to earlier states (which may not be
possible—and which is certainly problematic without adequate domain knowledge). On
the other hand, our method to construct examples for learning the P-tree is certainly
similar in spirit to LEX.

– A third line of research analytically learns control knowledge often using a form of
explanation based learning. The difference with relational reinforcement learning is that
explanation based learning relies on complete knowledge about the domain.

The work by Stone and Veloso (Stone & Veloso, 1999) is closely related to ours in two
ways. First, they use decision-trees to learn a Q-function, thereby generalizing. Second, they
use a mapping on states to transform large state-spaces into learnable ones. This mapping
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is hand-coded. Our approach uses a mapping which generalizes across state-action pairs;
this mapping is implicitly defined by the relational representation and the background
knowledge.

Somewhat related to our approach is work on hierarchical reinforcement learning, such
as options (Sutton et al., 2000). Options are macro actions defined by a region of the state
space where execution can begin, a policy and a termination condition. Options can be
viewed as background knowledge, albeit different in nature from the one currently used by
RRL.

7.3. Further work

The reinforcement learning part of the work presented in this paper is admittedly simple.
We have taken a standard textbook description of reinforcement learning (Mitchell, l997)
and incorporated an implementation of it within our approach. We have considered a de-
terministic setting and a goal-oriented formulation of the learning problem. However, both
restrictions can be easily lifted to extend to non-zero rewards on non-terminal states (the
RRL algorithm actually makes no assumption on the reinforcement received) and non-
deterministic actions. To handle nondeterministic actions an appropriate update rule (see
page 382 of (Mitchell, l997)) has to be used to generate examples for the TILDE-RT al-
gorithm. Other points where the reinforcement learning part can be improved include the
initialization of Q-values and the exploration strategy.

The current implementation of TILDE-RT is—according to reinforcement learning
standards—not optimal. One of the reasons is that it is not incremental. However, in-
crementality is not sufficient, as the (estimated) values of Q are changing with time. These
problems are taken care of by Chapman and Kaelbling’s decision tree algorithm that was
specifically designed for reinforcement learning (Chapman & Kaelbling, 1991). A natural
direction for further work is thus to develop a first order regression tree algorithm combin-
ing the representations of TILDE-RT with the algorithm and performance measures of the
approach by Chapman and Kaelbling. Such an integrated approach would not suffer from
the abovementioned problems.

An interesting direction for further work would be the integration of relational rein-
forcement learning with some approaches to hierarchical reinforcement learning, such as
options (Sutton et al., 2000). As mentioned above, options are macro actions defined by
a region of the state space where execution can begin, a policy and a termination condi-
tion. Parametrized options, such asclearblock(A) would make sense in the RRL setting:
the termination condition for this option would beclear(A). Such an option could also be
learned. The use of such options could alleviate some of the problems encountered during
our experiments withon(a, b).

Appendix A: TILDE and TILDE-RT algorithms

The pseudo-code for the TILDE and TILDE-RT algorithms is given in Table I.
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Table I. Pseudo-code for the TILDE and TILDE-RT algorithms.

proc inducetree(E: examples)
create a root noden for the treet
split(n,E,t )
return t
endproc

proc split(n: node;E: examples,t : tree)
best:= false
for all possible testsq in noden do

computequality(q)
if quality(q) is better thanquality(best)
then best:=q
endif

if bestyields improvements
then

test(n) := best
create two subnodesn1, n2 of n in t
E1 :={e∈ E | e satisfiesbestin t}
E2 :={e∈ E | e does not satisfybestin t }
call split(n1, E1, t)
call split(n2, E2, t)

elseturnn into a leaf
endif
endproc

The TILDE and TILDE-RT algorithms are similar to classical decision trees except that
only binary trees are induced and also that the computation of the possible tests in a node
may depend on the variables in nodes higher in the tree. Also, when determining whether an
example satisfies a test one must also take into account the tests higher in the tree. Finally,
the heuristics employed by TILDE are the same as in C4.5, and those in TILDE-RT will
minimize the variance of the target variable within each subnode and will maximize the
variance among the two subnodes.

B. Background knowledge for TILDE

Besides the predicatesclear(A) andon(A, B) used to represent states, the following pred-
icates can be used in the trees induced by TILDE and TILDE-RT:above(A, B), eq(A, B),
height(A, H), number of blocks(N), number of stacks(M) anddiff (X,Y, Z). The same
background knowledge is used for both TILDE and TILDE-RT. It is listed below.

eq(X,X).
above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).
action move(X,Y) :- action(move(X,Y)).

goal on(A,B) :- goal(on(A,B)).
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goal stack :- goal(\+ (on(A,floor),on(B,floor), A\=B)).
goal unstack :- goal(\+ (on(A,B), B\=floor)).

diff(X,Y,Z) :- Z is X - Y.

height(floor,0).
height(A,H) :- block(A), height1(A,H).

height1(A,1) :- on(A,floor).
height1(A,H) :- on(A,B), B\=floor, height1(B,HB), H is HB+1.

numberofblocks(N):- myblocks(X), mylength(X,N).

numberofstacks(N):-mystacks(X), mylength(X,N).

myblocks(List) :- findall(X, block(X), List).

mystacks(List) :- findall(X, on(X,floor), List).

mylength(X,L) :- mylen(X,0,L).
mylen([],L,L) :- ! .
mylen([X | R],N,L) :- N1 is N + 1, mylen(R,N1,L).

block(X) :- on(X,Y).

C. Settings for TILDE and TILDE-RT

C.1. TILDE-RT settings

These are used for learning the Q-functions. Since the number of steps to the goal essentially
defines the Q-function, heights of stacks and differences between these and the number of
blocks, comparisons of these to constant values are allowed.

heuristic(eucl).
euclid(qvalue(X), X).

tilde mode(regression).
confidence level(1).
minimal cases(1).
output options([c45e,prolog]).

talking(0).

typed language(yes).
type(clear(block)).
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type(on(block,block)).
type(eq(block,block)).
type(above(block,block)).
type(action move(block,block)).
type(height(block,number)).
type(numberofblocks(number)).
type(numberofstacks(number)).
type(number < number).
type(number = number).
type(diff(number,number,number)).
type(goal on(block,block)).
type(goal stack).
type(goal unstack).
type(member(number,list)).

rmode(10: clear(+-X)).
rmode(10: on(+-X,+-Y)).
rmode(10: on(+-X, floor)).
rmode(10: eq(+X,+Y)).
rmode(10: eq(+X,floor)).
rmode(10: above(+-X,+-Y)).
rmode(10: action move(+-X,+-Y)).
rmode(10: action move(+-X,floor)).
rmode(10: (height(+-X,-H), height(+-X2,-H2), H < H2)).
rmode(10: (height(+-X,-H), height(+-X2,-H2), H2 < H)).
rmode(10: (height(+-X,-H), diff(+N,H,-D), height(+-X2,-H2),

diff(N,H2,-D2), D < D2)).
rmode(10: (height(+-X,-H), diff(+N,H,-D), height(+-X2,-H2),

diff(N,H2,-D2), D2 < D)).
rmode(10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,10]),

(height(+-X,-H), H = C))).
rmode(10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,10]),

(height(+-X,-H), H < C))).
rmode(10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,10]),

(height(+-X,-H), diff(+N,H,-D), D = C))).
rmode(10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,10]),

(height(+-X,-H), diff(+N,H,-D), D < C))).
rmode(10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,10]),

(numberofstacks(-S), S = C))).
rmode(10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,10]),

(numberofstacks(-S), S < C))).
rmode(10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,10]), (

numberofstacks(-S), diff(+N,S,-D), D = C))).
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rmode(10: #(C: member(C,[0,1,2,3,4,5,6,7,8,9,10]),
(numberofstacks(-S), diff(+N,S,-D), D < C))).

root((goal on(A,B), numberofblocks(N), action move(X,Y))).

C.2. TILDE settings

These are used for learning the P-functions. Since the optimality of actions does not depend
on the number of steps to the goal, comparisons of heights and the number of stacks to
constants are not allowed.

heuristic(gain).
euclid(qvalue(X), X).

tilde mode(classify).
classes([optimal,nonoptimal]).
confidence level(1).
minimal cases(1).
output options([c45e,prolog,elaborate]).

talking(0).

typed language(yes).
type(clear(block)).
type(on(block,block)).
type(eq(block,block)).
type(above(block,block)).
type(action move(block,block)).
type(height(block,number)).
type(numberofblocks(number)).

type(numberofstacks(number)).
type(number < number).
type(number = number).
type(diff(number,number,number)).
type(goal on(block,block)).
type(goal stack).
type(goal unstack).

rmode(10: clear(+-X)).
rmode(10: on(+-X,+-Y)).
rmode(10: on(+-X, floor)).
rmode(10: eq(+X,+Y)).
rmode(10: eq(+X,floor)).
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rmode(10: above(+-X,+-Y)).
rmode(10: action move(+-X,+-Y)).
rmode(10: action move(+-X,floor)).
rmode(10: (height(+-X,-H), height(+-X2,-H2), H < H2)).
rmode(10: (height(+-X,-H), height(+-X2,-H2), H2 < H)).
rmode(10: (height(+-X,-H), diff(+N,H,-D), height(+-X2,-H2),

diff(N,H2,-D2), D < D2)).
rmode(10: (height(+-X,-H), diff(+N,H,-D), height(+-X2,-H2),

diff(N,H2,-D2), D2 < D)).
root((goal on(A,B), numberofblocks(N), action move(X,Y))).

D. Q-policies and P-policies induced in the 4-blocks world by the P-RRL algorithm

D.1. P-policy for unstack

ptree(nonoptimal) :- goal unstack , numberofblocks(A) ,
action move(B,C) , clear(C), !.

ptree(optimal).

D.2. Q-policy for unstack

qtree(0.729) :- goal unstack , numberofblocks(A) , action move(B,C) ,
height(D,E) , E = 2 , on(C,D), !.

qtree(0.9) :- goal unstack , numberofblocks(A) , action move(B,C) ,
height(D,E) , E = 2 , action move(D,floor) , numberofstacks(F) ,
F = 2, !.

qtree(1) :- goal unstack , numberofblocks(A) , action move(B,C) ,
height(D,E) , E = 2 , action move(D,floor), !.

qtree(0.81) :- goal unstack , numberofblocks(A) , action move(B,C) ,
height(D,E) , E = 2 , height(C,F) , height(B,G) , F < G ,
height(B,H) , H = 4, !.

qtree(0.8286) :- goal unstack , numberofblocks(A) , action move(B,C) ,
height(D,E) , E = 2 , height(C,F) , height(B,G) , F < G ,
height(C,H) , diff(G,H,I) , I = 2, !.

qtree(0.9) :- goal unstack , numberofblocks(A) , action move(B,C) ,
height(D,E) , E = 2 , height(C,F) , height(B,G) , F < G ,
clear(D), !.

qtree(0.9) :- goal unstack , numberofblocks(A) , action move(B,C) ,
height(D,E) , E = 2 , height(C,F) , height(B,G) , F < G, !.

qtree(0.816429) :- goal unstack , numberofblocks(A) ,
action move(B,C) , height(D,E) , E = 2 , on(C,floor), !.

qtree(0.81) :- goal unstack , numberofblocks(A) , action move(B,C) ,
height(D,E) , E = 2, !.

qtree(0).
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D.3. P-policy for stack

ptree(nonoptimal) :- goal stack , numberofblocks(A) ,
action move(B,C) , height(C,D) , height(E,F) , D < F, !.

ptree(optimal).

D.4. Q-policy for stack

qtree(0) :- goal stack , numberofblocks(A) , action move(B,C) ,
height(B,D) , D = 4, !.

qtree(1) :- goal stack , numberofblocks(A) , action move(B,C) ,
height(C,D) , D = 3, !.

qtree(0.9) :- goal stack , numberofblocks(A) , action move(B,C) ,
height(C,D) , D = 2, !.

qtree(0.81) :- goal stack , numberofblocks(A) , action move(B,C) ,
height(B,D) , D = 3 , clear(C), !.

qtree(0.81) :- goal stack , numberofblocks(A) , action move(B,C) ,
height(B,D) , D = 3, !.

qtree(0.754716) :- goal stack , numberofblocks(A) , action move(B,C) ,
clear(C) , on(B,floor) , height(C,D) , height(E,F) , D < F, !.

qtree(0.771525) :- goal stack , numberofblocks(A) , action move(B,C) ,
clear(C) , on(B,floor), !.

qtree(0.7965) :- goal stack , numberofblocks(A) , action move(B,C) ,
clear(C), !.

qtree(0.763574) :- goal stack , numberofblocks(A) , action move(B,C) ,
numberofstacks(D) , D = 2, !.

qtree(0.694373).

D.5. P-policy for on(A,B)

ptree(nonoptimal) :- goal on(A,B) , numberofblocks(C) ,
action move(D,E) , above(D,A) , eq(E,B), !.

ptree(nonoptimal) :- goal on(A,B) , numberofblocks(C) ,
action move(D,E) , above(D,A) , on(E,B), !.

ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
above(D,A) , on(A,floor) , on(D,A) , clear(B), !.

ptree(nonoptimal) :- goal on(A,B) , numberofblocks(C) ,
action move(D,E) , above(D,A) , on(A,floor) , on(D,A), !.

ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
above(D,A) , on(A,floor) , on(B,E), !.

ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
above(D,A) , on(A,floor) , clear(B), !.

ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
above(D,A) , on(A,floor) , on(B,A) , clear(E), !.



48 DŽEROSKI, DE RAEDT AND DRIESSENS

ptree(nonoptimal) :- goal on(A,B) , numberofblocks(C) ,
action move(D,E) , above(D,A) , on(A,floor) , on(B,A) , on(D,B), !.

ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
above(D,A) , on(A,floor) , on(B,A), !.

ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
above(D,A) , on(A,floor), !.

ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
above(D,A), !.

ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
action move(A,B), !.

ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
above(D,B) , on(A,E), !.

ptree(nonoptimal) :- goal on(A,B) , numberofblocks(C) ,
action move(D,E) , above(D,B) , on(A,B), !.

ptree(nonoptimal) :- goal on(A,B) , numberofblocks(C) ,
action move(D,E) , above(D,B) , eq(E,A), !.

ptree(nonoptimal) :- goal on(A,B) , numberofblocks(C) ,
action move(D,E) , above(D,B) , clear(A) , action move(A,floor) ,
on(B,E), !.

ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
above(D,B) , clear(A) , action move(A,floor), !.

ptree(optimal) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
above(D,B) , clear(A), !.

ptree(nonoptimal) :- goal on(A,B) , numberofblocks(C) ,
action move(D,E) , above(D,B), !.

ptree(nonoptimal).

D.6. Q-policy for on(A,B)

qtree(0) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
on(A,B), !.

qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(A,F) , F = 4 , on(B,E), !.

qtree(0.430467) :- goal on(A,B) , numberofblocks(C) , action move(D,E),
height(A,F) , F = 4, !.

qtree(1) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
action move(A,B), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(D,F) , height(B,G) , F < G , eq(E,A), !.

qtree(0.531441) :- goal on(A,B) , numberofblocks(C) , action move(D,E),
height(D,F) , height(B,G) , F < G , clear(A) , on(E,floor), !.

qtree(0.430467) :- goal on(A,B) , numberofblocks(C), action move(D,E) ,
height(D,F) , height(B,G) , F < G , clear(A) , clear(B), !.

qtree(0.38742) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
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height(D,F) , height(B,G) , F < G , clear(A), !.
qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

height(D,F) , height(B,G) , F < G , on(E,A), !.
qtree(0.6561) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

height(D,F) , height(B,G) , F < G, !.
qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

on(E,A) , numberofstacks(F) , F = 2 , on(B,A), !.
qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

on(E,A) , numberofstacks(F) , F = 2 , on(D,floor), !.
qtree(0.6561) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

on(E,A) , numberofstacks(F) , F = 2, !.
qtree(0.348678) :- goal on(A,B) , numberofblocks(C) , action move(D,E),

on(E,A) , eq(D,B), !.
qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

on(E,A), !.
qtree(0.6561) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

height(E,F) , F = 3, !.
qtree(0.710775) :- goal on(A,B) , numberofblocks(C) , action move(D,E),

on(E,B) , clear(A), !.
qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

on(E,B), !.
qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

eq(E,B) , on(E,floor) , on(A,floor) , height(D,F) , height(G,H) ,
F < H, !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
eq(E,B) , on(E,floor) , on(A,floor) , on(D,floor), !.

qtree(0.7695) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
eq(E,B) , on(E,floor) , on(A,floor) , clear(A), !.

qtree(0.78975) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
eq(E,B) , on(E,floor) , on(A,floor), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
eq(E,B) , on(E,floor), !.

qtree(0.430467) :- goal on(A,B) , numberofblocks(C) , action move(D,E),
eq(E,B), !.

qtree(0.77805) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
action move(A,floor) , on(B,E) , height(D,F) , F = 2 , clear(B), !.

qtree(0.7695) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
action move(A,floor) , on(B,E) , height(D,F) , F = 2, !.

qtree(0.9) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
action move(A,floor) , on(B,E) , clear(B), !.

qtree(0.7695) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
action move(A,floor) , on(B,E), !.

qtree(0.478297) :- goal on(A,B) , numberofblocks(C) , action move(D,E),
action move(A,floor), !.
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qtree(0.9) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
on(D,A) , clear(B) , on(B,E), !.

qtree(0.9) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
on(D,A) , clear(B) , on(B,floor), !.

qtree(0.9) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
on(D,A) , clear(B) , clear(E), !.

qtree(0.9) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
on(D,A) , clear(B), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
on(D,A), !.

qtree(0.9) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(A,F) , height(E,G) , F < G, !.

qtree(0.478297) :- goal on(A,B) , numberofblocks(C) , action move(D,E),
height(F,G) , G = 3 , on(F,B) , clear(A), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3 , on(F,B) , clear(F), !.

qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3 , on(F,B), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3 , action move(F,floor) , on(B,E), !.

qtree(0.9) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3 , action move(F,floor) , clear(A), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3 , action move(F,floor), !.

qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3 , on(A,E), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3 , on(A,floor) , action move(B,A), !.

qtree(0.7695) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3 , on(A,floor) , clear(B), !.

qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3 , on(A,floor), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
height(F,G) , G = 3, !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
eq(E,A) , clear(B) , on(B,floor) , on(D,floor) , height(E,F) ,
height(G,H) , F < H, !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
eq(E,A) , clear(B) , on(B,floor) , on(D,floor), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
eq(E,A) , clear(B) , on(B,floor), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
eq(E,A) , clear(B), !.

qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,
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eq(E,A) , on(D,B), !.
qtree(0.729) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

eq(E,A), !.
qtree(0.9) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

clear(A) , height(D,F) , height(G,H) , F < H , clear(B), !.
qtree(0.81) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

clear(A) , height(D,F) , height(G,H) , F < H, !.
qtree(0.9) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

clear(A) , on(D,floor), !.
qtree(0.9) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

clear(A) , clear(E), !.
qtree(0.9) :- goal on(A,B) , numberofblocks(C) , action move(D,E) ,

clear(A), !.
qtree(0.81).

Acknowledgments

This work was supported in part by the ESPRIT IV Project 20237 ILP2. During the initial
phases of this work Luc De Raedt was supported by the Fund for Scientific Research
of Flanders. The authors would like to thank Hendrik Blockeel for integrating TILDE and
TILDE-RT in RRL, and to Leslie Pack Kaelbling and Pat Langley for interesting discussions
and suggestions concerning this work. Finally, we would like to thank the referees for their
patience, interest and suggestions, which helped improve the paper significantly.

Note

1. To some extent this is similar to what happens in L.-J. Jin’s experience replay technique (Lin, 1992). The idea of
experience replay is to memorize all experiences gathered so far and to repeatedly present them to the learning
engines. The memorization of past experiences is similar to our work. However, the reasons for memorizing
are different. We memorize because TILDE is non-incremental and thus has to start from scratch again each
time. Experience replay is aimed at neural networks which will converge more rapidly when processing the
evidence more than once.
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