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Abstract. Symplectic integrators are numerical integration schemes for

hamiltonian systems. The integration step is an explicit symplectic map.

We find symplectic integrators using universal exponential identities or

relations among formal Lie series. We give here general methods to com-

pute such identities in a free Lie algebra. We recover by these methods

all the previously known symplectic integrators and some new ones. We

list all possible solutions for integrators of low order.

1 Introduction

Lie series and Lie transformations have found many applications, particularly
in celestial mechanics (see [3]) or in hamiltonian perturbation theory (see for
example [2, 4, 6]). These techniques have the advantage of providing explicit
approximating systems that are also hamiltonian.

In hamiltonian mechanics, it is often important to know the time evolution
mapping, that is to say the position of the solution after a certain given time.
In celestial mechanics, long integrations have mostly used high order multistep
integration methods. A disadvantage of such methods is that the error in position
grows quadratically in time or linearly with symmetric integrators.

For very long time integration, there has been recently a development of
numerical methods preserving the symplectic structure (see for example [7, 14,
15, 16]), which seem to be more efficient with respect to the computational cost.

Symplectic integrators may be seen as the time evolution mapping of a
slightly perturbed Hamiltonian, that is to say as a Lie transformation that can
be represented either by an exponential, a product of increasing order single
exponentials or a proper Lie transformation. Constructing explicit high order
symplectic integrators requires the manipulation of formal identities like expo-
nential identities.

In section 2., we give some general methods to manipulate formal Lie series
and Lie algebra automorphisms. We recall some theorems related to exponential
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identities and give explicit methods to compute them. They make use the Lyndon
basis, which is particularly adapted to this problem.

In section 3., we recall first some definitions of the Hamilton formalism.
Then we show how the algorithms described in section 2. provide symplectic
integrators. The idea of such constructions originates in Forest & Ruth ([7]) or
more recently Yoshida ([16]). Our approach in this paper is to combine the use
of proper Lie transforms and exponentials. This avoids many unnecessary direct
calculations of exponential indentities. At the end we propose some improvement
in the case when the Hamiltonian is seperated into kinetic and potential energies.

All the algorithms described in the present paper have been implemented
using Axiom (NAG) running on IBM-RS/6000-550.

2 Lie algebraic formalism

In hamiltonian mechanics, the use of Lie methods or Lie transformations is
efficient when it becomes easy to manipulate Lie polynomials and to express
exponential identities like the Baker-Campbell-Hausdorff formula. Our aim in
this section is to give general methods for the computation of such identities.

These identities are universal Lie algebraic identities, that is to say they do
not depend on the Lie algebra we work in or the Lie bracket we use. We work
in free Lie algebras and with formal Lie series, neglecting all the convergence
problems that can appear with analytical functions for example.

We will use the Lyndon basis for the formal computations but all the iden-
tities can be later evaluated in any Lie algebra.

2.1 Definitions

In this paper X will denote an alphabet, that is to say an ordered set (possibly
endless).

R is a ring which contains the rational numbers Q.
X∗ is the free monoid generated by X . X∗ is totally ordered with the lexi-

cographic order.
M(X) is the free magma generated by X . Having defined M1(X) as X , we

define Mn(X) by induction on n:

Mn(X) =
⋃

p+q=n

Mp ×Mq and M(X) =
⋃

n≥1

Mn(X). (1)

AR(X) is the associative algebra, that is to say the R-algebra of X∗.
A Lie algebra is an algebra in which the multiplication law [, ] is bilinear,

alternate and satisfies the Jacobi identity:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0. (2)

LR(X) or L(X) is the free Lie algebra on X . It is defined as the quotient
of the R-algebra of M(X) by the ideal generated by the elements (u, u) and
(u, (v, w)) + (v, (w, u)) + (w, (u, v)).
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An element of M(X) considered as element of L(X) will be called a Lie
monomial. Ln(X) is the free module generated by those of length n. Thus L(X)
is graded by the length denoted by |x| for x ∈ M(X). If |X | = q < ∞ we have
Witt’s formula (see [1, 9, 10]):

∑

d|n
d dimLd(X) = qn. (3)

2.2 Formal Lie series

Given a weighted alphabet X in which each letter a has an integer weight |a|∗,
we take as graduation for L(X) the weight ||∗ which is defined as the unique

extension of the weight in X . We call L̃n(X) (resp. Ãn(X)) the submodule of
L(X) (resp. A(X)) generated by the elements of weight n. We define the formal
Lie series L̃(X) and Ã(X) as

L̃(X) =
∏

n≥0

L̃n(X) and Ã(X) =
∏

n≥0

Ãn(X). (4)

We will write x ∈ L̃(X) as a series
∑

n≥0 xn. L̃(X) is a complete Lie algebra
with the Lie bracket

[x, y] =
∑

n≥0

∑

p+q=n

[xp, yq]. (5)

Denoting by L̃(X)+ (resp. Ã(X)+) the ideal of L̃(X) (resp. Ã(X)) gener-
ated by the elements of positive weight, we can define the exponential and the
logarithm as

exp : Ã(X)+ → 1 + Ã(X)+ log : 1 + Ã(X)+ → Ã(X)+

x 7→
∑

n≥0

xn

n!
x 7→ −

∑

n≥1

(1− x)n

n!
.

(6)

They are mutually reciprocal functions and we have (see [1, Ch. II, §5]) the

Theorem 1 (Campbell-Hausdorff). If x, y ∈ L̃(X)+ then

log [exp(x) exp(y)] ∈ L̃(X)+. (7)

More precisely, we have the following

Lemma2. Given x, y ∈ L̃(X)+, we have

— exp(x) exp(y) = exp(z) where z ∈ L̃(X)+,
— z = zp + zq +

∑

n≥p+q zn and zp + zq = xp + yq,

— zm ∈ L̃m (xp, . . . , xm, yq, . . . , ym) for m ≥ p+ q.

Using the preceding lemmas we deduce (see [12]) the
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Proposition3 (Factored product expansion). Given k ∈ L̃(X)+, there is
a unique series g ∈ L̃(X)+ such that

exp(
∑

n≥1kn) = · · · exp(gn) · · · exp(g1). (8)

The above proposition is proved by induction, constructing g ∈ L̃(X) and k(p) ∈
∏

n>p L̃n(X) such that, for each p ≥ 1,

exp(k) = exp(k(p)) exp(gp) · · · exp(g1). (9)

2.3 Lie series automorphisms

We denote for x in L̃(X) by L(x) or Lx, the Lie operator Lxy = [x, y]. From the
Jacobi identity (2) we have [Lx, Ly] = L[x,y], in which [, ] denotes the commuta-
tor. The set of Lx is a Lie algebra that we call the adjoint Lie algebra. For any
Lie series automorphisms T , we have by definition [Tf, T g] = T [f, g]. The Lie
series automorphisms act on the adjoint Lie algebra by

TLfT
−1 = LTf . (10)

Let us give now some example of Lie transformations that play an important
role in hamiltonian mechanics.

The exponential. Given x ∈ L̃(X)+, we consider exp(Lx) defined as

exp(Lx)y =
∑

i≥0

Li
x

i!
y. (11)

From the Jacobi identity (2), we have by induction on k ≥ 0, for any f, g, h ∈
L̃(X)+

Lk
f [g, h] =

k
∑

i=0

(

k
i

)

[

Li
fg, L

k−i
f h

]

.

We therefore deduce that

exp(Lf )[g, h] =
∑

n≥0

1

n!

n
∑

p=0

(

n
p

)

[

Lp
fg, L

n−p
f h

]

=
∑

p+q≥0

1
p+q!

p+q!
p!q!

[

Lp
fg, L

q
fh

]

= [exp(Lf)g, exp(Lf )h]. (12)

Thus, for each x ∈ L̃(X), exp(Lx) is a Lie algebra automorphism. From the
Campbell-Hausdorff theorem (1), the set of all exp(Lx) is a group G that we
will call the Lie transformations group.
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The Lie transform. Using (10) and
d

dt
exp(tLx) = Lx exp(tLx), we obtain the

following identity:

d

dt
exp(tLx) exp(tLy) = L [x+ exp(tLx)y] exp(tLx) exp(tLy). (13)

The map S(t) = exp(tLx) exp(tLy) ∈ G is the solution of (13). For a given
z, the solution of d

dt
S = LzS is not necessarily exp(tLz) as z may depend

on t, but is known as the inverse Lie transformation associated to
∫

t
zdt. For

w =
∑

n≥1 t
nwn, Tw and T−1

w are the solution ([3]) of

d

dt
Tw = −TwL dw

dt

and
d

dt
T−1w = L dw

dt

T−1
t . (14)

For g ∈ L̃(X), we have (see [2, 3]) G =
∑

n≥0 Gn = T−1
w g where

G0 = g0, G0,n = gn, Gp,q =

p
∑

k=1

k
p
[wk, Gp−k,q ], Gn =

n
∑

p=0

Gp,n−p. (15)

The Dragt-Finn transform. There is another transformation that plays an
important role in the Lie transformations theory that is called the Dragt-Finn
transform and is an infinite product of exponential maps (see [4]).

Given g =
∑

n≥1 gn, we define Mg and M−1
g as

Mg = exp(−Lg1) · · · exp(−Lgn) · · · and M−1
g = · · · exp(Lgn) · · · exp(Lg1).(16)

Using proposition 3, we express the exponential of a Lie operator as a Dragt-
Finn transform.

2.4 Relations between the exponential and the Lie transform.

The three above transformations are totally defined by generating series which
satisfy the following :

Proposition 4. Given w, k, g ∈ L̃(X)+, there exist

— k′ ∈ L̃(X)+ with k′n − wn ∈ LQ(w1, . . . wn−1) such that exp(Lk′) = T−1
w ,

— g′ ∈ L̃(X)+ with g′n − kn ∈ LQ(k1, . . . kn−1) such that M−1
g = exp(Lk),

— w′ ∈ L̃(X)+ with w′
n − gn ∈ LQ(g1, . . . gn−1) such that T−1

w = M−1
g .

We first prove the third part of the above proposition.
Given M−1

g (t) = · · · exp(tnLgn) · · · exp(tLg1), we have using (10)

d

dt
Mg =

∑

n≥1

[

e−tLg3 · · · e−tn−1Lgn−1

]

[

d

dt

[

e−tnLgn

]

]

[

e−tn+1Lgn+1 · · ·
]

=
∑

n≥1

[

e−tLg3 · · · e−tn−1Lgn−1

] [

−ntn−1Lgne
−tnLgn

] [

e−tn+1Lgn+1 · · ·
]
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= Mg

∑

n≥1

M−1
g

[

e−tLg3 · · · e−tn−1Lgn−1

]

[

−ntn−1Lgn

]

[

e−tnLgn · · ·
]

= Mg

∑

n≥1

[

· · · et
nLgn

]

[

−ntn−1Lgn

]

[

e−tnLgn · · ·
]

= MgL





∑

n≥1

−ntn−1
[

· · · et
nLgn

]

gn



 . (17)

On the other hand, from (14), we have d
dt
Tw = −TwL dw

dt

. With the initial con-

ditions Tw(0) = Mg(0) = Id, we deduce that Tw = Mg iff

dw

dt
=

∑

n≥1

tn−1









n
∑

k=1

k
∑

(k+1)mk+1+···

+(n−k)mn−k=n−k

L
mn−k
gn−k · · ·L

mk+1
gk+1

mk+1! · · ·mn−k!
gk









, (18)

or equivalently

wn =

n
∑

k=1

k

n

∑

(k+1)mk+1+···

+(n−k)mn−k=n−k

L
mn−k
gn−k · · ·L

mk+1
gk+1

mk+1! · · ·mn−k!
gk = gn +Gn (19)

in which Gn ∈ L(g1, . . . , gn−1).
Using the proposition 3, one proves the existence of g =

∑

n≥1 gn such that

exp(
∑

n≥1Lkn
) = · · · exp(Lgn) · · · exp(Lg1), (20)

in which gn = kn + Kn and Kn ∈ LQ(k1, . . . , kn−1). Combining (19) and (20)
we deduce (4).

⋆⋆⋆

We deduce in passing that any Lie transformation T ∈ G may be expressed
as an exponential of a Lie operator or as an infinite product of single exponentials
or as a proper Lie transform. The use of a representation depends deeply on the
result we look for. For example, if we have to compose transformations, it is
much easier to consider Lie transforms because their product is a Lie transform
whose generating function appears easily from (13).

2.5 Computing the relations.

In order to compute the relations between the generating series we try to solve
at each order

exp(Lk)a = T−1
w a. (21)

We first have the following lemma resulting from the expansion of the exponential
or the Lie transform (15)
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Lemma5. Let T = exp(Lk) (resp. T = T−1
w ) and A =

∑

n An = Ta, then
for each n ≥ 0, An = −[a, kn] + Kn (resp. An = −[a, wn] + Wn) in which
Kn ∈ L(a, k1, . . . kn−1) (resp. Wn ∈ L(a, w1, . . . wn−1)).

In order to compute the relations, we need a basis of the free Lie algebra
L(X). We propose here the use of the Lyndon basis that has many useful prop-
erties.

Basis of the free Lie Algebra. Given w = uv a word of X∗, we will say
that u and v are left factor and right factor respectively. For any u, v ∈ X∗, uv
and vu are said conjugate and therefore X∗ is divided in conjugate classes. The
minimal element of each conjugate class is called a Lyndon word. The set L of
Lyndon words satisfies many properties like (see [10])

Lemma6. w ∈ L iff there exist u < v ∈ L such that w = uv.

Unfortunately a Lyndon word may be decomposed in many ways. For ex-
ample aabb = a.abb = aab.b. For l < m and lm ∈ L, we call σ(lm) = (l,m)
the standard factorization of lm when |m| is maximal. Therefore, we define a
one-to-one correspondence between L and the Lyndon brackets L ⊂ M(X). We
define

— Λ : L → L ⊂ M(X) by: Λ(a) = a if a ∈ X otherwise Λ(lm) = (Λ(l), Λ(m))
if σ(lm) = (l,m).

— δ : M(X) → X∗ as the canonical application of unparenthesing.

Denoting L ∩Mn(X) by Ln(X), we have (see [10]) the following

Theorem 7. Ln(X) is a basis of Ln(X).

Construction of the basis. One of the main properties is that (see [10])

Lemma8. if u < v ∈ L then [u, v] ∈ L iff |u| = 1 or u = [u1, u2] < v ≤ u2.

One can now built the Lyndon basis as follows:

L1(X) = X,

L2(X) = {[x, y];x < y ∈ L1} ,

Ln(X) =
⋃

x∈L1(X)

{[x, y]; y ∈ Ln−1(X), x < y} (22)

⋃

n
⋃

p=2

⋃

x∈Lp(X)

{[x, y]; y ∈ Ln−p(X), [x1, x2] = x < y ≤ x2} . (23)

If L1 is well sorted then the
⋃

in (23) are disjoint and the results are sorted.
The knowledge of the basis is actually not very useful to work in the free Lie
algebra except in some specific cases that will occur in the last section.
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Decomposition onto the basis. We give here an algorithm for writing a Lie
polynomial in terms of Lyndon brackets. This algorithm (see [10]) is also a proof
that the Lyndon brackets generate the free Lie algebra.

Given two polynomials that are linear combinations of Lyndon brackets
p =

∑

i αipi and q =
∑

i βiqi, we have p ∗ q =
∑

i,j αiβjmult(pi, qj) in which
mult(a, b) denotes the decomposition of [a, b] onto the Lyndon basis. The point
is to know how to multiply two Lyndon brackets. We will use the algorithm
proposed by Perrin [10]. Implementations have been realized by Petitot [11] and
myself more recently.

if u = v then mult(u, v) := 0
else if v < u then mult(u, v) := −mult(v, u)
if |u| = 1 then mult(u, v) := 1.[u, v]
else u = [u1, u2] if v ≤ u2 then mult(u, v) := 1.[u, v]

else mult(u, v) := 1.u1 ∗ mult(u2, v) + mult(u1, v) ∗ 1.u2 .

2.6 Solving triangular systems

We deduce from the lemma 8 the following useful

Lemma9. Let X = {a}
⋃

X1 where a < b for each b ∈ X1. Then for each
x =

∑

i αixi ∈ L(X1), the decomposition of [a, x] onto the Lyndon basis of L(X)
is [a, x] =

∑

i αi[a, xi].

This lemma shows that the injective mapping

L(X1) → L({a}
⋃

X1) (24)

x 7→ (a, x) (25)

may be extended to La : L(X1) → L({a}
⋃

X1). This property is specific to the
Lyndon basis.

⋆⋆⋆

With this lemma, (21) becomes a triangular system in form



















[a, k1] = [a, w1]
[a, k2] +K2 = [a, w2] +W2

...
...
...

[a, kn] +Kn = [a, wn] +Wn

, (26)

in which Ki−Wi ∈ LQ(a, k1, · · · , ki−1, w1, · · · , wi−1). This system can be solved
by successive evaluations of the ki’s (resp. wi’s) using the the factorization lemma
9. The relation (19) cannot be generated using equation (21) and the Hall basis.

⋆⋆⋆
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This method may be used in order to express any T ∈ G as an exponential
or as the inverse of a Lie transform. Let A = Ta =

∑

n≥0 An. We formally

compute for example E = exp(Lk)a =
∑

n≥0 En ∈ L̃(a, k1, . . . , kn, . . .). We
therefore obtain the following triangular system



























A0 = E0 = a
A1 = E1 = −[a, k1]
A2 = E2 = −[a, k2] +R2

...
...

...
An = En = −[a, k1] +Rn

(27)

that may be solved by the factorization lemma (9) as the system is consistent.
This method can also be applied for the computing of any relation between

generating series in G like the Baker-Campbell-Hausdorff formula. For example
we found at the order 6

log [expx exp y] = x+ y − 1
2 [x, y] + 1

12 [x, [x, y]] + 1
12 [[x, y], y]

− 1
24 [x, [[x, y], y]]− 1

720 [x, [x, [x, [x, y]]]] + 1
180 [x, [x, [[x, y], y]]]

+ 1
180 [x, [[[x, y], y], y]] + 1

120 [[x, y], [[x, y], y]] + 1
360 [[x, [x, y]], [x, y]]

− 1
720 [[[[x, y], y], y], y] + 1

1440 [x, [x, [x, [[x, y], y]]]]

− 1
360 [x, [x, [[[x, y], y], y]]]− 1

240 [x, [[x, y], [[x, y], y]]]

− 1
720 [x, [[x, [x, y]], [x, y]]] + 1

1440 [x, [[[[x, y], y], y], y]]

Given w =
∑

n≥1 wn, we have at the order 6 exp(Lk) = T−1
w in which

k = w1 +w2 +w3 −
1
6 [w1, w2] +w4 −

1
4 [w1, w3] +w5 −

3
10 [w1, w4]−

1
10 [w2, w3]

+ 1
120 [w1, [w1, w3]] +

1
60 [[w1, w2], w2] +

1
360 [w1, [w1, [w1, w2]]] + w6

− 1
3 [w1, w5]−

1
6 [w2, w4] +

1
60 [w1, [w1, w4]] +

1
30 [w1, [w2, w3]]

+ 1
24 [[w1, w3], w2] +

1
240 [w1, [w1, [w1, w3]]]−

1
180 [w1, [[w1, w2], w2]]

3 Hamiltonian formalism

An hamiltonian system is the given of a phase space E which can be identified
to IR2n, a set of variables

(q, p) = (q1, . . . , qn, p1, . . . , pn) = (z1, . . . , z2n), (28)

and an Hamiltonian h = h(p, q, t). We consider the system of differential equa-
tions

ṗi = −
∂h

∂qi
, q̇i =

∂h

∂pi
, 1 ≤ i ≤ n, (29)
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where ż = dz
dt

denotes the total time derivative. Introducing the Poisson bracket

{f, g} =

n
∑

i=1

∂f

∂pi

∂g

∂qi
−

∂g

∂pi

∂f

∂qi
(30)

that turns the set of smooth functions on E onto a Lie algebra, (29) becomes

żi = {zi, h} = −Lhzi, 1 ≤ i ≤ 2n, (31)

and for any function f on the phase space we get

ḟ = ∂f
∂t

+ {f, h} = −Lhf + ∂f
∂t

(32)

along the trajectories. In particular, if h is not time-dependent, it is a first
integral of the system.

From the Jacobi identity (2), we deduce that [Lf , Lg] = L{f,g}, where [, ]
denotes the commutator.

A transformation on the phase space E is said canonical if it preserves the
Poisson brackets. Such transformations are also called symplectic as their Jaco-
bians belong to the symplectic group. One extends the canonical transformations
on the functions on the phase space by Tf(z) = f(T (z)). Canonical transforma-
tions act on the Lie algebra of the Lie operators by TLfT

−1 = LTf .

3.1 Time-evolution mapping

A canonical transformation appearing in hamiltonian mechanics is the time-
evolution mapping Sh(t) : z 7→ z(t). From (31), Sh(t) is the solution of the
differential equation

d

dt
Sh(t) = −Sh(t)Lh, Sh(0) = Id. (33)

If h is not time-dependent we have Sh(t) = e−tLh and a formal solution of
(31) is given by its Taylor series, called Lie series

z(t) =
∑

n≥0

tn
Ln
h

n!
z. (34)

For example, if h = ω
2 (p

2 + q2), then

Sh(t) =

(

cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)

.

If h is time-dependent, say for example h =
∑

n≥0 t
nhn, then Sh(t)z may

be written as a Lie series and from proposition (4), there exists k =
∑

n≥0 t
nkn

such that Sh(t) = e−tLk . Furthermore, we have an algorithm to compute k. k
is an invariant function of the system but is not the Hamiltonian governing the
system.



P.-V. Koseleff 11

3.2 Discrete integration

h is not necessarly as simple as above and it may be quit hard to calculate Sh(t)
so we try to calculate truncated Lie series or approximating solutions by discrete
integration.

The Euler scheme to integrate (29) on the path τ is the mapping

(

q

p

)

→

(

qτ
pτ

)

=

(

q

p

)

+ τ

( ∂h
∂p

−∂h
∂q

)

(35)

which is generally not symplectic. When h = ω
2 (p

2 + q2) we obtain the mapping

(

pτ
qτ

)

=

(

1 −ωτ
ωτ 1

)(

p
q

)

(36)

which is not symplectic since its determinant equals 1 + ω2τ2. Furthermore at
each step τ , the energy grows by a factor 1 +ω2τ2. As the total energy is a first
integral for the hamiltonian system, it is obvious that the difference between
the exact solution and the discrete solution (36) grows secularly. Moreover the
product S(t) of the two symplectic transformations







p −→ p− τ
∂H

∂q
q −→ q

and







p −→ p

p −→ p+ τ
∂H

∂p

. (37)

is symplectic. With h = ω
2

(

p2 + q2
)

, the previous operator becomes

S(τ) =

(

1− ω2τ2 ωτ
−ωτ 1

)

. (38)

3.3 Symplectic schemes

The case when h = T (p) + V (q) is a sum of a kinetic energy and a potential
plays an important role. Let us denote by ST (t) = e−tLT and SV (t) = e−tLV the
time-evolution mappings associated to T and V respectively. As {V, p} depends
on q and {T, q} depends on p, we have

ST (t)p = p, ST (t)q = q + t
∂T

∂p
, SV (t)p = p− t

∂V

∂q
, SV (t)q = q. (39)

On the other hand, we have through the Baker-Campbell-Hausdorff formula

S(t) = ST (t)SV (t) = e−t(LT+LV )+
t2

2 L{T,V }+o(t2) = Sh(t) + o(t) (40)

that is to say S(t) is a linear symplectic map close to the time evolution mapping.
The main idea is to construct for given n and k, S(n)(t) = Sh(t) + o(tk) as

S(n)(t) = ST (c1t)SV (d1t) · · ·ST (cnt)SV (dnt). (41)
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For a given integration step, we then obtain a series of transformations

q0 = q, p0 = p, pi+1 = pi − di
∂V

∂q
(qi), qi+1 = qi + ci

∂T

∂p
(pi+1) (42)

and pτ = pn, qτ = qn are computed after n evaluations of
∂T

∂p
and

∂V

∂q
.

3.4 Symplectic Integrators

Let us consider an Hamiltonian H = A + B, the two maps SA(t) = e−tLA and
SB(t) = e−tLB , and a given integer k, one seeks a minimal set of coefficients
c1, . . . , cn, d1, . . . dn, such that

SA(c1t)SB(d1t) · · ·SA(cnt)SB(dnt) = e−tLH + o(tk). (43)

Direct method: This can be reformulated, looking for c1, . . . , cn, d1, . . . dn,
such that

SA(c1t)SB(d1t) · · ·SA(cnt)SB(dnt)z = e−tLHz + o(tk). (44)

At each order p, let us consider L̃p(z, A,B), in which |z|∗ = 0, |A|∗ = |B|∗ = 1.
The part of order tp of the left hand side of (43) belongs to the subspace of
L̃p+1(z, A,B) generated by the Lie monomials in which z appears once. The
dimension of this subspace is 2p.

Invariant function: The problem (43) is equivalent to the finding of an
invariant function K(t) = H + o(tk−1) such that

SA(c1t)SB(d1t) · · ·SA(cnt)SB(dnt) = e−tK . (45)

Using the Baker-Campbell-Hausdorff formula, one express K =
∑

n≥0 t
nKn+1

onto L̃(A,B), in which |A|∗ = |B|∗ = 1.Kp belongs to L̃p(A,B) which dimension
is given by Witt’s formula.

Perturbed Hamiltonian: The problem (43) is also equivalent to the finding
of an Hamiltonian W (t) = H + o(tk−1) such that

SA(c1t)SB(d1t) · · ·SA(cnt)SB(dnt) = SW . (46)

Using (13) and (14), one can express W (t) =
∑

n≥0 t
nWn+1 in L̃(A,B). With

this method, there is no need to calculate any exponential identity. We have to

bear in mind that SW (t) = TW̃ in which dW̃
dt

= W .

⋆⋆⋆

Using the third method, one gets the four first symplectic integrators.

– For k = 1 one has two linear equations and a solution is c1 = d1 = 1
– For k = 2 the solution is reached for n = 2 and c1 = c2 = 1

2 , d1 = 1. We thus
obtain the second-order symplectic integrator S2 = SA(

t
2 )SB(t)SA(

t
2 ).
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– For k = 3, we get after reduction

d2 + 2c1 = 1, d1 − 2c1 = 0, c3 + c1 = 1
2 , c2 = 1

2 , c
2
1 −

1
2c1 +

1
12 = 0. (47)

We thus have 2 complex solutions involving 5 factors. A real solution with
6 factors is for example (see also [7])

c1 = −c2 = 2
3 , d3 = 1

24 , d2 = − 3
4 , d1 = − 7

24 , c3 = 1. (48)

– For k = 4, we get after reduction by some Gröbner package implemented in
Axiom







































d3 + 288 c41 − 312 c31 + 96 c21 − 14 c1 +
1
2 = 0

d2 − 288 c41 + 312 c31 − 96 c21 + 16 c1 −
3
2 = 0

d1 − 2 c1 = 0
c4 + 144 c41 − 156 c31 + 48 c21 − 7 c1 +

1
4 = 0

c3 + c1 −
1
2 = 0

c2 − 144 c41 + 156 c31 − 48 c21 + 7 c1 −
3
4 = 0

c51 −
5
4 c41 +

13
24 c31 −

1
8 c21 +

1
64 c1 −

1
1152 = 0

. (49)

The last polynomial is factorized over Q in (c21−
1
4 c1+

1
24 )(c

3
1−c21+

1
4 c1−

1
48 ).

Taking c1 as one of the complex roots of c21 −
1
4 c1 +

1
24 = 0, one finds

d3 + 2 c1 = 1
2 , d2 = 1

2 , d1 = 2 c1, c4 + c1 = 1
4 , c3 + c1 = 1

2 , c2 − c1 = 1
4 (50)

or equivalently

c4 = c̄1, c3 = c̄2 = 1
2 − c1, d3 = d̄1 = 2c̄1, d2 = 1

2 . (51)

Taking c1 as root of c31 − c21 +
1
4 c1 −

1
48 = 0, for example c1 = 1

2( 3√2−1)
, one

gets

d3 = d1 = 2c1, d2 = 1− 4c1, c4 = c1, c2 = c3 = 1
2 − c1. (52)

We found all the solutions for this integrator. The 3 above were already
known.

– This method cannot be applied for k = 6 as the set of equations is too big.
There is no integrator with less than 13 factors, as tested with the Macaulay
package.

The real valued integrators for k = 2 or 4 are reversible, that means S(−t) =
S−1(t).
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3.5 Reversible Integrators

Representing a reversible integrator S(t) by an exponential exp(−tLK), we de-
duce that K(t) = K(−t). Looking for reversible integrators, we can deduce from
the Campbell-Hausdorff formula the

Lemma10 ([13]). If S2k(t) is a reversible symplectic integrator of order 2k,
then

S(t) = S2k

(

1

2− 2k+1√2
t
)

S2k

(

−
2k+1

√
2

2− 2k+1√2
t
)

S2k

(

1

2− 2k+1√2
t
)

is a reversible symplectic integrator of order 2k + 2.

This lemma allows us to built reversible symplectic integrators of order 2k as
products of 2.3k−1 + 1 single operators SA or SB. With this method we should
find a sixth-order integrator as a product of 19 operators.

⋆⋆⋆

One can try to find directly reversible integrators looking for

S
(n)
R (t) = SA(cnt)SB(dnt) · · ·SA(c1t)SB(dnt)SA(c0t)SB(d1t)SA(c1t) · · ·

SB(dnt)SA(cnt)
that we can express as an exponential or a Lie transform.

Representing S
(n)
R as an exponential e−tLK has the advantage that K(t) =

K(−t). Moreover we have the following lemma resulting from (4)

Lemma11. If S
(n)
R = e−tLK = TtW with h = K + o(t2k−2) = W + o(t2k−2),

then W = h+ o(t2k−1).

As S
(n)
R is reversible, K(t) = A + B +

∑

n≥k t
2nK2n+1. From the proposition

(4), we have W (t) = A + B +
∑

n≥2k−1 t
nWn+1 in which 2kW2k = K2k + R2k

and R2k ∈ L̃Q[c0,...,cn,d1,...,dn]{K1, . . . ,K2k−1}. As K2 = K3 = · · · = K2k = 0,
we deduce that W2k = 0.

This lemma proves that there is no need to consider odd terms of the Hamil-
tonian obtained with reversible integrators.

– For k = 4, one finds 3 reversible integrators obtained with the direct method.
– For k = 6, one proves that there is no solutions for n < 8. For n = 8, one

sees, using the Hilbert function implemented in Macaulay, that the variety
of solutions in ZZ/pZZ (p = 31991) is constituted of 39 points. There is at
most 39 algebraic solutions over Q.

⋆⋆⋆
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Another solution has been proposed by Yoshida [16] consisting in the finding
of reversible integrators as reversible product of second-order integrators S2. We
look for

S(n)(t) = S2(cnt) · · ·S2(c1t)S2(c0t)S2(c1t) · · ·S2(cnt) = e−tL
K(n) . (53)

Since S2 is reversible we have S2(t) = exp(−tLk) where

K = K1 + t2K3 + t4K5 + t6K7 + t8K9 + o(t10). (54)

We work now on the free Lie algebra on the alphabet X = {K1,K3,K5,K7,K9}
in which |Ki|∗ = i. We therefore have

K(0) = c0K1 + t2c30K3 + t4c50K5 + t6c70K7 + t8c90K9 + o(t10). (55)

Bearing in mind that K(n) has only odd terms and belongs to L̃(X), we will
compute:

— the Lyndon basis of L2n+1(X) denoted by K1,1,K3,1, . . . ,K5,1, . . . ,K7,1, . . . ,
K9,1, . . .

— log
[

S2(xt)e
−tLH̃S2(xt)

]

at a given order k in which H̃ =
∑

i,j ai,jKi,j is
generic.

– For k = 4, we find the real valued reversible integrator previously found by
the direct method or using the lemma (10).

– For k = 6, we have four equations with four unknowns c0, . . . , c3. The solu-
tion is obtained after eliminations with

P0(c0) = c390 + 4 c380 − 18 c370 − 232
3 c360 + 6469

45 c350 + 8108
15 c340 − 82144

135 c330 −

239008
135 c320 + 870652

675 c310 + 5898416
2025 c300 − 618824

675 c290 − 5158016
2025 c280 +

2525372
30375 c270 + 32135888

30375 c260 − 1377776
10125 c250 − 33361568

91125 c240 + 536566
10125 c230 +

35651416
455625 c220 − 19660868

1366875 c210 − 8051504
455625 c200 + 5636474

1366875 c190 + 11313208
4100625 c180 −

17674448
20503125 c170 − 8733536

20503125 c160 + 1302268
6834375 c150 + 87632

2460375 c140 − 624184
20503125 c130 +

288448
922640625 c120 + 3333844

922640625 c110 − 716752
922640625 c100 − 127664

553584375 c90+
143264

922640625 c80−

136499
4613203125 c70 −

19996
8303765625 c60 +

117142
41518828125 c50 −

33848
41518828125 c40 +

17431
124556484375 c30 −

9668
622782421875 c20 +

656
622782421875 c0 −

64
1868347265625 = 0

and c1 = P1(c0), c2 = P2(c0), c3 = P3(c0) where P1, P2, P3 are polynomials
of degree 38. P0 is irreducible over Q and has only three real roots. Thus, we
find 36 complex integrators and 3 real valued. All the solutions are reached
with this method as there is at most 39 solutions.

– For k = 8, Yoshida ([16]) has found 5 real valued integrators using numer-
ical methods. These integrators involve 31 single integrators SA or SB. We
proved, using standard basis computed with Macaulay, that these integrators
are not products of 5 fourth-order symplectic integrators.
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3.6 Special cases

Most of the times, when h = T (p) + V (q), the kinetic energy is just a quadratic
form in p. That means that {T, V } is of degree one in p, {{T, V }, V } depends
only on q and {{{T, V }, V }, V } = 0. We can therefore hope to find symplectic
integrators of order 4 or 6 with less terms.

Unfortunately, there is no integrator of order 4 using less than 7 terms.
As {{T, V }, V } depends only on q, V1 = αV + t2β{{T, V }, V } depends only

on q and t for any α, β and we have like above

e−tLV1 p = p− t
∂V1

∂q
and e−tLV1 q = q. (56)

Denoting e−t(αLV +βt2L{{T,V },V }) by Sα,β(t) we look now for integrators S(n)

as product of

Scn,zn(t)ST (dnt) · · ·Sc1,z1(t)ST (d0t)Sc1,z1(t) · · ·ST (dnt)Scn,zn(t) (57)

or

ST (dnt)Scn,zn(t) · · ·ST (d1t)Sc0,z0(t)ST (d1t) · · ·Scn,zn(t)ST (dnt) (58)

With this method we found an integrator of order 4 as a product of 5 factors
and an integrator of order 6 as product of 9 factors.

– For the fourth-order integrator, we find as general solution

z1 +
1
2 z0 +

1
48 = 0, d1 −

1
2 = 0, c0 −

2
3 = 0, c1 −

1
6 = 0 (59)

and we can take z1 = 0, z0 = − 1
24 , d1 = 1

2 , c0 = 2
3 , c1 = 1

6 .
– For the sixth-order integrator, we find

z2 = 0, z1 −
15
16 c22 +

1
4 c2 −

1
96 = 0, z0 −

3
8 c22 −

1
4 c2 +

1
48 = 0,

d2 + 3 c2 −
1
2 = 0, d1 − 3 c2 = 0, c0 − 30 c22 + 12 c2 − 1 = 0,

c1 + 15 c22 − 5 c2 = 0, c32 −
1
2 c22 +

1
18 c2 −

1
540 = 0

Moreover the evaluation of ∂V1

∂q
requires 2 evaluations so the above integrators

require in fact 6 evaluations and 12 evaluations at each step respectively, which
is an improvement with respect to the integrators found in the general case.

⋆⋆⋆

In table 1., we give for each order and each method, the number of polynomial
equations to solve, the number of operators involved in the integrators and the
number of solutions. For the first column, D means using the direct method
(44), L means using the Lie transformations or the exponential (46) or (45),
RL means looking for reversible integrators using Lie transformations (lemma
(11)), S2 means looking for reversible products of operators S2. In the column
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Polynomials Operators Solutions

Reversible Reversible Reversible

Order D L RL S2 L RL S2 L RL S2

1 2 2 2 1 1

2 4 1 1 3 3 3 1

3 8 2 4 5 3

6 ∞

4 16 3 1 7 7 7 5-1 3-1 3-1

5 32 6 6 11? 46?

6 64 9 2 ≥ 13 15 15 39 39-3

7 128 18 18

8 256 30 4 31 ?-5

9 512 56 56

10 1024 99 8

Table 1. — Symplectic Integrators —

“solutions”, when two numbers appear, the first one is the number of solutions
and the second one the number of real solutions.

For example, in the row corresponding to the order 4, the set of algebraic
equalities contains 30 polynomials (sum in the column) with the method D,
8 polynomials with the method L, 6 polynomials with the method RL and 2
polynomials with the method S2. In the same row, one finds solutions that give
integrators of order 4 as product of 7 operators. One finds 5 solutions with the
method L (1 real solution), and 3 with the other methods. In the row corre-
sponding to the order 3, there are 3 integrators as product of 5 operators but
none is real valued and there is an infinity of real valued integrators as product
of 6 single operators.

4 Conclusion

We showed in this paper that there are exactly 5 fourth-order symplectic inte-
grators involving 7 operators. Three of them are known (see [7, 16]). We showed,
that there are exactly 39 reversible sixth-order symplectic integrators involving
15 operators. All of them are reversible products of second-order integrators.
Three of them were known ([16]). In ([16]), Yoshida has found 5 eight-order in-
tegrators involving 31 operators: here we proved that there are not reversible
products of 5 fourth-order integrators.

We have shown why the Lyndon basis is particularly adapted for computing
the relations between Lie transforms and exponentials. We also found integrators
in the case when h = T (p) + V (q) and T (p) is a quadratic form in p.
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[11] Petitot, M.: Algèbre non commutative en Scratchpad : application au
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