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Summary 

It is shown that the ratio of the vertical field to the horizontal field 
gradient outside a geological body can often be used to measure the 
electrical conductivity at depth within it. The in-phase part of this ratio, 
at a given frequency, gives the penetration depth of the magnetic field, 
the out-of-phase component yields approximately the conductivity at 
the penetration depth. 

In this paper it will be shown that the electrical conductivity within an object can 
often be related to simple properties of fluctuating magnetic fields observed and 
generated outside of it. The specific question to which we address ourselves is the 
determination of the electrical conductivity as a function of depth into a geological 
body by observing the properties of fluctuating magnetic fields outside that body. 
In the case of the Earth, we are concerned with the fluctuating magnetic fields 
which are excited by electric currents flowing in the ionosphere, in the case of the 
Moon by magnetic fields which are convected by the solar wind. We shall mathe- 
matically analyse the interaction of an oscillating magnetic field which is slightly 
non-uniform in the horizontal plane with a laterally uniform body whose electrical 
conductivity increases with depth. It will be shown that, above and outside the 
body, the magnetic field has two simply interpretable properties whose importance 
for interpreting magnetic deep sounding data has not been realized heretofore. 
The ratio of the ' in phase ' part of the vertical field to the ' gradient ' of the oscil- 
lating horizontal field component is equal to an appropriately defined field penetration 
depth. The ratio of the out-of-phase part of the vertical field and the same horizontal 
field gradient is approximately equal to the field attenuation length associated with 
the electrical conductivity of the body evaluated at the field penetration depth. 

Chapman (1919) pointed out that the fluctuating magnetic fields observed at the 
surface of the Earth could be resolved into normal modes and that the part of each 
normal mode which is due to eddy currents flowing inside the body could be 
separated from that due to currents flowing externally. By noting that the internal 
currents were coupled to and excited by the external currents, he obtained an approxi- 
mate value for the Earth's conductivity. Various combinations of the ' complex ' 
ratio of the internal current and the external current have subsequently been 
denoted as magnetic response functions. By studying these response functions as a 
function frequency means have been devised to generate conductivity profiles of the 
Earth and Moon from experimental data (Rikitake 1966). 

Most analyses have seriously utilized only the real part of this response function 
(e.g. Banks 1969), i.e. they have considered only the magnitude of the horizontal 
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to vertical field ratio as a function of frequency. The inversion of experimental data, 
using this parameter to obtain a conductivity profile, has raised serious questions of 
uniqueness of fit. Backus & Gilbert (1970) devised a method to evaluate the 
likelihood of a given conductivity profile as its parameters are varied slightly. 
Parker (1970) reanalysed the conclusions of Banks, using these criteria, and showed 
that there was considerable latitude in the model derived. The field fluctuations 
on the lunar surface show a qualitatively different response than on Earth though 
similar questions of uniqueness arise. Sonnet et al. (1971) concluded that the Moon 
has an outer 220 km non-conducting shell, followed by a shell about 100 km thick 
whose conductivity peaks to lo-’ mho/m followed by conductivity minimum of 
somewhat less than mho/m at a depth of 350 km. Kuckes (1971) showed that 
these data could equally well be understood on the basis of a Moon with an 
insulating mantle about I60 km thick and an inner core with a uniform conductivity 
of 6 x mho/m. The geological conclusions, which the two conductivity models 
suggest, are completely different from each other. 

Aside from questions of uniqueness, the use of the usual modal analyses has 
shown other serious limitations. The method assumes a lateral uniformity in the 
conductivity which is greater in extent than the lateral scale distance of the field, i.e. 
the wavelength of the exciting field. If the deeper parts of the Earth’s mantle are 
being investigated, there is some experimental justification for this hypothesis. The 
studies of Schmucker (1959,1964) and Porath et al. (1970, 1971a, b) show that, in the 
upper mantle, there are geologically interesting variations over distances of several 
hundred kilometres which are amenable to study by this method. Schmucker first 
did experiments with arrays of magnetometers specially deployed for identifying and 
studying localized conductivity anomalies. Analysis of these data proceeded using 
conformal mapping techniques which pointed out several conductivity anomalies 
both in Germany and the south-west of the U.S. More recently, Porath et al. have 
presented the results from arrays of magnetometers studying conductivity profiles 
in the South-west U.S. and well up into Canada. Porath, Oldenburg & Gough 
(1970) analysed the data of the Western United States using a technique, due to 
Siebert & Kertz (1957), to separate the internally and externally generated fields. Their 
analysis was greatly complicated by the fact that the scale dimensions of the exciting 
fields were large compared to thc dimensions of their magnetometer array. For this 
reason, they devised an involved separation procedure which defined normal and 
anomalous fields. Conformal mapping analysis was applied to the anomalous part 
of the separated fields. In general, their studies indicate the great need for a more 
systematic method for directly deducing a conductivity profile from local properties 
of the fields (Porath & Dziewonski 1971). 

The contemporary interest in studying the structure of the upper mantle to test 
theories of mantle dynamics gives considerable impetus to developing and making 
better use of these electromagnetic fluctuations. 

It is the purpose of this paper to show that, because most geomagnetic disturb- 
ances have a lateral scale distance which is somewhat longer than the depth to which 
we often want to probe, a systematic technique for locally annlysing data and 
subsequently making conductivity profile maps of the Earth can be developed. 
Our results require a conductivity uniformity over a lateral extent which is a few 
times the depth being probed rather than over a wavelength of the exciting field as 
modal analyses assume. 

1. A heuristic analysis 

Before proceeding with the more exact analysis of relating the vertical field and 
the longitudinal gradient of the horizontal field above a conductor, an approximate 
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Electrical conductivity of a mantle 121 

analysis will be developed which brings out the physical ideas underlying the more 
exact considerations. 

Consider the fields above a perfectly conducting plate as shown in Fig. 1. If the 

MAGNETIC FIELD LINES 
ASSOCIATED WITH THE 
FLUCTUATING FIELD 7 

Y 

z = d  

z =  0 

FIG. 1 .  Diagram showing the field lines of a slightly non-uniform fluctuating 
magnetic field above a conducting plane to indicate the relation of the theoretical 

quantities. 

horizontal field varies slowly in thc horizontal direction x, it is easy to compute the 
vertical field B, above the plate by considering the continuity of magnetic flux, i.e. 
~ B-dA = 0. If the depth d is small compared to the lateral scale length of the field, 
the horizontal field component B, is approximately constant between z = 0 and 
z = d. Noting that no magnetic flux enters through the conductor at z = 0; simple 
flux continuity gives 

d d y [ B , ( ~ + d ~ ) - B , ( ~ ) ] + B , d y d . ~  = 0 

For a perfectly conducting plane below a vacuum region, the above considerations 
indicate that the vertical field B, and the horizontal field gradient dB,/dx will be in 
phase with one another if the field varies with time. 

If the perfect conductor below z = 0 is replaced by one with conductivity G, it is 
well known that an oscillating magnetic field will penetrate into it and be attenuated 
by l/e in a skin depth 6 (6 = J ( 2 / 0 p O  G) (MKS units)). If, at z = 0, B, = B, cos ot, 
at depth z in the conductor the horizontal field will be 

B, = B, ez/' cos (ot+z/6). (2) 
If the horizontal exciting field B ,  varies slowly with x as B,(x), field continuity 
requires that there be a vertical field in the conductor which will have one component 
in phase with aB/dx and one 7c/2 out-of-phase, i.e. to a first approximation 

6 aB, 
2 ax BZ(x,z) = - - -ez/'[cos (wt+z/6)+sin (o t+z /6) ]  (3) 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/32/1/119/617466 by guest on 21 August 2022



122 A. F. Kuckes 

and at z = 0 
6 aB, 
2 ax B,(x, 0)  = - - ~ [cos wt+ sin wr] .  

This relation says that the vertical field leads dB,/dx by a phase shift of n/4 in time. 
Assuming the horizontal field at z = d is given by B, = B,(x) coswc, then the 

total vertical flux will be the sum of that generated in the vacuum region which lead 
to  (1) and that coming out of the conducting plane which lead to (3a). We thus 
obtain 

cos ot+ - sin wt ax 2 

We note that the in-phase part of Bz is related to a field penetration depth p which 
we will define as the thickness of the vacuum region plus one-half the skin penetra- 
tion depth into the conductor. The out-of-phase component of B, is directly related 
to a thickness a of the attenuating region where the field is actually reduced to zero. 
Assuming B,’ = B,(x, z )  eiwr and B,’ = B,(x, z )  eiw‘ we would say that 

The essence of the more careful computations which follow is to bear out that these 
interpretations hold also for more complicated and more realistic conductivity profiles 
and excitations. 

The experimentally determined attenuation length a defines an electrical con- 
ductivity through the skin depth relation. We shall find that this conductivity is, in 
fact, the conductivity which is associated with the experimentally defined penetration 
depth p for conductivity profiles which increase monotonically with depth. In three 
dimensions we must replace aB@x by (aB,/ax+aB,/ay) in (5) .  

2. Field above a conducting plane 

To make the conclusion of Section 1 more quantitative and general, we consider 
an oscillating magnetic field above a conducting plane analytically. It is convenient 
to introduce a vector potential A from which the magnetic field B is computed 
according to B = V x A  with V*A’ = 0; using MKS units we have 

(6)  
aA’ 

V x ( V x A )  = poj’ = pocE’ = -pee--. 

Assuming no variation of c with x and y ,  it is sufficient to consider a vector potential 
with only x and y components which vary as A’ = A(z) exp [ i (k ,x+k ,y+wt ) ] ,  i.e. 
in the conductor the differential equation for A(z )  is 

at 

a2$! = (2 i+k2d2)A 

6 = +J(-) 2 k2 = k,Z+k; 
U P 0  0 

I (7) 

l 
and in the vacuum region 

- k 2  A. 
a 2  A 
a z 2  

-_ - 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/32/1/119/617466 by guest on 21 August 2022



Electrical conductivity of a mantle 123 

The relation V . A  = 0 gives k,A,+k,A, = 0. At a distance z above the conducting 
plane, we obtain, solving (7) and (8), assuming the field goes to zero as z + - 00, 

A ,  = A,[(cr-k) e-k ' - (~+k)ek"]  exp [ i ( k , x + k , y - w t ) ]  Z > O )  

u = (1/6)J(2i+k262)  

After working out appropriate derivatives, the analagous expression to (5) can be 
written 

(10) 
Bz =(-L%)-'= I + (cr/k) tan k kz  

a 3  a B Y  A,  aZ a( 1 + (k/cr) tan k k z )  . 

We are concerned with the specific case where the distance scale in the horizontal 
direction (i.e. Ilk) is somewhat greater tllan that in the vertical (i.e. d or 6);  thus, 
consider (10) in the limit of small kd and k6; evaluating (10) at z = d and expanding 
in a power series in k we obtain 

ax + ay 

ax + ay 
- ?! [ I -  (7) d+6  (kd)  '...I 

2 

which is a good approximation to the result obtained in (5 )  if kd and k6 are small. 
When the excitation B, and By are not pure modes but consist of a complex 

superposition of modes which all have long wavelengths in the x and y directions 
compared to d and 6, property ( 1  1) is true for each mode independently and (1 1 )  will 
also hold for the superposition. 

Non-unlform conductivity 
One purpose of doing geomagnetic sounding is to deduce the non-uniformity 

in the conductivity profile as a function of depth into the body. We will focus 
attention on a body whose conductivity increases monotonically with depth by 
analysing the response of a planar conductor in which the c increases with depth 
as z" (n, z are positive quantities). 

Examination of ( 1 1 )  and (10) shows that we are concerned with computing 
( l /A , )  (dA,/dz) in the limit of k, and k, going to zero. From the previous section 
we are able to estimate the error associated with finite k, and k,, thus we choose 
these parameters equal to zero at the outset and obtain: 

or rewritten in dimensionless form 

a 2  A ,  l2 _.__I = 2in2 12" A ,  I 
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(13) is readily solved in terms of Bessel functions as 

C ,  and C2 are arbitrary constants-subject to satisfying boundary conditions and 
J ( 2 i )  = (1 +i). As z -+ 00 (N.B. z of this section has the opposite sign to z in the 
previous section), A i  -+ 0 since we assume no excitation from within the conductor; 
noting the appropriate assymtotic expansions for Bessel functions evaluated in the 
first quadrant this condition is satisfied only if 

c - e + n i / 2 n  
2 -  

We then obtain 

A,  = C* C 1 [ J 1 / 2 n ( J ( 2 i )  ,.)+eni/2n J - (  l,Z",(J(2i) m>I (16) 

We assume that our measurement is made at [ = 0, i.e. at z = 0; we obtain, noting 
the appropriate power series developments for Bessel functions, 

1 aA, 
A, aZ 

=--  

Comparing this to (5) we obtain 

r is the usual Gamma function. The distance 6 , is the penetration depth to which 
the W.K.B. solution to (12) would lead us, i.e. 

The important conclusion of this computation is that the electrical conductivity 
at the depth p is related to the attenuation length a in a way which is essentially 
independent of the shape of the conductivity profile. We define a conductivity d at 
the depth p according to: 

1 
a'@) = ~ 

2wp0 a2- * 

If we compare a' to the actual value of CT at the depth p as a function of n we obtain 
the results shown in Fig. 2. We note that even with n = 4 ,  which corresponds to the 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/32/1/119/617466 by guest on 21 August 2022



Electrical conductivity of a mantle 12 j 

LO 

- 0.5 

s a - 
‘b 

0 
I 2 

n 
3 4 

FIG. 2. Ratio of the apparent conductivity derived from the approximate 
analysis and the true conductivity at the penetration depth p as a function of the 
parameter n which indicates the non-uniformity of the conductivity profile 

analysed. 

conductivity increasing with the sixth power of depth, the value of 6’ obtained from 
(20) is only 30 per cent lower than the true value. With such a strong dependence 
upon depth this corresponds to a 5 per cent error in the depth p at which the 
conductivity has been evaluated. 

Conducticity projle mapping 
It has been shown that the conductivity profile of a body can be made from 

localized field measurements without detailed knowledge of the entire modal 
decomposition of the fields. To make a conductivity profile map, i.e. statements 
about how the conductivity profile varies between adjacent regions, it is important 

k- h /OBSERVATION POINT 

I 
d INSULATING 

FIG. 3. Idealization considered in the analysis to evaluate the lateral resolution 
intrinsic to the theory. 
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to estimate the intrinsic lateral resolution the method offers. To investigate this 
question, we consider the response of a two-dimensional step in a perfectly 
conducting medium at depth as shown in Fig. 3. This configuration is amenable to 
exact treatment using a conformal mapping method and we will compare the penetra- 
tion depth given by our approximate treatment with the actual depth. 

The conformal mapping method transforms a given set of boundaries to a 
geometry more amenable to simple analysis. We solve the problem shown in Fig. 3 
by transforming the step boundary into a plane-an appropriate transformation 
function for accomplishing this is: 

z = J ( w + l ) J ( w - l ) + I n ( w + J ( w + 1 ) J ( w - l ) )  (21) 
where both z and w are complex variables (the x ,  y, z variables are unrelated to 
x ,  y, z of earlier sections!): 

(22) I z = x + i y  

w = p ei$. 

In evaluating (21) we always use the evaluations of square root and logarithm func- 
tions which lie in the first two quadrants; we consider x, y, p, I) to be real variables 
JJ > 0 and 0 < I) < n. The mapping (21) is indicated in Fig. 4. It is well known 
that any analytic function of the complex variable z or in the transformed space w 
satisfies Laplace’s equation. We can introduce a complex potential satisfying 
Laplace’s equation W ( z )  with the magnetic fields given by 

FIG. 4. Schematic map indicating the relation between the parameters x and y 
which identify a point in z space and the parameters p and $ which identify a 
point in the transformed space w. The continuing step indicated in z space is 

transformed to the plane defined by Re w = 0. 
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Electrical conductivity of a mantle 127 

W must satisfy the boundary conditions associated with a perfect conductor, i.e. 
BY = 0 or Im (aW/dz)  = 0 on the boundary. To approximate a non-uniform field 
above the step with ( l /Ex)dEx/dx  N 1/L we consider the potential in M? space 

W Z  
W ( w )  = ( w +  zL). 

To evaluate the precision of the prescription (5) for estimating the depth to the 
conducting layer, we will consider the difference between the actual height between a 
point of observation and the conducting plane and that given by (5). To do so we 
will consider p to be large and $ to be somewhat less than 4 2 .  Similar conclusions 
are obtained considering 7c > $ > 7c/2. 

We expand (21) in inverse powers of w to obtain 

cos* cos2* cos3* x=pcos$+In2p- -  - ~ - -~ 

2P 2P2 8P3 

y = $ + p  c i n i h I  ~ I- I ~- 

... 

sin$ sin2$ sin3$ ... . 
8P3 

cos* cos2* cos3* x=pcos$+In2p- -  - ~ - -~ 

2P 2P2 8P3 

+ ~- ... . +- y = $ + p  sin$+ ~ 

... 

sin$ sin2$ sin3$ 
8P3 2P2 2P 

Similarly expanding B, and BY we obtain 

We note that 

... J 

Evaluating the appropriate Taylor series in inverse powers of w we obtain 

1 cos$ cos2$ cos3$ + -~ p2 + p3 (-2+ ;) 1 . .  

Y L P L  

The fractional error E made in evaluating the depth to the conducting layer is 
(* -= n/2) 

E = - 1 [By/ (2) - y ]  . 
Y 

Using the first two terms in the series expansion of sin $ and cos $ in powers of $ 
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to approximate these functions we obtain 

7L 
E = -v [& + -- ++ ... z +- PZ 1 7 L  3 1 3pz * 

If we rewrite this expression in a form applicable to measurements made a horizontal 
distance h away from a step of height a which is at a depth d we obtain for the 
fraction error E (see Fig. 3): 

The greatest part of the error in (30) and (31) is associated with the vertical field 
generated by the interaction of the uniform part of B, with the step. It is easy to 
see that, in general, the interaction of a uniform field with a steadily changing penetra- 
tion depth d in the horizontal direction x will yield a vertical field component. A 
heuristic analysis similar to that presented earlier yields a vertical field By from 
this effect as 

ad By = B , - .  
ax 

For many data it appears that this effect is a correction factor to the analysis. In 
any case, it can be identified and eliminated (or studied) by analysing the vertical 
field, at a given frequency, as a linear combination of the excitation B, and 
aB,/dx. By choosing several data with different signs and magnitudes for 1/L the 
quantity adlax should be easy to identify and estimate. For three dimensions similar 
conclusions hold with the vertical field expanded as a linear combination of both 
horizontal field components and longitudinal derivatives. 

Conclusion 
It has been shown that we can make considerably better and simpler use of 

magnetic fluctuation data for deducing geologic mantle conductivity profiles than 
has been the case to date. When the fluctuating magnetic field penetration depth 
into a body is much less than the lateral scale length of the exciting field, a very 
considerable simplification in deducing the conductivity profile is possible. Since 
the method averages over a lateral radius which is comparable to the penetration 
length, systematic conductivity profile ' mapping ' becomes an interesting new 
prospect. 

In the past, the out-of-phase part of the vertical field has usually been considered 
less reliable than the in-phase part of the field. We have shown that this part of the 
field is intrinsically the more sensitive indicator of the electrical conductivity at 
depth. Some of the non-uniqueness difficulty of ignoring this part of the field may 
be related to the fact that this component is indicating an interesting structure which 
we have been unable to study with the methods of analyses which have been 
attempted. The in-phase part effectively indicates only how far down the attenuating 
region is. If the conductivity profile is characterized by relatively insulating mantle 
followed by a rapid rise in conductivity this work indicates that the out-of-phase 
part may contain the best experimental data for deducing the actual conductivity 
at depth. 

School of Applied and Engineering Physics, 
Cornell University, 

Irhaca, New York 14850. 
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FIG. 5 .  A sample of Fourier analysed showing the relative amplitude and phase 
of 2-hr fluctuations indicated by the Great Plains data of Porath & Dziewonski 
between 8 a.m. and 12 a.m. on 1969 November 27. The abscissa abbreviations 
are for field station sites as defined by Porath & Dziewonski. The H data are 
plotted in north-south progression and the D station in east-west progression to 

facilitate estimating the field gradients required by the analysis. 
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Addendum 

It has been pointed out to the author that Schmucker (1970) has considered a 
method of analysing magnetic field fluctuation phenomena which is cIosely related 
to the ideas put forth above. While Schmucker also demonstrated the utility of his 
method, it has not received widespread attention. 

The utility of the field penetration method of analysis was examined by analysing 
the published magnetometer array data of Porath & Dziewonski (1970) and of 
Chapman & Bartels (1940). Time intervals were selected from these data and 
Fourier analysed to determine the parameters p and a defined by equation (18). 
In Fig. 5 the results of Fourier analysing the amplitude and phase of the three 
components of magnetic field are shown. The quantities were plotted in the manner 
indicated to facilitate evaluation of the quantities p and a. The abscissa of this 
figure is proportional to the approximate latitude of the sites indicated in the plot 
for H and the approximate longitude for D. The real and imaginary quantities 
defined by equation (18) were evaluated at the centre of the array to determine the 
magnitude of the penetration depth ( p 2  + a’)* at the period of 2 h. In Fig. 6 many 
such results as a function of period are plotted. The points from 300-s to 7200-s period 
were derived from the Porath-Dziewonski data. The points on Fig. 6 for periods 
2.16 x lo4 s to 8.64 x lo4 s were taken from averaged world-wide data given by 
Chapman & Bartels (1940). These data were digitized using a micrometer slide under 
a microscope followed by similar digital analysis. 
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