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RELATIONS AND TOPOLOGIES 

JOSEF SLAPAL, Brno 

(Received August 5, 1991) 

Recently, ternary relations have been intensively studied by V. Novak and M. No-

votny in a series of papers. In [6] these authors dealt with the problem of represen­

tation of ternary relations on a set G by binary relations on G3. In [7] M. Novotny 

represented the former ones by grupoids on the power set of G. In this note we in­

vestigate the possibility of representing ternary relations on a given set by topologies 

in Cecil's sense on this set. First of all, however, with any relation of type a (a an 

ordinal) we associate a topology and study these associated topologies. 

1. P R E L I M I N A R I E S 

Following the convention introduced by J. von Neumann, we identify ordinals with 

the set of their predecessors, and cardinals with their initial ordinals (see e.g. [1]). 

Let a be an ordinal and G a set. By a relation of type a on G we understand any 

subset R C Ga (where G a denotes the set of all mappings of a into G). The set G is 

then called the underlying set of It. In other words, a relation of type a on G is a set 

of sequences of type a consisting of elements of G. These relations are introduced 

and studied in [9]. The ordered pair (G, It) where G is a set and R is a relation of 

type a on G is said to be a relational system of type a. Given two relational systems 

(G, 1t), (H, S) of type a , a homomorphism of (G, R) into (H, S) is any mapping / : 

G -> H such that (art- | i < a) G 1? => (/(*,-) | i < a ) e S . 

We shall use some fundamental concepts of the category theory—they can be 

found e.g. in [5]. For an ordinal a, by Rel a we denote the category of relational 

systems of type a with homomorphisms as morphisms. 

By a topology on a set G we mean a topology in Cech's sense [3], i.e. a mapping u: 

exp G -> exp G satisfying u0 = 0, X C G => X C uX, and X C Y C G => uX C uY. 

The ordered pair (G, u) is then called a topological space and the elements of G are 

called points. If (G, u) is a topological space and x £ G a point, then a set X C G is 
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said to be a neighborhood of x if x fi u(G — X). A complete system of neighborhoods 

of x is any system T(x) of neighborhoods of x such that for each neighborhood A' 

of x there exists Y G T(x) with Y C Ar. The topology u is uniquely determined by 

complete systems of neighborhoods T(x) of all x G G because for any subset Z C G 

and any point x G G we have x* G uzT <.=> Z D A' 7- 0 for every A" G /F(x). 

According to [3], for a topology u on a set G we consider the following two axioms: 

X C G --> UILV = uX F-axiom, 

X, Y C G => u(K U Y) = t/K U uY A-axiom. 

Next, for any cardinal n > 1 we introduce another axiom: 

X C G => «/Y = [J{w^4 I A C Ar, card A < n} Sn-axiom. 

A topology fulfilling a A-axiom (A G {F, A,Sn}) is said to be a \-topology, a topology 

fulfilling both a A-axiom and a /j-axiom is said to be a \/_i-topology. The topologies of 

Bourbaki [2], most frequently understood under topologies in literature, are exactly 

the Fyl-topologies. In [4], SVtopologies are called quasi-discrete closure operations 

and it is shown that they coincide with reflexive binary relations. Of course, any 

62-topology is an A-topology. Next, any 5n-topology is an 5m-topology whenever 

m > n. Since any topology t / o n a set G is obviously an 5n-topology for each cardinal 

n with n > c a rdG, there exists a least cardinal n for which u is an 5n-topology. In 

[3] this cardinal is mentioned as an important invariant of the topology u. Clearly, if 

7? ^ u>o, then any A5'n-topology is an ^ - topology . Finally, let us note that we need 

the axiom of choice whenever we consider the S„-axiom with n > u\. 

L e m m a 1. Let n > 1 be a cardinal and let u be an Sn-topology on a set G. 

For any x G G put T(x) = {X C G | for each subset A C G fulfilling card A < n 

and x G uA there exists a non-empty subset XA C A such that X = (J{K^ | A C 

G, card A < n, x G t '-4}}. Then T(x) is a complete system of neighborhoods of x in 

( G , u ) . 

P r o o f . As u is an ,S'n-topology, a subset X C G is a neighborhood of x in (G, u) 

iff x G uA => A n X 7- 0 for each subset A C G with card A < n. Therefore T(x) is 

a system of neighborhoods of x in (G,u). Let Y C G be an arbitrary neighborhood 

of x in (G, u). For any subset A C G with card A < n and x* G iM put K^ = A H Y 

(7- 0) and Z = I J { A ^ I A Q G, card A < n,x G txA}. Then clearly Z C Y and 

zT G T(x). The lemma is proved. • 

For any two topologies u, v on a set G we put u ^ v iff t/K C t;Ar for each 

X C G. If (G, 1/), (H, t;) are topological spaces, then a continuous mapping of (G, u) 
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into (1 / ,v ) is any mapping / ' : G —• H fulfilling f{uX) C vf(X) whenever X C G. 

By Top we denote the category of topological spaces with continuous mappings as 

morphisms. 

2. T O P O L O G I E S A S S O C I A T E D WITH RELATIONS O F T Y P E a 

Throughout this section, cv denotes an ordinal with cv > 1, and |cv| denotes the 

least cardinal fulfilling |cv| ^ cv. 

Let R be a relation of type cv on a set G. Then for any subset X C G we put 

URX = Ar U {x G G | there exist {xi \ i < a) E R and an ordinal io, 

0 < io < o:, such that x — Xi0 and Xi G X for all i < io}. 

Clearly, UR is a topology on G. For relations R of type 2 the topologies UR coincide 

with those dealt with in [8]. In the next section we shall study topologies UR for 

relations of the particular type 3. 

For any object (G, R) of Rel a we put Fa(G, 12) = (G, UR) and for any morphism 

/ in Rel a we put Faf — f. 

T h e o r e m 1. Fa is a faithful (covariant) functor from Rel a into Top. 

P r o o f . Let (G, H), (H, S) be relational systems of type cv and let / : G —• H be 

a homomorphism of (G, R.) into (H, S). Let X C G be a subset and let y G f{uRX). 

Then there exists x G URX with y = f(x)- If £ G X, then y G / ( K ) C usf{X). 

Suppose x £ X. Then there exist {xi \ i < a) E R and an ordinal io, 0 < io < a, such 

that x = Xi0 and Xi G X for all i < io- Consequently, there exist {f{xi) \ i < a) G S 

and an ordinal io, 0 < io < cv, such that y = f{xi0) and /(•£{) G / ( K ) for all i < io-

Hence y G usf{X) and the inclusion J{URX) C usf{X) is valid. Therefore / is 

a continuous mapping of the space {G,UR) into {H,us). Thus Fa is a covariant 

functor from Rel a into Top and it is evident that Fa is faithful. • 

P r o p o s i t i o n 1. Let R be a relation of type a and let n = \a\. Then UR is an 

Sn- topology. 

P r o o f . Let G be the underlying set of R and let X C G be a subset . Let 

x G URX be a point . If x G X, then x G UR{X} C I J i ^ R ^ I -4 Q X, card .A < n } . 

Suppose x $_ X. Then there exist {xi \ i < a) £ R and an ordinal io, 0 < io < cv, 

such that x = x t 0 and x, G X for all i < i0. Hence {.r,- | i < i0} C X and 

card{xj | i < io} ^ card io- But card i0 < a = n whenever a is a cardinal and 

card io ^ card cv < n whenever a is not a cardinal. Since x G UR{xi \ i < i0}, we 

have x G I J i ^ R ^ I -^ Q K, card A < n}. Therefore the inclusion URX C IJ{I/JRT4 | 

A C Ar, card A < n} is valid and the proof is complete. • 
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By virtue of Proposition 1 one can use Lemma 1 for defining UR by determining 

complete systems of neighborhoods of all points of G. 

For any topology u on a set G we denote by Ru the relation of type a on G defined 

as follows: 

(xi | i < a) G Ru <=> Xi0 G u{xi | i < i0} for any io with 0 < i0 < a. 

Obviously, for each relation S of type a we have 5 C RUs. 

P r o p o s i t i o n 2. For any topology v we have URV ^ v. 

P r o o f . Let v be a topology on a set G, let X C G be a subset and x G URVX 

a point. If x G A', then x G vX. Suppose x £ X. Then there exist (xi \ i < a) G Rv 

and an ordinal io, 0 < io < a, such that x = Xi0 and X{ G X for all i < io. 

Consequently, x G v{-r; | i < io} Q vX. Thus URVX C i>X and the assertion is 

proved. • 

T h e o r e m 2. Let v be an Sn-topology on a set G where n = \a\. Then the 

following conditions are equivalent: 

(i) v = uRv) 

(ii) there exists a relation R of type a on G such that v = UR, 

(iii) if a > 2 and X C G is a subset with 1 < card X = m < n, then for any point 

x G vX — (J{vA | A C A', card A < m} there exists a subset Y C X with card Y = m 

such that both x G vY and there exists a bijection p: m —• Y with the property 

p(j) G v{p(i) | i < j} whenever 0 < j < m. 

P r o o f . For cv = 2 the assertion states that v = URV< which is well known—see 

[4]. Suppose a > 2. 

The implication (i) => (ii) is trivial. 

Let the condition (ii) be true. Let A' C G be a subset with 1 < card X = m < 71 

and let x G vX — | J{ iM | A C X, card A < m}. Then obviously x £ A'. Thus 

x G URX — A" and x (£ URA for any subset A C X with card A < m. Consequently, 

there exist (xi \ i < a) G R and an ordinal io, 0 < i0 < a, such that x = x.0 and 

Xi G A' for all i < io- Put Y = {xi \ i < i 0 } . Then x G vY and since Y C A", we 

have card Y = m and Xj G v{xi | i < j} whenever 0 < j < io- Put p(0) = XQ and for 

each ordinal j with 0 < j < m, having defined p(i) for all i < j , put p(j) = Xk where 

k < i0 is the least ordinal such that Xk ?- p(i) for all i < j . Then clearly p : m —• V 

is a bijection with the property p(j) G v{p(i) | i < i } whenever 0 < j < 7?i. The 

implication (ii) => (iii) is proved. 

Let (iii) be t rue . Let X C G be a set with 1 < card A < n and let y G vX. If 

there exists a point x G A" such that y G v{x}, then putting XQ = x and -cz = y 
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for all ordinals i with 0 < i < a we get (a,,- | i < a) G Rv- Hence y G uRv{x} C 

uRvX. Suppose y £ v{x} for every x G X. Let Y C X be a subset with the 

minimal cardinality such that y £ vY. Denote card Y = m. Since y £ \J{vA \ A C 

Y, card A < m}, there exists a subset Z CY with card Z = m such that both y G vZ 

and there exists a bijection p: m —> Z with the property p(j) = u{p(i) | i < j } 

whenever 0 < j < m. For each i < m put x t = p(i) and for each i with m ^ i < a 

put £ t = y. Then (x t | i < a) G 1^v and consequently y G w/?v{p(z) | i < m} = 

uRvZ C uRvX. We have proved the inclusion vX C uRvX. Thus, as v and uRv 

are 5n-topologies, we have v ^ _/*v. Since the inverse inclusion is valid according to 

Proposition 2, the equality v = uRv is true. Therefore (iii) =-> (i) and the proof is 

complete . • 

Theorem 2 immediately results in 

Corol lary 1. Let S, T be relations of type a on a given set. Then us 7- UT iff 

t l t i 5 / ^UT ' 

The following proposition is obvious: 

P r o p o s i t i o n 3. Let R be a relation of type a. Then uR is an S^-topology iff for 

every (x{ | i < a) G R the following condition is true: 

for any ordinal i\, 1 < i\ < a, with the property that X{ ^ x t l for all i < i\ there 

exist (yj \ j < a) £ R and ordinals i0, j 0 , i0 < i\, 0 < jo < a, such that yj0 = x t l 

an J yj = xio for all j < j 0 . 

P r o p o s i t i o n 4. Let R be a relation of type a and let a ^ LU0. If UR is an 

F-topology, then uR is an S'2-topology. 

P r o o f . Let G be the underlying set of R and let X C G be a subset with 

card X < a. We are to prove that uRX C (J uR{x}. To this end, let y G uRX be 
xex 

a point. If y G A", then y G uR{y} C (J uR{x}. Let y £ X. Then there exist (_•,• | 
xex 

i < a) G 1t and an ordinal i0, 0 < i0 < a, such that y = xio and X{ G X for all i < i0. 

Consequently, y G uR{x0) .. . , x t 0 _ i } and {x0, . . . ,Xj} C uR{x0, . .. ,Xj^\} whenever 

1 ^ j ^ *'o - 1. Hence, we have y G uR{x0, . . ., x,-0_i} C uRuR{x0, . .., x t 0 _ 2 } = 

ii/?{-f0 , . . . ,ar I-0_2} C uRuR{x0,. . .,xio-3} = uR{x0, .. ., ar,-0_3} C . . . = u/.»{ar0}. 

Thus g G (J uH{£'} and the inclusion uRX C (J u/?{a:} is proved. • 
xex xex 
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3 . T O P O L O G I E S ASSOCIATED WITH TERNARY RELATIONS 

In this section we further investigate topologies associated with relations of type a 

for the special case a = 3, i.e. for ternary relations. Clearly, for any ternary relation 

R on a set G the .S'3-topology UR on G is given by 

X C G => uRX = X U {z G G I 3x G K, y €G: (x, z,y) £ R or 3x, 

yeX: (x,y,z)eR}. 

In [6] and [7] some properties of ternary relations are introduced and subsequently 

used such as symmetry, asymmetry, antisymmetry, transitivity and cyclicity. How­

ever, among them only the cyclicity is useful for the study of topologies associated 

with ternary relations. For our purpose we introduce several other properties of 

ternary relations: 

A ternary relation R on a set G will be called 

irreflexive if (x,y, z) G R => y 7- x ^ z, 

irreversible if (x, y, z) G R => (g, x,p) (fc R for any p G G, 

feebly regular if (x, y, p) G R, (t/, z,q) e R=> (x, y, z) G Lt, 

regular if It is feebly regular and (x,y,p) G /?, ( x , z , o ) G /t => (z*,g, z) G /t, 

feebly translative if (x, g, z) G /t, (g, p, q) G It => 3r G G: (x*, p, r) G /t, 

translative if /? is feebly translative and (x,y, z) G /?' => 3r G G: ( x , z , r ) G R or 

( 2 / , - , r )G It, 

cyclic if (x*, g, z) G It => (g, z, a.*) G 1t. 

T h e o r e m 3. Let (G, /?<), (H,S) be ternary relational systems and f: G —- / / a 

continuous injective mapping of the space (G, UR) into (H, us). If R is irreflexive and 

S is both irreflexive and regular, then f is a homomorphism of (G, R) into (H, S). 

P r o o f . Let (x,y,z) G R. Then y G UR{X} and z G UR{x,y}. Hence f(y) G 
us{f(x)} and f(z) G us{f(x), f(y)}. As R is irreflexive and f is injective, we 

have f(y) ^ f(.c) ^ f(z). Thus, by virtue of the irreflexivity of S, it follows from 

f(y) e us{f(x)} that there exists p G /I with (f(x),f(y),p) G 5 . If f(y) = f(z), 

then the regularity of 5 implies (f(x),f(y),f(z)) G S\ Suppose f(y) ^ f(z). As 

5 is irreflexive, it follows from f(z) G us{f(x), f(y)} that (f(x),f(y),f(z)) G 5 

or (f(y),f(x),f(z)) G 6' or there exists q £ H such that (f(x),f(z),q) G 5 or 

there exists r E H such that (f(y),f(z),r) G 5 . If (f(y),f(x),f(z)) G 5 , then 

the regularity of S yields (f(x),f(y),f(z)) G 5 , which is a contradiction with the 

irreflexivity of S. In both cases (f(x),f(z),q) G 5 and (f(y),f(z),r) G 5 the 

regularity of S results in (f(x),f(y),f(z)) G 5 . Thus, (f(x),f(y),f(z)) G 5 always 

holds and the statement is proved. • 
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Corol lary 2. Let R, S be ternary relations on a given set. If R is irreflexive and 

S is both irreflexive and regular, then the equivalence R C S O UR <l us is valid. 

P r o o f . Let G be a set and let a be an ordinal. Then clearly C and ^ are 

orderings of the fibres of G in Rel a and Top, respectively, i.e. for any two relations 

R, S of type a (topologies u, v) on G we have R C S (u <^ v) iff the identity mapping 

of G is a homomorphism (continuous mapping) of (G, R) into (G, S) (of (G, u) into 

(G,v)). By this fact, the corollary follows from Theorems 1 and 3. • 

Corol lary 3 . Let R, S be irreflexive and regular ternary relations on a given set. 

Then R ^ S implies UR ^ us. 

P r o o f . Let G be the underlying set of both R and S and let \dc denote the 

identity mapping of G. Assume UR = us. Then idc is a continuous mapping of 

(G,UR) into (G,us) as well as of (G,us) into (G,UR). Thus, by Theorem 3, ids is 

a homomorphism of (G, R) into (G,S) as well as of (G,S) into (G, It). Therefore 

It C S and S C R, i.e. It = 5 . This proves the statement. • 

We denote by Rel3 the full subcategory of Rel3 whose objects are precisely the 

ternary relational systems (G, It) for which R is both irreflexive and regular. As a 

consequence of Theorem 1 and Corollary 3 we get 

Corol lary 4 . The functor F3 (restricted onto Rel3/) is an embedding of the cate­

gory Re.3 into Top. 

Next, for any set G we denote by 7v(G) and U(G) the fibres of G in Rel3 and Top, 

respectively, i.e. 7v(G) is thee set of all irreflexive and regular ternary relations on G 

ordered by the set inclusion and U(G) is the set of all topologies on G ordered by <C. 

Then Corollaries 2 and 3 result in 

Corol lary 5. For any set G the correspondence R 1—> UR defines an embedding 

of the ordered set 7v(G) into U(G). 

R e rn a r k . By Theorem 2, for any S'3-topology u on a set G there exists a ternary 

relation It on G such that u = UR if and only if the following condition is fulfilled: 

for any two points x,y G G the implication u{x, y} ^ u{x} U u{y} => x 6 u{y} or 

y G u{x} is valid. 

Thus, if we denote by Top 3 the full subcategory of Top whose objects pre precisely 

the topological spaces (G,u) for which u is an .^-topology fulfilling the condition 

mentioned above, then Corollary 4 is still valid when Top is replaced by Top 3 . Sim­

ilarly, in Corollary 5 we can consider the fibre U(G) of G in Top3 instead of in 

Top. 
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E x a m p l e 1. Let g be an asymmetric binary relation on a set G. Let us define 

Re C G3 as follows: 

(x, y, z) G RQ <-> xgy and either xgz or yDz. 

Then 7TL̂> is an irreflexive and regular (and irreversible) ternary relation on G. In 

particular, if < is a strict order (i.e. an asymmetric and transitive binary relation) 

on G, then (x, y, z) G R< iff x < y and x < z, i.e. iff x is a lower bound of the set 

Obviously, if It is a cyclic ternary relation, then UR is an .SVtopology. Unfor­

tunately, if a non-empty cyclic ternary relation is regular, then it is not irreflexive 

(because any regular ternary relation R fulfills (x, y, z) G R' <=> (x, y, y) G R). There­

fore Corollary 3 can not be applied to cyclic ternary relations. Nevertheless, we 

have 

P r o p o s i t i o n 5. Let It, S be irreflexive, feebly regular and cyclic ternary relations 

on a given set. Then It ?- 5 implies- UR ^ us. 

P r o o f . Let G be the underlying set of both It and S. Assume It / 5 . Without 

loss of generality we can suppose that It £ S. Then there exists (x,y, z) G R such 

that (x,y, z) £ S. Suppose UR = us. Since y G UR{X} and z G UR{y}, we have 

y G us{x} and z G ws{g}. The irreflexivity and cyclicity of It imply x ^ y ^ z. 

Therefore there exist p, q G G with (a:, y, p) G 5 and (y, z, q) G S'. Thus, by the feeble 

regularity of S, we have (x,y,z) G S. But this is a contradiction. Hence UR ^ us. 

D 

E x a m p l e 2. Let G — {x,y, z,p,q} and let R C G 3 be defined as follows: 

R = {(x, y, z), (x, y,p), (y,p,q), (y, z, q)}. Denote by Rc the cyclic hull of It, i.e. the 

least (w.r.t. the set inclusion) cyclic ternary relation on G fulfilling R C Rc. Then 

Rc is an irreflexive, feebly regular and cyclic ternary relation on G. 

T h e o r e m 4 . Let R be a ternary relation. If It is translative, then UR is an 

F-topology. 

P r o o f . Let G be the underlying set of R and let It be translative. As UR 

is evidently and .SVtopology, UR is an F-topology iff URUR{X} C UR{X} holds for 

any x G G. Let x G G, y G URUR{X} and suppose y £ UR{X}. Then there exists 

P G UR{X} with y G UR{P}. Because x ^- p ^ g, we have (a,-,x,p) E R or there exists 

q G G such that (x,p,q) G 1^, and either (p,p,y) G 1t holds or there exists r G G 

such that (p, y, r) G 1t. By virtue of the translativity of It! there always exists s G G 

with (x,y,s) G R. Consequently, y G uH{x}, which is a contradiction. Therefore 

URUR{X} C UR{X} and the proof is complete. D 
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E x a m p l e 3. Let D be a proorder on a set G. Let us define a ternary relation 

R on G as follows: 

(x,y,z) e RoxQy,yQz. 

Then R is translative. 

Obviously, a cyclic ternary relation is translative iff it is feebly translative. Thus, 

Theorem 4 results in 

Corol lary 6. Let R be a cyclic ternary relation. If R is feebly translative, then 

uR is an F-topology. 

E x a m p l e 4. Let G = {x,y,z,p} and let R = {(x,y,z),(x,z,p),(x,p,y), 

(y,p,z),(x,x,x,),(y,y,y),(z,z,z),(p,p,p)}. Then Rc (see Example 2) is a feebly 

translative cyclic ternary relation on G. 

P r o p o s i t i o n 6. Let R be an irreflexive and irreversible ternary relation. If uR is 

an F-topology, then R is translative. 

P r o o f . Let G be the underlying set of It and let uR be an F-topology. Let 

(x,y,z) e 1t, (y,p,q) e R. Then p G uR{y} and y G uR{x}, hence p G uRuR{x} = 

uR{x}. Since R is irreversible, we have p ^ x. Thus, by the irreflexivity of R, 

there exists r G G with (x,p,r) G It. By Proposition 3, uR is an 52-topology. 

Therefore it follows from (x,y, z) G R that z G uR{x} or z G uR{y}. If y = z, then 

(x, z, z) e R. Suppose y ^- z. Because x / z and It is irreflexive, there exists r G G 

with (x, z,z) e R or (H, z, z) G 1?. Hence R is translative . D 
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