
Bulletin of the Section of Logic
Volume 10/4 (1981), pp. 185–190

reedition 2009 [original edition, pp. 185–191]

Newton C. A. da Costa
Elias H. Alves

RELATIONS BETWEEN PARACONSISTENT LOGIC
AND MANY-VALUED LOGIC

Let us consider informally a theory T (deductive system). We say
that T is trivial (or overcomplete) if all formulas of T are theorems of
T ; otherwise, we say that T is non-trivial (or not overcomplete). T is
inconsistent if it has a negation symbol and there are, at least, two theorems
of T such that one is the negation of the other; if this is not the case, T is
consistent.

If the underlying logic of T is the classical logic, T is inconsistent if
and only if it is trivial. The same occurs with a great part of well-known
systems of logic. So, if we intend to study inconsistent but non-trivial
theories, we must construct new types of logic as a foundation to those
theories. The logical systems constructed with this intention, have been
called paraconsistent systems (see [1]).

In general, the systems of paraconsistent logic must satisfy the following
conditions:

1) From two contradictory formulas, P and ¬P , it should not be possible
in general to deduce an arbitrary formula.

2) The system should contain most of the schemata and deduction rules
of the classical calculus that do not inference with the first condition.

The first logician to construct a propositional system of paraconsistent
logic was S. Jaśkowski, who, in 1948, following a suggestion of  Lukasiewicz,
proposed a calculus to serve as a basis for inconsistent but non-trivial the-
ories. The system was called the propositional discussive calculus (see [6]).

Independently of the work of Jaśkowski, N. C. A. da Costa formulated,
in 1958, certain propositional calculi for the same purpose. He also con-
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structed predicate calculi (with and without equality), and the correspond-
ing calculi of descriptions. Moreover, he constructed, for the first time, set
theories which are inconsistent and apparently non-trivial (references may
be found, for instance, in [2] and [3]).

There are many reasons to study paraconsistent theories, as shown in
the following cases: 1o) We decide to attempt a formalization of dialectical
logic, even only for a better understanding of such logic, because some
specialists think that it is in principle not formalizable; 2o) The possible
formalization of Meinong theory of objects, extensively studied nowadays,
specially by Richard Routley, among others (see [12]); 3o) The study of
the axiom of separation in set theory or in the theory of types, when we
eliminate the usual restrictions. These restrictions arise, as it is well known,
to eliminate the existence of inconsistent classes or predicates (as, e.g., the
Russell set, which is the set of all sets that do not belong to themselves);
4o) In general, the investigation of deductive theories that have been shown
inconsistent, such as the naive set theory and the infinitesimal calculus, in
its original and naive formulation.

After a great development on the syntactical level, there has appeared,
in recent years, research dedicated to the study of paraconsistent logic also
on the semantical level. For the calculi Cn (1 ≤ n ≤ ω) of da Costa,
a semantics has been proposed, called the semantics of valuations, which
constitutes a generalization of the two-valued semantics of classical logic.
On the other hand, some authors, such a Routley and Meyer, have devel-
oped certain semantics for paraconsistent systems, related to relevant logic
(see [13]). The system of Jaśkowski’s discussive logic was syntactically for-
mulated, but now at least two semantical analyses of it were proposed: a
Kripke style semantics and a valuation semantics (see [4] and [8]).

Our aim, in this paper, is to illustrate the relations that there exist be-
tween paraconsistent logic and many-valued logic. In particular, we would
like to show how it is possible to obtain a system of paraconsistent logic,
from a three-valued system.

In what follows, we use the terminology and notion of Rosser-Turquette’s
book [11].

We will take, as a point of departure, the three-valued system of  Lukasie-
wicz-Tarski [10], but modifying the set of designated values. Our basic con-
nectives will be C and N . Their correspondent truth-functions are defined
by the following tables, where 1 and 2 are designated values:
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P C Q:

PQ 1 2 3
1 1 2 3
2 1 1 2
3 1 1 1

P NP
1 3
2 2
3 1

These functions satisfy hypotheses H1 to H7 in Rosser-Turquette’s
book (see [11], pp. 10–12). We have, then, a truth-value stipulation, which
we can resume in the following matrix: M = 〈{1, 2, 3}, {1, 2}, C,N〉.

The other operators of  Lukasiewicz-Tarski are introduced by the usual
definitions: P A Q =df (P C Q) C Q P K Q =df N(NP A NQ).

We now introduce a new operator of conjunction and a new operator
of negation: P & Q =df N(P K Q) C (P K Q) ¬P =df P C NP .

By means of these operators, we can define the operators Jk(P ) (1 ≤
k ≤ 3), which are such that Jk(P ) is assertable when and only when P
takes the truth-value k. This is done as follows:

J1(P ) =df P & ¬(P & ¬P ) J2(P ) =df P & ¬P
J3(P ) =df ¬P & ¬(P & ¬P )

Finally, for our own purposes, we introduce two more operators: an
implication (→) and a disjunction (∨).

P → Q =df J3(Q) C J3(P ) P ∨Q =df J3(P )→ (P A Q)

Observe that, in our case, the new implication is a generalization
of two-valued implication, which does not occur with the operator C of
 Lukasiewicz-Tarski (see [11], p. 17).

Theorem 1: The classical positive logic holds in S, relative to →, & and
∨ (but not to C, & and ∨).

Observe also that the function J3(P ) plays a role that was played by
usual negation of two-valued logic, as we can see by the following result:

Theorem 2: In the system S, defined by matrix M , J3(P ) has all the
properties of classical negation, relative to →, & and ∨.

As S contains statement functions P → Q and Jk(P ) (1 ≤ k ≤ 3),
which are definable in terms of our primitive functions, it is possible to
present an axiomatic stipulation for it, by means of axiom schemes A1 to
A7, and rule R1 of Rosser-Turquette’s book (cf. [11], pp. 33–34).
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Observe that→ (p, q) and jk(p) satisfy “standard conditions” (see [11],
p. 26). So, as a consequence, we have the following:

Theorem 3: The axiomatic stipulation of S is equivalent to its truth-value
stipulation.

We now introduce the following definition: We say that a formula is
normal if it contains only the operators →, &, ∨ and ¬. The set of normal
formulas which holds in S will be denoted by F . Then, F is a subsystem
of S.

Theorem 4: The positive classical logic holds in F .

Theorem 5: The following schemata hold in F :

(P → Q) → (¬P ∨Q); (P → ¬P ) → ¬P ; (¬P → P ) → P ; P ∨ ¬P ;
(P → Q) ∨ (P → ¬Q); (¬¬P ∨Q)→ (P ∨Q); (P ∨ ¬¬Q)→ (P ∨Q);
((P & ¬Q)→ R)→ (P → (P → (Q ∨R)); P ∨ ¬(P&¬P ); ¬¬P → P ;
¬(P&¬P ) ∨ (P & ¬P ); ¬P ∨ ¬(P &¬P ); ¬P ∨ (P & ¬(P & ¬P ));
(¬P &¬(P & ¬P )) ∨ (P & ¬P ) ∨ (P & ¬(P & ¬P )).

Theorem 6: Among others, the following schemata are not valid in F :

¬(P & ¬P ); ¬P → (P → Q); ¬P → (P → ¬Q); (P & ¬P ) → Q;
P → (¬P → Q); P → (¬P → ¬Q); (P → Q) → ((P → ¬Q) →
¬P ); P → ¬¬P ; ((P ∨ Q) & ¬P ) → Q; (¬P & ¬Q) → ¬(P ∨ Q);
(¬P ∨Q)→ (P → Q); (P → Q)→ ¬(P & ¬Q); (P → Q)∨ (¬P → Q);
(P → (Q ∨ R)) → ((P & ¬Q) → R); ((P & Q) → R) → ((P & ¬R) →
¬Q).

As consequence of the preceding theorems, it follows that F is a para-
consistent logic, that is, it satisfies conditions 1 and 2 presented in the
beginning of this paper. Obviously, F is also a many-valued logic. Fur-
thermore, we can demonstrate that F is precisely the system P1 of para-
consistent logic, proposed by A. M. Sette in [14]: it is sufficient to verify
that the tables which characterize F are exactly the same as those which
characterize P1.

It is possible, still, to prove that F is an extension of the system Cn

(1 ≤ n ≤ ω) of da Costa, as well as many other systems of paraconsistent
logic. Consequently, it is clear that there exists a very close relation between
paraconsistent logic and many-valued logic.
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The system S can be extended to a system S′ of the predicate calculus,
following the methods of Rosser-Turquette (see [11], pp. 63–64). Analo-
gously to the case of S, we can define a system F ′, which is the extension
of F to predicate calculus.

Evidently, all of our results can be extended to systems with more than
three values, by adapting the methods of Rosser-Turquette. It is also clear
that there exists a relation between the systems studied here and those
proposed in [5] and [9].

Finally, we would like to consider the problem of an intuitive interpre-
tation of the negation in system F . It is natural to understand value 1
as true and value 3 as false. Concerning value 2, it can be interpreted as
true and contradictory, with the meaning that a statement with value 2 is
true, but its negation is also true. Note that contradictory statements only
can be atomic, because with molecular statements, the value 2 disappears.
Within this interpretation, we are accepting that contradictions, if they
arise, never do so at the level of logic. Obviously, if we do not consider
contradictory statements, we fall back completely on classical two-valued
logic.
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