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Abstract

This article presents a relational formalization of axiomatic set theory, including so-
called ZFC and the anti-foundation axiom (AFA) due to P. Aczel. The relational frame-
work of set theory provides a general methodology for the fundamental study on computer
and information sciences such as theory of graph transformation, situation semantics and
analysis of knowledge dynamics in distributed systems. To demonstrate the feasibility
of relational set theory some fundamental theorems of set theory, for example, Cantor-
Bernstein-Schroder theorem, Cantor’s theorem, Rieger’s theorem and Mostowski’s col-
lapsing lemma are proved.

1 Introduction

The study on (binary) relations on sets has been begun together with the pioneering works
of set theory and since then theory of relations has been extensively investigated by many
mathematicians from the view points of logic, algebra, topology and computer science. For
more detailed history of studies on relations the reader refer to R.D. Muddux [14] and G.
Schmidt and T. Strohlein [16]. From a view of category theory S. Mac Lane [11, 12] initiated
theory of additive relations and D. Puppe [15] established a notion of I-categories that was a
start point of categorical theory of relations. Peter Freyd [3] investigated theory of allegories
as a basis for theory of relations and Max Kelly [10] studied relations relative to factorization
systems. Topos theory [4, 5] is well-known as a categorical model of higher-order intuitionistic
set theory and has been extensively studied by categorists and logicians.

This paper presents relational set theory as categorical set theory slightly different from
topoi or allegories to give another categorical perspective of axiomatic set theory. Relational set
theory mainly consists of formalizing the traditional axioms of set theory in terms of relations.
Thus the relationship between the traditional set theory and relational set theory is rather
clear and hence the author expects that one, who is not an expert of set theory and logic,
can easily understand relational set theory and apply it to various fields of mathematics and
computer science.

The recent developement of computer science requires more fundamental studies on infor-
mation analysis from mathematics and logic. For example, J. Barwise and P. Aczel urge to
construct a new set theory, so-called non-well-founded set theory (or hyperset theory), as a
basic language to analyze complicated linguistic phenomena such as circularity in semantics
of natural languages and knowledge dynamics in distributed systems. This naturally requires
more philosophical arguments and sensitive treatments of set theory for computer scientists.
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After all relational set theory would be helpfull for a simple intorduction of axiomatic set
theory into computer science.

This article presents a relational formalization of axiomatic set theory, including so-called
ZFC and the anti-foundation axiom (AFA) due to P. Aczel. The relational framework of set
theory provides a general methodology for the fundamental study on computer and information
sciences such as theory of graph transformation, situation semantics and analysis of knowledge
dynamics in distributed systems. To demonstrate the feasibility of relational set theory some
fundamental theorems of set theory, for example, Cantor-Bernstein-Schroder theorem, Cantor’s
theorem, Rieger’s theorem and Mostowski’s collasping lemma are proved.

2  Theory of Meroi

In the first section we introduce a notion of meroi, that is, relational categories on which a
relational model of set theory will be discused. A morphism in a meros will be called a relation
and a relation a from A into B will be denoted by o : A — B. The composite of a relation

a: A — B followed by a relation 3 : B — (' is denoted as aff : A — C and the identity
relation of A asidy : A — A.

Definition 2.1 A category C is an I-category if it satisfies the following:

[Lattice] Let A and B be objects of C. The collection C(A, B) of all relations of A into B is
a lattice by an ordering T. The least relation 04,5 and the greatest relation © 4 g from A into
B exist. The infimum (or greatest lower bound) and the supremum (or least upper bound) of
two relations a, o' : A — B are denoted by all o’ and a U o, respectively.

[Involution]| There is an involution operator § assigning to each relation o : A — B its
invesre relation of : B — A is defined so that for relations a,o/ : A — B, 3,8+ B — C and
v:C—D

(a) o = a, (aB)f = ffa?  (involutive),
(b) If aC o and BC 3, then aB C '3 and of C ot (monotone). O

In an I-category C a (total) function f : A — Bis arelation f : A — B such that f*f C idp
(univalent) and idy C ff* (total). Also a partial function f: A — B is a relation f: A — B
satisfying f*f C idg. A function f: A — B is called an injection if ff* =idy, a surjection if
fif =idpg, and a bijection if ff* =idy and f*f =idg.

Definition 2.2 A meros [uepos[(relational category) C is an I-category satisfying the follow-
ing:

[Complete Heyting Algebra] For all objects A and B of C the collection C(A, B) of all
relations of A into B is a complete Heyting algebra.

[Rationality] For cach relation o : A — B there exists a pair of functions f: X — A and
q: X — B such that o« = flq and fffNg¢" =idy.

[Dedekind Formula] If o : A — B, : B — C and v : A — C are relations, then
aB M C a(f M ats).

[Terminability] There is an object 1 such that 0,5 # id; = ©11 and ©410,5 = O for
objects A and B.

[Quotient Relation] For relations : A — C and v : B — C there is a quotient relation
fB+~v:A— B such that ay C 8 < a C 3+~ for any relation o : A — B. O



The subsequent argements will be done in a (fixed) meros C.

The following is the basic propeorties of meros deduced from the existence of quotient re-
lations.

[Zero Relations] 0o = 0 and a0 = 0 for all relation oo : A — B.
Proof. 0CE0+a < 0aC 0 0a=0. O

[Distributive Law] For relations o : A — B, B : B — C (A € A) and v : C — D the
distributive law a([yea 5))7 = Lrea a1y holds.

Proof. (Uyéy)aC A& UG E+-a& VA E-asVibal & Uybal g (Thus
the existence of quotient relations is equivalent to the distributive law.) O

Let A be an object of a meros C. An element a of A is a function ¢ : 1 — A and will be
denoted by a € A. We will write © 4 for V4. Note that !4 = Vﬁl is a unique function of A
into 1, and O4 5 = V%VB.

Proposition 2.3 Let A be an object of a meros C and G(A) the collection of all relations
u:A— AwihuCidy. Then the function which assignins V 4u to each u € G(A) is an
isomorphism of G(A) onto C(1, A) as complete Heyting algebras.

G(A)=C(1,A)

Proof. Omitted. O

Proposition 2.4 Let C be a meros and A an object of C. Then for an element x € A and a
relation p: 1 — A

(a) M p =0 if and only if pz* =0,
(b) @ C p if and only if pa* =id;.

Proof. (a) If z M p = 0, then pzf = 0 from pz* = px* Midy C (p N a)zf. If pz¥ = 0, then
zMp=0fromazMpC (pzrf Midy)x. (b) If z C p, then idy C zaf C pzf. If pz* = idy, then
r=idjx = pafz C p. O

Theorem 2.5 Let A be an object of a meros C. Then the following statements are equivalent:
(a) Upeazr = V4.
(b) Upeazie =idy.
(c) Vo € A(za C 2f) = a T ] for all relations o, 3 : A — B.

Proof. (a)=(b) It is clear that V 4(U,eq2?7) = UpeaVariz = Uyeqx since Va¥f = V| = id,.
Hence we have V 4 (Uzeazfz) = V4 by (a) and so Uyeazie = idy. (b)=(c) lf Vo € A(za C zf),
then a = idja = (Uyeazfz)a (by (b)) = Upeazfra C UzeazfzB = 3. (c)=(a) Note that
Vay* =idy = yy* C (Uyear)y* for all y € A. Hence V4 C Uyeax by (c). O
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Theorem 2.6 Let C be a meros. Consider the following statements:

a) A nonzero relation p: 1 — A is nonempty for all objects A,

(1,1) =40,id }.

(
(b) C
Upeaz = Vu for all objects A,
C

b
(c
(d

Then (a)=(b) and (a)+(c)&(a)+(d) < (b)+(c) hold.

)
)
)
) C(1,A) is a Boolean algebra for all objects A,

Proof. (a)=-(b) Let £ : 1 — 1 be a nonzero relation (£ # 0). Then £ is nonempty by (a) and so
x C ¢ for some function x : 1 — 1. But « = idy. Hence { = idy, which shows (b). (a)+(c)=-(d)
Let p: 1 — A be a relation. Then by (c) we have

p=pfNVy y=pl ('—leAx) = '—'xeA(P M J})

If p M a is nonzero, then (a) claims that there exists y € A such that y C pMa(C x) and so
pla=ax. Hence p=U{x € AlpMa #£0}. Set p=U{x € AlpNa =0}. Then pNp =0 and
pUp = V4, which proves that C(1, A) is a Boolean algebra. (a)+(d)=(c) Set p = U,e42. Then
by (d) there is a relation p: 1 — A such that pMp=0and pUp= V4. If p#0, then by (a)
x C pfor some x € Aand 2 C pMp =0, which is a contradiction. Hence p =0 and p = V4.
(b)+(c)=(a) Let p : 1 — A be a nonzero relation. Then by (c) we have p = U,eca(p M ).
Hence pMa # 0 for some z € A. But pMa # 0 & paf # 0 (by 2.4(a)) & pz? = id; (by
(b)) x C p (by 2.4(b)). This shows that p is nonempty. O

Remark that the above (¢)+(d) implies neither (a) nor (b). (Consider C = Rel x Rel.)

Proposition 2.7 Suppose that a nonzero relation p : 1 — A is nonempty for an object A of a
meros C. Then x C a U if and only if t © « or x E 3 for an element x € A and relations
a,f:1— A.

Proof.Assume that @ C aU 5. Then @ = 2T (aUf) = (zMNa)U (1 F) and so 2 Ma # 0
or x M1 3 # 0. Assume that x Ma # 0. Then from the hypothesis there is y € A such that
yCaMNa(C x). Hence a Ma=x(=y) and so ¢ C a. O

For a relation p: 1 — A of a meros C define p° = U{x € Alax C p}.

Proposition 2.8 (a) p° C p,

(c) p*° =p°,
(d) If p is empty, then p° =0, and if p is nonempty, then p° is nonempty and so p° # 0,
(e) If x T py implies x T py for all x € A, then p1° C po°,



Proof. (a) It is trivial. (b) If € p°, then @ C p by (a). If  C p, then & T p° by the definition
of p°. (¢) It easily follows from (b) that {z € Alx C p} = {x € Alz C p°} and so p°° = p°.
(d) It is immediate from the definition of p°. (e) Since p, is a upper bound of {z € Az C py},
p1° C p and so p1° C p° by (c). (f) follows from (e). O

Definition 2.9 (a) A meros C is separable if —=p° = (—p)° holds for all relations p: 1 — A
in C.

(b) A meros C is Boolean if C(1, A) is a Boolean algebra for all objects A of C.

Proposition 2.10 Let C be a separable Boolean meros. Then
(a) =p® = (=p°)° forallp:1— A,
(b) (=p°)" = (=p)° Jorallp:1— A,
(c) aMp°=0 < aMlp=0 forall x € A,
(d) Upeaxr = V4 for all objects A,

(e) p=Va iff 7p is empty forp:1 — A.

Proof. (a) =p® = —p** = (=p°)°. (b) (=p°)° = (=p)*° = (=p)°. (c) If 2 p° = 0, then
x T —p® = (—p)° C —pand soxlp = 0. (d) Set p = V4. Then p° = Ugecaz and
—p° = (=p)° = 0° = 0. Hence p° = V4. (e) If p = Vy,, then =p = 0 and so —p is empty.
Conversely, if —p is empty, then =p° = (=p)° =0 and so p° = ~=p° = =0 = V4. O
Example 2.11 In C = Rel x Rel consider p = (a,b) U (d’,0), ¢ = (a,b) and y = (a,V).
Then p* =x, 2° =a,y° =y, 2°Ty* =2y = (a,0), (xMy)° =0, (a¢,0)°U(0,0)° =0 and
[(a,0)L(0,b)]° = (a,b).

As stated in [Complete Heyting Algebra] for relational categories the collection C(A, B) of
A into B is a complete Heyting algebra. For relations «, f : A — B the psuedo-complement of

a relative to # will be denoted by a = 3 and the negation of a by a = 0, respectively. The
negation of u € G/(A) will be represented as —u. (Note that —u = (u = 0) Mid4.)

In the rest of the section we show Cantor-Bernstein-Schréder theorem in the framework of
Boolean meroi.

Theorem 2.12 Suppose that C s a Boolean meros. If f : A — B and g : B — A are injec-
tions, then there is a bijection h : A — B.

Proof. Since C(1, B) is a Boolean algebra, there is a relation ¢ : 1 — B (the complement of
Vaf) such that EUV4f = Vg and EMV4f =0. Set p = Eg{L2(fg)"}. Then p:1 — A
satisfies p = £g U pfg. There is a unique relation v : A — A such that v C id4 and
Vau = p. Note that V ugt = £ UV uf (by g¢* = idp) and ugg = u (since uglg C id4 and
Vaugg =V 4u). Also we have ¢ f¥ = 0 from

=€ NVAC (ENVAf)ff =0.

As C(1, A) is a Boolean algebra, there is a relation —u : A — A such that —u Uwu = id4 and
—uMu = 0. An identity ug® f¥(—u) = 0 follows from

Vaug' fi(=u) = £ (—u) UV auf ff(—u) = 0(—u) U Vau(-u) =0 (ffF =idy).
Set h = (—u)f Uug* : A — B. Then the following shows that A is a bijection of A onto B.
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(a) h*h = [fH(—u) U gul[(-u)f Uug®] = fA(-u)f Ugug C f'f Ugg* =idg,

(b) ?hﬁ ): [(W)df U ugf][f*(~u) U gu] = (=u)ffH(-u) U (~u) fgu U ug? fi(~u) U ugigu =
—u) Uu =idy,

(C) VAh = VA(ﬁu)fI_IVAugﬁ = VA(ﬁu)fl_lfl_IVAuf = VA[(ﬁu)l_lu]fl_lf = VAfI_If = VB-
O

3 Axioms of Relational Set Theory

In this section we state axioms of relational set theory within separable Boolean meroi. The
axioms are formalized for a relation Il : V' — V which corresponds to the (universal) member-
ship predicate 3 in the traditional axiomatic set theory. Let C be a separable Boolean meros
and Il : V — V a relation in C. The axioms of relational set theory are as follows:

1 [axiom of extensionality] Va,b € V(all = bll = a = b)
2 [axiom of empty(null) set] Jz(= 0) € V(0 = z1)

3 [axiom of pairing] Va,y € VIz € V(e Uy = zII)
4 [axiom of union] Vo € V3y € V (Il = ylI)

When II : V' — V satisfies the axioms of union and pairing, for each element = € V there
is an element « U {x} € V such that (a2 U{z})ll = Il U x. That is, by the axiom of pairing
there is {z} € V such that {z}I] = 2, again by the same axiom there is {z,{z}} € V such
that {z,{z}}ll = 2 U {z}, and finally by the axiom of union there is @ U {z} € V such that
(x U{a DI = {x, {«}}III. Then we have

(zU{aephl ={z, {e} Il = (U {a I =2l U 2.

The next proposition shows that if a relation Il : V' — V satisfies axioms (A.1) — (A.4),
then V has infintary many elements.

Proposition 3.1 Suppose that 11 : V — V satisfies axioms (A.1) — (A4) and define elements
, €V (n>0) by xoll =0 and 2,111 =2, 11U x,. Then

(a) 2,10 =0 forn > 0.

(b) ,II" = 2o forn > 0.

Tl = UR_pxp forn > 0.

)
) @
(¢) If m % n, then 2, # 2n.
(d)
(€) TppmIl™ = U oxy forn >0 and m > 0.

Proof. (a) For n = 0 we have 24l = 0 by the definition. Assume that z,[1"*!' = 0. Then
T 12 = (2,0 U 2,)I"*! = 2, 11" U, 10" = 0U0 = 0. (b) For n = 0 it is trivial
that zoll° = x¢. Assume that z,I1" = x¢. Then z,I1I"t! = (2,1 U 2,)[I" = 0 U 29 = .
(c) Assume that 0 < m < n. Then z,[I" = z, ™' 1"~™"! = 0 by (a) and z,II" = =
by (b). Hence z,II" # x,1I". (d) For n = 0 we have x1II = aoll U 2y = x0. As-
sume that x,11 = Uf_gzp for n > 0. Then w,4oll = 2,1l U2,y = UiEier. (o)

1 ot _
Tt 1T = 2 TP IT = (WS ) 1T = UG, O



A5 [axiom of infinity] 3a € V(0 C all A Va(x C oll = 2 U {2} C all))

A.6 [axiom of power set] Vo € VIy € V(I =11 = ylI)

A.7 [axiom of replacement] Vo € VV pfn f:V — V3y € V(zIlf = yIl)

A.7" [axiom of subset (comprehension)] Ya € VVp:1 — Vip C all = Jb € V(p = bll)]

As is well-known, the axiom (A.7) of replacement includes the axiom (A.7") of subset. (As-
sume that p C all and choose a relation u : V. — V such that p = Vyu and v C idy. Then
p = allu since p = pu C allu C Vyu = p.)

A.8 [axiom of foundation] Va € V[dz € V(x C all) = Jo € V(a2 C all Aall 11211 = 0)]
A.9 [axiom of choice]

Va € VWa:V — V[Vya=qall = 3pfn h:V = V(hE a A Vyh! = Vyal)

A ll-system <53 : M — V,u: M — M > is a pair of an injection j : M — V and a relation
p: M — M such that for every relation p: 1 — M there is an element x € V' with pujy = «Il.

A.10 [anti-foundation axiom (AFA)] For each l-system < j: M — V,u: M — M > there is
a unique function (decoration) d : M — V such that dll = pd.

I

M — M

il &

vV — V
I

Theorem 3.2 Suppose that a relation 11 : V. — V satisfies the axiom (A.T") of subset. Let
i: A —Voandj: P(A) = V be injections such that Vi = all and Vpa)j = all =11 for
acV.

(a) For every relation p : 1 — A there is an element r € P(A) such that p = rll4, where
My = jIL¢ : P(A) — A.

(b) There is no surjection f: A — P(A).

Proof. (a) As pi C V4i = all by the axiom of subset there is b € V such that pi = bIl and so
bC all +1I = Vp(ayj. Hence r = bj* € P(A) and p = pii* = bIli* = bj¥jIL# = rll4. (b) Let
f:A— P(A) be a function and set u = fIl4 Midy : A — A. The computation

St SHfII Midy)
i,
oy st
FHfIL Midy)
St

indicates that ffu = I14Mf*. By (a) thereis a function r : 1 — P(A) such that 14 = V 4(—u).
Then we have

A

rffu = (40 fY
rIl4 M ft
V,Ll(ﬂu)l_lrfﬁ
= rff(-u).

(Note that V 4(—u)Mp C [V p(—u)](—u) = p(—u) E V4(—u)Mp.) Hence rfiu = rfi(—u) =0
and by the rationality of relations there is a relation v : A — A such that V v = rf* and
v C id4a. By Viou = 0 we have vu = 0 and so v © —u. Analogously v(—u) = 0 from
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Vv(—=u) = 0. Therefore v = vv C v(—u) = 0 and rf* = 0. Now assume that f: A — P(A) is
a surjection, that is, fif = idp(4). Then r = rf'f =0f =0, which is a contradiction. O

4 Rieger’s Theorem

In this section Rieger’s theorem is proved in the framework of relational set theory. We begin
with introduction of a full decoration which is a key notion for Rieger’s theorem.

Definition 4.1 A function f: M — V is a full decoration of a relation u : M — M into a
relation 11 : V — V iff fll = uf, ff* =idas and Vyf =V f =11, O

I

M — M

i |7

vV — V
I

Lemma 4.2 Let f: M — V be a full decoration of p: M — M into I1: V — V. If pf = vll
for a relation p: 1 — M and v € V, then there is an element a € M such that p = ap.

Proof. First vll = pf E Vy,f and v C Vy, f =11 =V, f. Hence v = af for some a: 1 — M.
Thus pf = vll = afll = apf and p = ap by ff* =idy. O

A relation I : V' — V is a model of ZFC~ if it satisfies axioms (Al.) — (A.7) and (A.9).

Theorem 4.3 If Il : V — V is a model of ZFC™ and f : M — V is a full decoration of
p:M—Mintoll: V=V, then p: M — M is a model of ZF'C™.

Proof. (Extensionality) [Va,b € M(ay = by = a = b)]

Let a,b : 1 — M be functions such taht ay = by. Then afIl = auf = buf = bfIl. Hence
af = bf by the extensionality of Il and @ = b by ff* = idy,.

(Null Set) [3a € M (0 = ap)]

Let 0 : 1 — M be a null relation. Then 0f = 0 : 1 — V and by the Axiom of Null Set
0f = 0 = voll for some function v : 1 — V. Hence by the lsat lemma 0 = ap for some function
a:1l— M.

(Pairing) [Va,b € M3d € M(aUb=dpu)]

Let a,b:1 — M be functions. By Axiom of Pairing for II there is a function v : 1 — V such
that (¢ Ub)f = af Ubf = vll. Hence by the last lemma there is a function d : 1 — M such
that a Ub = du.

(Union) [Va € M3b e M (app = bu)]

Let @ : 1 — M be a function. Then appf = apfll = afIIIl and by the Axiom of Union
appf = vll for some function v : 1 — V. Hence by the Isat lemma app = by for some function
b:1— M.

(Powerset) [Va € M3b e M(ap <y = b))

Let @ : 1 — M be a function. Then we have (ap = p)f C afIl = II from (ap + p)fII =
(ap = p)pf C apf = afll. By the axiom of powerset (ap + p)f C ull for some v : 1 — V
and by the axiom of subset (ap =+ p)f = vll for some v : 1 — V. Hence by the last lemma
ap + p = by for some b:1 — M.

(Infinity) [3m € M0y C mp AVe € M(z © mu = x Uy {z}y & mpu))] Where 0y is an
element of M such that Oprp =0, and @ Ups {2} such that (x Up {a}ar)p = 2p U o

Let a € V be an element of V with the infinity property and set a relation p = all f*: 1 — M.
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Then pf = allf*f C all and so by the axiom of subset there is o' € V such that pf = «'Il.
Also by the last lemma there is m € M such that p = mpu. Note that 0, f = () from the axiom
of extensionality and 0, fII = Oprpf = 0f = 0 = (II. Hence

bar =0 f[F = 0fF Eallf* = p=myp.
Next note that (x Uy {a}ar)f = af U {af} for each element # € M. It follows at once from
(r Unt o)) 11 = ( Uns (2hanief = (o Ua)f = epef Uf = e fTT0 2f = (2 U {af})IL

At last assume that @ © my for € M. Then xf C muf = allf*f C all and by the axiom of
infinity « f U {z f} C all. Therefore

2 Uy {adu = (2 Uy {ehan) £1F = (of U {af 1) C allf* = mp.

(Replacement) [Va € MV pfn k: M — M3b e M(apk = bu)]

First note that apkf = auffikf = afllf*kf and fikf:V — V is a pfn. Hence by the axiom
of replacement there is a function v : 1 — V such that apk f = vl and so from the last lemma
apk = by for some function b: 1 — M.

(Choice) Va € MV¥a : M — M[Vya=ap= A pfn k: M — M(k C a A Vykf = Vyah)]
Assume that V3 = by for a relation 3 : M — M and b€ M. Then Vy(ff8f) = VyuBf =
buf = bfIl. Hence by the axiom of choice for II there is a pfn A : V — V such that h C fi3f
and Vyh! = Vy(f*3f)F = Vupif. Note that A = hfff from Vyh C Vi f. Define a pfn
k= fhff: M — M. Then k = fhf* C 8 and Vyk! = Vi fhifH = Vy fIFR Y = Vi hffE =
VuBtfff = Vupst. O

5 Well-Founded Relations

In this section we assume that a meros C is Boolean, that is, for every object A and B the
collection C(A, B) of all relations from A into B is a complete Boolean algebra.

Definition 5.1 Let o : A — A be a relation in a meros C.
(a) A relation p: 1 — A is nonempty if there exists an element a € A such that a C p.
(b) A relation o : A — A is extensional if ac = ba implies a = b for a,b € A.

(¢) A relation a : A — A is well-founded (wf) if for each nonempty relation p: 1 — A there
exists an element a € A such that « C p and pMaa =0. O

Proposition 5.2 Ifa: A — A is a wf relation, then
(a) Valalidy) is empty,
(b) zaz! =0 for every x € A,
(c) There is no nonempty relation p : 1 — A such thatVe € Ajlx C p=Jy € A (y C pNza)).

Proof. (a) Assume that V4(a Midy) is nonempty. As « is wif there is some a € A such that
a T Va(amidy) and Va(aMids) Maa = 0. Then

aCalam idA)ﬁ(oz Midsg) = a(aNidy) C ac

9



and so a C V4 (aMidy)Maa. This is a contradiction. Therefore V 4(aMidy) is empty. (Assume
that empty relations are zero. Then V4(aMidy) = 0andso alidy =0.) (b)Setp =2 :1 — A.
By wt property of « thereis y € A such that y C z and zMya = 0. From y C x it is trivial that
y = z. Hence applying Dedekind Formula we have raz* = id; Mraz? C (z N za)zf = 02F = 0
by @ Maa = 0. (c) Assume that such nonempty relation p exists. By wf property we have
x € A such that * C p and paa = 0. From the assumption there is y € A such that
y C pMza. Hence y C p M aza = 0, which is a contradiction. O

Proposition 5.3 Let a: A — A and 3 : B — B be relations and 1 : A — B an injection with
1 = ai.

A —- B
o lg

(a) If B is extensional, then so is a.

(b) If 5 is well-founded, then so is «.

Proof. (a) Assume that ua = va for u,v € A. Then wiff = u

alphai = vai = vif and so ui = vi since 3 is extensional. Hence u = uii! = vit = v by
1" = id4. (b) Assume that p: 1 — A is nonempty. Then pi : 1 — B is also nonempty. As 3
is well-founded, there is b € B such that b C pi and pi 1153 = 0. Note that bi* : 1 — B is a
function by b C pi and bi* T pii* = p. Since a = aii* = 5" by i3 = ai we have

pMbita = pMbi%ipi* C pnbBi* T (piMbB)*F =0 =0. O

Proposition 5.4 (Assuming that nonzero relations are nonempty.) Let o : A — A and
B : B — B be relations and f : A — B a surjection with of = f3. If a is well-founded, then

so is [3. f
A — B
| 7

Proof. Let p : 1 — B be a nonempty relation. Then pf* is also nonzero (since p = pftf
by f*f = idg) and so there is some a € A such that a« C pf* and pff Ma = 0. Finally

af CpC(pfiNa)f=0f =0 0O
The following lemma shows the uniqueness of decorations in Mostowski’s Collapsing Lemma.

Lemma 5.5 Suppose that C is a separable Boolean meros. If o : A — A is a wf relation and
w: M — M is an extensional relation, then there is at most one function d : A — M such

that du = ad. J

A — M
al lu
A — M

d

Proof. Let d; : A — M be a function with d;u = ad; for 1 = 0,1. Set u = dod*Midy: A— A
and p =V u:1 — A. (Note that u* = u.) It is clear that dy = d; iff u = idy iff p = V4 iff =p
is empty. Hence it suffices to show that —p is empty. Assume that —p is nonempty. As « is a
wf relation there is an element @ € A such that ¢ C —p and =pMaa = 0. Then aa C ==p = p
and so

ac =aallp=aallVu=acuC aadyd,".
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Hence aad; T aadyd,'d; T aad, and similarly aady E aad;, which deduces aady = aad;.
Moreover adopu = aady = aady = adyp and ady = ad; from the extensionality of u. Hence we
have a = au from au = adyd,* Ma = adyd,* M a = a. On the other hand « M p=0byal —p
and so au =aT1Vau=allp=0 by

allVuC (auﬁ MVa)u= avfu = au C a TV qu.

Therefore a = au = 0, which is a contradiction. O

Definition 5.6 Let o : A — A and p: M — M be relations. A partial functiont : A — M is
called a partial decoration of a into p if tp = d(t)at. (Where d(t) = tt* Nidy is the domain

relation of 1.) .

A — M
% M
A — M

t

Corollary 5.7 Suppose that o : A — A be a wf relation and p : M — M an extensional
relation. Lett; : A — M be a partial decoration of a into pp: M — M with d(t;)a = d(t;)ad(t;)

(i=0,1).
(EL) [f d(to) = d(tl), then to = tl.
(b) d(t1)to = d(to)t1, that is, to#t; T idyy.

Proof. (a) There is an injection m : D — A such that d(ty) = m"m. Define o/ = mam* :
D — D. Then we have ma = o/m from ma = md(tg)a = md(tg)ad(ts) = mamm = a'm.
Thus o is wf by 5.5(b). On the other hand mt; is a function and mt;u = md(t;)at; = mat; =
a'mt;. Therefore by 6.6 we have mt, = mt, and so t, = m*mt, = m*mt; = t;. (b) Set
s; = d(t1_)t;(= d(to)d(ty)t;). First note that d(sg) = d(sy)(= d(tp)d(?1)). Then d(s;)a =
d(to)d(t1)a = d(to)d(t1)ad(to)d(t1) = d(s;)ad(s;) and s;u = d(t1-i)tip = d(t1-)d(t)at; =
d(ti_)d(t;)ad(t;_)t; = d(s;)as;. Hence sy = s; by (a) and so to*t; = (d(to)to)'d(t1)t =
tofd(to)d(ty )t = tofd(t1)d (o)t = so*s; Cidy. O

Lemma 5.8 Let o : A — A be a wf relation and pp: M — M an extensional relation. If T is
a collection of partial decorationst: A — M of o into p with d(t)a = d(t)ad(t), then the least
upper bound s = Uyert : A — M of T is also a partial decoration with d(s)a = d(s)ad(s).

Proof. It simply follows from the following computations:
(a) d(s)ad(s) = Uerd(t)ad(s) = Uerd(t)ad(t)d(s) = Uerd(t)ad(t) = Uerd(t)a = d(s)a,
(b) Fort € T, d(t)s = Uperd(t)t' = Uperd(t')t( 6.7(b) ) = d(s)t = ¢
(¢) d(s)as = Lherd(t)as = Uierd(H)ad(t)s = Userd(t)at = Uertp = sp. O

Proposition 5.9 Assume that Il : V. — V is a model of ZFC and C(1,1) = {0,id,}. If
all = Vi for a € V and an injection ¢ : A — V and if a relation p : 1 — A is nonzero

0), then there isr € A with r C p, that is, p is nonempty.
P P P
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Proof. Let p #0:1 — A and set a = 2fpi : V — V for an arbitrary € V. First note
that Vya C Vi = all and by the axiom (A.7") of subset Vya = bll for some b € V. Ap-
plying the axiom (A.9) of choice to « there is a partial function b : V — V with A C « and
Vvh¥ = Vya*. On the other hand V 4pf = id; by the assumption C(1,1) = {0,id;}. Hence we
have Vy(:}(;h)ﬁ = Vyifplza® = zat = id; and so 2k is a function from 1 into V. Finally from
xh C za = pi it follows that zhi* C p and zhif € A. O

Theorem 5.10 (Mostowski’s Collapsing Lemma) Assume that I1: V — V is a model of
ZFC and C(1,1) = {0,id,}. If <i: A— V,a: A — A > is a wf ll-system, then there is a
unique decoration d: A — V such that dIl = ad.

Proof. By 77 it suffices to see the existence of such decorations. Note that the zero relation
0: A — V is a partial decoration into II. Consider the collection T' of all partial decora-
tion into II. Then by the last lemma s = U;ert is the greatest partial decoration into II.
Set p = Vys". Note that p = V, iff =p is empty. So it suffices to see that —p is empty.
Assume that —p is nonempty. By the well foundedness of « there is an element ¢ : 1 — A
such that ¢ C —p and =pTaa = 0. Then aMp = 0 and e C =—=p = p. By the way
we have aas = aaitfs = vili*s = wll for some v,w € V because of the axiom (A.7). Tt is
easy to see that ad(s) = 0, aaa® = 0 and d(s)aa* = d(s)ad(s)a* = 0. Therefore we have
d(sUd*w)ad(sUafw) = d(s U a*w)a, and d(s U abw)als U afw] = [sU a*w]Il, which contradicts
to the maximality of s : A — V. O

Proposition 5.11 Assume that 11 : V. — V is a model of ZFC, C(1,1) ={0,id1}, <i: A —
Va: A — A > all-system, and < 5 : M — Vi : M — M > a wf lU-system. If there is a
decoration d : A — M of « into p, then « is a wf relation.

A 2 A
dl ld
M — M

I

Proof. Let p : 1 — A be a nonempty relation. Then pd is nonempty. As o : A — A is a
wi relation there is an element & € V such that # C pd and pd Map = 0. !By 2.8 there is
an element a € A with @ C p and z = ad.!! Then pMaa C (pMaa)dd* C (pd M aad)d* =
(pd M adp)d* = (pd M zp)d* = 0d* = 0. Hence pMaa =0. O

Proposition 5.12 Let u: M — M be a wf relation. If A#£0 and f: A— A is an iso, then
there is no decoration of f into u.

Proof. Assume that there is a decoration d : A — M of f.
!

A —— A
il 4
M — M

"
It is immediate that p = Vd # 0 (since V4 = Vyd' = Vadd* = 0if p= Vud =0). As p
is a wf relation there is @ € M such that © C V4d and V4d M zu = 0. Note that 2 = zd'd
and zp = xd'dy = xd* fd C V d. Hence zp = VadMzp = 0 and z = ad*d C zd' fdd* f*d =
zpd' ffd = 0, which is a contradiction. O
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