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Synopsis

Lie algebroids and their integration have been present as an important area of research
in Lie theory, Poisson geometry and foliation theory, among others. The important de-
velopments made by Weinstein, Mackenzie-Xu, Cattaneo-Felder, Crainic-Fernandes, Zhu-
Tseng among many others give a solid framework to study the links between the geometry
and topology of Lie algebroids, Lie groupoids and several aspects of mathematical physics.

More precisely, the work of Cattaneo and Felder on Poisson sigma models (PSM) gives
an explicit contruction of the symplectic groupoid associated to an integrable Poisson
manifold in terms of the reduced phase space of the Poisson sigma model with certain
boundary conditions.

The main purpose of this thesis is to make further developments on this construction,
bringing on the same footing integrable and non integrable Poisson manifolds, through
the construction of what we called relational symplectic groupoids, which are, roughly
speaking, a version before reduction of the phase space of PSM with boundary.

We describe such objects in categorical terms, as special objects in the extended sym-
plectic category for which the defining axioms are written in terms of special canonical
relations (immersed Lagrangian submanifolds of weak symplectic manifolds). We prove
natural properties of the construction, for instance, the connection between the symplec-
tic structure on the relational groupoid and the Poisson structure on the base. We give
finite dimensional examples of this construction and introduce the notion of equivalence
of relational symplectic groupoids, which is helpful to connect our construction with the
usual version of symplectic groupoids.

The main example comes from Poisson geometry, where the relational symplectic groupoid
is infinite dimensional: the cotangent bundle of the path space of a given Poisson mani-
fold. In this case, we characterize the integrability conditions given by Crainic-Fernandes
in terms of the relational symplectic groupoid and we also describe the different integra-
tions of Poisson manifolds in this new perspective.

This motivational example suggested the study of the relational symplectic groupoid in
more generality, which gives rise to the description of such objects (or their analogous) in
different monoidal dagger categories. It turns out that this new way to integrate Poisson
manifolds fits better with quantization and the study of PSM with branes.
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Zusammenfasung

Lie Algebroide und deren Integration kommen unter anderem in der Lie-Theorie, der
Poisson-Geometrie und der Folierung-Theorie vor. Wichtige Erkenntnisse von Weinstein,
Mackenzie-Xu, Cattaneo-Felder, Crainic-Fernandes, Zhu-Tseng geben einen festen Rah-
men um die Beziehung zwischen Geometrie und Topologie der Lie Algebroide, Lie Grup-
poide und Aspekte der mathematischen Physik zu untersuchen. Die Arbeit von Cattaneo
und Felder betreffend Poisson Sigma-Modelle (PSM) bietet eine Konstruktion der sym-
plektischen Gruppoide assoziiert mit einer integrierbaren Poisson Mannigfaltigkeit. Diese
Konstruktion bezieht sich den reduzierten Phasenraum des Poisson Sigma-Modells mit
bestimmten Randbedingungen.

Der Hauptzweck dieser Arbeit ist die Weiterentwicklung dieser Konstruktion. Integrier-
bare und nicht integrierbare Poisson- Mannigfaltigkeiten können durch die Konstruktion
von relationale symplektische Gruppoide gleichgestellt werden. Diese sind eine Version
des Phasenraums PSM mit Rand vor der Reduktion.

Wir beschreiben ein solches Objekt in kategorischen Begriffen, als ein besonderes Ob-
jekt in der erweiterten symplektische Kategorie, für welches die definierenden Axiome
in Bezug auf die besonderen kanonischen Relationen geschrieben werden. Wir zeigen
natürliche Eigenschaften dieser Konstruktion, wie zum Beispiel, die Verbindung zwischen
der symplektischen Struktur auf dem relationalen Gruppoid und der Poisson-Struktur
auf der Basis. Wir geben endlichdimensionale Beispiele dieser Konstruktion und führen
den Begriff der Äquivalenz von relationalen symplektischen Gruppoiden ein, die hilfreich
ist um unsere Konstruktion mit der üblichen Version von symplektischen Gruppoiden zu
verbinden.

Das wichtigste Beispiel geht aus der Poisson-Geometrie hervor, wobei das relationale
symplektische Gruppoid unendlichdimensional ist: die Kotangentialbündel des Pfades in-
nerhalb einer bestimmten Poisson Mannigfaltigkeit. In diesem Fall charakterisieren wir
Integrierbarkeitsbedingungen von Crainic-Fernandes anhand des relationalen symplektis-
chen Groupoids und wir beschreiben die verschiedenen Integrationen von Poisson Man-
nigfaltigkeiten aus dieser neuen Perspektive.

Dieses Beispiel motiviert zur Untersuchung des relationalen symplektischen Gruppoids
in grösserer Allgemeinheit, und gibt Anlass zur Beschreibung eines solchen Objektes in
verschiedenen monoidalen Dolch Kategorien. Diese neue Art der Integration von Poisson
Mannigfaltigkeiten ist bestens geeignet um PSM mit Branen sowie Quantifizierung zu
studieren.
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Chapter 1

Introduction

1.1 Conventions and notations

Most of the main definitions in the thesis contain an explanation on the conventions and
notations. However, we include a list of general remarks on the conventions that can be
useful for reading:

• The symbol 9 denotes a relation and → denotes a map.

• The special object pt denotes the connected zero dimensional (symplectic) manifold.

• The symbol 〈, 〉 denotes the natural pairing between TM and T ∗M .

• For a vector bundle E → M , Γk(E) denotes the space of k− differentiable sections
of E. If k does not appear, it is assumed that we consider smooth sections.

• X(M) denotes the space of smooth vector fields on a smooth manifold M .

• △(M) symbolizes the diagonal subspace (or submanifold) of M ×M .

• Id refers to the identity map.

• † denotes in general the adjoint, either for objects or morphisms.
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1.2 Motivation

Symplectic groupoids have been studied in detail since their introduction independently
by Coste, Dazord and Weinstein [25], Karasëv [34] and Zakrzewski [56], and they appear
naturally in Poisson and symplectic geometry, foliation theory and, as we will see later,
in some instances of the study of topological field theories (TFT).

In terms of category theory, a groupoid is a small category with invertible morphisms and,
depending on the case, one can be interested in studying groupoids over sets, topological
spaces, manifolds, etc. For example, in the symplectic world one would like to impose
that the spaces and structure maps defining the groupoid are smooth maps and that there
exists a symplectic structure on the space of morphisms compatible with the groupoid
multiplication; more precisely, if G ⇒ M denotes a groupoid over M , there exists a
symplectic form ω ∈ Ω2(G) such that the graph of the multiplication is a Lagrangian
submanifold of (G,ω)× (G,ω)× (G,−ω).

Concerning the link between symplectic groupoids and field theories, it was proven [21]
that the reduced phase space of a 2-dimensional TFT, called the Poisson sigma model
(PSM), under certain boundary conditions and assuming that such reduced space is a
smooth manifold, has the structure of a symplectic groupoid and it integrates the cotan-
gent bundle of a given Poisson manifold M , regarded as a Lie algebroid over M .

The integration of Lie algebroids appears as a generalization of what is called in the
literature the Lie third theorem that can be stated as follows (see e.g. [30]):

• Let g be a finite dimensional Lie algebra. Then there exists a unique simply con-
nected Lie group G with Lie algebra isomorphic to g.

A question that would expect the same type of answer can be stated in the case of Lie
algebroids and Lie groupoids:

• Is there a Lie groupoid G⇒M such that its infinitesimal version corresponds to a
given Lie algebroid A?

In particular, the case when the Lie algebroid is T ∗M , where M is a Poisson manifold
has particular interest since the construction of a smooth groupoid with a compatible
symplectic structure gives, between other things, a symplectic realization of the given
Poisson manifold. More precisely, we deal with the following question:

• Given a Poisson manifold (M,Π), is there a symplectic groupoid G⇒M such that
its space of objects is precisely M , the (target) source is an (anti) Poisson map and
M is a Lagrangian submanifold of G?

9



In general, a Poisson manifold can fail to be integrable and this means that such groupoid
might be non smooth. In fact, the obstruction to integrability of Poisson manifolds has
topological nature, depending on the second homotopy group of the leaves of the sym-
plectic foliation of the Poisson manifold (see the work of Crainic and Fernandes [27])
and it is given by the uniformly discreteness of what are called monodromy groups of the
infinitesimal foliation whose space of leaves determines the groupoid G.
For example, the linear Poisson structure of su(2) can be deformed in such way that the
monodromy group of certain leaves of the foliation is not uniform discrete, violating the
afore mentioned integrability conditions.

For integrable cases, there exists a unique source fiber simply connected groupoid inte-
grating T ∗M and one can wonder if such groupoid can be explicitly constructed. At this
point, the link to topological field theories makes its appearance. In the work of Cattaneo
and Felder [21], the symplectic groupoid for integrable Poisson manifolds is constructed
as the space of reduced boundary fields of PSM, with the source space homeomorphic to
a disc and with vanishing boundary conditions.

The properties of G ⇒ M are of special interest in Poisson geometry, since it is possible
to equip G with a symplectic structure ω compatible with the multiplication map in such
a way that G is a symplectic realization for (M,Π) (i.e. the source map is Poisson, the
target is anti-Poisson).

The main purpose of this thesis is the study of the geometric, algebraic and categorical fea-
tures of the non reduced phase space of the PSM, also in the case of more general boundary
conditions. This leads in particular to a generalization of what is known on integration
of Poisson manifolds, extending the construction of the symplectic groupoid associated
to a Poisson manifold M to the infinite dimensional setting, through the construction of
what we call relational symplectic groupoid, that is, roughly speaking, a groupoid in the
extended symplectic category defined “up to equivalence”, where the structure maps of
the usual groupoids are replaced by special morphisms in the SympExt, which contains
as objects (possibly weak) symplectic manifolds and a special type of immersed canonical
relations, as morphisms; namely, the multiplication, inverse and unit of usual symplectic
groupoids are replaced by infinite dimensional immersed Lagrangian submanifolds, obey-
ing certain compatibility axioms.

It is important to remark here that the extended symplectic category is not formally
speaking a category! 1, since the composition of smooth canonical relations is not smooth
in general, and such composition is not continuous with respect to the topology for the

1In the literature this is sometimes called a categroid, (e.g. [3])
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space of morphisms. However, for our construction, the defining morphisms will be well
defined and composition of them make sense in SympExt.

A particular type of relational symplectic groupoid , called regular, admits the notion of
smooth space of objects, denoted by M , that is constructed as a quotient using the defin-
ing data of G, and also has source and target relations from G toM . We prove thatM can
be equipped with a unique Poisson structure compatible with the symplectic structure
on M as a generalization of the unique Poisson structure that can be constructed in the
space of objects of an usual symplectic groupoid [25].

It can be checked, for instance, that usual symplectic groupoids are natural examples
of finite dimensional relational symplectic groupoids. Fortunately, this is not the only
source for finite dimensional examples. Given a symplectic manifold M and an immersed
Lagrangian submanifold L, we can construct a relational symplectic groupoid out of it in
a natural way. In addition, powers of symplectic groupoids appear also naturally as finite
dimensional examples of this construction.

However, the motivational example of relational symplectic groupoids is infinite dimen-
sional and is associated, as we mentioned before, to the phase space of PSM with boundary.
In order to understand the reasons why this type of object requires special attention, some
further motivation has to be done, since the challenges to fully understand the connection
between integration of Poisson manifolds and PSM appear in an early stage.

In a more recent perspective (see [23, 22]), the study of the phase space before reduction
of the PSM plays a crucial role, in the context of Lagrangian field theories with bound-
ary. In general, the space of reduced boundary fields does not have to be a smooth finite
dimensional manifold and in fact, the failure of being smooth is controlled by the integra-
bility conditions of Poisson manifolds.

The construction of relational symplectic groupoids allows us to deal with with non in-
tegrable Poisson structures, for which the reduced phase space is singular, on an equal
footing as the integrable ones. This new approach differs from the stacky perspective of
Zhu, Tseng (see [50]) or more recently Cañes [10]; however, it is interesting to see the
connections between these points of view. Relational symplectic groupoids seem to be
better adapted to symplectic geometry and to quantization (see Section 4.7).

The important feature is that relational symplectic groupoids can always be defined inde-
pendently of the integrability of the Poisson manifold and that it reduces, in the integrable
cases, to the usual version of symplectic groupoids.
With the previous construction, there is a compatibility between the Poisson structure in
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the target and the symplectic structure in the relational symplectic groupoid (see The-
orem 3.3.19) and the integrability conditions translate into embeddability conditions for
certain canonical relations in the new construction (see Theorem 3.5.23).

In particular, the axioms of the relational symplectic groupoid allow to extend the con-
struction to special categories different from SympExt, namely, the category HilbExt of
Hilbert spaces as objects and linear subspaces as morphisms. In this setting , the quan-
tization of relational symplectic groupoids would correspond 2 to a functor from monoids
in SympExt to monoids in HilbExt.

The existence of this construction for general Poisson manifolds is guaranteed by proving
that the morphisms defining the relational symplectic groupoid are immersed Lagrangian
submanifolds of certain Banach manifolds, that are in this setting particular types of
spaces of maps, where the use of adapted versions of Frobenius and the inverse function
theorem is allowed [38, 39]. This restricts us to dealing with the regularity type of the
space of boundary fields as well as the equations defining the dynamics of PSM. However,
the generalization in the case where the space of boundary fields is of type C∞ is discussed
in Chapter 3 and this leads us to the extension of relational symplectic groupoids in the
framework of Frechét manifolds, where some of the main features of the construction are
expected to hold. The full development of the construction in the Fréchet category is still
work in progress.

Some extensions of this construction in different dagger categories lead the work devel-
opped in [19], where the connection between groupoids and Frobenius algebras is made
precise. Namely, there is a way to understand groupoids in the category Set as what we
called Relative Frobenius algebras, a special type of dagger Frobenius algebra [56] in the
category Rel, where the objects are sets and the morphisms are relations.
In addition, there exists an adjunction between a special type of semigroupoids (a more
relaxed version of groupoids where the identities or inverses do not necessarily exist) and
H*-algebras, a structure similar to Frobenius algebras but without unitality conditions
and a more relaxed Frobenius relation.

This suggested the study of the defining axioms of the relational symplectic groupoid in
different categories, namely, dagger monoidal categories, where the notion of adjoint mor-
phism makes sense. In this direction we define weak monoids, weak *-monoids and cyclic
weak *-monoids, which are more relaxed versions of relational symplectic groupoids, but
they appear in some other scenarios, for instance, deformation quantization.

2Assuming that the quantization is functorial.
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Following this construction there are many open questions and developments to be made.
For instance, the non reduced version of the phase space for PSM with branes deserves
special attention (see, e.g. [11, 20]) in an effort to connect PSM with special boundary
conditions and what is known in the literature as dual pairs [54]. The presence of handles
in relational symplectic groupoids would conjecturally give more geometric information
on PSM with genera and the non regular version of the construction could give the correct
framework to work with Poisson sigma models with singular target space. The formal link
between the relational symplectic groupoids and symplectic microgeometry [14, 15, 16] is
still work in progress.
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1.3 Summary of the main results

This section summarizes the main results of this thesis. After defining in general the
notion of relational symplectic groupoids, we are able to relate this construction in the
regular case with the usual notion of topological and symplectic groupoids, in particular,
the symplectic structure in the latter is given via symplectic reduction. More precisely,
we define the relational symplectic groupoid G in terms of certain immersed Lagrangian
submanifolds L1, L2, L3 of G, G×G and G×G×G respectively, satisfying certain compat-
ibility relations. In particular, the immersed canonical relation L2 induces an equivalence
relation on a coisotropic submanifold C of G. (see Equation 3.46 on page 54 ) We prove
the following

1. Theorem 3.3.15 Let (G, L, I) be a regular relational symplectic groupoid. Then
G := C/L2 ⇒ M is a topological groupoid over M . Moreover, if G is smooth man-
ifold, then G⇒M is a symplectic groupoid over M := L1/L2.

In the regular case, we also prove the connection between the symplectic structure
of the relational symplectic groupoid structure and the Poisson structure on the
space of objects. Namely, it corresponds with the analogue existence/uniqueness of
a Poisson structure on the space of objects of usual symplectic groupoids, where the
(target) source of the groupoid is an (anti) Poisson map. The compatibility in our
construction is described in terms of Dirac maps between presymplectic and Poisson
manifolds.

2. Theorem 3.3.19 Let (G, L, I) be a regular relational symplectic groupoid, with
M = L1/L2. Then, assuming that the s-fibers are connected, there exists a unique
Poisson structure Π on M such that the map s : C → M (or t) is a forward-Dirac
map.

Conjecturally, the connectedness condition of the s-fiber can be dropped (see Con-
jecture 3.3.22).

The following theorem leads to the discussion of relational symplectic groupoids
coming from the PSM, namely, relational symplectic groupoids correspond to a
generalization of the construction presented by Cattaneo and Felder in [21], as now
we deal with the case of singular reduced phase spaces. In fact, this theorem holds
also for singular Poisson manifolds, for instance, in Example 3.6.6. Studying the
phase space of the Poisson sigma model before reduction we prove the following

14



3. Theorem 3.5.1. Given an arbitrary Poisson manifold (M,Π), there exists a rela-
tional symplectic groupoid (G, L, I) integrating it.

By integration in this theorem we mean the following

(a) The existence of an infinite dimensional relational symplectic groupoid that is
regular, such that L1/L2 =M , regarded as a Poisson manifold.

(b) In the case where the Lie algebroid T ∗M is integrable in the usual sense, the
reduction C of (G, L, I) corresponds to the usual symplectic groupoid G⇒M .

This infinite dimensional integration for Poisson manifolds extends the usual in-
tegration through the phase space of PSM, since it can be defined independently
whether the reduced phase space of the PSM is smooth or not.

More precisely, the following theorem states the connection between the symplectic
groupoid for an integrable Poisson manifold and the associated relational symplectic
groupoid.

4. Theorem 3.5.24 Let (M,Π) be an integrable Poisson manifold. Let G be the re-
lational symplectic groupoid associated to the cotangent bundle of the path space
T ∗PM and let G = CΠ be the symplectic Lie groupoid associated to the character-
istic foliation on CΠ. Then G and G are equivalent as relational groupoids.

The following theorem states the connection between the construction of the re-
lational symplectic groupoid for a Poisson manifold (M,Π) and the integrability
obstructions of the Lie algebroid T ∗M . More concretely, if (M,Π) is integrable,
the uniform discreteness of the monodromy groups described in [27] implies that
there exists a tubular neighborhood of the zero section of T ∗PM , denoted by
N(Γ0(T

∗PM)), such that, for

L1 :=
⋃

x0∈M

T ∗
(X,η)

PM ∩ L1,

where (X, η) = {(X, η)|X ≡ X0, η ∈ kerΠ#}, the following theorem holds

5. Theorem 3.5.23 If T ∗M is integrable, then L1 ∩ N(Γ0(T
∗PM)) is an embeded

submanifold of T ∗(PM)

In this point of view, L1 is regarded as the space of T ∗M− paths that are T ∗M−
homotopy equivalent to the trivial T ∗M− paths.

In addition, the equivalence of relational symplectic groupoids allows to compare dif-
ferent integrations for Poisson manifolds. In this new perspective, different groupoids
integrating a given Poisson manifold are equivalent.
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6. Proposition 3.5.26 Let G ⇒ M and G
′

⇒ M be two s-fiber connected sym-
plectic groupoid integrating the same Poisson manifold (M,Π). Then (G,L, I) and
(G

′

, L
′

, I
′

) are equivalent as relational symplectic groupoids. The proof of this the-
orem is based on the fact that any s- fiber connected integration of a given Lie
algebroid A comes from a quotient with respect to the action of a discrete group on
the s-fiber simply connected Lie groupoid that integrates A.

Trying to understand groupoid structures in particular types of categories, it is
possible to link groupoids and what are called relative Frobenius algebras. In [19] the
interaction between groupoids in the category Set and relative Frobenius algebras
in the category Rel is studied, as well as the version “before reduction”, namely, an
adjunction between what is called locally cancellative regular semigroupoids in Set
and relative H*-algebras in Rel.

7. Theorem 4.5.22 There exists an equivalence of categories between the category
Frob(Rel)Rel of relative Frobenius algebras with suitable morphisms and GpdRel of
groupoids over sets whose morphisms are subgroupoids of the cartesian product.

8. Theorem 4.6.11 There exists an adjunction of categories between the category
(H*-alg)(Rel)Relof relative H*- algebras with suitable morphims and the category
LRSgpd of locally cancelative semigroupoids.
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1.4 Structure of the thesis

Each one of the chapters of the thesis has a brief introduction at the beginning and they
are organized as follows:

Chapter 2 is an introduction to symplectic linear algebra, symplectic groupoids and to
the problem of integration of Lie algebroids specialized to the case of Poisson manifolds.
The notation and main concepts on symplectic and Poisson geometry used throughout
the thesis will be introduced here.

Chapter 3 deals with the main features of PSM with boundary, in particular, their space
of boundary fields. Here, the main construction, the relational symplectic groupoid is
introduced; its axioms are stated and we give the main examples as well.

Chapter 4 is devoted to discuss algebraic and categorical aspects of the construction,
namely, the definition of monoid and groupoid like structures in more general cate-
gories and examples of them. In the same direction we describe the connection between
groupoids and Frobenius algebras, encoded in Theorems 4.5.22 and 4.6.11.

At the end of the Chapter we expose possible generalizations and the perspectives of the
construction of relational symplectic groupoids.

17



Chapter 2

Symplectic groupoids

The idea of the first part of this chapter is to discuss general facts and results on symplectic
linear algebra which will be used throughout the thesis. The first section intends to unify
the treatment of both finite and infinite dimensional symplectic vector spaces, therefore,
in the sequel, the vector spaces are possibly infinite dimensional. We discuss briefly about
Poisson algebras and Poisson manifolds and then we state the main facts about integration
of Poisson manifolds.

2.1 Symplectic linear algebra

2.1.1 Definitions

Definition 2.1.1. Let V be vector space over R. A skew symmetric form ω ∈ Λ2(V ∗) is
called non degenerate if the induced linear map

ω# : V → V ∗

ω#(v)(w) := ω(v, w)

is an isomorphism

Definition 2.1.2. ω is called weakly non degenerate if ω# is injective.

Remark 2.1.3. If V is finite dimensional, a weakly non degenerate form is also non
degenerate.

Definition 2.1.4. A bilinear symmetric form ω on V is called weak symplectic if is skew
symmetric and weakly non degenerate.

Definition 2.1.5. A vector space V equipped with a weak symplectic form ω is called
a weak symplectic vector space.
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Definition 2.1.6. A bijective linear map f : (V, ωV ) → (W,ωW ) is called a symplecto-
morphism if f ∗ωW = ωV .

Definition 2.1.7. Let V be a symplectic space and W a linear subspace of V . We define
its symplectic orthogonal space, by

W⊥ := {v ∈ V |ω(v, w) = 0, ∀w ∈ W}.

Some properties of the symplectic orthogonal spaces that will be used from now on, are
the following

Proposition 2.1.8. Let V be a weak symplectic space and W , Z subspaces of V . Then:

1. W ⊂ Z =⇒ Z⊥ ⊂ W⊥.

2. (W + Z)⊥ = W⊥ ∩ Z⊥.

3. W⊥ + Z⊥ ⊂ (W ∩ Z)⊥.

4. W ⊂ W⊥⊥.

5. W⊥ = W⊥⊥⊥.

We can define ω#W : V → W ∗ as the restriction of ω#(V ) to W , namely,

ω#(v)(w) := ω(v, w), ∀v ∈ V, w ∈ W.

In this way,
W⊥ = kerω#W

and therefore, we have the induced map ω#W : V/W⊥ →֒ W ∗.

Remark 2.1.9. In the finite dimensional setting

V/W⊥ ≃ W ∗

and this implies that dimW⊥ = dimV − dimW .

Denoting by ω|W the restriction of ω to W we get that this induces a bilinear form on W
and

(ω|W )# = (ω#W )|W .

Therefore
ker(ω|W )# = W ∩W⊥.

Now we define special subspaces of special interest for our purposes.
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Definition 2.1.10. A subspace W of V is called

1. symplectic if ω|W is a symplectic form or equivalently, W ∩W⊥ = {0}.

2. isotropic if W ⊂ W⊥.

3. cosiotropic if W⊥ ⊂ W .

4. Lagrangian if W⊥ = W .

2.1.2 Symplectic reduction

Let W be a linear subspace of a symplectic vector space V . We define

W := W/W ∩W⊥,

called the reduction of V . The form ω induces a symplectic form ω on W given by

ω([w1], [w2]) := ω(w1, w2).

It can be easily proven that ω is an antisymmetric, non degenerate form. The following
properties for symplectic reductions and the special subspaces of symplectic spaces hold

1. In the finite dimensional case, ifW is a Lagrangian subspace, then dimW = 1
2
dimV .

2. If W is coisotropic,
W = W/W⊥.

3. W is isotropic ⇐⇒ W = {0}.

4. If Z ⊂ L, where L is Lagrangian, then Z is isotropic.

5. If L ⊂ Z, where L is Lagrangian, then Z is coisotropic.

6. If L ⊂ Z, where L is Lagrangian and Z is isotropic, then Z = L. That is why a
Lagrangian space is also called maximally isotropic.

The following are some propositions that will be useful later on.

Proposition 2.1.11. Let W and L be a coisotropic and a Lagrangian subspace of V ,
respectively. Let PW : W → W be the quotient map and let

LW := PW (L ∩W ) = L ∩W�L ∩W⊥,

then LW is isotropic in W .
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Proof. We get that

P−1
W (L⊥

W ) = (P−1
W (LW ))⊥ ∩W

= (L ∩W +W⊥)⊥ ∩W

= (L ∩W )⊥ ∩W⊥⊥ ∩W
W⊂W⊥⊥

= (L ∩W )⊥ ∩W

⊇ (L⊥)
Coisotropicity of W

⊇ L⊥ ∩W +W⊥.

Applying PW in both sides we get

L⊥
W ⊇ PW (L⊥ ∩W +W⊥)

= PW (L⊥ ∩W )
Isotropicity of L

⊇ PW (L ∩W )

= LW ,

as we wanted.

Corollary 2.1.12. In the finite dimensional case, it follows from dimensional reasons
that if L is Lagrangian, then LW is Lagrangian.

Proposition 2.1.13. Let (V, ω) be a symplectic space. Let C be a coisotropic subspace
of V. Let L be a subspace such that

C⊥ ⊂ L ⊂ C ⊂ V.

Assume that L := L/C⊥ is Lagrangian in C := C/C⊥. Then, L is a Lagrangian subspace
of V .

Proof. Let P : C → C denote the projection map to the reduced space. The idea is
to proof that L = L⊥ using the fact that p−1(L) = p−1(L⊥). First, we prove that
p−1(L⊥) = L⊥. Let v ∈ p−1(L⊥). We have that, by definition,

ω(p(v), w) = 0, ∀w ∈ L

and this implies that
ω(v, w) = 0, ∀w ∈ V |w ∈ L,

therefore,
ω(v, w) = 0, ∀w ∈ L.
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Also by definition we have that
p−1(L) = L,

therefore, using the fact that L is Lagrangian, L⊥ = L, we obtain that L = L⊥, as we
wanted.

Definition 2.1.14. Let V be a symplectic vector space. Its conjugated space, denoted
by V is the same vector space V but now equipped with the symplectic form −ω.

Proposition 2.1.15. Let L be a Lagrangian subspace of V ⊕ V , such that L ⊂ C ⊕ C,
for some C ⊂ V . Then C is coisotropic in V .

Proof. Since
L ⊂ C ⊕ C,

we obtain that
(C ⊕ C)⊥ ⊂ L⊥ = L ⊂ C ⊕ C ⊂ V ⊕ V ,

therefore C ⊕ C is coisotropic. Since (C ⊕ C)⊥ = C⊥ ⊕ C⊥, we conclude that C⊥ ⊂ C,
as we wanted.

2.1.3 Canonical relations

Lagrangian subspaces play an important role in symplectic geometry and this section is
devoted to study some of their properties. A relation R between two sets M and N is
a subset of the cartesian product M × N and we will use the notation R : M 9 N . If
S : N 9 P is another relation, its composition is given by

S ◦R := {(m, p) ∈M × P |∃n ∈ N, (m,n) ∈ R, (n, p) ∈ S} : M 9 P.

Remark 2.1.16. In the case where the sets M and N are vector spaces, a relation R is
called linear if it corresponds to a linear subspace of M ⊕N .

Definition 2.1.17. Let (M,ωM) and (N,ωN) be symplectic spaces. A linear relation
L : M 9 N is called canonical, if R is a Lagrangian subspace ofM⊕N , whereM denotes
the vector space M with the negative symplectic form −ωM .

Remark 2.1.18. If L : V 9 W is a canonical relation, then L is a Lagrangian subspace
of W ⊕ V , then we have the canonical relation

L† : W 9 V

called the transpose of L.
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Remark 2.1.19. A Lagrangian submanifold L of V is a canonical relation L : {0} 9 V
with transpose L† : V 9 {0} .

Proposition 2.1.20. In the finite dimensional case, the composition of canonical relations
is a canonical relation.

Proof. Let L1 : U 9 V and L2 : V 9 W be canonical relations. Defining

△V : = {(v, v), v ∈ V } ⊂ V ⊕ V,

it is easy to check that △ : V 9 V is a canonical relation. In addition, if we define

D := U ⊕△V ⊕ Z ⊂ U ⊕ V ⊕ V ⊕W,

since D⊥ = {0} ⊕△V ⊕ {0}, then D is a coisotropic subspace and D = U ⊕W.
Since L1 ⊂ U ⊕ V and L2 ⊂ V ⊕W are Lagrangian subspaces,

L1 ⊕ L2 ⊂ U ⊕ V ⊕ V ⊕W

is Lagrangian and then, after projecting onto the quotient, PD(L1 ⊕L2) is Lagrangian in
D. Since

L1 ⊕ L2 ∩D = {(u, v, v, w)|(u, v) ∈ L1, (v, w) ∈ L2},

then
PD(L1 ⊕ L2) = PD(L1 ⊕ L2 ∩D) = L2 ◦ L1

as we wanted.

Remark 2.1.21. In the infinite dimensional case, the compositition of two canonical
relations is not in general a canonical relation, as we will see in Example 2.3.4. It can be
easily checked that the composition of canonical relations is in general isotropic.

Now, following [6], consider a coisotropic subspace W ⊂ V . It follows that W ⊕ V is
a coisotropic subspace of V ⊕ V (since (W ⊕ V )⊥ = W⊥ ⊕ {0}). Since △V ⊂ V ⊕ V
is a Lagrangian subspace, by Corollary 2.1.12, PW⊕V (△V ) is a Lagrangian subspace of
W ⊕ V = W ⊕ V , when V is finite dimensional. This projection will be denoted by I
and is a canonically defined canonical relation I : W 9 V . In fact, this also holds in the
infinite dimensional setting due to the following

Proposition 2.1.22. For any (possibly infinite dimensional) symplectic space V , I is a
canonical relation.
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Proof. Explicitely we have that

I = {([w], w) ∈ (W�W⊥)× V |w ∈ W},

therefore

I⊥ = {([v], z)|[v] ∈ W�W⊥, z ∈ V, ω([v], [w])− ω(z, w) = 0, ∀w ∈ W}.

By linearity and the construction of the reduction this is equivalent to

I⊥ = {([v], z)|[v] ∈ W�W⊥, z ∈ V, ω(v − z, w) = 0, ∀w ∈ W, v ∈ [v]}

= {([v], z)|[v] ∈ W�W⊥, z ∈ V, v − z ∈ W⊥, ∀v ∈ [v]}.

This implies in particular that z and v belong to the same equivalence class and since
v ∈ C and C is coisotropic it follows that z ∈ C and therefore [v] = [z], hence I⊥ = I, as
we wanted.

We denote by P := I† : V 9 W , the transpose of I. We can prove then the following

Proposition 2.1.23. The following relations hold

1. P ◦ I : W 9 W = Graph(Id).

2. I ◦P : V 9 V = {(w,w
′

) ∈ V ×V |PW (w) = PW (w
′

)}. Furthermore, I ◦P ⊂ W ×W
is an equivalence relation on W and

W�I ◦ P = W.

Proof. Direct computation.

As an application of this lemma we have

Definition 2.1.24. Let L : W 9 W be a canonical relation. By the proposition 2.1.13,

l(L) := I ◦ L ◦ P : V 9 V

is a canonical relation and will be called the canonical lift of L.

Definition 2.1.25. Let L : V 9 V be a canonical relation. Then

p(L) := P ◦ L ◦ I : W 9 W

is also a canonical relation called the canonical projection of L.
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These two particular relations have interesting properties. Observe first that the com-
position p ◦ l is the identity for Lagrangian subspaces of the symplectic reduction W ,
however, the composition l ◦ p is not the identity. An example of the application of these
construction is the following

Example 2.1.26. (Canonical lift of symplectic flows). We consider a symplectic space
V , a vector field X ∈ X(V ) and a smooth map

Φ: V × R→ V

such that

1. d
dt
Φ(x, t) = X(x)

2. Φ(x, 0) = x

3. For every time t
φt := Φ(·, t) : V → V

is a symplectomorphism.

Such φt is called a symplectic flow. Defining Lt := Graph (φt), they satisfy that

1. Lt ◦ Ls = Lt+s.

2. L0 = Graph (Id).

After the canonical lift for these relations we get that, being Lt := l(Lt), then

1.

Lt ◦ Ls = I ◦ Lt ◦ P ◦ I ◦ Ls ◦ P

= I ◦ Lt ◦ Ls ◦ P

= I ◦ Lt+s ◦ P

= Lt+s.

2.
L0 = l(Id) = I ◦ P 6= Graph(Id).

Therefore we conclude that the canonical lift of a symplectic flow is not a flow strictly
speaking. However this lift is a symplectic flow up to an equivalence relation and it
corresponds to a good definition for symplectic flows in terms of canonical relations.
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2.2 Poisson algebras and Poisson manifolds

Poisson algebras appear closely related to the study of symplectic spaces and they are
relevant in the study of classical dynamics of physical systems. Poisson structures are a
generalized version (admitting degeneracies) of the symplectic ones. Poisson manifolds,
which are smooth manifolds equipped with such structure will appear very often in this
work and this section is devoted to introduce the main concepts and to fix notation.

Definition 2.2.1. A Poisson algebra is an associative algebra P equipped with a bracket
{ , } satisfying the following properties

1. (Lie bracket). { , } is skew symmetric and it satisfies the Jacobi identity

{ f, { g, h } }+ { g, {h, f } }+ {h, { f, g } } = 0

2. (Leibniz property). { , } acts as derivation on the product of P , i.e.

{ f, gh} = {f, g}h+ g{f, h}

Definition 2.2.2. A Poisson manifold is a pair (M,Π), where M is a smooth manifold
and Π ∈ Γ(TM ∧ TM) such that (C∞(M), {, }Π) is a Poisson algebra, where

{f, g}Π := Π(df, dg), ∀f, g ∈ C∞(M).

In local coordinates, Π is a bivector written in the form

Π(x) =
∑

i<j

Πij(x)
∂

∂xi
∧

∂

∂xj

the condition of Π to be Poisson reads in coordinates as follows
∑

r

Πsr(x)(∂r)Π
lk(x) + Πkr(x)(∂r)Π

sl(x) + Πlr(x)(∂r)Π
ks(x) = 0, (2.1)

that is equivalent to the vanishing condition for the Schouten-Nijenhuis bracket of Π.
Natural examples of Poisson manifolds are:

Example 2.2.3. (Zero Poisson structure) Any manifoldM has a trivial Poisson structure,
setting Π(x) ≡ 0.

Example 2.2.4. (Constant Poisson structure). Similar to the previous example, we
consider an open subset of Rn and setting

Πij(x) ≡ cij,

for some real constants cij, we obtain a bivector satisfying Equation 2.1.
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Example 2.2.5. (Linear Poisson structure). Let g be a finite dimensional Lie algebra
with structure constants {ckij} with respect to the basis e1, e2, · · · en. Consider its dual
space g∗; then, if xl denotes the linear functions on g

∗ which corresponds by duality to el,
the bivector Π written down in coordinates as

Π(x) =
∑

i<j

k

ckijxk
∂

∂xi
∧

∂

∂xj

is Poisson.

Example 2.2.6. (Symplectic manifolds). If (M,ω) is a finite dimensional symplectic
manifold, then with the bracket

{f, g} := ω(Xf , Xg),

where Xf and Xg are the Hamiltonian vector fields associated to f and g respectively,
(C∞(M), {, }) is a Poisson algebra.

Definition 2.2.7. (Poisson morphisms). Let (M, {, }M) and (N, {, }N) be two Poisson
manifolds. A map φ : M → N is called a Poisson map or a Poisson morphism if the
pull-back map

φ∗ : C∞(N)→ C∞(M)

is a Lie algebra homomorphism with respect to the corresponding Poisson brackets.

Definition 2.2.8. (Coisotropic submanifolds). Let (M,Π) be a Poisson manifold and C
be a submanifold of M . C is called coisotropic if

Π#(N∗C) ⊂ TC,

where N∗C is the conormal bundle of C, defined by

N∗
xC := {α ∈ T ∗

xM |〈α, v〉 = 0, ∀v ∈ TxC}

where 〈, 〉 denotes the natural pairing between T ∗
xM and TxM and

Π# : TxM → T ∗
xM (2.2)

α 7→ Π(x)(α, ·). (2.3)
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2.3 The extended symplectic category

Now the idea is to pass from the linear setting to the world of smooth manifolds, where
some of the features previously discussed hold, some others fail. From now on, a smooth
manifold M is called symplectic if is is equipped with a 2-form ω ∈ Ω2(M) that is closed
and every tangent space (TxM,ωx) is (weak) symplectic (Definition 2.1.5).
We define the linear symplectic category, denoted by LinSymp, where the objects are
symplectic spaces and the morphisms are symplectomorphisms (Definition 2.1.6). In
order to allow more generality, one should want to add canonical relations as morphisms.
However, as we have seen, some complications appear. The failure to do this extensions
are based on the following

1. The composition of canonical relations is not canonical in general for the infinite
dimensional case.

2. The composition of canonical relations is not continuous in general (the set of La-
grangian subspaces is a homogeneous space and therefore it is naturally equipped
with an induced topology).

It is possible to define the category FLinSympExt, where the objects are finite dimen-
sional symplectic spaces and the morphisms are canonical relations. In the smooth case,
we proceed in a similar way. We denote by SympMan the category which objects
are symplectic manifolds and morphisms are symplectomorphisms. In a similar way
SympManExt would have (smooth) canonical relations as morphisms, but some problems
appear here, even though we restrict ourselves to the finite dimensional setting. In gen-
eral the (set theoretical) composition of canonical relations is not a smooth manifold and
therefore a well defined morphism. In order to guarantee smoothness of the composition,
some transversality conditions should be imposed, namely

Definition 2.3.1. Two smooth relations R : M 9 N and S : N 9 P are called transver-
sal if the submanifolds R×S and M ×△N ×P of M ×N ×N ×P intersect transversally.

Definition 2.3.2. Two transversal relations R : M 9 N and S : N 9 P are strongly
transversal if the space

(R× S) ∩ (M ×△N × P )

projects to an embedded submanifold of M × P .

It can be easily checked [6] that

Proposition 2.3.3. The composition of two smooth strongly transversal relations is a
smooth relation.
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Since Lagrangianity of smooth relations is a linear problem, it is automatic that the com-
position of smooth strongly transversal canonical relations is a smooth canonical relation.
Unfortunately, not every pair of composable smooth canonical relations are strongly
transversal, therefore SympManExt is not technically a category, some people would
call it a categroid [3]. Another disadvantage is that the Lagrangianity condition does
not behave well in the infinite dimensional framework, i.e. the composition of (linear)
canonical relations is not in general a canonical relation as we can see in the following

Example 2.3.4. Consider the space V := C0([−1/2, 1/2]) ⊕ C0([−1/2, 1/2]) and the

bilinear form ω(f ⊕ g, k ⊕ l) =
∫ 1/2

−1/2
(fl − kg)dx. It can be checked that ω is a weak

symplectic form on V and that the space

L := {(f ⊕ g) ∈ V |

∫ 1/2

−1/2

fdx = 0, g constant}

is a Lagrangian subspace of V .Also, it can be proven that the space

C := {(f ⊕ g) ∈ V |g(0) = 0}

is both a coisotropic and a symplectic subspace of V (since C⊥ = {0 ⊕ 0}). This implies
that C = C. It follows that the projection LC of L in C is given by

LC = L ∩ C = {(f ⊕ g) ∈ V |

∫ 1/2

−1/2

fdx = 0, g ≡ 0.

LC is isotropic since

(L ∩ C) ⊂ L = L⊥ ⊂ L⊥ + C⊥ = (L ∩ C)⊥,

but it is not Lagrangian since the vector (k ⊕ 1), with
∫ 1/2

−1/2
kdx = 0 satisfies that

ω(f ⊕ g, k ⊕ 1) = 0, ∀(f ⊕ g) ∈ L ∩ C,

but (k ⊕ 1) 6∈ L ∩ C. Thus, from the following diagram

∅ L
/ //

LC ��

V

−P
��

C

we get two canonical relations whose composition is not a canonical relation.
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2.3.1 Possible alternatives

In order to overcome these difficulties and to make precise sense of the extended sym-
plectic category, different approaches can be taken. One natural approach in the infinite
dimensional linear case is to consider the category LinSympIso, where the objects are
symplectic spaces and the morphisms are isotropic subspaces of the direct sum of two
symplectic spaces. In this category the composition of morphisms is now well defined.
However, the transversality condition in the smooth case cannot be skipped if we consider
isotropic submanifolds instead of canonical relations. Here we present briefly in a disgres-
sion two possible solutions in the literature [52], [14, 15, 16], [51], that will not be used in
the sequel . Then we present the model of the extended symplectic category that we will
deal throughout this thesis, namely, defining only partial composition of morphisms and
allowing also infinite dimensional symplectic manifolds.

The Wehrheim-Woodward category

The construction given by Wehrheim and Woodward consists roughly on the minimal
category that contains canonical relations as generators of morphisms. More precisely, in
their perspective, the objects of the symplectic category are symplectic manifolds and the
morphisms are generated by composable canonical relations, i.e. they are subject to the
relation that to morphisms f and g are composable in the category whenever the strong
transversality condition is satisfied. First, they define sequences of composable canonical
relations (f1, f2 · · · fn) and they associate the empty sequence to every object. Then they
define the equivalence relation that is minimal under inclusion, that makes the sequence
(f, g) equivalent to f ◦ g when f and g are strongly transversal. Under this equivalence,
the identity morphisms correspond to the diagonals of every object. These morphisms
are usually called generalized Lagrangian correspondences [51, 52].

Symplectic microgeometry

In this perspective, the motivation comes from the “cotangent functor” T ∗ : Man →
SympManExt, a contravariant functor that associates to a smooth manifoldM its cotan-
gent bundle T ∗M and to a map φ : X → Y it associates the canonical relation denoted
by T ∗φ called the cotangent lift of φ:

T ∗φ := {((x, (Tφ)∗(η)), (φ(x), η))|x ∈ Xand η ∈ T ∗
φ(x)Y }.

A relevant fact to observe is that compositions of cotangent lifts satisfy the strong transver-
sality condition, hence, we can understand the image of the category Man under T as
a subcategory of SympExt. In order to generalize this lift for symplectic manifolds that
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are not cotangent bundles, a localization procedure is performed, defining what is called
symplectic microfolds and symplectic micromorphisms ; for references see, for example,
[14, 15, 16].

Although these two different approaches are interesting per se in order to describe rig-
orously the symplectic category, we will consider the extended symplectic category as
a categroid. If compositions of immersed canonical relations are involved, it would be
proven that such compositions are well defined morphisms. More precisely we will have
the following definition of the “extended symplectic category” as a categroid (from now
on we will abuse the language and call it a category).

The categroid SympExt

Definition 2.3.5. SympExt is a categroid1 in which the objects are (weak) symplectic
manifolds. A morphism between two symplectic manifolds (M,ωM) and (N,ωN) is a pair
(L, φ), where

1. L is a smooth manifold (in the infinite dimensional setting we will restrict ourselves
to Banach manifolds).

2. φ : L→M ×N is an immersion. 2

3. Tφx applied to TxL is a Lagrangian subspace of Tφ(x)(M ×N), ∀x ∈ L.

We will call these morphisms immersed canonical relations and denote them by L : M 9

N . In the sequel, for simplicity of the convention, we will denote by (L, φ) the pair defining
an immersed canonical relation, where φ is a representative of the class [φ]. The partial
composition of morphisms is given by composition of relations as sets.

Remark 2.3.6. Observe that SympExt carries an involution † : (SympExt)op → SympExt

that is the identity in objects and is the relational converse in morphisms, i.e. for
f : A9 B, f † := {(b, a) ∈ B × A|(a, b) ∈ f, a ∈ A, b ∈ B}.

Remark 2.3.7. This categroid extends the usual symplectic category in the sense that
the symplectomorphisms can be thought in terms of immersed canonical relations, namely,
if φ : (M,ωM) → (N,ωN)) is a symplectomorphism between two finite dimensional sym-
plectic manifolds, then (graph(φ), ι), where ι is the inclusion of graph(φ) in M ×N , is a
morphism in SympExt.

1This is not an honest category since the composition of immersed canonical relations is not in general
a smooth manifold.

2Observe here that usually one considers embedded Lagrangian submanifolds, but we consider im-
mersed ones.

31



2.4 Lie groupoids and symplectic structures

Categorically, we understand a groupoid as a small category where all the morphisms are
invertible. Writing down explicitely we get the following

Definition 2.4.1. A groupoid in a small category C which has fiber products, corresponds
to two objects G, M and a set of morphisms in C described in the following diagram

G×(s,t) G
µ

// G
i // G

t

44

s
**
M

εoo

where G ×(s,t) G is the fiber product for the maps s, t : G → M , such that the following
axioms hold (denoting G(x,y) := s−1(x) ∩ t−1(y)):

A.1 s ◦ ε = t ◦ ε = idM

A.2 If g ∈ G(x,y) and h ∈ G(y,z) then µ(g, h) ∈ G(x,z)

A.3 µ(ε ◦ s× idG) = µ(idG × ε ◦ t) = idG

A.4 µ(idG × i) = ε ◦ t

A.5 µ(i× idG) = ε ◦ s

A.6 µ(µ× idG) = µ(idG × µ).

When the category C corresponds to one whose objects are smooth manifolds and mor-
phisms are smooth maps, we call such groupoid a Lie groupoid. 3

2.4.1 Examples of Lie groupoids

Any group can be understood as a groupoid with one single object. But more interesting,
it is possible to associate groupoid structure to more general set of objects with different
interpretations.

Example 2.4.2. (Pair groupoid). In this case G = M × M , the source and target
corresponds to first and second projection respectively. The multiplication is given by

µ((x, y), (y, z)) = (x, z),

the inverse is transposition and the unit map is the diagonal map.

3 In terms of the defining axioms, a Lie groupoid is defined whenever the source/ target are surjective
submersions and both M and G are smooth manifolds, see [45].
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Example 2.4.3. (Action groupoid). Given a Lie group G and a smooth left G− action
on a smooth manifold M , the action groupoid, denoted by G⋉M , over M , has as space
of morphisms the product G ×M , the source is the projection onto the first component
and the target is the action map.The multiplication is given by

µ((g, x), (g
′

, x
′

)) = (g · g
′

, x).

Example 2.4.4. (Bundle groupoid). In this example, we start with a vector bundle E →
M . The bundle groupoid has as objects the points of the manifold M and the morphisms
are the vectors of the fibers of E. The groupoid multiplication is fiber multiplication
(addition). The source and target coincide and correspond to the bundle projection, the
inverse is the fiber inverse and the unit is the zero section.

Example 2.4.5. (Fundamental groupoid). This groupoid is denoted by Π(M) and the
space of morphisms is the space of homotopy classes of paths, leaving invariant the initial
and final point. The multiplication is induced by the concatenation of paths.

Definition 2.4.6. A morphism F : G → H between two Lie groupoids G and H is a
functor of categories in addition that it should respect the smooth structure, i.e. is a
smooth map for the objects and morphisms.

Remark 2.4.7. This allows us to define the category Lie Grpd with objects Lie
groupoids and morphisms Lie groupoid morphisms. However, there is an extended version
of this category where the objects are the same but a morphism between two groupoids
G and H corresponds to an immersed subgroupoid of the groupoid product G×H. This
categroid will be denoted by Lie GrpdExt.

Definition 2.4.8. A Lie groupoid such that the space of morphisms G is equipped with
a nondegenerate closed 2-form ω ∈ Ω2(G) satisfying the following condition

µ∗(ω) = Pr∗1(ω) + Pr∗2(ω),

where Pr1 and Pr2 denote the first and second projections of G × G onto G, is called
a symplectic groupoid and denoted by (G,ω) ⇒ M . In this case we say that the
symplectic form ω is multiplicative.

The multiplicativity of a 2-form ω is equivalent to the following condition on the multi-
plication map µ, for finite dimensional symplectic groupoids:

Lemma 2.4.9. [25]. ω is multiplicative if and only if the graph of the multiplication map
is a Lagrangian submanifold of G × G × Ḡ, where Ḡ denotes the manifold G equipped
with the opposite symplectic structure, −ω.
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The multiplicativity condition imposes compatibility between ω and the other structure
maps on the Lie groupoid. More specifically:

Proposition 2.4.10. Let (G,ω) ⇒M be a finite dimensional symplectic groupoid. Then,
the following holds

1. The image of the unit map, ε(M) is a Lagrangian submanifold of G.

2. The inverse map i is an antisymplectomorphism.

3. There is a unique Poisson structure on M such that s is a Poisson map (or equiva-
lently, such that t is an anti-Poisson map).

Example 2.4.11. The pair groupoid M ×M ⇒M , with (M,ω) a symplectic manifold,
is a trivial example of a symplectic groupoid, where the symplectic structure on M ×M
is ω ⊕−ω.

The next example will be fundamental in the construction of the symplectic groupoid
that integrates Poisson structures:

Example 2.4.12. The cotangent bundle T ∗M of a manifold. As a bundle groupoid,
T ∗M ⇒ M is a symplectic groupoid, where the symplectic structure on T ∗M is the
canonical one (i.e. the exterior differential of the Liouville form).

Example 2.4.13. Given a Lie group G, we consider the action groupoid G × g∗ ⇒ g∗,
with respect to the coadjoint action of G. By the triviality of the cotangent bundle of G,
we can identify G × g∗ with T ∗G and hence we can endow the action groupoid with the
canonical symplectic structure of T ∗G.

Definition 2.4.14. Amorphism between symplectic groupoids (G,ωG) and (H,ωH)
is a functor φ between G and H that is a bijective symplectomorphism on the space of
morphisms, that means

1. φ is bijective and φ∗(ωH) = ωG (symplectomorphism).

2. φ(s(g)) = s(φ(g)), φ(t(g)) = t(φ(g)), ∀g ∈ G (compatibility with source and target).

3. φ(ε(m)) = ε(φ(m)), ∀m ∈M (compatibility with units).

4. φ(µ(g1, g2)) = µ(φ(g1), φ(g2)), ∀g1, g2 ∈ G (compatibility with multiplication).

Equivalently, a morphism of symplectic groupoids is a functor of Lie groupoids that re-
spects the symplectic structure.

Remark 2.4.15. This makes possible to define the category SympGrpd with objects
symplectic groupoids and morphisms the above defined. However, there is an extended
version of this category (as a categroid), denoted by SympGrpdExt where morphisms are
immersed Lagrangian subgroupoids of the groupoid product. This notion will be explored
in detail later, after introducing relational symplectic groupoids.
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2.5 Lie algebroids

Lie algebroids correspond to infinitesimal versions of Lie groupoids and a natural gener-
alization for Lie algebras. A pair (A, ρ), where A is a vector bundle over M and ρ (called
the anchor map) is a vector bundle morphism from A to TM is called a Lie algebroid if

1. There is Lie bracket [, ]A on Γ(A) such that the induced map ρ∗ : Γ(A) → X(M) is
a Lie algebra homomorphism.

2. Leibniz identity:

[X, fY ]A = f [X, Y ] + ρ∗(X)(f)Y, ∀X, Y ∈ Γ(A), f ∈ C∞(M).

2.5.1 Examples

The following are natural examples of Lie algebroids, and they appear naturally as in-
finitesimal versions of the Lie groupoids previously discussed.

Example 2.5.1. (Lie algebras). Any Lie algebra g is a Lie algebroid over a point. The
anchor map in this case is the projection to the point.

Example 2.5.2. (Lie algebra bundles). Consider a vector bundle p : E → M such that
each fiber is a Lie algebra and in addition, for x inM , there is an open set U containing x,
a Lie algebra L and a homeomorphism φ : U ×L→ p−1(U) such that φx : x×L→ p−1(x)
is a Lie algebra isomorphism. The Lie bracket on sections for this bundle is given by the
fiberwise well defined Lie bracket and the anchor map is dp.

Example 2.5.3. (Tangent bundles). The tangent bundle TM of a manifold M is natu-
rally a Lie algebroid, where the Lie bracket in sections is the usual Lie bracket for vector
fields and the anchor is the identity map.

Example 2.5.4. (Cotangent bundle of a Poisson manifold). If M is a Poisson manifold,
then T ∗M is a Lie algebroid, where [, ]T ∗M is the Koszul bracket for 1-forms, that is defined
for exact forms by

[df, dg] := d{f, g}, ∀f, g ∈ C∞(M),

whereas for general 1-forms it is recovered by Leibniz and the anchor map given by
Π# : T ∗M → TM .

To define a morphism of Lie algebroids we consider the complex Λ•A∗, where A∗ is the
dual bundle and a differential δA is defined by the rules

1.
δAf := ρ∗df, ∀f ∈ C∞(M).
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2.

〈δAα,X ∧ Y 〉 := −〈α, [X, Y ]A〉+ 〈δ〈α,X〉, Y 〉

− 〈δ〈α, Y 〉, X〉, ∀X, Y ∈ Γ(A), α ∈ Γ(A∗),

where 〈, 〉 is the natural pairing between Γ(A) and Γ(A∗).

Definition 2.5.5. A vector bundle morphism ϕ : A→ B is a Lie algebroid morphism if

δAϕ
∗ = ϕ∗δB.

It is important to observe that any Lie algebroid (A, ρ) determines a (possibly singular)
foliation on the manifold M given by the involutive distribution Im(ρ) ⊂ TM . The orbit
through x ∈M in such foliation will be denoted by Ox.

2.5.2 Lie algebroid of a Lie groupoid

In the classical Lie theory, it is well known the connection between Lie algebras and Lie
groups, i.e. the first ones are an infinitesimal version of the second ones. This can be
made more precise by stating the following

Proposition 2.5.6. Let G be a Lie group. Then there is a natural Lie bracket on TeG,
where e is the unit of G, determined uniquely by the left invariant vector fields on G.

This sometimes is called differentiation of Lie groups and it has a natural generalization
for Lie groupoids, as follows.
Given a Lie groupoid G ⇒ M , with source and target denoted by s and t, respectively,
we call a vector field X on G left invariant if it satisfies the following properties:

1. X is tangent to the t-fibers (these are defined as t−1(x), ∀x ∈M).

2. For all g ∈ G, X is invariant with respect to the left action of G on itself, i.e. with
respect to the (right) left translation

Lg : h 7→ µ(g, h)

that maps t−1(s(g)) to t−1t(g), ∀g ∈ G.

The definition for right invariant vector field is analogous. Denoting by XL(G) the space of
smooth left invariant vector fields on G, it is easy to check that XL(G) is a Lie subalgebra
of X(G).
Now, let us denote by Lie(G) the vector bundle over M with fibers corresponding to the
tangent spaces to the t− fibers,

Lie(G)x = Tx(t
−1(x)), ∀x ∈M.
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By using left translation, the space of sections of Lie(G) can be uniquely identified with
the space of left invariant vector fields of G, therefore, it can be equipped with a Lie
algebra structure. In addition, we have the map ds : Lie(G)→ TM , the differential of the
source map and it can be checked that Lie(G) with the previously defined Lie bracket on
sections and ds as anchor map is a Lie algebroid over M .
With this definition, it is possible to observe that, for example:

Example 2.5.7. Lie(G) = g, where G is a Lie group and g is its associated Lie algebra

Example 2.5.8. Lie(M ×M ⇒ M) = TM , where M ×M ⇒ M is the pair groupoid
and TM is the tangent bundle regarded as a Lie algebroid (Example 2.5.3).

Example 2.5.9. Lie((G,ω) ⇒M) = T ∗(M), where (G,ω) ⇒M is a symplectic groupoid
and T ∗(M) is the cotangent bundle of the Poisson manifold (M,Π), regarded as a Lie
algebroid.

2.6 Integrability of Lie algebroids

Considering the differentiation procedure described above for Lie groupoids as a functor
(denoted by Diff), from the category Lie Grpd to LieAlgbd (this is in fact possible
since in fact the differentiation procedure is functorial), a natural question is whether
there exists an integration functor from LieAlgbd to Lie Grpd. Rephrasing this we can
ask the following question

• Given a Lie algebroid A over M , is there a Lie groupoid G ⇒ M such that
Diff(G)=A?

The idea of the integrability for Lie algebroid is to recover the groupoid G out of the
algebroid A (for further details, see [27, 26].) First let start with a groupoid G⇒M that
is connected and has simply connected s-fibers and A = Diff(G). We will recover G from
the algebroid A. For this, we introduce the notions of G-paths and A-paths.

Definition 2.6.1. A G-path is map g : I = [0, 1]→ G of type C2, such that the following
conditions are satisfied:

• g(0) = ε(x), for some x ∈M.

• s(g(τ)) = x, ∀τ ∈ I.

The infinitesimal version of a G-path is what we call an A-path, defined in general as
follows
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Definition 2.6.2. Let (A, ρ, []A) be an algebroid, with projection π : A −→ M and
anchor ρ. A C1-path a : I −→ A is an A-path if

ρ(a(t)) =
d

dt
(π(a(t)), ∀t ∈ I. (2.4)

This is equivalent to saying that a dt : TI −→ A is a Lie algebroid morphism covering
γ := π ◦ a : I −→M . An A- path is called trivial if a(t) = p, ∀t ∈ I, for some p ∈M .

More precisely, the A-path associated to a G-path g is given by

a(τ) = g(τ)−1 dg

dτ
(τ). (2.5)

Now, given two G-paths g and g
′

such that g(0) = g
′

(0), there exists a homotopy gρ of
G-paths with fixed end points on the same s-fiber 4 with g0 = g and g1 = g

′

.

The infinitesimal version of such homotopy gives rise to a family aρ of A-paths. We
can define an equivalence ∼ of A-paths by declaring that a is equivalent to a

′

if the
corresponding G-paths have the same initial and terminal point. Then we get [27, 26]
that

G = A-paths/ ∼ . (2.6)

Now, the plan is to give a description of such equivalence in terms of only the Lie algebroid
A. In order to do this, we consider a family aρ, of class C

2 with respect to the parameter
ρ, consisting of A-paths. Now, we denote by γρ := π ◦ aρ as the family of paths on the
base manifold M . In the case where aρ is the differentiation of a G-homotopy gρ, then

γρ(τ) = s(gρ(τ)). (2.7)

Let us assume also that γρ(0) = γ0(0) and that γρ(1) = γ0(1), ∀γ ∈ I. We consider s
family ξρ of C2- time dependent sections of A satisfying

ξρ(τ, γρ(τ)) = aρ(τ) (2.8)

and we define

b(ρ, τ) :=

∫ τ

0

φτ,r
ξρ

dξρ
dρ

(r, γρ(r))dr, (2.9)

where here φτ,r
ξρ

denotes the flow in A generated by the section ξρ. It can be proven [27]
that b does not depend on the choice of the time dependent sections ξρ, it only depends
on aρ. Explicitely, we get that

b(ρ, τ) = gρ(τ)
−1dgρ
dρ

. (2.10)

4Here we use the fact that the s- fibers are simply connected
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Moreover if the family of G-paths gρ is a G-homotopy, then the following equation holds

b(ρ, 1) = 0, ∀ρ ∈ I. (2.11)

This suggests the following two equivalent definitions for A-homotopy

Definition 2.6.3. [27]. Two A- paths a and a
′

are A-homotopic if π ◦ a(0) = π ◦
a

′

(0), π ◦ a(1) = π ◦ a
′

(1) and they are connected by a C2-family of A-paths aρ such that
a0 = a, a1 = a

′

and Equation 2.11 holds.

Definition 2.6.4. [27]. Two A- paths a and a
′

are called A-homotopic if there exists
a Lie algebroid morphism g : T� −→ A (where � is a square with four distinguished
boundary components Ij, 0 ≤ j ≤ 3 such that I0 and I2 are horizontal) in such way that,
restricting to ∂� we have g|TI0 = a0, π ◦ (g|TI1) ≡ a(0), π ◦ (g|TI3) ≡ a(1) and g|TI2 = a1.

Following these definitions we define

G = A-paths/A-homotopy. (2.12)

Proposition 2.6.5. G is in general a topological groupoid and in the integrable case, is
the s-fiber simply connected Lie groupoid integrating the Lie algebroid A.

Proof. The topological 5 groupoid structure G⇒M is given by

s([a]) = a(0)

t([a]) = a(1)

ε(x) = [a|π ◦ a ≡ x]

µ([a1], [a2]) = [a1 ∗ a2], ([a1], [a2]) ∈ G×(s,t) G

ι([a]) = [a−1].

One should prove that the multiplication (where here * denotes path concatenation) is
well defined with respect to A- homotopy. Independently in [27] and [21] 6 it is proven
that the concatenation of two A-paths of class C1 is homotopic to a C1-class A-path.

This is sometimes called in the literature the Weinstein groupoid of A [27].

5Here we consider the uniformly convergence topology for the space of A-paths.
6Here it is proven for the case where A = T ∗M but the argument can be adapted for general algebroids
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Figure 2.1: A-homotopy of A-paths.

2.6.1 Obstruction for integrability

Now we describe the integrability obstructions for Lie algebroids, following the work of
Crainic and Loja Fernandes [27].
Let us consider gx := ker ρ, called the isotropy Lie algebra of A at the point x ∈ M and
let G(gx) be the simply connected Lie group integrating gx, defined as

G(gx) = gx-paths/gx-homotopy. (2.13)

Since the space of gx-paths is naturally included in the space of A-paths (as A- paths with
constant base path), there is a natural group homomorphism

αx : G(gx)→ G(A). (2.14)

Let Ñx(A) := kerαx be the subgroup of G(gx) consisting of the gx-paths that are A-
homotopy equivalent. The smoothness of the groupoid G(A) implies that Ñx(A) is a
discrete subgroup, that is equivalent to the fact that the quotient G(gx)/Ñx(A) is a Lie
group with Lie algebra gx.
There is an alternative way to present the group Ñx(A), as the image of the second
monodromy group of the leaf Ox through x. First, we consider an element [γ] ∈ π2(Ox, x)
such that ∂γ is the constant path at x and a Lie algebroid morphism

adτ + bdρ : TI × TI → A (2.15)

u(ρ, τ)
∂

∂τ
+ v(ρ, τ)

∂

∂ρ
7→ u(ρ, τ)a(ρ, τ) + v(ρ, τ)b(ρ, τ) (2.16)
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such that it lifts
dγ : TI × TI → TOx (2.17)

via ρ and in addition a(0, ρ) = b(ρ, 0) = b(ρ, 1) ≡ 0. The fact that ∂γ is constant implies
that the path a1(τ) := a(1, τ) is a gx-path. Let ∂(γ) be the equivalence class under
A-homotopy of a1 in G(gx). The following Lemma ensures that ∂ is a well defined map

Lemma 2.6.6. [27] The map ∂ defined by

∂ : γ → ∂(γ) (2.18)

depends only on the class [γ] ∈ π2(Ox, x) and defines a group homomorphism ∂ : π2(Ox, x)→
G(gx) such that Im(∂) = Ñx(A).

We denote by Nx(A) the subset of elements in gx defined by

Nx(A) := {v ∈ gx|v ∼ x}, (2.19)

where here v is regarded as a constant A-path, x is the trivial A-path over x and ∼
denotes A- homotopy equivalence. It is proven that

Lemma 2.6.7. [27]. There is a group isomorphism betweenNx(A) and Ñx(A)∩Z
0(G(gx)),

where Z0(G(gx)) denotes the connected component of the identity in the center Z(G(gx))
of G(gx).

Now, we are able to describe the integrability conditions for Lie algebroids. For that we
need the notion of locally uniform discreteness of the groups Nx(A). We fix a metric d on
A that is continous along the A-fibers and we define the function r(x) by

r(x) =

{

∞ if Nx(A) = 0
d(0, Nx(A)− {0}) otherwise

(2.20)

Theorem 2.6.8. (Crainic- Fernandes [27]). A Lie algebroid A is integrable if and only if
the two following conditions hold

1. The group Nx(A) is discrete

2. lim infy→x r(y) > 0 (uniform discreteness).

Moreover, Crainic and Fernandes give a formula that computes explicitly for many cases
the monodromy groups and is possible to check the integrability conditions. More con-
cretely, given the surjective map ρ |O: AO → TO and a splitting σ : TO → AO, we define
the curvature of σ by

Ωσ(X, Y ) = [σ(X), σ(Y )]− σ([X, Y ]) (2.21)
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Lemma 2.6.9. [27]. If the image of Ωσlies in Z(gO), then

Nx(A) = {

∫

γ

Ωγ | [γ] ∈ π2(Ox, x)} ⊂ Z(gx). (2.22)

By this formula it is possible to compute the monodromy groups for non integrable Lie
algebroids and check that the integrability conditions are violated (see Example 3.6.5).

2.6.2 The Poisson case

When we refer to integration of Poisson manifolds (or Poisson brackets), we mean the
integration of the algebroid T ∗M over M as in Example 4.7.3. More specifically, it can
be checked that the Lie algebroids T ∗M for M a zero or linear Poisson manifold are
integrable, and also any 2-dimensional Poisson manifold [27, 21]. We will discuss some of
these cases and also a non integrable one (Example 3.6.5). In the next chapter we will
discuss the construction of the integration of Poisson manifolds through PSM and we will
come back to the integrability conditions for Lie algebroids.
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Chapter 3

Poisson sigma models and the main
construction

In the first part of this chapter we introduce the Poisson sigma model associated to a
Poisson manifold (the classical version of the model through the Hamiltonian formalism).
After the construction of the reduced phase space of PSM associated to integrable Pois-
son manifolds we generalize the construction to the non reduced version by defining the
relational symplectic groupoid. We give examples and we concentrate our attention on the
examples coming from Poisson geometry.

Definition 3.0.10. A Poisson sigma model (PSM) corresponds to the following data:

1. A compact surface Σ, possibly with boundary, called the source.

2. A finite dimensional Poisson manifold (M,Π), called the target.

The space of fields for this theory is denoted with Φ and corresponds to the space
of vector bundle morphisms of class Ck+1 between TΣ and T ∗M . This space can be
parametrized by a pair (X, η), where X ∈ Ck+1(Σ,M) and η ∈ Γk(Σ, T ∗Σ ⊗ X∗T ∗M),
and k ∈ {0, 1, · · · ,∞} denotes the regularity type of the map that we choose to work
with.
On Φ, the following first order action is defined:

S(X, η) :=

∫

Σ

〈η, dX〉+
1

2
〈η, (Π# ◦X)η〉,

where,

Π# : T ∗M → TM (3.1)

ψ 7→ Π(ψ, ·). (3.2)
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Here, dX and η are regarded as elements in Ω1(Σ, X∗(TM)), Ω1(Σ, X∗(T ∗M)), respec-
tively and 〈 , 〉 is the pairing between Ω1(Σ, X∗(TM)) and Ω1(Σ, X∗(T ∗M)) induced by
the natural pairing between TxM and T ∗

xM , for all x ∈M .

Remark 3.0.11. This model has significant importance for deformation quantization.
Namely, the perturbative expansion through Feynman path integral for PSM, in the case
that Σ is a disc, gives rise to Kontsevich’s star product formula [35, 21, 13], i.e. the
semiclassical expansion of the path integral

∫

X(r)=x

f(X(p))g(X(q)) exp (
i

~
S(X, η))dXdη (3.3)

around the critical point X(u) ≡ x, η ≡ 0, where p, q and r are three distinct points of
∂Σ, corresponds to the star product f ⋆g(x). More details on the star product for Poisson
manifolds are given on Chapter 4.

3.1 PSM and its phase space

For this model, we consider the constraint equations and the space of gauge symmetries.
These will allow us to understand the geometry of the phase space and its reduction.
First, we define

ELΣ = {Solutions of the Euler-Lagrange equations} ⊂ Φ,

where, using integration by parts

δS =

∫

Σ

δL

δX
δX +

δL

δη
δη + boundary terms.

The partial variations correspond to:

δL

δX
= dX +Π#(X)η = 0 (3.4)

δL

δη
= dη +

1

2
∂Π#(X)η ∧ η = 0. (3.5)

Now, if we restrict to the boundary, the general space of boundary fields corresponds to

Φ∂ := {vector bundle morphisms between T (∂Σ) and T ∗M}.

Following [21, 23], Φ∂ is endowed with a weak symplectic form and a surjective submersion
p : Φ→ Φ∂ . Explicitely we have the following description of the space of boundary fields:
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Remark 3.1.1. Φ∂ can be identified with the Banach manifold

P (T ∗M) := Ck+1(I, T ∗M),

therefore it is a weak symplectic Banach manifold locally modeled by Ck+1(I,R2n).

In order to see this, we understand Φ∂ as a fiber bundle over the path space PM , that is
naturally equipped with the topology of uniform convergence. The fibers of the bundle
are isomorphic to the Banach space of class Ck

T ∗
X(PM) := Ω1(I,X∗(T ∗M)) (3.6)

Therefore, as a set, Φ∂ corresponds to

Φ∂ =
⋃

(X∈PM)

T ∗
X(PM). (3.7)

The identification with P (T ∗M) is explicitly given by

ψ : T ∗(PM) → P (T ∗M) (3.8)

(X, η) 7→ (γ : t 7→ (X(t), η(t))) (3.9)

and this allows to define a 2 form ω in φ∂ in the following way. Identifying the tangent
space Tγ(P (T

∗(M))) with the space of vector fields along the curve γ

Tγ(P (T
∗(M))) = {δγ : I → TT ∗M | δγ(t) ∈ Tγ(t)T

∗M} (3.10)

The two form ω in φ∂ is given by

ωγ(δ1γ, δ2γ) =

∫ 1

0

ωLiouv(δ1γ(t), δ2γ(t))dt, (3.11)

where ωLiouv = dαLiouv is the canonical symplectic form on T ∗M . In local coordinates,
where we consider paths in an open neighborhood of a point X(0) = p ∈ M , if γ is
described by the functions X1(t), X2(t), · · ·Xn(t) ∈ Ck+1(I) and η1, η2, · · · ηn ∈ Ω1(I) of
class Ck, then

ωγ(δ1γ, δ2γ) =

∫ 1

0

(δ1X
i(t)δ2ηi(t)− δ2X

i(t)δ1ηi(t))dt. (3.12)

This form is clearly closed since

dωγ(δ1γ, δ2γ, δ3γ) =

∫ 1

0

dωLiouv(δ1γ(t), δ2γ(t), δ3γ(t))dt = 0, (3.13)
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and it is weak symplectic since we have for the map

ω♯(δγ) = ωγ(δγ, ·), (3.14)

if ω♯(δ1γ) = ω♯(δ
′

1γ), then, setting δ1ηi ≡ 0, ∀1 ≤ i ≤ n
∫ 1

0

(δ1X
i(t)− δ1(X

i)
′

(t))δ2ηi(t) = 0, ∀δ2ηi(t), (3.15)

which implies that δ1X
i(t) = δ1(X

i)
′

(t) and setting

δ2ηi ≡ 0, ∀1 ≤ i ≤ n

we conclued in a similar way that δ1ηi(t) = δ1(ηi)
′

(t).
Now, we define, following [23]

LΣ := p(EL),

where p : φ→ C∂Σ is a surjective submersion and C∂Σ denotes the space of Cauchy data
of the PSM restricted to the boundary ∂Σ.
Finally, we define CΠ as the set of fields in Φ∂ which can be completed to a field in LΣ

′ ,
with Σ

′

:= ∂Σ× [0, ε], for some ε.
It can be proven that

Proposition 3.1.2. [21].

1. The space CΠ is described by

CΠ = {(X, η)|dX = π#(X)η, X : ∂Σ→M, η ∈ Γ(T ∗I ⊗X∗(T ∗M))}. (3.16)

2. The space CΠ is a coisotropic Banach submanifold of Φ∂ and its associated charac-
teristic foliation has codimension 2n, where n = dim(M).

In fact, the converse of the second property also holds in the following sense. If we define
S(X, η) and CΠ in the same way as before, without assuming that Π satisfies Equation
(2.1) it can be proven that

Proposition 3.1.3. [11]. If CΠ is a coisotropic submanifold of Φ∂ , then Π is a Poisson
bivector field.

The following geometric interpretation of CΠ will lead us to the connection between Lie
algebroids and Lie groupoids in Poisson geometry with PSM. Following Definition 2.5.5
for a morphism of Lie algebroids, in local coordinates, the condition for a vector bundle
morphism to preserve the Lie algebroid structure gives rise to some PDE’s that the anchor
maps and the structure functions for Γ(A) and Γ(B) should satisfy. For the case of PSM,
regarding T ∗M as a Lie algebroid, we can prove that

CΠ = {Lie algebroid morphisms between T (∂Σ) and T ∗M},

where the Lie algebroid structure on the left is given by the Lie bracket of vector fields
on T (∂Σ) with identity anchor map.
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3.2 Symplectic reduction

Since CΠ is a coisotropic submanifold, it is possible to perform symplectic reduction,
which yields, when it is smooth, a symplectic finite dimensional manifold. In the case of
Σ being a rectangle and with vanishing boundary conditions for η (see [21]), following the
notation in [27] and [48], we could also reinterpret the reduced phase space CΠ as

CΠ =

{

T ∗M -paths

T ∗M -homotopy

}

.

In the integrable case, it was proven in [21] that

Theorem 3.2.1. The following data

G0 = M

G1 = CΠ

G2 = {[X1, η1], [X2, η2]|X1(1) = X2(0)}

m : G2 → G := ([X1, η1], [X2, η2]) 7→ [(X1 ∗X2, η1 ∗ η2)]

ε : G0 → G1 := x 7→ [X ≡ x, η ≡ 0]

s : G1 → G0 := [X, η] 7→ X(0)

t : G1 → G0 := [X, η] 7→ X(1)

ι : G1 → G1 := [X, η]→ [i∗ ◦X, i∗ ◦ η]

i : [0, 1]→ [0, 1] := t→ 1− t,

correspond to a symplectic groupoid that integrates the Lie algebroid T ∗M . 1

Remark 3.2.2. In [21], this construction is also expressed as the Marsden-Weinstein
reduction of the Hamiltonian action of the (infinite dimensional) Lie algebra P0Ω

1(M) :=
{β ∈ Ck+1(I,Ω1(M)) | β(0) = β(1) = 0} with Lie bracket

[β, γ](u) = d〈β(u),Π♯γ(u)〉 − ιΠ♯(β(u))dγ(u) + ιΠ♯(γ(u))dβ(u) (3.17)

on the space T ∗(PM), on which the moment map µ : T ∗(PM)→ P0Ω
1(M)∗ is described

by the equation

〈µ(X, η), β〉 =

∫ 1

0

〈dX(u) + Π♯(X(u))η(u), β(X(u), u)〉du. (3.18)

1here ∗ denotes path concatenation
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3.3 Relational symplectic groupoids

This section contains the general description of relational symplectic groupoids, defined
as special objects in SympExt. It is a way to model the space of boundary fields before
reduction of the PSM and to define a more general version of integration of Poisson
manifolds. We give the main definitions, we discuss the connection with Poisson structures
and we give some natural examples. For the motivational example of T ∗PM we prove
that in fact we obtain relational symplectic groupoids for any Poisson manifold M and
we explain geometrically the integrability conditions for T ∗M in terms of the immersed
canonical relations defining the relational symplectic groupoid.

Definition 3.3.1. A relational symplectic groupoid is a triple (G, L, I) where

1. G is a weak symplectic manifold. 2

2. L is an immersed Lagrangian submanifold of G3.

3. I is an antisymplectomorphism of G called the inversion,

satisfying the following six axioms A.1-A.6:

• A.1 L is cyclically symmetric, i.e. if (x, y, z) ∈ L, then (y, z, x) ∈ L.

• A.2 I is an involution (i.e. I2 = Id).

Notation L is an immersed canonical relation G × G 9 Ḡ and will be denoted by
Lrel. Since the graph of I is a Lagrangian submanifold of G × G, I is an immersed
canonical relation Ḡ 9 G and will be denoted by Irel.
L and I can be regarded as well as immersed canonical relations

Ḡ × Ḡ 9 G and G 9 Ḡ

respectively, which will be denoted by Lrel and Irel. The transposition

T : G × G → G × G

(x, y) 7→ (y, x)

induces canonical relations

Trel : G × G 9 G × G and Trel : Ḡ × Ḡ 9 Ḡ × Ḡ.

2In the infinite dimensional setting we restrict to the case of Banach manifolds.
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The identity map Id : G → G as a relation will be denoted by Idrel : G 9 G and by
Idrel : G 9 G.

Since I and T are diffeomorphisms, it follows that Irel◦Lrel and Lrel◦T rel◦(Irel×Irel)
are immersed submanifolds. For a relational symplectic groupoid we want that these
two compositions to be morphisms G × G 9 G, and moreover we want them to
coincide.

• A.3

1. The compositions Irel◦Lrel and Lrel◦T rel◦(Irel×Irel) are immersed submanifolds
of G3.

2. Irel ◦ Lrel and Lrel ◦ T rel ◦ (Irel × Irel) are Lagrangian submanifolds of G2 × G.

3.
Irel ◦ Lrel = Lrel ◦ T rel ◦ (Irel × Irel). (3.19)

Now, define
L3 := Irel ◦ Lrel : G × G 9 G.

As a corollary of the previous axioms we get that

Corollary 3.3.2. Irel ◦ L3 = L3 ◦ Trel ◦ (Irel × Irel).

Proof. By Axiom A.2 and by definition of L3, the left hand side of the equation, as
a relation from G × G to G can be rewritten as

Irel ◦ L3 = Idrel ◦ Lrel. (3.20)

In the right hand side, by axiom A.3, we can rewrite

L3 ◦ Trel ◦ (Irel × Irel) = Irel ◦ (Lrel ◦ Trel ◦ (Irel × Irel)) (3.21)

= Irel ◦ Irel ◦ Lrel (3.22)

= Idrel ◦ Lrel. (3.23)

Comparing (3.20) and (3.23) we obtain the desired result.

• A.4

1. The compositions L3 ◦ (L3 × Id) and L3 ◦ (Id×L3) are immersed subamifolds
of G4.

2. L3 ◦ (L3 × Id) and L3 ◦ (Id×L3) are Lagrangian submanifolds of G3 × G.
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3.
L3 ◦ (L3 × Id) = L3 ◦ (Id×L3) (3.24)

Remark 3.3.3. The part 2 of A.4. follows automatically in the finite dimensional
case from the fact that, since I is an antisymplectomorphism, its graph is La-
grangian, therefore L3 is Lagrangian, and so (Id× L3) and (L3 × Id).

The graph of the map I, as a relation ∗9 G × G will be denoted by LI .

• A.5

1. The compositions L3◦LI and L3◦(L3◦LI×L3◦LI) are immersed submanifolds
of G.

2. L3 ◦ LI and L3 ◦ (L3 ◦ LI × L3 ◦ LI) are Lagrangian submanifolds of G.

3. Denoting by L1 the morphism L1 := L3 ◦ LI : ∗9 G, then

L3 ◦ (L1 × L1) = L1. (3.25)

From the definitions above we get the following

Corollary 3.3.4.
Irel ◦ L1 = L1,

that is also equivalent to
I(L1) = L1,

where L1 is regarded as an immersed Lagrangian submanifold of G.

Proof. We have that

Irel ◦ L1 = Irel ◦ L3 ◦ L1 (3.26)

Cor.1
= L3 × Trel ◦ (I × I) ◦ LI . (3.27)

As sets, we have that

Trel ◦ (I × I) ◦ LI = T (I × I(LI)) (3.28)

LI = {(x, I(x)), x ∈ G} (3.29)

I × I(LI) = {(I(x), I2(x)), x ∈ G} (3.30)
A.2
= {(I(x), x), x ∈ G} (3.31)

T (I × I(LI)) = {(x, I(x)), x ∈ G} = LI . (3.32)
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From (3.46) we get
Trel ◦ (I × I) ◦ LI = L1

and therefore
Irel ◦ L1 = L3 ◦ LI = L1.

• A.6

1. L3 ◦ (L1 × Id) and L3 ◦ (Id×L1) are immersed submanifolds of G × G.

2. L3 ◦ (L1 × Id) and L3 ◦ (Id×L1) are Lagrangian submanifolds of G × G.

3. If we define the morphism

L2 := L3 ◦ (L1 × Id) : G 9 G,

then the following equations hold

(a)
L2 = L3 ◦ (Id×L1). (3.33)

(b) L2 leaves invariant L1 and L3, i.e.

L2 ◦ L1 = L1 (3.34)

L2 ◦ L3 = L3 ◦ (L2 × L2) = L3. (3.35)

(c)
Irel ◦ L2 = L2 ◦ Irel and L

†
2 = L2. (3.36)

Corollary 3.3.5. L2 is idempotent, i.e.

L2 ◦ L2 = L2. (3.37)

Proof. It follows directly from the definition of L2 and Equations 3.24 and 3.25.

Remark 3.3.6. The following is an interpretation of the axioms of the rela-
tional symplectic groupoid:

– The cyclicity axiom (A.1) encodes the cyclic behavior of the multiplication and
inversion maps for groups, namely, if a, b, c are elements of a group G with unit
e such that abc = e, then ab = c−1, bc = a−1, ca = b−1.

– (A.2) encodes the involutivity property of the inversion map of a group, i.e.
(g−1)−1 = g, ∀g ∈ G.
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– (A.3) encodes the compatibility between multiplication and inversion:

(ab)−1 = b−1a−1, ∀a, b ∈ G.

– (A.4) encodes the associativity of the product: a(bc) = (ab)c, ∀a, b, c ∈ G.

– (A.5) encodes the property of the unit of a group of being idempotent: ee = e.

– The axiom (A.6) states an important difference between the construction of
relational symplectic groupoids and usual groupoids. The compatibility be-
tween the multiplication and the unit is defined up to an equivalence relation,
denoted by L2, whereas for groupoids such compatibility is strict (see Axiom
A.3 in Definition 4.5.3); more precisely, for groupoids such equivalence relation
is the identity. In addition, the multiplication and the unit are equivalent with
respect to L2.

This description explains why the choice of the axioms of the relational symplectic
groupoid are natural.

Remark 3.3.7. Equations 3.25, 3.34, 3.3.5, 3.35 and 3.36 have to be stated as part
of the axioms and they cannot be deduced as corollaries. Here there is an example
of a structure that satisfies the axioms from A.1. to A.4 but not A.5 or A.6.

1. G = Z (as a non connected zero dimensional symplectic manifold)

2. L = {(n,m,−n−m− 1) ∈ Z3}

3. I : n 7→ −n

For this example, the spaces Li are given by

L1 = {1} (3.38)

L2 = {(m,m+ 2) | m ∈ Z} (3.39)

L3 = {(m,n,m+ n+ 1) | n,m ∈ Z2} (3.40)

for which we get that

L3 ◦ (L1 × L1) = {3} 6= L1 (3.41)

L2 ◦ L1 = {3} 6= L1 (3.42)

L2 ◦ L2 = {(m,m+ 4) | m ∈ Z} 6= L2 (3.43)

L2 ◦ L3 = {(m,n,m+m+ 3) | m,n ∈ Z} 6= L3 (3.44)

Irel ◦ L2 = (m,−m− 2) 6= (m,−m+ 2) = L2 ◦ Irel. (3.45)

This counterexample has also a finite set version, replacing Z by Z/kZ, with k ≥ 3.
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Figure 3.1: Relational symplectic groupoid: Diagrammatics. The morphisms Irel and Lrel

are represented by a twisted stripe and pair of paper doll pants respectively, and the
induced immersed canonical relations L1, L2 and L3 are constructed as compositions of L
and I. As it is shown in the Figure, they should satisfy the previously defined compatibility
axioms. The horizontal segments in the boundary of the surfaces represent the weak
symplectic manifold G. the non horizontal segments have no meaning.
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The next set of axioms defines a particular type of relational symplectic groupoids which
will allow us to relate the construction of relational symplectic groupoids for Poisson
manifolds to the usual symplectic groupoids for the integrable case. Before this, we
introduce the notion of immersed cosiotropic submanifolds for weak symplectic manifolds.

Definition 3.3.8. An immersed coisotropic submanifold of a weak symplectic manifold
M is a pair (φ,C) such that

1. C is a smooth Banach manifold.

2. φ : C →M is an immersion.

3. Tφx applied to TxC is a coisotropic subspace of Tφ(x)M, ∀x ∈ C.

4. C is a covering of Im(φ) (see Definition 2.3.5).

Definition 3.3.9. A relational symplectic groupoid (G, L, I) is called regular if the
following three axioms A.7, A.8 and A.9 are satisfied. Consider G as a relation ∗ 9 G
denoted by Grel.

• A.7
C := L2 ◦ Grel (3.46)

is an immersed submanifold of G.

Corollary 3.3.10. C is an immersed coisotropic submanifold of G.

Proof. By Equation 3.34 we conclude that L1 ⊂ C, hence C is coisotropic.

Corollary 3.3.11. L2 is an equivalence relation in C.

Proof. By Equation 3.3.5

L2 = L2 ◦ L2 ⊂ L2 ◦ (G × G) = C × C : ∗9 G × G, (3.47)

so L2 is a relation on C. By Equation 3.3.5, L2 is transitive, by Equation 3.36 it is
symmetric and, for any x ∈ C, by definition, there exists y such that (x, y) ∈ L2 and by
symmetry and transitivity of L2, we conclude that (x, x) ∈ L2, hence, L2 is an equivalence
relation.

The following Proposition allows us (in principle at the infinitesimal level), to regard the
equivalence relation given by L2 as the equivalence relation given by the characteristic
foliation of C.
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Proposition 3.3.12. Let

RC := {(x, y) ∈ C × C | Lx = Ly},

where Lx is the leaf of the characteristic foliation through the point x ∈ C. Let (x, y) ∈
RC ∩ L2. Then

T(x,x)R
C = T(x,x)L2. (3.48)

Proof. First we will prove that T(x,x)R
C ⊂ T(x,x)L2. For this, consider (X, Y ) ∈ T(x,x)R

C ,
since X − Y ∈ TxC

⊥, we get that

(X − Y, 0) ∈ T(x,x)C
⊥ ⊕ TC⊥. (3.49)

Since L2 ⊂ C × C and L2 is Lagrangian

T(x,x)C
⊥ ⊕ T(x,x)C

⊥ ⊂ T(x,x)L2 ⊂ TxC ⊕ TxC. (3.50)

Combining Equations 3.49 and 3.50, we get that

(X − Y, 0) ∈ T(x,x)L2. (3.51)

Since △C ⊂ L2 (from Corollary 3.3.11), then

(Y, Y ) ∈ T(x,x)L2, ∀Y ∈ C. (3.52)

From equations 3.49 and 3.52, we conclude that

(X, Y ) = (X − Y, 0) + (Y, Y ) ∈ T(x,x)L2, (3.53)

as we wanted. Now we prove that T(x,x)R
C is a Lagrangian subspace of TxC ⊕ TxC. For

this, first observe that

TxC
⊥ ⊕ T⊥

x C ⊂ T(x,x)R
C ⊂ TxC ⊕ TxC (3.54)

and that the canonical projection of T(x,x)R
C in the symplectic reduction C ⊕ C is △C,

that is Lagrangian. Then we can apply the result in Proposition 2.1.13 and conclude that
T(x,x)R

C is Lagrangian. Now, since T(x,x)L2 is also Lagrangian by the axioms above and
it contains T(x,x)R

C as a subspace, it follows that

T(x,x)L2 = T(x,x)L
⊥
2 ⊂ T(x,x)R

C = T(x,x)R
C , (3.55)

hence T(x,x)L2 = T(x,x)R
C , as we wanted.

• A.8 The partial reduction L1 = L1/(L2 ∩ L1 × L1) is a finite dimensional smooth
manifold. We will denote L1 by M .
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• A.9 S := {(c, [l]) ∈ C×M : ∃l ∈ [l], g ∈ G|(l, c, g) ∈ L3} is an immersed submanifold
of G ×M satisfying that

1.
(S × S) ◦ Lrel

2 = △M , (3.56)

where Lrel
2 : pt9 C × C is the induced relation from L2.

2. The induced relation
dS := TS : TG 9 TM (3.57)

is surjective.

It is easy to check that the first condition implies the following

Corollary 3.3.13.

1. The relation

T := {(c, [l]) ∈ C ×M : ∃l ∈ [l], g ∈ G|(c, l, g) ∈ L3} = I ◦ S

is an immersed submanifold of G ×M .

2. S and T regarded as relations from C to M are surjective submersions.

Proof. (1) follows from the cyclicity condition in A.1. (2) follows by definition of T
and from the fact that, since Equation 3.56 holds, then if (x, [l]) and (x, [l]

′

) belong
to S : C →M , then ([l], [l]

′

) ∈ △M , which implies that S is a surjective map and is
clearly a submersion by Axiom 9, part 2.

Remark 3.3.14. The condition given by Equation 3.48 is at the level of tangent
spaces. If we want that RC = L2, we should impose a connectedness condintion on
the leaves of the characteristic foliation and the classes of L2. The following is a
modification of the example given in Remark 3.3.7 of a structure satisfying all the
axioms except the global version of Equation 3.48.

1. G = Z

2. L = {(n,m,−n−m− 2k − 1) | (m,n, k) ∈ Z3}

3. I : n 7→ −n

For this example, the spaces Li and C are given by

L1 = {2Z+ 1} (3.58)

L2 = {(m,n) | m− n ∈ 2Z} (3.59)

L3 = {(m,n,m+ n+ 2k + 1) | n,m, k ∈ Z3} (3.60)

C = Z. (3.61)
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Since Z is zero dimensional, we get that C is also Lagrangian and for the symplectic
reduction, C = ∗. In the other hand,

C/L2 = Z/2Z 6= ∗.

The following theorem connects the construction of relational symplectic groupoids
in the regular case with the usual symplectic groupoids.

Theorem 3.3.15. Let (G,L, I) be a regular relational symplectic groupoid. Then
G := C/L2 ⇒ M is a topological groupoid over M . Moreover, if G is a smooth
manifold, then G⇒M is a symplectic groupoid over M := L1/L2.

Proof. The following are the data that define the groupoid structure, if

p : G → G

g 7→ [g]

denotes the canonical projection with respect to the symplectic reduction of C.

G0 = L1/L2

G1 = C/L2

G2 = C/L2 ×L1/L2 C/L2

m = p3(L3) : G2 → G1

ε : G0 → G1 := ε : L1/L2 → C/L2

s : G1 → G0 := s : C/L2 →M

t : G1 → G0 := t : C/L2 →M

ι : G1 → G1 := I : C/L2 → C/L2.

Under the smoothness assumption for C and also assuming that the characteristic
foliation of C has finite codimension, G1 is a finite dimensional symplectic manifold
and due to Corollary 3.3.13, the map s is a surjective submersion, hence, the fiber
product G2 is a finite dimensional (topological) manifold. It is easy to check that
the groupoid axioms are satisfied. For the symplectic structure on G ⇒ M , note
that the projection of L3 in G is Lagrangian (see Definition 2.1.25) and restricted
to G2 is a map (due to Corollary 3.3.13).
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3.3.1 Poisson structure on M

In this section, the objective is to relate the construction of the relational symplectic
groupoids in the regular case with Poisson structures in the spaceM . More precisely,
we prove the existence and uniqueness of a Poisson bracket on M compatible with
a given regular relational symplectic groupoid G. This theorem is the analog of
the existence and uniqueness of a Poisson structure in the space of objects of usual
symplectic groupoids [53]. Namely,

Theorem 3.3.16. [53]. Let (G,ω) ⇒M be a symplectic groupoid over M . Then
there exists a unique Poisson structure Π on M such that the source map s is a
Poisson map (or equivalently the target map t is an anti-Poisson map).

One possible way to prove this theorem is by the use of what is known in the
literature as Liberman’s lemma, that is stated in a slightly different formulation by
Paulette Liberman in [40]. Before stating the result, we need some definition that
will be used in the sequel.

Definition 3.3.17. Let (G,ω) be a symplectic manifold and F a foliation on G. F
is called a symplectically complete foliation if the symplectically orthogonal distri-
bution (TF)⊥ is an integrable distribution.

This is equivalent to say that F is symplectically complete if there exists another
foliation F

′

such that
Tx(F) = (Tx(F

′

))⊥.

After this definition, Liberman’s lemma reads as follows

Lemma 3.3.18. (Liberman). Let φ : (G,ω)→ M be a surjective submersion from
a symplectic manifold G to a manifoldM such that the fibers are connected. Denote
by (G,F) the foliation on G induced by the fibers of φ. Then, there exists a unique
Poisson structure Π on M such that the map φ : G → M is a Poisson map if and
only if the foliation F is symplectically complete.

Proof. Here we present a sketch of the proof. It can be checked that the distribu-
tion (TF)⊥ is Hamiltonian, i.e. is generated by the vector fields Xφ∗f , for which
ω(Xφ∗f , ·) = dφ∗f , with f ∈ C∞(M). The fact that such distribution is integrable
is equivalent, due to Frobenius Theorem, that [Xφ∗f , Xφ∗g], with f, g ∈ C

∞(M), is
tangent to the distribution (TF)⊥. This is also equivalent to say that X{φ∗f,φ∗g} is
tangent to (TF)⊥, therefore the bracket {φ∗f, φ∗g} is constant along the φ− fibers
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and this implies that there exists a function h ∈ C∞(M) such that {φ∗f, φ∗g} = φ∗h.
This functions defines uniquely the Poisson bracket on M given by

{f, g}Π = h.

By applying Lemma 3.3.18 to the case of a symplectic groupoid G ⇒ M with F
being the foliation described by the distribution ker(ds), Theorem 3.3.16 holds. The
generalization of this result in the case of regular relational symplectic groupoids
is the following Theorem, in which we have to introduce the language of Dirac
structures (for more details see Appendix A)

Theorem 3.3.19. Let (G, L, I) be a regular relational symplectic groupoid, with
M = L1/L2. Then, assuming that the s-fibers are connected, there exists a unique
Poisson structure Π on M such that the map s : C → M (or t) is a forward-Dirac
map.

Proof. For this proof we present a more general version of Liberman’s lemma for
the case when G is presymplectic.

Definition 3.3.20. Let M be a Banach manifold. A 2− form ω ∈ Ω2(M) is called
presymplectic if dω = 0. In this case M is called a presymplectic manifold.

Lemma 3.3.21. (Liberman’s lemma for presymplectic manifolds). Let G be a
presymplectic manifold and s, t : G → M be smooth surjective submersions of G
onto a smooth manifold M such that the fibers s−1(x) and t−1(x) are presymplectic
orthogonal, for all x ∈M . Then, if the s-fibers are connected, there exists a unique
Poisson structure Π on M such that the map s is a forward-Dirac map.

Proof. Let ω be the presymplectic structure on G and ω♯ : TG → T ∗G its induced
bundle map. Now consider the functions f ∈ C∞(G) such that df ∈ Γ(Im(ω♯)).
Then, for these functions, there exist uniquely determined Hamiltonian vector fields
Xf , i.e.

ω(Xf , ·) = df

Now, let W be a subspace of Γ(TG) and we define pointwise

W ω
x := {v ∈ TxG | ω(v, w) = 0, ∀w ∈ Wx}

and we also define

W 0 = {ξ ∈ T ∗G | ξ(V ) = 0, ∀V ∈ TxG.}
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Now, let W = ker(t∗) ⊂ TxG and Y ∈ W . We have that

ξ := ω(Y, ·) ∈ Im(ω♯) ∩ (ker(t∗))
0

Since the t− fibers are connected, we could write ξ as

ξ =
∑

i

αidhi, (3.62)

with hi ∈ C
∞(M). Now, given two functions f and g in C∞(M), we construct the

bracket {f, g}M as follows. Since

Y {s∗f, s∗g}G = 0, ∀Y ∈ Γ(ker(s∗)),

then, from the discussion above, there exists α ∈ Γ(ker t∗)
0 ∩ Im(ω♯) such that

Y = (ω♯)−1(α). Since Y can be written as

Y =
∑

i

Xt∗hi
, hi ∈ C

∞(M),

we can define
{f, g}M := h =

∑

i

αihi. (3.63)

The fact that s is a forward-Dirac map with respect to {, }M is equivalent to the
following equation

{t∗h, {s∗f, s∗g}}G = 0 (3.64)

that it holds since {, }G satisfies the Jacobi identity.

Conjecturally, the proof of this theorem could be adapted in order to drop the connect-
edness assumption of the s-fiber. Then, we have the following

Conjecture 3.3.22. Theorem 3.3.19 holds also when the s-fibers are not connected.

3.3.2 The categroid RSGpd

We have defined so far relational symplectic groupoids in the extended symplectic category
and we have related this construction with the usual notion of symplectic groupoids. These
objects have a natural notion of morphism that is also defined in the context of canonical
relations. Hence, as before, the composition of morphisms is only partially defined but
it allows us to describe the categroid RSGpd of relational symplectic groupoids with
suitable morphisms.
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Definition 3.3.23. A morphism between two relational symplectic groupoids (G, LG, IG)
and (H, LH, IH) is a relation F : G9 H satisfying the following properties:

1. F is an immersed Lagrangian submanifold of G × H̄.

2. F ◦ IG = IH ◦ F .

3. LH ◦ (F × F ) = F ◦ LG.

Definition 3.3.24. A morphism of relational symplectic groupoids F : G → H is called
an equivalence if the transpose canonical relation F † is also a morphism.

Remark 3.3.25. From the definition, it follows that an equivalence F satisfies the fol-
lowing compatibility conditions with respect to L1 and L2:

F ◦ (L1)G = (L1)H (3.65)

F ◦ (L1)H = (L1)G (3.66)

F † ◦ F = (L2)G (3.67)

F ◦ F † = (L2)H.. (3.68)

This implies that, in the case where G and H are both regular, the equivalence F induces
relations FM : MG 9MH and F †

M : MH 9MG satisfying that

F †
M ◦ FM = IdMG

FM ◦ F
†
M = IdMH

.

Therefore, the induced relation FM is the graph of a diffeomorphism between MG and
MH, and since the following diagram commutes:

CG
F
/ //

s

��

CH

s

��

MG
FM //MH

from Theorem 3.3.19 it follows that the map FM is a Poisson diffeomorphism.

The following are some examples of equivalences.

Example 3.3.26. Let (G, L, I) be a relational symplectic groupoid. Then L2 is an equiv-
alence between G and itself.
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To check that L2 is a morphism of relational symplectic groupoids, we observe that, by
Equation 3.36 L2 commutes with I and by Equation 3.35 we get that

LG ◦ (L2 × L2) = I ◦ L3 ◦ (L2 × L2)

= I ◦ L3 = I ◦ L2 ◦ L3

= L2 ◦ I ◦ L3 = L2 ◦ LG.

Since L2 is self transposed, it follows that L2 is an equivalence.

Example 3.3.27. For a relational symplectic groupoid (G, L, I) the map I is an equiv-
alence from (G, L, I) and (G, L

′

, I), where L
′

= L ◦ Trel.

In the next section we give additional examples of equivalences, after giving some natural
cases of relational symplectic groupoids.

3.4 Examples of relational symplectic groupoids

3.4.1 Symplectic groupoids

Given a symplectic groupoid G over M , we can endow it naturally with a relational
symplectic structure:

G = G.

L = {(g1, g2, g3)|(g1, g2) ∈ G×(s,t) G, g
−1
3 = µ(g1, g2)}.

I = g 7→ ι(g), g ∈ G.

In this case, it is an easy check that the immersed canonical relations Li are given by

L1 = ε(M)

L2 = △(G)

L3 = Gr(µ),

and also we observe that in this case (G, L, I) is regular. According to Theorem 3.3.15,
given a regular relational symplectic groupoid (G, L, I) which admits a smooth symplectic
reduction, we can associate a usual symplectic groupoid G ⇒ M . By definition of such
groupoid, we obtain the following

Proposition 3.4.1. The projection p : G → G is an equivalence of relational symplectic
groupoids.
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Proof. By Proposition 2.1.22, p is a canonical immersed relation p : G 9 G and by defi-
nition of the groupoid structure on G (see Theorem 3.3.15), it follows that p commutes
with I and L respectively, hence, p is a morphism of relational symplectic groupoids. The
fact that p† is also a morphism follows from the following facts. By definition, IG can be
written as

IG = p ◦ IG ◦ p
† (3.69)

and LG can be written as
p ◦ L ◦ (p† × p†). (3.70)

Again, by proposition 2.1.22 we have that

p† ◦ p = (L2)G (3.71)

and that
p ◦ p† = IdG. (3.72)

Therefore, we get the following equalities

p† ◦ IG = p† ◦ p ◦ IG ◦ p
† (3.73)

3.71
= L2 (3.74)

Another finite dimensional example is the following.

3.4.2 Symplectic manifolds with a Lagrangian submanifold

Let (G,ω) be a symplectic manifold, φ an antisymplectomorphism and L an immersed
Lagrangian submanifold of G such that φ(L) = L. We define

G = G. (3.75)

L = L × L × L. (3.76)

I = φ (3.77)

It is an easy check that this construction satisfies the relational axioms and that the spaces
Li are given by

L1 = L

L2 = L × L

L3 = L × L × L.

This example is a regular relational symplectic groupoid and furthermore we can prove
the following
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Proposition 3.4.2. The previous relational symplectic groupoid is equivalent to the
zero dimensional symplectic groupoid (a point with zero symplectic structure and empty
relations).

Proof. We prove that L is an equivalence from the zero dimensional manifold p to G . This
comes from the fact that, for this example, C (as defined in Equation 3.46) is precisely
L, hence, its symplectic reduction is just a point. By Proposition 3.4.1 it follows that L,
being the canonical projection, is an equivalence.

Remark 3.4.3. More generally, following the definition of equivalence of relational sym-
plectic groupoids and remark 3.3.25, we can check that (G, L, I) is equivalent to the zero
dimensional symplectic groupoid if and only if there exists a Lagrangian submanifold Leq

of G satisfying the following two properties

• I ◦ Leq = Leq.

• Leq = L ◦ (Leq × Leq).

This implies that the only relational symplectic groupoids that are equivalent to the zero
dimensional one are the ones described by Equations 3.75, 3.76 and 3.77.

3.4.3 Powers of symplectic groupoids

The following are two (a priori) different constructions of relational symplectic groupoids
for the powers of a given symplectic groupoids. Let G ⇒ M be a symplectic groupoid
and (G,L, I) its associated relational symplectic groupoid as in Example 3.4.1. It is easy
to check that

Proposition 3.4.4. (Gn, Ln, In) is a relational symplectic groupoid, for all n ≥ 1.

Now, let us denote G(1) = G, G(2) the fiber product G×(s,t)G, G(3) = G×(s,t) (G×(s,t)G)
and so on. We will use the following

Lemma 3.4.5. [55]. Let G⇒M be a symplectic groupoid.

1. G(n) is a coisotropic submanifold of Gn.

2. The reduced spaces G(n) are symplectomorphic to G. Furthermore, there exists a

natural symplectic groupoid structure on G(n) ⇒ M coming from the symplectic

quotient, isomorphic to the symplectic groupoid structure on G⇒M .
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Having, this lemma at hand, and considering the canonical relations

pn : Gn → G(n) ≡ G,

we define the regular relational symplectic groupoid (G(n), L(n), I(n)), given by

G(n) := Gn

I(n) := p†n ◦ I ◦ pn

L(n) := p† ◦ L ◦ (p× p)

It can be checked that this example satisfies the relational axioms and that the diagonal
△n+1(G) is a morphism of relational symplectic groupoids.

3.5 The main example: T ∗(PM)

The objective of this section is to prove the following Theorem

Theorem 3.5.1. Given a Poisson manifold (M,Π) there exists a regular relational sym-
plectic groupoid (G, L, I) that integrates it.

As we mentioned in the introduction, integration in this setting means the following

1. Such relational symplectic groupoid satisfies that L1/L2 = M and the symplectic
structure on G is compatible with the Poisson structure onM according to Theorem
3.3.19

2. In the case that the Lia algebroid T ∗M is integrable, such relational symplectic
groupoid is equivalent to a symplectic groupoid integrating it.

The structure of the proof of this Theorem is as follows. First, we describe the defining
data for the relational symplectic groupoid in terms of the PSM and A− homotopy for
Lie algebroids specialized in the Poisson case. Then we verify that such data in fact
satisfy the relational axioms. In order to do this, we need to prove the smoothness and
Lagrangianity of the canonical relations Li, which deserves special attention since we are
dealing with infinite dimensional spaces.

Proof of Theorem 3.5.1 We will prove that the relational symplectic groupoid (G, L, I)
associated to (M,Π) is given by

1. G := T ∗(PM), the cotangent bundle of the path space of M .
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2. L = {(γ1, γ2, γ3) ∈ (T ∗(PM))} is such that

• γi, with 1 ≤ i ≤ 3 are T ∗M -paths.

• The concatentation γ1 ∗ γ2 is T ∗M - homotopic to the inverse path γ−1
3 , or

equivalently, γ1 ∗ γ2 ∗ γ3 is T ∗M -homotopic to a constant path.

3.

I : T ∗PM → T ∗PM

γ 7→ γ−1.

First, we describe the defining spaces Li of the relational symplectic groupoid set theo-
rically, proving that they satisfy the algebraic relational axioms and then we prove that
they are in fact immersed canonical relations.

A.1. To prove the cyclicity property, we use the following remark, that is easy to check.

Remark 3.5.2. Let γ1, γ2, γ
′

1 and γ
′

2 be T ∗M - paths such that γ1 ∼ γ
′

1 and γ2 ∼ γ
′

2,
where ∼ denotes the equivalence by T ∗M - homotopy. Then

γ1 ∗ γ2 ∼ γ
′

1 ∗ γ
′

2.

Now, consider (x, y, z) ∈ L. Since x ∗ y ∼ z−1, we get that

x ∗ y ∼ z−1 ⇔ (x ∗ y) ∗ y−1 ∼ z−1 ∗ y−1 ⇔ z ∗ (x ∗ y) ∗ y−1 ∼ z ∗ z−1 ∗ y−1 ⇔ z ∗ x ∼ y−1,

hence, (z, x, y) (and similarly (y, z, x)) belongs to L.

A.2. If we define

φ : [0, 1] → [0, 1] (3.78)

t 7→ 1− t (3.79)

Then we get that

I : T ∗(PM) → T ∗(PM)

γ 7→ φ∗ ◦ γ,

hence,
I∗δγ = I∗(δX, δη) = δX(φ(t)),−δη(t))
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and therefore, using Equation 3.12,

I∗ωγ(δ1γ, δ2γ) = −

∫ 1

0

δ1X
i(t)δ2ηi(t)− δ2X

i(t)δ1ηi(t)dt = −ωγ(δ1γ, δ2γ)

and this proves that I is an anti-symplectomorphism.

A.3. First, we observe that, from the definition,

L3 = {(γ1, γ2, γ3) ∈ T
∗(PM)3 | γ1 ∗ γ2 ∼ γ3}. (3.80)

In Subsection 3.5.1 we will prove that L3 is an immersed canonical relation.

A.4. We have that

L3 ◦ (L3 × Id) = {(γ1, γ2, γ3, γ4) ∈ (T ∗(PM))3 | ∃(γ5, γ6) ∈ T
∗(PM)2

| (γ1, γ2, γ5) ∈ L3, (γ3, γ6) ∈ Id, (γ5, γ6, γ4) ∈ L3.}

Given the restrictions

γ3 = γ6

γ5 ∼ γ1 ∗ γ2

γ5 ∗ γ3 ∼ γ4,

which implies that

L3 ◦ (L3 × Id) = {(γ1, γ2, γ3) | (γ1 ∗ γ2) ∗ γ3 ∼ γ4}

and since (γ1 ∗ γ2) ∗ γ3 ∼ γ1 ∗ (γ2 ∗ γ3) we get that L3 ◦ (L3 × Id) = L3 ◦ (Id× L3), as we
wanted.

A.5. From the definition, we get that

L1 = {γ ∈ T ∗(PM) | ∃α ∈ T ∗PM, γ ∼ α ∗ α−1 ∼ α−1 ∗ α} (3.81)

= {γ ∈ T ∗(PM) | γ ∼ (X ≡ x0, η ≡ 0)}. (3.82)

A.6. For the case of L2 it follows from the definition, that

L2 = {T
∗M -paths (γ1, γ2) ∈ T

∗(PM)2 | γ1 ∼ γ2}. (3.83)

The smoothness for L1 and L2 will be proved in Section 3.5.1.

Assuming Theorem 3.5.1, it is possible to prove the following
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Proposition 3.5.3. The relational symplectic groupoid (G,L, I) is regular.

Proof. It is easy to observe for C = CΠ, the space of T ∗M -paths, that by Proposition
3.1.3, C is a Banach submanifold of finite codimension, therefore, axiom A.7. holds. To
check A.8., observe that

L1 = L1/L2 = {(X, η) ∈ T
∗(PM) | ∃x0 ∈M : (X ≡ x0, η ≡ 0)} ∼= M.

We can define the map

s : C → M

γ = (X, η) 7→ X(0)

It follows that S, defined in A.9 corresponds to Graph(s). The following Lemmata ensure
the fact that dS is surjective.

Lemma 3.5.4. Let X be a metric space and PX the space of continuous maps from I
to X. We define the evaluation map

evt : PX → X

γ 7→ γ(t).

Then evt is a continuous map, provided that PX is equipped with the uniform convergence
topology.

Proof. We fix a path γ ∈ PX, a time t ∈ T and ε ∈ R>0. Consider an open ball Uε(evt(γ)),
centered at evt(γ) with radius ε. Let V(γ) := ev−1

t (Uε(evt(γ))) and let γ̃ ∈ V(γ). The
open neighborhood of γ̃ defined by

Vε/2(γ̃) := {ξ ∈ PX | d(γ̃, ξ) < ε/2}

is contained in V (γ), therefore

V (γ) =
⋃

γ̃∈V (γ)

Vε/2(γ̃),

hence, V(γ) is an open in PX, which implies that evt is continuous.

Setting X =M , whereM is our given smooth manifold, this Lemma proves that the map
s : C → M is continuous, where C is equipped with the subspace topology. This implies
that Graph(s) is a submanifold of C ×M . To check that it corresponds to a submersion,
we will prove the following
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Lemma 3.5.5. The differential δs of the map s : C → M is a well defined surjective
map from TC to TM

Proof. Let γ = (X, η) ∈ C. A vector δγ ∈ TγC is described by

δγ = {(δX, δη) | δX ∈ Γ(X∗TM), δη ∈ Γ(X∗T ∗M)}.

The map δs corresponds to

δs : TC → TM

δγ 7→ δX(0),

that is the evaluation of δX at 0, which is a well defined surjective map, as we wanted.

The rest of the section is devoted to prove the smoothness and Lagrangianity of the spaces
Li defining the relational symplectic groupoid.

3.5.1 Smoothness of Li

In this subsection, we develop the notion of path holonomy for the foliated manifold
(T ∗PM,F), where F is the characteristic foliation associated to the submanifold CΠ,
which has codimension n, where n = dim(M). Following the construction in the case of
finite dimensional foliations [45, 7], it is possible to give a smooth manifold structure to
the holonomy and monodromy groupoids associated to (T ∗PM,F). These constructions
will allow us to give smoothness conditions to the defining relations Li. First, we recall
some basic definitions we will use throughout the proofs.

Foliations for Banach manifolds

Definition 3.5.6. Let M be a connected Banach manifold. Let

F = {Lα | α ∈ A}

be a family of path connected subsets of M . Then (M,F) is a foliation of codimension p
if the following conditions hold:

1. Lα ∩ Lβ = ∅, for α, β ∈ A,α 6= β.

2.
⋃

α∈A Lα =M.
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3. For every x ∈M , there exists a coordinate chart (Uλ, φλ) for M around x such that
for α ∈ A with Uλ∩Lα 6= ∅, each path connected component of φλ(Uλ∩Lα) ⊂ B×Rp,
where B is a Banach space, has the form

(B × {c}) ∩ φ(Uλ),

where c ∈ Rp is determined by the path connected component Lα, called a leaf of
the foliation. If U is a subset of M , a path component of the intersection of U with
a leaf is called a plaque of U .

Besides the usual finite dimensional examples of foliations, the following proposition gives
us characteristic distributions as examples of foliations at the infinite dimensional level.

Proposition 3.5.7. Let (M,ω) be a weak symplectic Banach manifold and let C be
a coisotropic submanifold such that TC⊥ has finite codimension. Then TC⊥ induces a
foliation of finite codimension of C.

Proof. We will check first that the distribution TC⊥ is involutive, that is,

ω([X, Y ], Z) = 0, ∀X, Y ∈ TC⊥, Z ∈ TC.

We know that

dω(X, Y, Z) = ω(X, [Y, Z])− ω(Y, [X,Z]) + ω(Z, [X, Y ])

+ Xω(Y, Z)− Y ω(X,Z) + Zω(X, Y )

= −ω([X, Y ], Z) = 0.

By the use of Frobenius Theorem for Banach manifolds (for references see [38]), this
distribution is integrable and it induces a foliation on C of finite codimension.

In our case of interest the Banach manifold is G = T ∗(PM) and C = CΠ. In [21] it is
proven that C⊥ has finite codimension. Now, we describe the monodromy and holonomy
groupoids for foliations.

Monodromy groupoid over a foliated manifold

Let (M,F) be a foliation. The monodromy groupoid, denoted by Mon(M,F), has as
space of objects the manifold M and the space of morphisms is defined as follows:

• If x, y ∈ M belong to the same leaf in the foliation, the morphisms between x and
y are homotopy classes, relative to the end points, of paths between x and y along
the same leaf.

• If x and y are not in the same leaf, there are no morphims between them.
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Holonomy groupoid over a foliated manifold

We introduce the notion of holonomy for a foliation, that will be useful for our purposes.
From now on, Lp will denote the leaf on F through the point p; in this case p should
not be confused with the index α in Definition 3.5.6, we introduce this new notation for
simplicity.
Given p ∈ Lp, with Lp a leaf on F , we consider a path α0 in Lp such that α0([0, 1]) ⊂ U0,
with U0 given by the foliation chart (U0, φ0). Consider q0 ∈ Lp such that φ0(p) and φ0(q0)
lie on the same plaque (i.e in the same leaf with respect to the chart (U0, φ0)) and let
Tp and Tq0 be transversals to F through p and q0 respectively. A local holonomy from p
to q0, denoted by HolTp,Tq0 (α0) is defined as a germ of a diffeomorphism f : Tp → Tq0 , in
such a way that there exists an open neighborhood A in Tp where f is a leaf preserving
diffeomorphism (i.e a and f(a) belong to the same leaf, for a ∈ A).
Given a foliation and a transversal T through x, using the fact that

Diffx(T ) ∼= Diff0(R
q)

where Diff0 denotes the group of the germs of diffeomorphisms at 0, q being the codi-
mension of F and that the holonomy is independent of the homotopy class of the path
(up to conjugation with an element in Diff0(R

q), we can see the holonomy as a group
homomorphism

hol:π1(L, x)→ Diff0(R
q),

The image of this map is denoted by Hol(L, x).
Based on this notion, we define the holonomy groupoid of F in the natural way: the space
of objects is the foliated manifold and the space of morphisms is the classes of holonomy
of paths along the leaves of F . Observe that the isotropy groups of this groupoid are
precisely the holonomy groups Hol(L, x).

Smoothness of L2

It can be checked (see [7]) that, given a foliated manifold (M,F), the equivalence relation
R : M 9 M of being in the same leaf, is not necessarily a smooth submanifold of the
cartesian product of the foliated manifold with itself.
Fortunately, there is a way to “resolve” the singularities, by using the holonomy groupoid
associated to what are called locally Lie groupoids. Following [7, 4] we construct the
holonomy groupoid associated to the equivalence relation L2, denoted by Hol(L2,W ),
where the pair (L2,W ) is the locally Lie groupoid associated to L2 [7]. First, some
definitions.
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Definition 3.5.8. Let G⇒M be a groupoid. The difference map δ : G×(s,s)G→ G is
given by δ(g, h) = µ(g, ι(h)).

Definition 3.5.9. Let G ⇒ M be a (topological) groupoid. An admissible local section
of G is a map γ : U → G from an open set U of M satisfying the following properties:

1. (s ◦ γ)(x) = x, ∀x ∈M .

2. (t ◦ γ)(U) is an open in M .

3. (t ◦ γ) : U → (t ◦ γ) is a homeomorphism.

Now, consider a subspaceM ⊂ W ⊂ G. The triple (s, t,W ) is said to have enough smooth
admissible local sections [7], if for each w ∈ W there is an admissible local section γ of G
satisfying that:

• (γ ◦ s)(w) = w.

• Im(γ) ⊂ W .

• γ is smooth.

Now we are able to introduce the notion of locally Lie groupoid:

Definition 3.5.10. [7]. A locally Lie groupoid is a pair (G,W ), where G ⇒ M is a
groupoid and a manifold W such that:

1. M ⊂ W ⊂ G.

2. W = ι(W ).

3. The set
Wδ := (W ×(s,s) W ) ∩ δ−1(W )

is open in W ×(s,s) W and δ restricted to Wδ is smooth.

4. s and t restricted toW are smooth and (s, t,W ) has enough admissible local sections.

5. W generates G as a groupoid.

We will show how L2 can be regarded as a locally Lie groupoid and its associated holonomy
groupoid will be the covering manifold which allows us to regard L2 as a morphism in
SympExt.
First, consider the foliated manifold (M,F) and a subset U of M . We denote L2(U) the
equivalence relation on U defined by

x ∼ y ⇐⇒ x and y are in the same plaque.
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Now, we consider Λ = {(Uλ, φλ)} a foliation atlas for (M,F) and we define

W (Λ) :=
⋃

Uλ

L2(Uλ),

for all domains Uλ of the atlas Λ.
We prove the following

Proposition 3.5.11. [7]. W (Λ), endowed, with the subspace topology with respect to L2

(and hence regarded as a topological subspace of M ×M), has the structure of a smooth
manifold, coming from the foliated atlas Λ.

Proof. The same argument explained in [7] works in the case of a foliation on Banach
manifold with finite codimension. There is an induced equivalence relation on φλ(Uλ),
that is determined by the connected components of φλ(Uλ) ∩ B × {c} ⊂ B × Rq and by
using the coordinate function φλ we induce coordinate charts for W (Λ).

Moreover, it is proven (Theorem 1.3 in [7]) that

Theorem 3.5.12. Let (M,F) be a foliated manifold. Then an atlas Λ can be chosen such
that (L2,W (Λ)) is a locally Lie groupoid.

Remark 3.5.13. In [7] the construction of the locally Lie groupoid structure on (L2,W (Λ))
is done for finite dimensional foliations but it can be naturally extended to the case where
the leaf is a Banach manifold and F has finite codimension. The only non-trivial step is
to check that the property (3) in Definition 3.5.10 is satisfied. For this case, thanks to
The Lebesgue Covering Lemma, that can be applied in the Banach case, there is always
a decomposition of a path a from x to y on a leaf L in smaller paths ai such that ai is a
path from xi to xi+1, with x0 = x, xn+1 = y, with the property that (xi, xi+1) ∈ W (Λ).

In [4], the holonomy groupoid for a locally topological groupoid is constructed through a
universal property, namely:

Theorem 3.5.14. (Globalisation Theorem)[4]. Let (G,W ) be a locally topological groupoid.
Then there is a topological groupoid H ⇒ N , a morphism φ : H → G of groupoids, and
an embedding i : W → H of W to an open neighborhood pf N satisfying the following:

1. φ is the identity on objects, φ ◦ i(w) = w, ∀w ∈ W , φ−1(W ) is open in H and
φ |W : φ−1(W )→ W is continuous.

2. (Universal property). If A is a topological groupoid and ξ : A → G is a morphism
of groupoids satisfying:

• ξ is the identity on objects.
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• ξ |W : ξ(W )→ W is continuous and ξ−1(W ) is an open in A and generates A.

• The triple (sA, tA, A) has enough continuous admissible local sections,

then there is a unique morphism ξ
′

: A → H of topological groupoids such that
φξ

′

= ξ and ξ
′

a = iξa, ∀a ∈ ξ−1(W ).

The groupoid H is called the holonomy groupoid of the locally topological groupoid
(G,W ) and is denoted by Hol(G,W ). In the smooth setting, due to Theorem 3.5.12 , we
can prove that

Proposition 3.5.15. Hol(L2,W (Λ)) is a Lie groupoid.

Thus, the immersed canonical relation associated to the equivalence relation L2 is the
triple (L2, Hol(L2,W (Λ)), φ), where φ is the natural projection from the holonomy groupoid
to L2. In fact, we get that φ−1(x, y) = Hol(x, γ, y), that is, the holonomies of paths γ
between x and y.
The next step is to adapt the argument to show that L1 and L3 induce immersed canonical
relations.

Smoothness of L1

First of all, we can see L1 as a subspace of the characteristic foliation associated to CΠ.
Namely, we can think the elements of L1 as the Lie algebroid morphisms connected to
the trivial algebroid morphisms by a path along the distribution. More precisely, if we
denote by C ⊂ CΠ the submanifold corresponding to the trivial Lie algebroid morphisms
(X is constant and η is 0), then

L1 = {⊔L∈FL|L ∩ C 6= ∅}. (3.84)

The characteristic foliation can be understood as the space of orbits of a gauge group H
acting on CΠ, where H corresponds to the group of local diffeomorphisms generated by
the flows of the Hamiltonian vector fields associated to the Hamiltonian functions:

Hβ(X, η) =

∫

I

〈dX(u) + π#(X(u))η(u), β(X(u), u)〉,

where β : I → Ω1(M) and β(0) = β(1) = 0. This action can be written in local coordinates
as follows:

δβX
i(u) = −πij(X(u))βj(X(u), u) (3.85)

δβηi(u) = duβi(X(u), u) + ∂iπ
jk(X(u))ηj(u)βk(X(u), u).

(3.86)

74



With this prescription, it is easy to check that the submanifold

C := {(X, η)|X = X0, η = 0},

which is an n-dimensional submanifold of CΠ, where n = dimM , intersects the foliation
neatly, i.e.

TxC ∩ TLx = {0}, ∀x ∈ C ∩ Lx.

This comes from the fact, that, after the prescribed gauge transformation, the points of C
are trivially stabilized: the gauge transformation preserves fixed the intial and final points
of the path, and the fact that the space CΠ is invariant under this gauge transformation
implies that there is a unique point for each leaf and that the tangent to the orbit (that
is given precisely by the gauge) and the tangent to C are independent. Choosing a
transversal C ⊂ T to the foliation F , the restriction of the holonomy of F to C, induces
the covering

p : Hol(L2,W (Λ)) |L1→ L1,

with fibers the holonomy of paths along the fibers over C. Thus, the induced immersed
canonical relation for L1 is given by (L1, Hol(L2,W (Λ)) |L1 , p).

Smoothness of L3.

Here, we describe L3 in a suitable way so we find a smooth covering for it. The idea of
the proof is to use the holonomy groupoid for an equivalence relation, understanding the
space L3 in terms of an equivalence homotopy relation. First of all, a remark:

Remark 3.5.16. The s and t fibers are saturated by the leaves of F restricted to CΠ.

In other words, given the fact that the characteristic foliation can be understood as the
space of orbits of gauge transformations, leaving invariant the initial and final points of the
paths, the equivalence relation determined by F is finer than the one determined by s or t.

In a similar way:

Remark 3.5.17. The fibers of the the fibered product of maps:

(s× t) : CΠ × CΠ →M ×M

are saturated by the leaves of the product foliation F × F .

In this way, F × F restricts to a foliation F(s,t) in

CΠ ×(s,t) CΠ ⊂ CΠ × CΠ := (s× t)−1∆

75



This restricted foliation has finite codimension, more precisely

codimCΠ×(s,t)CΠF(s,t) = codimCΠ×CΠF × F − codimCΠ×CΠCΠ ×(s,t) CΠ = 2n.

In this way, for a triple (a, b, c) ∈ L3, the pair (a, b) is an element in (CΠ × CΠ,F(s,t)). c
can be identified with an element in CΠ via the smooth map

β̃ : (CΠ ×(s,t) CΠ) → (CΠ,F)

(a, b) → a ⋆ b (3.87)

where

a ⋆ b(t) =

{

a(β(2t)) , t ∈ [0, 1
2
]

b(β(2t− 1)) , t ∈ [1
2
, 1]

and β denotes a bump function β : [0, 1]→ [0, 1]. Therefore, it is possible to characterize
the space L3 in the following way:

L3 = {(a, b, c) ∈ (CΠ ×(s,t) CΠ)× CΠ|L(β̃(a,b)) = Lc}

where L denotes (as before), the orbits of the T ∗M -homotopy. Hence, the induced im-
mersed canonical relation for L3 is (L3, CΠ ×(s,t) CΠ, Hol(L2,W (Λ))).

Embedding conditions and integrability of T ∗M

So far, the smooth immersed structure for the spaces Li has been given. In this section,
the integrability conditions for the Lie algebroid given by the Poisson structure on M
are introduced, following the work of M. Crainic and R.Loja Fernandes [27]. There, the
integrability conditions are described in terms of the monodromy groups associated to the
characteristic folitation.

Theorem 3.5.18. A Lie algebroid A is integrable if and only if the following conditions
hold:

1. The associated monodromy subgroups Nx(A) are discrete (r(x) = 0).

2. Nx(A) are locally uniform discrete, that is:

lim inf
y→x

r(y) > 0.

The objective of this section is to give a different interpretation of the integrability con-
ditions in terms of the previously defined canonical relations Li. The monodromy groups
are defined as follows:
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Definition 3.5.19. For any x ∈ M the subset Nx(A) is the subset of the center of gx
formed by elements v ∈ Z(gx) such that the constant A−path v is A− homotopic equiva-
lent to the trivial A− path.

It can be proven that the subspaces Nx(A) are in fact, subgroups of Z(gx). Considering a
metric on the bundle A and its associated distance d, we define the size of the monodromy
group as:

r(x) =

{

d(0x, Nx(A)− 0x) if Nx(A)− 0x 6= ∅
+∞ if Nx(A)− 0x = ∅

We restrict ourselves to the case when A = T ∗M .
Consider the infinite dimensional bundle π : T ∗PM → PM and σ : PM → T ∗PM its
zero section. The monodromy group Nx0(T

∗M) corresponds now to

Nx0(T
∗M) = T ∗

(X,η)
PM ∩ L1

where (X, η)corresponds to X = x0 and η ∈ Kerπ
♯. This characterization guarantees that

the T ∗M−homotopies preserve the base path and it transforms elements in the kernel of
π♯ ⊂ T ∗

x0
M . Let L1 := ∪x0∈MT

∗
(X,η)

PM ∩ L1. In this way, the size of the monodromy

group seems natural. Giving a metric g on T ∗PM , induced by a metric on T ∗M and its
corresponding norm we get

r(x) = lim inf |v|, v ∈ T ∗
(X,η)

PM.

Now, the integrability conditions in Theorem 1 together imply the following
(Locally uniform discreteness): ∀x0 ∈M, ∃ ε > 0 and an open neighborhood U containing
x0 and contained in L1 such that ∀v ∈ TUPM\σ(U), we have that |v| > 0. This is precisely
the property of L1 being an embedding. Therefore, we have proven the following

Theorem 3.5.20. If the Poisson manifold M is integrable, then, there exists a tubu-
lar neigborhood of the zero section of T ∗PM , denoted by N(Γ0(T

∗PM)) such that L1 ∩
N(Γ0(T

∗PM)) is an embedded submanifold of T ∗PM .

Proofs of smoothness of Li in the integrable case.

It is possible to check that, in the integrable case, L1 is an immeresd submanifold of G,
in an easier way than in the general case. This comes from the following lemma:

Lemma 3.5.21. [32] Let X and Y be Banach manifolds and let r : X → Y be a smooth
submersion. Let P be an embedded submanifold of Y . Then r−1(P ) is an embedded
submanifold of X.

77



Appling the lemma for X = CΠ, Y =, CΠ, r the quotient map and P = M , where M is
identified with the space of units of the symplectic groupoid integrating M , we obtained
the desired result.
In order to prove that L2 is a submanifold in the case where T ∗M is integrable, let us use
the following result:

Lemma 3.5.22. [32] Let M1,M2 and M be Banach manifolds and let

P1 : M1 →M, P2 : M2 →M

be smooth submersions. ThenM1×P1,P2M2 is a closed embedded submanifold ofM1×M2.

Proof. The idea is to construct explicit charts for M1 ×P1,P2 M2. We denote ∆M the
diagonal in M ×M . By definition, M1 ×P1,P2 M2 := (P1 × P2)

−1∆M and by continuity
reasons the space is closed. Now, observe that, because P1 and P2 are submersions, there
exists coordinate charts φM1 : U1 × V1 → M1, φM2 : U2 × V2 → M2 and φ1 : V1 → M, φ2 :
V2 →M in such a way that the following diagram commute

Ui × Vi
φMi→ Mi

↓π2 ↓Pi

Vi
φi→ M

for i ∈ {1, 2} and π2 denotes the projection in the second component. Denoting V :=
V1 ∩ V2, restricting the previous charts to V we obtain coordinate charts

φM1 |V × φM2 |V : U1 × V × U2 × V →M1 ×M2

and restricting to the diagonal of V × V we obtain

φM1 |V × φM2 |V (U1 × U2 ×∆V×V ) =M1 ×P1,P2 M2

as we wanted.

With this lemma in mind, we observe that L2 can be seen as a fibered product in the
following way:

L2
π1→ X

↓π2 ↓p

X
p
→ X/F

where L2 is precisely X ×F X and p corresponds to the quotient map.

To prove that L3 is an immersed submanifold, the main observation is that L3 is given by
a fiber product satisfying the conditions of the lemma 3.5.22 and using the same argument
as in the proof for L2 the result holds.
Therefore, to summarize, we have just proved the following fact:
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Theorem 3.5.23. If T ∗M is integrable, then L1∩N(Γ0(T
∗PM)) is an embeded submani-

fold of T ∗(PM) and the spaces L1, L2 and L3 are immersed submanifolds of T ∗(PM), T ∗(PM)2

and T ∗(PM)3, respectively.

The next step is to connect the construction of the relational symplectic groupoid for
T ∗PM , which is infinite dimensional, with the s-fiber simply connected symplectic Lie
groupoid integrating a Poisson manifold. The connection is given by the following

Theorem 3.5.24. Let (M,Π) be an integrable Poisson manifold. Let G be the relational
symplectic groupoid associated to T ∗PM described above and let G = CΠ be the symplectic
Lie groupoid associated to the characteristic foliation on CΠ. Then G and G are equivalent
as relational groupoids.

Proof. This is a direct consequence of Proposition 3.4.1, since the previously described
relational symplectic groupoid is regular.

Another fact that results useful with the introduction of relational symplectic groupoids
is the comparison of different integrations of Poisson manifolds, i.e. we do not restrict
only to the case where the symplectic groupoid is s-fiber simply connected. The following
Proposition (for more details see [45] for the more general case of Lie algebroids) relates
different symplectic groupoids integrating a given Poisson manifold (M,Π).

Proposition 3.5.25. Let Gssc ⇒M be the s-fiber simply connected symplectic groupoid
integrating (M,Π) and let G

′

⇒M be another s-fiber connected symplectic groupoid inte-
grating (M,Π). Then there exists a discrete groupH acting on Gssc such that G = Gssc/H
and the quotient map p : Gssc → G is the unique groupoid morphism that integrates the
identity map id : T ∗M → T ∗M .

With this Proposition in mind, we observe that the projection map p, being a local
diffeomorphism, is naturally compatible with the symplectic structures of Gssc and G,
therefore, it corresponds to a morphism of symplectic groupoids and by definition, it
corresponds to a morphism of relational symplectic groupoids. Moreover, since locally
p−1 is also a diffeomorphism the adjoint relation p† is also a morphism. Therefore we have
the following

Proposition 3.5.26. Let G ⇒ M and G
′

⇒ M be two s-fiber connected symplectic
groupoid integrating the same Poisson manifold (M,Π). Then (G,L, I) and (G

′

, L
′

, I
′

)
are equivalent as relational symplectic groupoids.

As a result of this proposition we obtain the following

Corollary 3.5.27. If M is an integrable Poisson manifold, then the relational sym-
plectic groupoid on T ∗PM is equivalent to every s-fiber connected symplectic groupoid
integrating M .
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3.5.2 Lagrangianity of Li

First we prove the following

Proposition 3.5.28. The tangent space TL2 is a Lagrangian subspace of T (T ∗(PM))⊕
T (T ∗(PM)).

Proof. First we prove the following

Lemma 3.5.29. TC⊥
Π ⊕ TC

⊥
Π ⊂ TL2.

Proof. To prove this lemma, we observe first that, according to [21], the leaves of the
characteristic foliation of CΠ are precisely the orbits of the gauge equivalence relation
given by L2 in CΠ. Therefore we get that

TL2 = RC

as in Equation 3.48 and therefore we get that

TC⊥
Π ⊕ TC

⊥
Π ⊂ TL2 ⊂ TCΠ ⊕ TCΠ

Observe now that the projection of TL2 with respect to the coisotropic reduction of CΠ

is precisely the diagonal of CΠ that is a Lagrangian subspace of TCΠ ⊕ TCΠ. Now, the
space TL2 satisfies the conditions of Proposition 2.1.13 and therefore TL2 is Lagrangian,
as we wanted.

Proposition 3.5.30. The tangent space TL1 is a Lagrangian subspace of T (T ∗(PM)).

Proof. First, we prove the following

Lemma 3.5.31. TL1 is an isotropic subspace.

Proof. The direct computation of the tangent space TL1yields

TγL1 = (δX(t) + v, δη(t)) | (δX(t), δη(t) ∈ TC⊥, v ∈ Tγ(0)M).

Now, considering two vectors in TγL1 denoted by (δ1X(t) + v1, δ1η(t)) and (δ2X(t) +
v2, δ2η(t)) we compute in local coordinates

ω ((δ1X
i(t) + vi1, δ1ηi(t)), (δ2X

i(t) + vi2, δ2ηi(t)))

=

∫ 1

0

(δ1X
i(t) + vi1)δ2ηi(t)− (δ2X

i(t) + vi2)δ1ηi(t))dt

=

∫ 1

0

((δ1X
i(t)δ2ηi(t)− δ2X

i(t)δ1ηi(t))dt+

∫ 1

0

vi1δ2ηi(t)dt−

∫ 1

0

vi2δ1ηi(t)dt.

80



The first integral vanishes since C is coisotropic. The second and third integrals vanish
since

∫ 1

0

vi1δ2ηi(t)dt =

∫ 1

0

vi2δ1ηi(t)dt = η1(1)− η1(0) = η2(1)− η2(0) = 0.

Now, since TL1 is isotropic, after reduction we get that

ω ([(δ1X
i(t) + vi1, δ1ηi(t)], [δ2X

i(t) + vi1, δ2ηi(t)])

= ω((δ1X
i(t) + vi1, δ1ηi(t)), (δ2X

i(t) + vi2, δ2ηi(t))) = 0.

Therefore TL1 is isotropic. Now, since

TγL1 = {v ∈ Tγ0M} ∼ Tγ0M,

we get that
dimTL1 = dimTxM = n = 1/2 dimCΠ.

This implies that TL1 is Lagrangian and then, by applying Proposition 2.1.13, we conclude
that TL1 is Lagrangian, as we wanted.

Now, we prove that

Proposition 3.5.32. The space TL3 is a Lagrangian subspace of

T (T ∗(PM))⊕ T (T ∗(PM))⊕ T (T ∗(PM)).

Proof. In order to prove this Proposition, we first prove the following

Lemma 3.5.33. Let δγ1 and δγ2 be two vectors in TC⊥
γ1

and TC⊥
γ2

that are composable.
Then δγ1 ∗ δγ2 ∈ TC

⊥
γ1∗γ2

.

Proof. This follows immediately from the additive property of ω with respect to concate-
nation, namely, if δγ is a vector in Tγ1∗γ2C, then

ω(δγ1 ∗ δγ2, δγ) = α1ω(δγ1, δγ) + α2ω(δγ2, δγ) = 0,

where αi are factors due to reparametrizations for γi.

With this Lemma at hand, we can conclude, from Equation 3.80 that

TC⊥ ⊕ TC⊥ ⊕ TC⊥ ⊂ TL3 ⊂ TC ⊕ TC ⊕ TC.
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Now, after reduction we get that

ω ⊕ ω ⊕−ω ([δ1γ1]⊕ [δ1γ2]⊕ [δ1γ3], [δ2γ1]⊕ [δ2γ2]⊕ [δ2γ3])

= ω([δ1γ1, δ1γ2]) + ω([δ2γ1, δ2γ2])− ω([δ1γ1 ∗ δ1γ2], [δ2γ1 ∗ δ2γ2]),

that is zero by the additivity property for ω. This implies that L3 is isotropic. Now, by
counting dimensions, we get that the compatibility condition for γ1 and γ2 give 3 dim(M)
independent equations (for the initial, final and coinciding point of γ1, γ2 and γ3). Hence,

dim(L3) = 6 dim(M)− 3 dim(M) = 1/2 dim(TC ⊕ TC ⊕ TC).

This implies that TL3 is Lagrangian. By Proposition 2.1.13 we conclude that TL3 is
Lagrangian, as we wanted.

3.6 Relational symplectic groupoids for Poisson man-

ifolds

This section is devoted to illustrate with example the construction previously described.
In the integrable case, we show how they give rise to the usual s-fiber simply connected
symplectic groupoid integrating (M,Π).

3.6.1 The zero Poisson case

In this section we consider M an n-dimensional manifold and Π is the zero Poisson
bivector. The space G can be described as

G = {(X, η) | X ≡ x0 ∈M, η ∈ Ω1(I, T ∗
x0
M).}

In this case, according to the definition of CΠ in Equation 3.16 we obtain

CΠ = {(X, η)|X ≡ x0, η ∈ Γ(T ∗I ⊗ T ∗
x0
M)}, ∀x0 ∈M.

and its linearized version gives rise to the following description for TCΠ in local coordi-
nates:

TCΠ = {(δX i, δηi) | δX
i = 0, δηi ∈ C

k(I,Rn).}

Now, it is possible to compute (componentwise) the symplectic orthogonal complement
of the space TCΠ:

(TC⊥
Π )i = {(

˜δX i, δη̃i)|

∫

I

δX̃ iηi +

∫

I

X iδη̃i = 0, ∀δX i, δηi ∈ (CΠ)i}.
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that is,

(TC⊥
Π )i = {(δX

i, δηi) | δX
i ≡ 0, δηi = dβ, β : I → Tx0M,β(0) = β(1) = 0}. (3.88)

that is contained in TCΠ, as expected. As a corollary, we obtain that the reduced space
is the expected one:

CΠ = T ∗M.

Observe that the space L1 is obtained by gauge equivalent paths to the space

C = {(X, η)|X ≡ x0, η ≡ 0}

and since the gauge transformations leave CΠ invariant and the η component change
modulo an exact form, it is possible to conclude that

L1 = {(X, η) ∈ CΠ | X ≡ x0, η = dβ, β : I → T ∗
x0
M,β(0) = β(1) = 0}.

Here, we can observe that C⊥
Π ⊂ L1 ⊂ CΠ and in addition, the reduced space L1 corre-

sponds to the zero section of the cotangent bundle T ∗M that is Lagrangian.
It is possible to prove the previous statement directly: Computing the symplectic orthog-
onal space to TL1 we get:

TL⊥
1 = {(δX̃, δη̃)|

∫

I

δX̃δη +

∫

I

δXδη̃ = 0, ∀(X, η) ∈ L1 (3.89)

= {(δX̃, δη̃)|

∫

I

δX̃δη + δx

∫

I

δη̃ = 0, ∀x ∈ Rn, η = df, f ∈ C∞(Rn)}. (3.90)

To check that L1 is isotropic, we observe that
∫

I

δX̃η +

∫

I

δXδη̃ = δx̃

∫

I

δη + δx

∫

I

δη̃ = 0 + 0, ∀x, δx̃ ∈ Rn,

hence TL1 ⊂ TL⊥
1 . To check that L1 is coisotropic, let f ≡ 0. This implies that

∫

I
δη̃ = 0

and by a similar argument as before, δη̃ = dβ, β(0) = β(1) = 0. Hence,
∫

I
δX̃df = 0 and

by integration by parts,
∫

I
dδX̃f, ∀f ∈ C∞(Rn), which implies that dδX̃ = 0, therefore X̃

is constant and this proves that L⊥
1 ⊂ L1, as we wanted.

It is also possible to prove that L2 is Lagrangian. We have that

L2 = {(X1, η1), (X2, η2) ∈ CΠ × CΠ | X1 = X2 = x ∈ Rn, (3.91)

η1 − η2 = dβ, (3.92)

β : I → T ∗
x0
M,β(0) = β(1) = 0}. (3.93)

From Equations 3.88 and 3.91 we obtain that

(TCΠ ⊕ TCΠ)
⊥ ⊂ L2 ⊂ (TCΠ ⊕ TCΠ).
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Using the fact that the reduced space L2 is precisely△(T ∗M) that is Lagrangian subspace
and by lemma 2.1.13 the space L2 is Lagrangian.
To describe the space L3, observe that the two composable T ∗M− paths have to be
constant and the product is taken modulo gauge transformation, i.e. modulo an exact
form. Hence,

L3 = {(X1, η1), (X2, η2), (X3, η3) | X1 = X2 = X3,

∫

I

η3 − η2 − η1 = 0},

A similar observation as before proves that L3 is Lagrangian. To summarize, the relational
symplectic groupoid associated to the zero Poisson structure is given by the following data:

G = T ∗PM

L = {(X1, η1), (X2, η2), (X3, η3) | X1 = X2 = X3,

∫

I

η1 + η2 + η3 = 0}

I = {(X, η) 7→ (X ◦ φ,−η)},

with φ as in Equation 3.78.
In this example it is straightforward to check that the induced inclusion maps of the
spaces Li are smooth embeddings. In addition, it is possible to study the image of these
spaces under reduction. L1 is precisely the zero section of the cotangent bundle, that
is the quotient space L1/L2 as well. L2 by definition corresponds to △(T ∗M) that is
precisely the graph of the identity in the reduced space G = T ∗M. In the case of L3, we
obtain that the reduced space L3 = L3/L2 corresponds to

(x, α, β) ∈M × Ω1(M)× Ω1(M)

that is identified with

L3 = {(x, α), (x, β), (x, α + β) ∈ T ∗M × T ∗M × T ∗M},

that is the graph of fiber wise multiplication in G as expected.
Therefore, to summarize, the groupoid can be recovered out of the relational groupoid
construction:

G = CΠ = T ∗M.

L1 = L1/L2 = L1 =M.

L2 = △T ∗M = Gr(idT ∗M).

L3 = L3/L2 = Gr(mT ∗M).

Here mT ∗M denotes the fiber wise sum in the cotangent bundle and the structure maps
s, t, ε, ι factor naturally through the quotient.
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3.6.2 The symplectic case

In this example we assume for simplicity that M = R2n equipped with the canonical
symplectic structure ω = dxi ∧ dyi.

3From equation (3.1.3), we obtain, since Πij = δij ,
that ηi = Ẋi. Therefore the space Cπ is diffeomorphic to the path space PM . In order to
show that this space is coisotropic, observe that the symplectic orthogonal space to CΠ is
given by:

C⊥
Π = {(X̃, η̃)|

∫

I

〈X, η̃〉+ 〈X̃, Ẋ〉 = 0, ∀X ∈ PM}.

Now, substituting η̃ = ˙̃X + γ we get that integral can be rewritten as:

∫

I

d〈X, ˙̃X〉+

∫

I

〈X, γ〉,

implying that
∫

I
〈X, γ〉 = 0, ∀X ∈ PM and from here we can deduce that γ ≡ 0. In this

way, (X̃, η̃) = (X̃, ˙̃X) and hence, C⊥
Π ⊂ CΠ. It is easy to observe that, given a path X, the

gauge transformations corresponds in this case to diffeomorphisms of R2n leaving X(0)
and X(1) constant. With this observation in mind, we compute the space L1:

L1 = {(X, η)|X = X0 + β, η = dβ, β ∈ C∞0 (R2n), X0 ∈ R2n},

which implies that L1 is diffeomorphic to the loop space L(R2n). It is possible to compute
the symplectic orthogonal to L1 and to check that in fact is a Lagrangian subspace:

L⊥
1 = {(X, η)|

∫

I

〈X, dβ〉+ 〈β, η〉}

and using again the substitution η = dX + γ we conclude that γ = 0 and then η = dX,
with X(0) = X(1) = X0, as we wanted.
To characterize the space L2, we consider the quotient map π : P (R2n)→ R2n × R2n and
given the description of the gauge transformations before, we conclude that:

L2 = P (R2n)×(π,π) P (R
2n).

The space L3 can be written as a fibered product in the following way:

L3 = (P (R2n)×(t,s) P (R
2n))×(s×t)×(s,t) P (R

2n).

3The argument can be extended to general symplectic manifolds.
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The relational symplectic groupoid associated to a symplectic space is therefore given by:

G = T ∗PR2n.

L ∼= (P (R2n)×(t,s) P (R
2n))×(s×t)×(s,t) P (R

2n).

I = {(X, η) 7→ (X ◦ φ,−η)},

and the same structure maps ε, ι, s and t as in the previous example. Furthermore, the
spaces Li are embedded Lagrangians as expected.
After reduction, we observe that the space L1/L2 is isomorphic to R2n. The image of L2

after reduction is, as expected, the graph of the identity in the pair groupoid M ×M and
the image of L3 is precisely the graph of the pair multiplication m : △3(M) ⊂ (M ×M)×
(M ×M)→M ×M given by m((a, b), (b, c)) = (a, c). Hence,

G = CΠ =M ×M.

L1 = L1/L2 = R2n =M.

L2 = △(M ×M) = Gr(idM×M).

L3 = L3/L2 = Gr(mM×M).

3.6.3 The constant case

In this case, we consider M = Rn and coordinates x1, . . . , x2k, . . . , xn, in such way that Π
can be written in the form

Πij =

(

ωij 0
0 0

)

,

where ω is a 2k × 2k invertible constant matrix. Combining the previous examples we
obtain that

CΠ = Csym(R
2k)× C0(R

n−2k),

where the first component is the space of solutions of the constraint equation for the
symplectic structure ω and the second component correspond to the space of solutions
for the zero Poisson structure. Therefore, If (G, L, I)ct denotes the relational symplectic
groupoid associated to a constant Poisson structure,

(G, L, I)ct = (G, L, I)sym × (G, L, I)0.

86



3.6.4 The linear case

We start with this example, where M = g∗ is the dual of a finite dimensional Lie algebra
equipped with a natural Poisson structure, also known as the Kirillov-Kostant structure.
To be more precise, the Poisson structure in this case is given by the structure constant
for the Lie algebra g:

Π = cijk x
k ∂

∂xi
∧

∂

∂xj

and the constraint equation looks like:

dX i = cijkX
kηj.

Considering η as a connection in coadjoint bundle on I associated to G:E = g∗ × I (G
is the Lie group integrating g and the action is the coadjoint one), the previous equation
can be rewritten as:

▽ηX = 0 (3.94)

and the gauge transformations as:

δX = ad∗βX (3.95)

δη = ▽ηβ, (3.96)

with X ∈ Γ(E), β ∈ C∞(I, g).
From equation (3.1.3), observe that a solution is completely characterized with the choice
of the 1-form η and the initial condition X(0). Therefore,

CΠ = Ω1(I, g)⊗ g∗.

Now, in order to describe the spaces Li, we observe that the infinitesimal gauge trans-
formations leave invariant the initial point of the paths in g∗. Therefore, the gauge
transformations only change the 1-form η by an exact form and hence L1 corresponds to
the space of connections gauge equivalent to the trivial connection on E. The idea is to
prove the following:

Proposition 3.6.1. Let Lc
e(G) denote the space of connected loops starting and ending

at the identity e. Then Lc
e(G)

∼= L1.

Proof. Consider the map φ : Lc
e(G)→ L1 defined by

φ(γ) = γ−1dγ.
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where γ : I → G and γ−1(t) = (γ(t))−1. First of all, observe that this map is surjective
since for this example, the global symmetries come from paths in the Lie group G in the
connected component of the identity. The change of the connection η along γ is given by:

η(γ) = γ−1dγ + Adγη.

Setting η = 0, we obtain all the gauge equivalent connections to the trivial one. To prove
that φ is injective let consider to paths γ and γ̃ in such way that γ−1dγ = γ̃−1dγ̃. Define
τ := γ̃−1γ. Differentiating this equation we get:

dτ = dγ̃−1γ + γ̃−1dγ

= −γ̃−1dγ̃γ̃−1γ + γ̃−1dγ

= −γ−1dγγ̃−1γ + γ̃−1dγ

= γ−1dγ(e− γ̃−1γ)

= γ−1dγ(e− τ).

We have obtained a linear ODE, where γ is independent of τ and it satisfies the Liptchitz
condition of uniqueness. Since τ ≡ e satisfies the equation it is possible to conclude that
γ = γ̃.

To describe L2, note that the gauge transformations are given by paths γ on the connected
component of the identity and it can be proven (see [21]) that the transformation only
depends on the final point of γ. More precisely, defining the holonomy map

Hol : Ω1(I, g)→ G

as the the parallel transport of e on the connection given by η (using the flat section X),
we get that

L2
∼= {(g1, g2, η) ∈ g∗ ⊗ g∗ ⊗ Ω1(I, g) | η = dβ, β(0) = β(1) = 0}.

In a similar way, it is possible to describe L3 in terms of the holonomy map and, therefore
we get the following relational symplectic groupoid:

G = T ∗Pg∗.

L = {(g1, η1), (g2, η2), (g3, η3) | gi ∈ g∗, ηi ∈ Ω1(I, g), η3 = dβ, β(0) = β(1) = 0}.

I = {(X, η) 7→ (X ◦ φ,−η)}.
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After reduction we obtain:

G = T ∗G ≃ g∗ ×G.

L1 = g∗.

L2 = Gr(idT ∗G).

L3 = Gr(mT ∗G),

where mT ∗G is defined as

mT ∗G((α, g), (Ad
∗
g−1(α), h)) = (α, gh).

3.6.5 A non integrable example

This is an example (see [53]) of a non integrable Poisson manifold. The idea is to exhibit
explicitly the corresponding immersed canonical relations in this example. We consider
M = R3/{0} equipped with Poisson structure

Πij(x) = f(|x|)εijk x
k ∂

∂xi
∧

∂

∂xj

and f is a function such that f(R) > 0, ∀R > 0. It is possible to write the constraint
equation as:

X
′

+ f(|X|)η ×X = 0,

where X and η are considered as smooth paths in R3 (after identifying R3 and R∗3

via the Euclidean metric) and × denotes the cross product. The infinitesimal gauge
transformations are described by (see [21]):

δX = −f(|X|)β ×X.

δη = β̇ + f(|X|)η × β +
f

′

(|X|)

|X|
(X · η × β)X,

where β ∈ C∞(I,R3) and · is the Euclidean dot product. Considering the radial and
tangent components of η and β with respect to X (denoted by ηr, ηt, βr, βt respectively),
the constraint equation and the symmetries can be rewritten as:

X
′

+ f(|X|)ηt ×X = 0.

δX = −f(|X|)βt ×X.

δηr = β̇
′

r −
f(|X|)

|X|
(1−

|X| · f
′

(|X|)

f |X|
)(X · ηt × βt).

δηt = β̇
′

t + f(|X|)ηt × βt +
f(|X|)

|X|2
(X · ηt × βt)X.
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Setting f ≡ 1, the constraint equations and symmetries corresponds to the linear case
where, M = su(2)∗ \ {0}. Therefore, CΠ = Ω1(I, su(2)) ⊗ su(2)∗ and in addition, the
subspaces Li are immersed Lagrangian submanifolds of Gi = (T ∗PR3)i.

Denoting |X| by R and setting C(R) := R·f
′
(R)

f(R)
, A(R) = 4πR

f(R)
, we can redefine coordinates

(for the case where C(R) 6= 1 or equivalently A
′

(R) 6= 0) with tangential and radial
components as follows:

ar =
f(|X|)

1− C(|X|)
ηr, at = f(|X|)ηt,

br =
f(|X|)

1− C(|X|)
βr, bt = f(|X|)βt.

The constraints and the gauge transformations look like:

X
′

+ at ×X = 0,

a
′

r = b
′

t −
1

|X|
(X · at × bt),

a
′

t = b
′

t + at × bt +
1

|X|2
(X · at × bt)X.

that is precisely, the ones controlling the linear case, where g = su(2). Following [21], in
the case where A(R) = 0, since we are not allowed to use the previously defined change
of coordinates, we restrict ourselves to the invariant functions

x : = X(0), y : =
X(1)

|x|
, π :=

∫

I

ηr.

Thus, we conclude that for the singular points, the gauge equivalent solutions of the E-L
equation cannot differ by the value of ηr and they only depend on the initial and final
values of X. Therefore, we have the following description for the spaces Li

G = T ∗P (R3/{0}).

L ∼= {(X1, X2, X3, η1, η2, η3) ∈ R3 \ {0})3 × Ω1(I, su(2))3 | η3 = dβ, β(0) = β(1) = 0

⊔ (X1, X2, X
′

3, η
′

) ∈ R3 \ {0})3 × Ω1(I, su(2)) | η
′

= dβ, β(0) = β(1) = 0}.

I = {(X, η) 7→ (X ◦ φ,−η)}.

The reduced phase space in this case corresponds to a singular space, if A vanishes at
some point [21], therefore one obtains a topological groupoid over M that is singular on
the critical points of A.
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3.6.6 A non regular example

The following corresponds to an example of a relational symplectic groupoid that fails to
be regular. Consider the manifold

M = T ∗(S1 × S1) ≡ S1 × S1 × R× R

with local coordinates (θ1, θ2, p1, p2) and canonical symplectic structure. Now consider
the space

Cα := {(θ1, θ2, p1, p2) | p2 = αp1},

for some α in R. It can be easily checked that Cα is a coisotropic submanifold of M and
that

Cα is smooth if and only if α ∈ Q.

Now, regardingM as a Poisson manifold and by choosing the set of coordinates (Θi, Pi, ηi, ξ
i)

for T ∗(PM), the constraint equations look like

dθi = ξi (3.97)

dPi = −ηi. (3.98)

Now, we restrict to the solutions of Equations 3.97 and 3.98 which are paths on the
submanifold Cα. This in coordinates reads as

P2 = αP1 (3.99)

η2 = αη1 (3.100)

Therefore we can define the subspace Lα
1 of T ∗(PM) as the space of solutions of Equations

3.97 and3.98 such that at time t = 0, 1 the Equations 3.99 and 3.100 are satisfied. This
allows us to parametrize Lα

1 as follows. We have the following relations between the
coordinates we chose for T ∗(PM):

ΘI = θi +

∫ t

0

ξi (3.101)

Pi = pi −

∫ t

0

ηi. (3.102)

The relations

p2 = αp1 (3.103)
∫

(η2 − αη1)dt = 0 (3.104)
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imply that P2(1) = αP1(1) Then we choose the parametrization (θ1, pi, ξ
i, ηi) such that

for the manifold
Sα
1 = Cα × Ω1(I)⊗ R2 × Γα,

where

Γα = {(η1, η2) ∈ Ω1(I)⊗ R2 |

∫

I

η2 − αη1 = 0}

is a closed subspace of Ω1(I)⊗ R2. This implies that Sα
1 is a manifold and the inclusion

map ι : Sα
1 → T ∗(PM) is an embedding with image Lα

1 . We have the following

Proposition 3.6.2. Lα
1 is a Lagrangian submanifold of T ∗(PM).

Proof. The proof of this Proposition is equivalent to Proposition 3.5.30; it follows from
the construction that Lα

1 is isotropic and we observe that

dimTLα
1 = dimCα = 2 = 1/2 dimM.

Now, the description of Lα
2 is slightly different. We consider T ∗M - pathsγ1 and γ2 in CΠ

such that γi(0) and γi(1) belong to C and the T ∗M - homotopy connecting γi satisfy that,
in the boundary, γt(0) and γt(1) are Lie algebroid morphisms from TI to N∗C, where
N∗C is the conormal bundle of C. For this equivalence relation Lα

2 we have the following
parametrization:

Sα
2 = S1 × S1 × R× Vα × Vα × Γα × Γα × Λα,

where
Vα = {(p1, p2) ∈ R2 | p2 = αp1}

and

Λα = {(ξ1, ξ2, ξ3, ξ4) ∈ Ω1(I)⊗ R2 |

∫

I

ξ2 + αξ1 =

∫

I

ξ4 + αξ3}.

We get that Sα
2 is an embedded submanifold of T ∗(PM) × T ∗(PM) whose image under

the inclusion is Lα
2 . An argument similar to the one used in Proposition 3.6.2 proves that

Lα
2 is Lagrangian. For Lα

3 , we obtain the following parametrization

Sα
3 = S1 × S1 × S1 × R× R× Sα

2

that is a submanifold of T ∗(PM)×T ∗(PM)×T ∗(PM) with image Lα
3 . This shows that,

if we pick α an irrational number, the relational symplectic groupoid (Gα, Lα, Iα) given
by

Gα = T ∗(PM) (3.105)

Lα = Iα ◦ Lα
3 (3.106)

Iα : γ 7→ γ−1 (3.107)

is non regular since Lα
1/L

α
2 = Cα.
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3.7 The extension to the Fréchet category

This section is devoted to discuss further generalization of the construction of relational
symplectic groupoids in the context of Fréchet manifolds. The complications here are of
analytical type, i.e. the absence of the inverse function theorem for Fréchet manifolds
and the change of behavior of the ODE describing the E-L equation. However, studying
the geometrical features of the relational symplectic groupoid for Poisson manifolds it is
possible to describe the smoothness of the defining spaces of (G, L, I). The aim is to prove
the following

Proposition 3.7.1. The construction on T ∗PM of the relational symplectic groupoid
can be extended to the category of Fréchet manifolds.

Before proving this statement, some preliminary work on Fréchet manifolds has to be
done.

Definition 3.7.2. (See [37]) A Fréchet space is a locally convex space with a countable
basis of seminorms.

An example to have in mind is the following:

Example 3.7.3. The space C∞(I,R) of C∞- maps from the interval I = [0, 1] to the real
line is equipped with a natural Fréchet structure given by the following basis of seminorms:

‖f‖k := sup
x∈I

f (k)(x)

where f (k) denotes the k-th derivative.

Observe that in this example, by truncating the sequence of seminorms, we obtain a
filtration of Banach spaces

· · · Ck(I,R) ⊂ Ck−1(I,R) ⊂ Ck−2(I,R) ⊂ · · · ⊂ C0(I,R).

Definition 3.7.4. A Fréchet manifold corresponds to a topological Hausdorff space X
equipped to an atlas (X,U) in such way that there are homeomorphims φα : Uα → F
where F is a Fréchet space and the transition functions Fαβ are smooth mappings with
respect to the Gateaux derivative [37].

Definition 3.7.5. We define the categroid SympExt
F which objects are Fréchet manifolds

equipped with a weak symplectic structure and a morphism between two objects (M,ωm)
and (N,ωN) is a pair (L, {(Li, φi)}i∈N) such that

1. If we truncate the sequence of seminorms for M and N up to the index i, the
underlined sets denoted by Mi and Ni respectively can be regarded as Banach
manifolds.
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2. (Li, φi) : Mi 9 Ni is a morphism for SymExt as in Definition 2.3.5.

3. As sets,

L =
∞
⋂

0

Li

can be equipped with an Inverse Limit Banach (ILB) structure (for further details
on ILB manifolds see [46]), and

TL =
∞
⋂

0

TLi

is a Lagrangian subspace of T (M ×N).

The spaces of smooth mappings between finite dimensional manifolds are examples of
objects in SympExt

F due to the following

Theorem 3.7.6. (see [37]). Let M and N be smooth finite dimensional manifolds. The
space C∞(M,N) of all smooth mappings from M to N is a smooth (Fréchet) manifold
modeled on spaces of smooth sections with compact support of pullback bundles along
f : M → N over M , denoted by C∞c (M ← f ∗TN)

Corollary 3.7.7. Let M be a smooth finite dimensional (compact) manifold. Then the
path space PM is equipped with a Fréchet manifold structure.

We prove the following

Proposition 3.7.8. The space T ∗PM as defined above, but now considering X and η
as C∞- maps, is equipped with a Fréchet manifold structure.

Proof. First of all, some observations. Given the coordinate description of T ∗PM , this
space is the same as PT ∗M , the path space of the cotangent bundle of M and the change
of coordinates is given by

(X, η)→ (t→ (X(t), η(t)))

where in the right hand side, η(t) ∈ T ∗
X(t)M . Now, for PT ∗M = C∞(I, T ∗M), we pick a

Riemannian metric on T ∗M and for any γ ∈ PT ∗M we construct the pull-back bundle
γ∗(TT ∗M)→ I. Now, consider ε sufficiently small in such way that the exponential map,
exp: Tε → T ∗M , where Tε denotes the (open) set of vectors in γ

∗(TT ∗M) with norm less
than ε (with respect to the induced metric), is a diffeomorphism in its image. This map
induces an identification of C∞(I, Tε) with an open set in PT ∗M . Since γ∗(TT ∗M) is a
bundle with base the unit interval, it is a trivializable bundle. Let φ : γ∗(TT ∗M)→ I×Rn

be a trivialization. Therefore φ, restricted to Tε induces a map φ : C∞(I, Tε)→ C
∞(I,R),

where the right hand side, due to Example 3.7.3, is a Fréchet space and therefore, (Tε, φ)
corresponds to a Fréchet chart for T ∗PM as we wanted.
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The next step is to establish the suitable notion of smoothness for the space of solutions
of the constraint equation in the Fréchet context. Since we lack the inverse function
Theorem to determine whether such space is equipped with a Fréchet manifold structure,
we construct a compatible family of Banach manifolds which projects to the space of
smooth solutions and are compatible with the characteristic distribution.

Remark 3.7.9. Let Ck
Π be the Banach manifold corresponding to the space of solutions

(X, η) of regularity type (k + 1, k) of the equation

dXi = Π#(X)ijηj (3.108)

and let C∞
Π of T ∗PM be the space of smooth solutions of Equation 3.108. Then

C∞
Π =

∞
⋂

k=0

Ck
Π.

The following Proposition allows us to decompose C∞
Π into ”leaves” coming from the

characteristic foliations for Ck
Π.

Proposition 3.7.10. The subspace C∞
Π is coisotropic in T ∗PM and it carries a de-

composition into disjoint subspaces coming from the intersections of that leaves of the
characteristic foliations, for each k ≥ 0.

Proof. First, observe that the coisotropicity, being a local condition, can be proven directly
by using the same argument to show that Ck

Π is coisotropic. However, since the use of
Frobenius Theorem for involutive distributions is out of reach, we have to construct the
leaf decomposition of C∞

Π as an intersection of leaves of the underlined Banach manifolds.
As we mentioned before, the foliation charts for CΠ used in the previous proofs are given
by the integrability of the coisotropic distribution. Here, the leaves of the characteristic
foliation are precisely the orbits of the infinitesimal action of a Lie algebra on T ∗PM ,
following the same argument as stated in [21].

The Hamiltonian foliation

In the previous constructions, the foliation charts for T ∗PM were used in order to prove
the smoothness conditions for immersed canonical relations Li. In this subsection, we
discuss the geometry of the intersection of the characteristic leaves, that in general does
not have to be a smooth manifold, since Frobenius theorem does not hold in the usual
way for Fréchet manifolds, i.e. there are involutive distributions which are not integrable.

95



The construction goes as follows. Let β : I → T ∗M be a C∞ function such that β(0) =
β(1) = 0. This defines a Hamiltonian function Hβ defined in the following way:

Hβ =

∫ 1

0

〈dX +Π#η, β〉

The Hamiltonian vector fields associated to these functions are given in local coordinates
by:

ξβX
i(u) = Πij(X(u))βj(X(u), u)

for the coordinate in the direction of X and

ξβηi(u) = duβi(X(u), u) + ∂iΠ
jk(X(u))ηj(u)βk(X(u), u)

for the direction along η.
In [21] it is proven that this is a distribution of closed subspaces of codimension 2n, where
each subspace leaves in TX̃T

∗PM , with X̃ ∈ CΠ. The idea is to prove that this argument
can be extended in the case where β ∈ Γ∞(X∗T ∗M) and such that β(0) = β(1) = 0. In
order to do this, consider the linear map

β → ξβ.

This map is injective: its kernel corresponds to the solution of the following homogeneous
ODE:

duβ(u) = A(u)β(u)

where A(u)ij = ∂iΠ
kjηj and with initial conditions β(0) = β(1) = 0, which implies that

the map β is identically zero.
If a vector (Ẋ, η̇) belongs to the distribution generated by ξ, the η direction satisfies the
equation:

η̇(u) = duβ(u) + A(u)β(u). (3.109)

By using the auxiliary equation

duV (u) = V (u)A(u),

equation (3.109) can be rewritten as

V (u)η̇(u) = du(V (u)β(u))

with initial conditions V (0) = 1 and integrating in both sides (and using the vanishing
conditions for β) we obtain that (Ẋ, η̇) satisfies

96



1.
Ẋ(0) = 0. (3.110)

2.
∫

I

V (u)η̇(u) = 0. (3.111)

which corresponds to a system of 2n independent equations. Conversely, for any solution
(Ẋ, η̇) to the previous system, it is possible to find a β such that (Ẋ, η̇) = ξβ. Now, here
it is important to make a distinction: The distributions spanned by the vector fields ξβ
depend on the regularity of β. Being more precise, let D0 be the distribution generated
by the vector fields ξβ0 , where β0 ∈ C10(I,X

∗(T ∗M)) and D∞ the one generated by the
vector fields ξβ∞ , where β∞ ∈ C∞(I,X∗(T ∗M)). We distinguish in a similar way between
C0Π and C∞Π depending wether we consider smooth solutions of the constraint equation or
not.
We prove the following

Proposition 3.7.11. With the previous notation,

D∞ = D0 ∩ TC∞
Π

Proof. The fact that D∞ ⊂ D0 ∩ TC∞
Π is easy to check. For the other direction, it is

sufficient to show that D∞ is tangent to D0. In order to do this, we will use the following
lemma, proven in [21]:

Lemma 3.7.12. Every leaf in the characteristic foliation of Ck
Π admits a smooth repre-

sentative, i.e, for every solution (X, η) ∈ Ck
Π there exists a solution (X, η)∞ ∈ C∞

Π gauge
equivalent to it.

For the proof of this Lemma, a sequence of smooth gauge transformations is constructed
in a C0 neighborhood of (X, η) ∈ C0

Π, dividing the path X in an odd number of subin-
tervals and constructing in each one of them a parameter β which generates the gauge
transformation.
Now, by means of this Lemma, it is possible to show that

Lemma 3.7.13. Let (X0, η0)
∞ and (X1, η1)

∞ be to points of C0
Π in the same leaf

of the characteristic foliation.Then, there exists a path γ : I → C0
Π such that γ(0) =

(X0, η0)
∞, γ(1) = (X1, η1)

∞ and γ(t) ∈ C∞
Π , ∀t ∈ I.

Proof. First, we pick a path γ̃ in C0
Π with initial and final points the given solutions.

Without loss of generality, we assume that (X1, η1)
∞ belongs to the same C0- neighborhood

of (X0, η0)
∞, otherwise we partition the path into subintervals, each of them living in a
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C0- neighborhood. Using the notation of lemma 3.7.12, the path γ is constructed in the
following way:

γ(t) := β(γ̃(t))

where β(·) denotes the smooth gauge transformation which is defined in [21]. In this way
we prove that D0 ∩ TC∞

Π ⊂ D∞, as we wanted.

Thus, Proposition 3.7.11 follows from Lemma 3.7.12 and Lemma 3.7.13.

It also follows that the tangent spaces to the ‘leaves” of C∞
Π are generated by D∞, which

completes the proof of Proposition 3.7.10.

From the previous facts, we can easily check the following

Proposition 3.7.14. Denoting (Gk, Lk, Ik) the regular relational symplectic groupoids
defined fixing the regularity type (k + 1, k) for (X, η), then the data (G∞, L∞, I∞) where

1. G∞ := T ∗PM

2. L∞ :=
⋂∞

0 Lk

3. I∞ :=
⋂∞

0 Ik

corresponds to a relational symplectic groupoid over SymExt
F .
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Chapter 4

Categorical and algebraic features

The objective on this chapter is to introduce several constructions for more general cat-
egories (not just Sympext or Sympext

F ), which resemble the construction of relational
symplectic groupoids. It turns out that some of the algebraic axioms defining (G, L, I)
appear as natural generalizations of the axioms defining Frobenius algebras, monoid struc-
tures or H*-algebras, and they correspond, in some way, to the version ‘before reduction”
of such structures, in the same way that relational symplectic groupoids appear as sym-
plectic groupoids before symplectic reduction.

This discussion yields to the case of relational symplectic groupoids over linear spaces
that is an intermediate space towards the quantization of Poisson manifolds via relational
symplectic groupoids. (See Section 4.7).

In the sequel we consider a category C which admits products and with a final object
denoted by pt.

4.1 Weak monoids

Definition 4.1.1. A weak monoid in C corresponds to the following data:

1. An object X.

2. A morphism L1 : pt→ X

3. A morphism L3 : X ×X → X,

satisfying the following axioms

• (Associativity).
L3 ◦ (L3 × Id) = L3 ◦ (Id× L3)
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• (Weak unitality).
L3 ◦ (L1 × Id) = L3 ◦ (Id× L1) =: L2

and L2 ◦ L2 = L2.

We call L1 a weak unit and L2 a projector.

Example 4.1.2. Any monoid object in C is a weak monoid with L1 being the unit and
L2 being the identity morphism.

Example 4.1.3. As we will se later, any relative Frobenius algebra X in Rel (see Section
4.4) is by definition a weak monoid.

Example 4.1.4. A commutative monoid (X,m, 1) equipped with a special element p
such that m(p, p) = 1, can be made into a weak monoid. In this case, L3 = m, L1 = p
and L2 : x 7→ m(p, x). Since in general L2 is not the identity morphism, this is not an
example of an usual monoid, but for a commutative monoid in Set it can be checked that
the quotient X/L2 is a monoid.

Remark 4.1.5. The last example does not yield in general a monoid if we start with
a commutative monoid in a category different from Set. For instance, if we take the
monoid (R, ·, 1) and the special element p = −1, the quotient space X = [0,∞) is a
monoid object in Set but it is not an object in Man, the category of smooth manifolds
and smooth maps. However the weak monoid (R, ·, 1) is a smooth manifold.

4.2 Weak *-monoids

As a special case of weak monoids are those which are compatible with adjoints.

Definition 4.2.1. Let C be a dagger category, that is, a category equipped with an
involutive, identity on objects functor † : Cop → C, which has also products, adjoints and
a special object pt. A weak *-monoid in C consists of the following data:

1. An object X

2. A morphism L3 : X ×X → X

3. A morphism ψ : X → X†

such that the following axioms hold

• (Associativity).
L3 ◦ (L3 × Id) = L3 ◦ (Id× L3)
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• (Involutivity). ψ†ψ = ψ = ψ† = Id

• Defining ψR the (unique) induced morphism ψR : pt→ X ×X, then

L1 := L3 ◦ ψR

determines a weak monoid (X,L1, L3)

Example 4.2.2. Consider C the category VectExt of vector spaces (possibly infinite di-
mensional) whose morphisms are linear subspaces. The dagger structure is the identity in
objects and the relational converse for morphisms. Let φ be an involutive diffeomorphism
of M . If X = C∞(M), then (X,+, φ∗) is a weak *-monoid. To check this, first observe
that

L1 = {f + φ∗(f), f ∈ X}

L2 = {(g, g + h+ φ∗h), g, h ∈ X}

L2 ◦ L2 = {(g, g + h+ h
′

+ φ∗h+ φ∗h
′′

), g, h, h
′

∈ X}.

Setting h
′

≡ 0 we get that L2 ⊂ L2 ◦L2 and by linearity of φ L2 ◦L2 ⊂ L2. Associativity
and unitality follow from the additive structure of X.

Example 4.2.3. (Deformation quantization). Let C = VectExt and consider a Poisson
manifold M . Let X = C∞(M,C) be the algebra of smooth complex valued functions on
M . By deformation quantization for Poisson manifolds (see, for example, [5]), given a
Poisson structure Π on M , there exists an associative C[ε]]- linear product in X[[ε]] [35],
denoted by ⋆, such that 1

1. 1 ⋆ f = f ⋆ 1 = f, ∀f ∈ X[[ε]]

2.
f ⋆ g = fg + εB1(f, g) + ε2B2(f, g) + · · · ,

with f, g ∈ X ⊂ X[[ε]] and Bi are bidifferential operators, where

Π(df, dg) = B1(f, g).

It can be easily checked that (X[[ε]], ⋆, ·) is a weak-* monoid, where · denotes complex
conjugation.

1in this case that we are considering complex valued functions we set ε = i~/2
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4.3 Cyclic weak *-monoids

This is the type of weak *-monoids which are compatible with the cyclicity axiom for
relational symplectic groupoids. More precisely,

Definition 4.3.1. Let C be a dagger category with products and adjoints and such that
every object X admits a canonical pairing φ := X × X† → pt. A cyclic weak *-monoid
in C consists of the following data:

1. An object X

2. A morphism ψ : X → X†

3. A morphism L : X ×X → X†

such that

• (Cyclicity). For the associated morphism LR : (φX ◦ (L× Id)t) : pt→ X3

LR = σ ◦ LR = σ ◦ σ ◦ LR

where

σ : X3 → X3 (4.1)

(a, b, c) 7→ (c, a, b) (4.2)

• If L3 := ψ† ◦ L, then (X,ψ, L3) is a weak *-monoid.

Remark 4.3.2. For the case of a unimodular Poisson manifold (M,Π), it can be proven,
following Example 4.2.3 that deformation quantization gives rise to a cyclic weak *-
monoid, where ψ = φ∗, with φ being a Π- invariant diffeomorphism. This is part of
some work in progress and is related to work on traces in deformation quantization (Sec-
tion 4.7).

Example 4.3.3. (Relational symplectic groupoids). Following Chapter 3, we consider
C = Sympext and M an arbitrary Poisson manifold.

Proposition 4.3.4. The following data

X : = T ∗(PM)

ψ : (x, η) 7→ (i∗ ◦ x, i∗ ◦ η)

i : t 7→ 1− t

L : = {(x1, η1), (x1, η1), (x3, η3)|(x1 ∗ x2, η1 ∗ η2) ∼ ψ((x3, η3))},
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where ∼ denotes the equivalence relation by T ∗M - homotopy of T ∗M -paths, corresponds
to a cyclic weak ∗- monoid. In this case,

L1 = {(x, η) ∈ X|(x, η) ∼ (x ≡ x0, η ≡ 0), x0 ∈M}

L2 = {(x1, η1), (x2, η2) ∈ X ×X|(x1, η1) ∼ (x2, η2)}.

Example 4.3.5. (The space of functions on a manifold). For this example, we consider
M a smooth manifold and φ a given diffeomorphism ofM such that φ2 = Id. We consider
the vector space G of smooth functions on M equipped with the product

f ∗ g := 1/4(fg + fφ∗g + φ∗fg + φ∗fφ∗g)

and the special element 1. In turns out that (G, ∗, φ∗) has the structure of a cyclic weak
*-monoid. Moreover, the induced morphism L2 corresponds to the projection to the φ-
even functions.
We obtain also that (G, ∗, φ∗) can be equipped with a Frobenius algebra structure, con-
sidering the inner product

〈f, g〉 :=

∫

M

fg.

4.4 Frobenius and H*-algebras

The rest of this Chapter is devoted to some results concerning the relation between
groupoids and Frobenius algebras. The generalization of these results turns out to give
an algebraic characterization of the relational symplectic groupoid and its connection to
Frobenius and H∗− algebras.

In [19], the connection between groupoids and Frobenius algebras is made precise. Namely,
there is a way to understand groupoids in the category Set as what we called Relative
Frobenius algebras, a special type of dagger Frobenius algebra in the category Rel, where
the objects are sets and the morphisms are relations.
In addition, a correspondence between semigroupoids (a more relaxed version of groupoids
where the identities or inverses do not necessarily exist) and H∗− algebras, a structure
similar to Frobenius algebras but without unitality conditions and a more relaxed Frobe-
nius relation.

4.5 Groupoids and relative Frobenius algebras

In this section, we consider a groupoid in Set as a category internal to the category Set
of sets as objects and maps as morphisms. Now, consider the category Rel with sets
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and relations. In addition, this category carries an involution † : Relop → Rel given
by the transpose of relation; this is a contravariant involution and is the identity in
objects, therefore, Rel is a dagger symmetric monoidal category that contains Set as a
subcategory. In Rel we define what we call relative Frobenius algebra, a special dagger
Frobenius algebra.

Definition 4.5.1. Amorphismm : X×X 9 X inRel is called a special dagger Frobenius
algebra or shortly, relative Frobenius algebra, if it satisfies the following axioms

• (F) (1×m) ◦ (m† × 1) = m† ◦m = (m× 1) ◦ (1×m†),

• (M) m ◦m† = 1,

• (A) m ◦ (1×m) = m ◦ (m× 1),

• (U) ∃u : 1 9 X|m ◦ (u× 1) = 1 = m ◦ (1× u).

Remark 4.5.2. If such u exists, it is unique.

4.5.1 From relative Frobenius algebras to groupoids

Here, from a given relative Frobenius algebra we construct a groupoid, but first of all, we
give precise meaning of the axioms defined above. We will use the notation f = hg when
((h, g)f) ∈ m. First of all, observe that axiom (M) implies that m is single valued and
that

∀f ∈ X ∃g, h ∈ X|f = hg.

The axiom (F) means that for all a, b, c, d ∈ X

ab = cd⇐⇒ ∃ e ∈ X|b = ed, c = ae⇐⇒ ∃ e ∈ X|d = eb, a = ce.

The axiom (A) is associativity, i.e. (fg)h = f(gh). For the last axiom, after identifying
the morphism u : 1 9 X with a subset U ⊆ X, we get that (U) is equivalent to the
following assertions

∀f ∈ X ∃ u ∈ U |fu = f

∀f ∈ X ∃ u ∈ U |uf = f

∀f ∈ X ∀ u ∈ U |f and u are composable =⇒ fu = f

∀f ∈ X ∀ u ∈ U |u and f are composable =⇒ uf = f.

From these data, we are able to give explicitly a groupoid in Set.
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Figure 4.1: Relative Frobenius algebra: Diagrammatics
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Definition 4.5.3. Given a relative Frobenius algebra (X,m), we define the following
objects and morphisms in Rel:

G1 = X,

G2 = {(g, f) ∈ X2|g and f are composable},

G0 = U,

ε = U × U : G0 9 G1,

s = {(f, x) ∈ G1 ×G0|f and x are composable} : G1 9 G0

t = {(f, y) ∈ G1 ×G0|y and f are composable} : G1 9 G0

ι = {(g, f) ∈ G2|gf ∈ G0, fg ∈ G0} : G1 9 G1.

We will prove that the following data

G2
m // G1

ι // G
t

33

s
++
G0

εoo

correspond to a groupoid in Set.
First we prove the following lemmas

Lemma 4.5.4. For f ∈ X and u, v ∈ U :

1. if f and u are composable, then u is composable with itself;

2. if f and u are composable and f and v are composable then u and v are composable;

3. if if f and u are composable and f and v are composable then u = v.

Proof. If f and u are composable, then, by axiom (U), fu = f , therefore, (fu)u = f . By
(A), we get that u is composable with itself, as we want in (1). For (2), we assume that f
and u are composable, as well as f and v. Then fu = f = fv and by axiom (F) we have
that u = ev, for some e ∈ X, hence uv = ev2 (in particular, e and v2 are compatible).
For (3), observe that if f and u are compatible, as well as f and v, then, by axiom (U),
u = uv = v.

Corollary 4.5.5. s (and in a similar way t) is (the graph of) a function.

Lemma 4.5.6. The pullback G×(s,t) G is isomorphic (as sets) to G2.

Proof. We have that G×(s,t)G = {(g, f) ∈ X|s(g) = t(f)}. Also, s(g) is the unique y ∈ U
such that g and y are composable and similarly, t(f) is the unique y

′

∈ U such that y
′

and f are composable.
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Lemma 4.5.7. The following diagram in Rel commutes

G1

∆

��

s // G0

e

��

G1 ×G1 1×i
// G1 ×G1 m

// G1

Here, ∆ is (the graph of) the diagonal function x 7→ (x, x).

Proof. We have that

e ◦ s = {(f, g) ∈ G1 ×G1 | ∃u ∈ U. g = u, fand u are composable}

= {(f, u) ∈ X × U | fand u are composable},

and

m ◦ (1× i) ◦∆ = {(f, h) ∈ G2
1 | ∃g ∈ G1. fg ∈ U, gf ∈ U, h = gf}

= {(f, gf) ∈ G2
1 | g ∈ G1, fg ∈ U ∋ gf}.

Lemma 4.5.8. The relation i is (the graph of) a function.

Proof. We need to prove that to each f ∈ X there exists a unique g ∈ X with gf ∈ U ∋
fg. We already have existence of such a g by the previous lemma, now we will prove
uniqueness. Assume that gf ∈ U ∋ fg and g′f ∈ U ∋ fg′. Then f and g are composable,
as well as g and f , so that by (A) also f , g and f are composable, similarly for f , g′ and
f . Now (U) implies fgf = f = fg′f , so that by the previous conjecture gf = g′f . But
then g = gfg = g′fg = g′.

Finally, after some straightforward verification of the rest of the groupoid axioms, it is
possible to state the following

Theorem 4.5.9. If (X,m) is a relative Frobenius algebra, then the object stated in Defi-
nition 4.5.3 is a groupoid in Set.

4.5.2 From groupoids to relative Frobenius algebras

Here we fix a groupoid

G2
m // G1

ι // G
t

33

s
++
G0

εoo

in Set.
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Definition 4.5.10. For a groupoid G1, define X = G1, and let m : G1 × G1 9 G1 be
the graph of the function m.

We will prove that m is a relative Frobenius algebra. First of all, it follows directly from
associativity of composition in the groupoid that m satisfies (A).

Lemma 4.5.11. The morphism m of Rel satisfies the axiom (U).

Proof. Define a relation u : 1 9 X by u = {(∗, e(x)) | x ∈ G0}. Then

m ◦ (u× 1) = {(f, e(x)f) | f ∈ G1, x = t(f) ∈ G0}

= {(f, et(f)f) | f ∈ G1} = 1.

The symmetric condition also holds, and so (U) is satisfied.

Lemma 4.5.12. The morphism m of Rel satisfies (M).

Proof. We have

m ◦m† = {(f, f) ∈ G2
1 | ∃g, h ∈ G2. s(h) = t(g), f = hg}.

Because we can always take g = f and h = e(t(f)), this relation is equal to {(f, f) ∈ G2
1 |

f ∈ G1} = 1. Thus (M) is satisfied.

Lemma 4.5.13. The morphism m of Rel satisfies (F).

Proof. First compute

m† ◦m = {((a, b), (c, d)) ∈ G2
2 | ab = cd},

(m× 1) ◦ (1×m†) = {((a, b), (c, d)) ∈ G2
2 | ∃e ∈ G1. ed = b, ae = c}.

If ed = b and ae = c, then cd = aed = ab. Hence (m × 1) ◦ (1 × m†) ⊆ m† ◦ m.
Conversely, suppose that ((a, b), (c, d)) ∈ m† ◦m. Taking e = bd−1, then ed = bdd−1 = b,
and ae = abd−1 = cdd−1 = c. Therefore m† ◦m ⊆ (1 ×m†) ◦ (m × 1). The symmetric
condition is verified analogously. Thus (F) is satisfied.

Therefore, we have proven the following

Theorem 4.5.14. If G is a groupoid, then m is a relative Frobenius algebra.
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4.5.3 Functoriality

Notice that the constructions m 7→ G and G 7→ m of the previous two sections are each
other’s inverse. This subsection proves that the assignments extend to an isomorphism
of categories under various choices of morphisms: one that is natural for groupoids, one
that is natural for relations, and one that is natural for Frobenius algebras.
Recall that the category Rel is rigid (with X = X) and therefore in particular closed.
Hence every morphism r : X ✤ //Y has a transpose prq : 1 ✤ //X × Y . Explicitly, it is
given by prq = {(∗, (x, y)) | (x, y) ∈ r}. Furthermore Rel is dagger symmetric monoidal
closed, giving a natural swap isomorphism σ : X × Y → Y ×X with σ−1 = σ†.
We start by considering a choice of morphisms that is natural from the point of view of
relations: namely, morphisms between groupoids should be subgroupoids of the product.

Definition 4.5.15. The category Frob(Rel)ext has relative Frobenius algebras as ob-
jects. A morphism (X,mX)→ (Y,mY ) is a morphism r : X ✤ //Y in Rel satisfying

(mX ×mY ) ◦ (1× σ × 1) ◦ (prq× prq) = prq. (R)

This gives a well-defined category. Identities 1X = {(x, x) | x ∈ X} : X ✤ //X satisfy
(R), and if r : X ✤ //Y and s : Y ✤ //Z satisfy (R), then so does s ◦ r:

ps ◦ rq = {(∗, x′′, z′′) ∈ 1×X × Z | ∃y′′ ∈ Y. (x′′, y′′) ∈ R, (y′′, z′′) ∈ s}

= {(∗, xx′, zz′) | x, x′ ∈ X, z, z′ ∈ Z, ∃y, y′ ∈ Y.

(x, y) ∈ r, (x′, y′) ∈ r, (y, z) ∈ s, (y′, z′) ∈ s}

= (mX ×mZ) ◦ (1× σ × 1) ◦ (ps ◦ rq× ps ◦ rq),

since we may take x = x′′, x′ = 1.

Definition 4.5.16. The category Gpdext has groupoids as objects. Morphisms G→ H
are subgroupoids of G×H.

That this is a well-defined category will follow from the following theorem. Identities are
the diagonal subgroupoids, and composition of subgroupoidsR ⊆ G×G′ and S ⊆ G′×G′′

is the groupoid S1 ◦R1 ⇒ S0 ◦R0.

Theorem 4.5.17. There is an isomorphism of categories Frob(Rel)ext ∼= Gpdext.

Proof. Let (X,mX) and (Y,my) be relative Frobenius algebras, inducing groupoids G and
H. First, notice that if r : X ✤ //Y satisfies (R), then

mr = (mX ×mY ) ◦ (1× σ × 1)

= {(((a, b), (c, d)), (ac, bd)) | a, b, c, d ∈ X} : r × r ✤ // r
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is a well-defined morphism in Rel. In fact, since (X,mX) and (Y,mY ) are relative Frobe-
nius algebras, so is (r,mr): one readily verifies that it satisfies (M), (A), and (F). Also,
(U) is satisfied by the pullback 1 ✤ //R of uX×uY : 1 ✤ //X×Y and prq : 1 ✤ //X×Y ,
that is, the intersection of r with UX × UY . Theorem 4.5.9 thus shows that r induces a
groupoid R. It is a subgroupoid of G×H: we have R1 ⊆ (G×H)1 by construction, and
if u ∈ UR, then u = u−1, so u ∈ (G×H)0. The structure maps of R are easily seen to be
restrictions of those of G×H.
Conversely, if R is a subgroupoid of G ×H, then clearly R1 ⊆ X × Y is a morphism in
Rel satisfying (R). It now suffices to observe that these constructions are inverses.

Next, we consider a choice of morphisms that is natural to groupoids, namely functors.
The category Rel is in fact a 2-category, where there is a single 2-cell r ⇒ s when r ⊆ s.
Hence it makes sense to speak of adjoints of morphisms in Rel. A morphism has a right
adjoint if and only if it is (the graph) of a function.

Definition 4.5.18. The category Frob(Rel) has relative Frobenius algebras as objects.
Morphisms (X,mX)→ (Y,mY ) are morphisms R : X ✤ //Y that preserve both the mul-
tiplication and the comultiplication:

r ◦mX = mY ◦ (r × r), m†
Y ◦ r = (r × r) ◦m†

X .

We denote by Frob(Rel)func the subcategory of all morphisms r for which the pullback
of prq and uX × uY has a right adjoint.

Lemma 4.5.19. Morphisms in Frob(Rel) satisfy (R). Hence we have subcategories

Frob(Rel)func →֒ Frob(Rel) →֒ Frob(Rel)ext.

Proof. Let r : X ✤ //Y be a morphism in Frob(Rel). Then

(mX ×mY ) ◦ (1× σ × 1) ◦ (prq× prq)

= (mX ×mY ) ◦ (1× r × r) ◦ (1× σ × 1) ◦ {(∗, (x, x, y, y)) | x, y ∈ X}

= (1× r) ◦ (mX ×mX) ◦ {(∗, (x, y, x, y)) | x, y ∈ X}

= (1× r) ◦ {(∗, (xy, xy)) | x and y are composable. }

= (1× r) ◦ {(∗, (z, z)) | z ∈ X}

= prq,

because we can always choose x = z and y = 1.

Write Gpd for the category of groupoids and functors.

Theorem 4.5.20. There is an isomorphism of categories Frob(Rel)func ∼= Gpd.
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Proof. Let (X,mX) and (Y,mY ) be relative Frobenius algebras, inducing groupoids G
and H. Let r : mX → mY be a morphism in Frob(Rel)func; by Theorem 4.5.17 it induces
a subgroupoid R of G ×H. By definition r is (the graph of) a function G0 → H0 when
restricted to UX × UY .
We now show that if (x, y) ∈ r, then also (x−1, y−1) ∈ r. Let (x, y) ∈ r. Then
((y, y−1), 1) ∈ r† ◦ mY = mX ◦ (r

† × r†), so there is z ∈ X with (z−1, y−1) ∈ r. But
then ((x, z−1), (y, y−1)) ∈ r × r and of course ((y, y−1), 1) ∈ mY . So there exists w ∈ X
with xz−1 = w and (w, 1) ∈ r. But the latter means w = 1 because r is a function on
identities, giving x = z, and hence (x−1, y−1) ∈ r.
Next, we show that r is (the graph of) a functionG1 → H1. First notice that ((x, x

−1), 1) ∈
r ◦ mX = mY ◦ (r × r) for any x ∈ X. Hence for each x ∈ X there is y ∈ Y with
(x, y) ∈ r) (and (x−1, y−1) ∈ r). Finally, assume that (x, y) ∈ r and (x, y′) ∈ r. Then also
(x−1, y−1) ∈ r. Hence ((y′, y−1), 1) ∈ mX ◦ (r

† × r†) = r† ◦mY . So there exists y′′ ∈ Y
such that (y′′, 1) ∈ r† and y′y−1 = y′′. But then we must have y′′ = 1. Thus y′y−1 = 1, or
in other words, y′ = y.
Relational composition of graphs coincides with composition of functions, so that this
assignment is functorial. Conversely, it is easy to see that a functor between groupoids
induces a morphism in Frob(Rel)func. Finally, these two constructions are inverse to each
other.

Finally, we can consider a choice of morphisms that is natural from the point of view of
Frobenius algebras, namely the category Frob(Rel). There is a category between Gpd
and Gpdext, corresponding to the middle subcategory in Frob(Rel)func →֒ Frob(Rel) →֒
Frob(Rel)ext, as follows.

Definition 4.5.21. A multi-valued functor G→ H between categories is a multi-valued
map F : G1 → H1 that preserves identities and composition:

for g, f ∈ G1 ×G0 G1 : g ◦ f ∋ h ⇒ F (g) ◦ F (f) ∋ F (h),

for x ∈ G0 : F (e(x)) ∋ H0.

We denote the category of groupoids and multi-valued functors by Gpdmfunc.

Theorem 4.5.22. There is an isomorphism of categories Frob(Rel) ∼= Gpdmfunc.

Proof. Let mX and mY be relative Frobenius algebras, inducing groupoids G and H. Let
r : mX → mY be a morphism in Frob(Rel); by Theorem 4.5.17 it induces a subgroupoid
of G × H. By the argument of the proof of Theorem 4.5.20, r is a multi-valued map
G1 → H1. But then it is precisely a multi-valued functor.
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4.6 Relative H∗− algebras and semigroupoids

Relative Frobenius algebras can be relaxed to so-called H*-algebra structures, essentially
by dropping units. First, we define properly this relaxation: it turns out that H*-algebras
in the category of sets and relations correspond to so-called locally cancellative regular
semigroupoids. The correspondence is functorial, but now it only gives an adjunction
instead of an isomorphism of categories. At the end we discuss a universal way to pass
from H*-algebras to Frobenius algebras, i.e. from semigroupoids to groupoids.
The generalization to H*-algebras is useful for an application to geometric quantization
that will be presented in subsequent work, where one is forced to work with semigroupoids
instead of groupoids. Rather than in the category of sets and relations, this plays out in
the smooth setting of symplectic manifolds and canonical relations, corresponding to Lie
groupoids. One could imagine similar applications in a topological or localic setting [47].

4.6.1 From relative H∗− algebras to semigroupoids

Definition 4.6.1. A relative H*-algebra is a morphism m : X ×X ✤ //X in Rel satis-
fying (M), (A), and the following axiom:

• There is an involution ∗ : Rel(1, X)→ Rel(1, X) such that

m ◦ (1× x∗) = (1× x†) ◦m† and m ◦ (x∗ × 1) = (x† × 1) ◦m† (H)

for all x : 1 ✤ //X.

Definition 4.6.2. Given a relative H*-algebra m : X ×X ✤ //X, define G by

G0 = {f ∈ X | m(f, f) = f},

G1 = X,

s = {(f, f ∗f) | f ∗ is a pseudoinverse of f} : G1
✤ //G0

t = {(f, ff ∗) | f ∗ is a pseudoinverse of f} : G1
✤ //G0.

Lemma 4.6.3. For each element a in a relative H*-algebra there exists a∗ ∈ {a}∗

satisfying a∗aa∗ = a∗ and aa∗a = a.

Proof. By (M), we have ∀y ∈ X ∃a, x ∈ X. y = ax. Applying (H) with A = X gives
∀a ∈ X ∃x ∈ X. x and a are composable. Now let a ∈ X. If we substitute A = {a}, then
(H) becomes

∀x, y ∈ X
[

xa = y ⇐⇒ ∃a∗ ∈ {a}∗. ya∗ = x
]

∀x, y ∈ X
[

ax = y ⇐⇒ ∃a∗ ∈ {a}∗. a∗y = x
]
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As above, there exists x ∈ X with x and a composable. So by the first condition above,
there is a′ ∈ {a}∗ with a and a′ composable. Hence, by the second condition, there is
a′′ ∈ {a}∗ with a′′aa′ = a′. Applying the first condition again, now with x = a′ and
y = a′′a, gives a′a = a′′a. Therefore we have a∗ = a∗aa∗ for a∗ = a′ ∈ {a}∗. Finally,
applying the first condition again, this time with x = aa∗ and y = a, we find that also
aa∗a = a.

Lemma 4.6.4. The data G form a well-defined semigroupoid.

Proof. By (A), the condition m(m×1) = m(1×m) is clearly satisfied. It remains to prove
that m, s and t are well-defined functions. The former means that (g, f) ∈ G1 ×G0 G1

implies that g and f are composable. Assume s(g) = t(f), i.e. g∗g = ff ∗ for some
pseudoinverses g∗ and f ∗ of g and f . Because g∗g is idempotent, we have g∗gff ∗ =
g∗gg∗g = g∗g, and therefore also gand f are composable. Hence m is well-defined. As
for t, suppose that f ∗ and f ′ are both pseudoinverses of f , so that (f, ff ∗) ∈ s and
(f, ff ′) ∈ s. Then ff ∗f = f = ff ′f . Set A = {f ∗}, a = f ∗, x = f , and y = ff ′. By
Lemma 4.6.3, we obtain f ∈ A∗, and so ya∗ = x for a∗ = f . Now it follows from (H) that
ff ∗ = xa = y = ff ′. Similarly, s is a well-defined function.

Theorem 4.6.5. If m is a relative H*-algebra, then G is a locally cancellative regular
semigroupoid.

Proof. Regularity is precisely Lemma 4.6.3. Suppose that fhh∗ = gh∗ for a pseudoinverse
h∗ of h. Applying (H) to A = {h}, x = fhh∗, y = g, a = h and a∗ = h∗ yields
fh = fhh∗h = xa∗ = y = g. Hence G is locally cancellative.

4.6.2 From semigroupoids to relative H∗- algebras

Definition 4.6.6. Given a locally cancellative regular semigroupoid G, define

X = G1,

m = {(g, f, gf) | s(g) = t(f)} : G1 ×G1
✤ //G1,

A∗ = {a∗ ∈ X | a∗aa∗ = a∗ and aa∗a = a for all a ∈ A}.

Theorem 4.6.7. If G is a locally cancellative regular semigroupoid, then m is a relative
H*-algebra.

Proof. Clearly, (A) is satisfied. Because

m† ◦m = {(f, f) ∈ G2
1 | ∃(g, h) ∈ G2 . f = hg}
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we have m† ◦ m ⊆ 1. Conversely, if f ∈ G1, setting g = f and h = f ∗f for some
pseudoinverse f ∗ of f , then f = gh. Hence (M) is satisfied.
Finally, we verify (H). Let A ⊆ X be given, let a ∈ A and x ∈ X, and suppose that x and
a are composable. That means that s(f) = t(a). By regularity, a has a pseudoinverse
a∗ ∈ A∗, and we have xa = xaa∗a. Setting f = xa, g = x, h = a and h∗ = a∗ in the
definition of local cancellativity yields xaa∗ = x. The symmetric condition is verified
similarly. Hence (H) is satisfied.

4.6.3 Functoriality

This subsection proves that the assignmentsm 7→ G andG 7→ m extend functorially to an
adjunction. We only consider the relative choice of morphisms, because the lack of units
make the other two choices of morphisms from Subsection 4.5.3 very difficult to work with.
The following two definitions give well-defined categories, just as in Subsection 4.5.3.

Definition 4.6.8. The category Hstar(Rel)ext has relative H*-algebras as objects. A
morphism (X,mX) → (Y,mY ) is a morphism r : X ✤ //Y in Rel satisfying (R). This
gives a well-defined category.

Definition 4.6.9. The category LRSgpdext has locally cancellative regular semigroupoids
as objects. MorphismsG→ H are locally cancellative regular subsemigroupoids ofG×H.

Proposition 4.6.10. The assignments

m 7→ G

and
G 7→ m

extend to functors
Hstar(Rel)ext → LRSgpdext

and
LRSgpdext → Hstar(Rel)ext

respectively.

Proof. Let (X,mX) and (Y,mY ) be relative H*-algebras, inducing locally cancellative
regular semigroupoids G and H. Given r : mX → mY , define mr : r × r

✤ // r as in the
proof of Theorem 4.5.17; it satisfies (A) and (M). It also satisfies (H), as we now verify.
For A ⊆ r, take A∗ = {(x∗, y∗) | (x, y) ∈ A, x∗ ∈ {x}∗, y∗ ∈ {y}∗}.

(1× A) ◦m†
r

= {((x, y), (a, b)) ∈ r × r | ∃(c, d) ∈ A . y = bd, x = ac}
(H)
= {((x, y), (a, b)) ∈ r × r | ∃(c, d) ∈ A, c∗ ∈ {c}∗, d∗ ∈ {d}∗ . a = xc∗, b = yd∗}

= mr ◦ (1× A
∗).
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Theorem 4.6.5 now shows that mr induces a subsemigroupoid of G ×H. Conversely, if
R is a subsemigroupoid of G×H, then R1 : G1

✤ //H1 clearly satisfies (R). Finally, the
identity relation r : mX

✤ //mY corresponds to the diagonal subsemigroupoid, which is
indeed regular and locally cancellative.

Theorem 4.6.11. The functors from the previous proposition form an adjunction.

LRSgpdext //

⊥ Hstar(Rel)extoo

Proof. Starting with a relative H*-algebra m : X ×X ✤ //X, we end up with

{(g, f, gf) | ∃g∗ ∈ {g}∗∃f ∗ ∈ {f}∗ . g∗g = ff ∗} : X ×X ✤ //X.

Clearly this is a subrelation of m, and the inclusion forms the unit of the adjunction.
Starting with a locally cancellative regular semigroupoid G, we end up with

{f ∈ G1 | f
2 = f} G1

s′oo

t′oo G1 ×s′,t′ G1moo

where s′(f) = f ∗f and t′(f) = ff ∗. Clearly, the original G maps into this, giving the
counit of the adjunction. Naturality and the triangle equations are easy.

Notice that we merely get an adjunction, and not an isomorphism as in Theorem 4.5.17.
Indeed, gf ↓ need not imply g∗g = ff ∗ for some pseudoinverses f ∗ ∈ {f}∗ and g∗ ∈ {g}∗,
and G0 need not coincide with the idempotents of G1 at all.

4.6.4 Semigroupoids Vs groupoids: reduction

The forgetful functor Groupoid → Cat has a left adjoint, that freely adds inverses.
Similarly, the forgetful functor Cat→ Semigroupoid has a left adjoint, that freely adds
identities. The image of the latter left adjoint consists precisely of those categories in
which the only isomorphisms are identities. Hence there is a functor Semigroupoid →
Groupoid giving the free groupoid on a semigroupoid. Restricting it gives a functor that
turns a locally cancellative regular semigroupoid into a groupoid.

4.7 Extensions and perspectives

This section is devoted to discuss possible applications and perspectives of the construction
of relational symplectic groupoids. Some of this work is still in progress and it gives rise
to many questions and possible developments.
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4.7.1 Quantization

A natural questions appearing in the study of symplectic groupoids is their quantization.
In our setting, we have studied relational symplectic groupoids on the categories of vector
spaces, the hope is to obtain the relational symplectic groupoid (G, L, I) as a dequantized
version of the relational symplectic groupoid in the category Hilb of Hilbert spaces.

Linear relational symplectic groupoids Versus Quantization

in Chapter 4, we already studied some cases of relational symplectic groupoids where G is
a vector space and also we considered more general structures in fagger categories. In this
subsection we discuss the connection between the linear version of relational symplectic
groupoids and quantization.
As we showed in Example 4.3.5, the space of smooth functions on a manifold M can
be equipped with a weak *-monoid structure and with a suitable inner product, it is a
Frobenius algebra.
The dequantized version of such Frobenius algebra would correspond to the symplectic
manifold T ∗M with some induced Lagrangian subspaces that in general fail to be sub-
manifolds. It turns out that one get immersed submanifolds when the diffeomorphism
φ has no fixed points. More precisely, the subspace L2 is the union of two Lagrangian
submanifolds LId

2 and Lφ
2 , where L

Id
2 is the graph of the identity and Lφ

2 would correspond
to the quadruples of the form (p, φ(x), φ∗p, x), for all x ∈ M, p ∈ C∞(M). One example
to illustrate this situation is the following. Take M = R and

φ : R → R

x 7→ −x.

In this case the spaces Li are embedded submanifolds and correspond to

L1 = {even positive functions in R}.

L2 = {(f(x), h(x)
(f(x) + f(−x))

2
) | h(x) ∈ L1}

= {projection to even functions in R}.

L3 = {f(x), g(x), f ∗ g(x)}.

However, this relational symplectic groupoid is not regular, since the space of objects is
R mod φ = [0,∞).

Preunital Poisson manifolds and Frobenius algebras

The structure of relational symplectic groupoid might be reformulated in the category
Hilb of Hilbert spaces and in principle it should yield a relational version of a Frobe-
nius algebra, that we may call preunital Frobenius algebra. In that case, the relational
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symplectic groupoid may be seen as the dequantization of this structure. The hard prob-
lem consists in going the other way around, namely, in quantizing a relational symplectic
groupoid.
In the finite dimensional examples, methods of geometric quantization might be avail-
able, the problem being that of finding an appropriate polarization compatible with the
structures. This question, in the case of a symplectic groupoid, has been addressed by
Weinstein [6] and Hawkins [33]. The relational structure might allow more flexibility.
In the infinite-dimensional case, notably the example in 3.1.4., perturbative functional
integral techniques might be available, following the procedure for perturbative quanti-
zation on manifolds with boundary [22, 24]. The reduced algebra should give back a
deformation quantization of the underlying Poisson manifold.
Finally notice that quantization might require loosening up a bit the notion of preunital
Frobenius algebra, allowing for example non associative products, but maybe still asso-
ciative up to homotopy. However, one expects that the reduced algebra should always be
associative.

4.7.2 Possible extensions

Relational Lie groupoids

In this example we drop the weak symplectic structure on the construction of relational
symplectic groupoids and we consider relational Lie groupoids as cyclic weak *-monoid
in the category ManExt of smooth manifolds and immersed submanifolds as morphisms.
Then G⇒M is a relational Lie groupoid regarded as the triple (G,Graph(µ), ι). In this
setting, given a Lie groupoid G ⇒ M it is possible to equip G × G with a relational Lie
groupoid structure as follows.
Considering the graph of the multiplication µ a morphism Graph(µ) : G × G 9 G in
ManExt, we induce a weak *-monoid structure on G × G in such way that Graph(µ)
is an equivalence of relational Lie groupoids between G × G and G. This is a priori a
relational Lie groupoid structure on G × G different from the one given by the power of
Lie groupoids (see Example 3.4.3).

Relational symplectic groupoids and the (extended) Poisson category

We conjecture that there is an equivalence of categroids betweenRRelGpd, the categroid
of regular relational symplectic groupoids, with morphisms given by Definition 2.5.5 and
PoissExt, the extended category of Poisson manifolds, with morphism corresponding to
(possibly certain class of) coisotropic submanifolds of the product of two Poisson manifolds
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2. The functor F : Poiss → RSG is the one given by the cotangent of the path space,
discussed previously and the functor G : RSG→ Poiss is given by the projection to the
base space. In this direction, some completeness for morphisms might be needed (see e.g.
[17]).

Extension for general algebroids

Using the fact that for any Lie algebroid A, the manifold A∗ is Poisson, one would like to
extend the integration of Poisson manifolds via relational symplectic groupoids to general
Lie algebroids, following, for example [12].

Dual pairs and PSM with branes

The construction of relational symplectic groupoids for Poisson manifolds seems to be
helpful to understand the case of PSM with branes and to give a precise interpretation of
the spaces of partially reduced boundary fields. This is connected with what is known as
cohomological resolution of the reduced phase space for topological field theories and the
results proven in [20].

4.7.3 The presence of handles

We define an additional structure that appears in example of relational symplectic groupoids
coming from Poisson manifolds.

Definition 4.7.1. Let G be a relational symplectic groupoid. A relation H : G 9 G
(not necessarily a canonical relation) is called a handle of G if it satisfies the following
conditions:

1. L2 ◦H = H ◦ L2 = H

2. H ◦ L1, (H × Id) ◦ L3 and (Id × H) ◦ L3 are immersed submanifolds of G and G3

respectively.

3. Hn := H ◦H · · ·H is an immersed submanifold of G × G, ∀n ∈ N.

Example: Linear Poisson structure in PSM with genus

It is possible to extend the construction of the phase space before reduction in the case
where the source manifold in PSM has genus. More precisely, adding a handle to the disc
(that is homeomorphic to a punctured torus) gives rise to a relational symplectic groupoid

2Here, as before, we abuse the language and we call the categroid Poiss
Ext a category. The functors

that determine the equivalence are defined with respect to the partial composition of morphisms.
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with a handle, that is, an extension of the relational symplectic groupoid, where Σ is a disc
with an attached handle. This extension includes singularities for the defining spaces Li

and their reductions Li. More precisely, the construction of L1 in the Example 3.6.4 must
be adapted to the presence of non trivial holonomies around the boundary circle. It can
be checked that, for example, in the case of su(2), the reduced space L1 would correspond
to the union of the zero section of the cotangent bundle T ∗(G/G), where G = SU(2) and
a cotangent fiber for G/G (modulo the action of the Weyl group) at the point 1.
In the case of g = SU(3), it is conjectured that the reduction of L1 would correspond
to the union of zero-section of T ∗(G/G), the conormal bundle N∗(K/G), where K is a
codimension 1 submanifold of G = SU(3) and a full cotangent fiber for G/G at 1.

Relational groupoids, symplectic microgeometry and double groupoids

One possible extension of this work is to study the construction of the relational symplec-
tic groupoid in a different version of the symplectic category, where the space of objects
and morphisms are replaced by certain equivalence classes which encode local informa-
tion, this point of view follows the work of Cattaneo, Dherin and Weinstein on what is
called symplectic microgeometry (see [14, 15, 16]).
Also related, relational symplectic groupoids could be compared with the recent notion
of symplectic hopfoid developped by Cañez in his doctoral thesis [10], as an attempt to
undertsand the concept of symplectic stacks and the cotangent functor. The version of the
relational symplectic groupoid in higher categorical terms, i.e. considering a more general
notion for immersed canonical relations that allows defining 2− morphisms,, could be
compared with already existing objects such as double symplectic groupoids [10, 42].
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Appendix A

Dirac structures

This Appendix includes some notions and definitions for Dirac structures, in a way to
deal at the same time with pre-symplectic and Poisson structures. The content is quite
standard; it is mainly based on [8], where a more detailed overview is done, and includes
the extension of the notions of Poisson maps for Dirac structures, important for the
discussion in Chapter 3.

A.1 Definitions and examples

Definition A.1.1. The generalized tangent bundle is defined as

TM := TM ⊕ T ∗M

and it is equipped with natural projections

prT : TM → TM, prT ∗ : TM → T ∗M.

In addition, the generalized tangent bundle is equipped with a non degenerate, symmetric
fiber wise linear form 〈, 〉 defined by

〈(X,α), (Y, β)〉 := β(X) + α(Y ),

whereX, Y ∈ TxM,α, β ∈ T ∗
xM . It is also endowed with the Courant bracket [[·, ·]] : Γ(TM)×

Γ(TM)→ Γ(TM), defined by

[[(X,α), (Y, β)]] = ([X, Y ],LXβ − LY α +
1

2
d(α(Y )− β(X))).

Definition A.1.2. A Dirac structure on M is a vector subbundle L ⊂ TM such that
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1. L is maximally isotropic, i.e. L = L⊥, with respect to 〈·, ·〉.

2. L is involutive w.r.t. the Courant bracket, i.e. [[Γ(L),Γ(L)]] ⊂ Γ(L).

Some natural examples for Courant structures are Poisson and plesymplectic structures
where the subbundles L are controlled by the bivector Π and the 2-form ω respectively.

Example A.1.3. (Poisson structures). A bivector field Π ∈ Λ2(TM) induces a sub-
bundle of TM given by the graph of the map

Π♯ : T ∗M → TM,

namely,
LΠ := {(Π♯(α), α) | α ∈ T ∗M}.

It can be checked that LΠ is involutive if and only if the bivector field Π is Poisson.
Therefore, a subbundle L determines a Poisson structure if and only if LΠ ∩ TM = {0}.

Example A.1.4. (Pre-symplectic structures). A 2-form ω ∈ Ω2(M) induces a sub-
bundle of TM determined by the graph of the bundle map

ω♯ : TM → T ∗M,

i.e.
Lω := {(X,ω♯(X)) | X ∈ TM.}

It can be checked that in this case L is involutive if and only if dω = 0, i.e. ω is pre-
symplectic. Analogously, a involutive subbundle L determines a presymplectic structure
if and only if L ∩ T ∗M = {0}.

Example A.1.5. (Regular foliations). Consider a regular distribution D ⊂ TM , that
is equivalent to consider a subbundle of TM . Define

LD = D ⊕D◦,

where D◦ ⊂ T ∗M denotes the annihilator of D. Then, by definition, LD is maximally
isotropic and the fact that LD is involutive in the Dirac sense is equivalent to the fact
that the distribution D is involutive with respect to the Lie bracket on vector fields and
by Frobenius Theorem, it is equivalent to the integrability of D.
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A.2 Morphisms of Dirac manifolds

This section describe the notion of morphisms compatible with Dirac structures, as a
way to generalize the notion of Poisson map (which is covariant) and symplectomorphism
(which is contravariant). This leads to the notion of forward and bacward Dirac maps.
First of all, we study the linear case. Observe that a Dirac structure on a vector space V
corresponds to a Lagrangian subspace L ⊂ V ⊕V ∗ with respect to the natural symmetric
pairing

〈(v1, α1), (v2, α2)〉 = α2(v1) + α1(v2).

Now, consider a linear map φ : V → W. Given a 2- form ω ∈ ∧2W ∗, this can be pulled
back to V via φ:

φ∗ω(v1, v2) = ω(φ(v1), φ(v2)),

where vi ∈ V . In a similar fashion, a bivector Π ∈ ∧2V can be pushed forward to W via
φ:

φ∗Π(β1, β2) = Π(φ∗β1, φ
∗β2),

where βi ∈ W
∗. The analogue for this behavior in the Dirac world is the following

Definition A.2.1. Let LW be a Dirac structure on W ⊕W ∗. The backward image of
LW under φ is defined by:

Bφ(LW ) := {(v, φ∗β) | (φ(v), β) ∈ LW} ⊂ V ⊕ V ∗.

In a similar way, let LV be a Dirac structure on V ⊕ V ∗. The forward image of LV under
φ is given by:

Fφ(LV ) := {(φ(v), β) | (v, φ
∗β) ∈ LV } ⊂ W ⊕W ∗.

It can be proven that

Proposition A.2.2. [8]. Bφ(LW ) and Fφ(LV ) are Dirac structures.

The global version of this Definition corresponds to the notion of backward and forward
Dirac map.

Definition A.2.3. Let (M,LM) and (N,LN) be Dirac manifolds and φ : → N be a
smooth map. φ is called a backward Dirac map if LM coincides with Bφ(LN), i.e.

(LM)x = Bφ(LN)x = {X, dφ∗(β) | (dφ(X), β) ∈ (LN)φ(x),}, ∀x ∈M.

Definition A.2.4. The map φ is called a forward Dirac map if φ∗LN (the pullback of
LN to N) coincides with Fφ(LM), that means

(LN)φ(x) = Fφ(LM)x = {(dφ(X), β) | (X, dφ∗(β)) ∈ (LM)x}, ∀x ∈M.
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