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1. Introduction. As in [3] the main inspiration of this paper is again
the following question by J. Browkin:

Does there exist an irreducible non-cyclotomic polynomial such that one
root is the product of two other roots?

A. Schinzel found the following polynomial of degree 6:

(1) f(x) = x6 − 2x4 − 6x3 − 2x2 + 1

and therefore answered the preceding question affirmatively (see [3]). On the
other hand, there is no such polynomial of prime degree ([3, Theorem 1]).

The aim of this paper is to provide general results for relations between
distinct roots of polynomials with rational coefficients. In Section 2 we will
prove that multiplicative relations between distinct polynomial roots are
very rare. In Section 3 we restrict ourselves to the case of abelian Galois
group and give a kind of classification. In particular, we can settle an ana-
logue of Browkin’s question in the abelian case.

Theorem 1. Let f(x) ∈ Q[x] be an irreducible polynomial of degree n
with abelian Galois group.

• If 6 -n and if f(x) is non-cyclotomic then x1x2 6= x3 for any three
roots x1, x2, x3 of f(x).
• If 6 |n then using a proper Tschirnhausen transformation one can ob-

tain from f(x) an irreducible non-cyclotomic polynomial f∗(x) having three
roots x∗1, x

∗
2, x
∗
3 satisfying x∗1x

∗
2 = x∗3.

A Tschirnhausen transformation f∗(x) of a polynomial f(x) =∏n
i=1(x− xi) is of the form

f∗(x) =
n∏

i=1

(x− ϕ(xi)),
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where ϕ(x) ∈ Q[x] is a polynomial of degree < n. In the case of Theorem 1
this is equivalent to the property that f(x) and f∗(x) have the same splitting
field.

In order to give a flavour of our method to be developed below, let

f(x) = x6 + x5 + x4 + x3 + x2 + x+ 1,

whose splitting field is the cyclotomic field F = Q(ε7), ε7 = exp(2πi/7). We
will show how to construct explicitly a (non-cyclotomic) polynomial f∗(x)
of degree 6 having three roots x∗1, x

∗
2, x
∗
3 satisfying x∗1x

∗
2 = x∗3.

Let σ denote the generator of the Galois group of f(x) which is defined by
σ(ε7) = ε3

7. The starting point of our construction is a free number γ ∈ F ∗
(see (2)). By Lemma 1, γ = 2 + ε7 is a proper choice since NF (2 + ε7) = 43.
Then

α = γid +σ−σ3−σ4
=

γσ(γ)
σ3(γ)σ4(γ)

=
(2 + ε7)(2 + ε3

7)
(2 + ε6

7)(2 + ε4
7)

=
6
43
ε5

7 +
10
43
ε4

7 +
36
43
ε3

7 +
6
43
ε2

7 +
39
43
ε7 +

30
43

satisfies
ασ2(α) = σ(α).

We only have to check that (in the proper group ring Z[G])

(id +σ − σ3 − σ4)(id−σ + σ2) = 0.

Hence the characteristic polynomial of α,

f∗(x) = x6 − 83
43
x5 +

5587
1849

x4 − 6551
1849

x3 +
5587
1849

x2 − 83
43
x+ 1,

has the desired property.
In the case n = 6 our method provides only reciprocal polynomials such

that all roots xi have modulus |xi| = 1, 1 ≤ i ≤ 6. However, it is an
easy exercise to show that the sequence (αn, (σ2(α))n), n ≥ 1, is uniformly
distributed on the torus T = {(z1, z2) ∈ C2 : |z1| = |z2| = 1}. Furthermore,
degQ α

n = 6 for all n ≥ 1 (see Remark 3). Therefore, the set of pairs
(x1, x2) ∈ T such that x1, x2, x1x2 are roots of an irreducible polynomial of
degree n = 6 with splitting field F = Q(ε7) is dense in T . These remarks
should indicate that our method provides lots of examples but it seems that
there are others.

It should be further mentioned that there is almost no literature con-
cerning this subject. Smyth [8] considered a little bit different problem. He
characterized those relations

αa1
1 αa2

2 . . . αakk = 1

which have solutions in (not necessarily different) conjugates α1, . . . , αk of
an algebraic number α. Relations of length 2 are also discussed in [2].
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2. General case. Let F/Q be a finite normal extension of Q with Galois
group G = {σ1, . . . , σn}. A number γ ∈ F ∗ will be called free if

(2)
n∏

i=1

σi(γ)ai ∈ Q (ai ∈ Z)

implies a1 = a2 = . . . = an.

Lemma 1. Let γ ∈ OF (i.e. it is an algebraic integer) and suppose that
there exists a rational prime p satisfying

(3) p |NF (γ) and p -
NF (γ)
p

D,

where D is the discriminant of F and NF denotes the norm. Then γ is free.

P r o o f. The principal ideal (γ) generated by γ can be represented by

(γ) = pI,

such that the absolute norms Np, NI of the ideals p, I satisfy Np = p and
(NI, p) = 1. Hence (3) implies ep = fp = 1 and consequently

(p) =
n∏

i=1

σi(p),

where all factors on the right-hand side are distinct. Now, if
n∏

i=1

σi(γ)ai ∈ Q

then we (locally) get
n∏

i=1

σi(p)ai =
n∏

i=1

σi(p)a

for some integer a. Thus a1 = a2 = . . . = an = a and γ is free.

Lemma 2. Set
A(x) = {γ ∈ OF : γ ≤ x},

where γ = max1≤i≤n |σi(γ)|, and

B(x) = {γ ∈ A(x) : γ satisfies (3)}.
Then

(4) lim
x→∞

#B(x)
#A(x)

= 1.

P r o o f. LetD = pk1
1 . . . pkdd be the prime factorization of the discriminant

D. For any γ ∈ A(x) \B(x) we have a representation of the form

|NF (γ)| = pl11 . . . p
ld
d t,
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where (t,D) = 1 and all exponents in the prime factorization of t are greater
than 1. Therefore there exist natural numbers y, z such that t = y2z3. Since
|NF (γ)| ≤ xn we surely have y ≤ xn/2 and y ≤ xn/3. Furthermore, for any
j = 1, . . . , d,

lj ≤ n

log pj
log x.

Thus

#{|NF (γ)| : γ ∈ A(x) \B(x)} = O((log x)dx5n/6).

Using a rather rough estimate

#{J C OF : NJ = m} = O(mε) (ε > 0)

for ε = 1/12 we obtain

#{(γ) C OF : γ ∈ A(x) \B(x)} = O((log x)dx11n/12).

Since γ ∈ OF we have
n∑

i=1

log |σi(γ)| = log |NF (γ)| ≥ 0

and consequently for any γ ∈ A(x),

(5) −(n− 1) log x ≤ log |σi(γ)| ≤ log x.

If γ1, γ2 ∈ A(x) \ B(x) generate the same ideal then there exists a unit
ε ∈ O∗F with γ2 = γ1ε. By (5) this unit surely satisfies |log |σi(ε)|| ≤ n log x.
Hence by considering the representation of the group of units as a lattice in
the logarithmic space we have

#{ε ∈ O∗F : |log |σi(ε)|| ≤ n log x, 1 ≤ i ≤ n} = O((log x)r1+r2−1),

where r1 is the number of real embeddings and r2 the number of pairs of
conjugate complex embeddings of F . This finally gives

#(A(x) \B(x)) = O((log x)d+r1+r2−1x11n/12) = o(xn).

This proves (4) since #A(x) ∼ cxn for some constant c > 0.

As an immediate corollary of Lemmata 1 and 2 we obtain

Theorem 2. In any finite normal extension F/Q almost all algebraic
integers are free.

3. Abelian case. The following lemma provides a natural generalization
of the well-known computation of the cyclic determinant and was originally
due to Dedekind (see [4]). The computation of the rank is an analogue of a
theorem by A. Schinzel concerning the rank of a cyclic matrix ([3]).
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Lemma 3. Let G be a finite abelian group and K a field satisfying (|G|,
char(K)) = 1. For any sequence (aσ)σ∈G of elements of K we have

(6) det(aστ )σ,τ∈G = ±
∏

χ∈Ĝ

(∑

σ∈G
χ(σ)aσ

)
,

where Ĝ denotes the dual group of G. Moreover ,

(7) rank(aστ )σ,τ∈G = #
{
χ ∈ Ĝ :

∑

σ∈G
χ(σ)aσ 6= 0

}
.

P r o o f. Consider the matrix

(bχ,τ )χ∈Ĝ,τ∈G = (χ(σ))χ∈Ĝ,σ∈G · (aστ )σ,τ∈G.

Since
bχ,τ =

∑

σ∈G
χ(σ)aστ = χ(τ−1)

∑

σ∈G
χ(σ)aσ

and the matrix (χ(σ))χ∈Ĝ,σ∈G is non-singular, (6) and (7) follow directly.

Lemma 4. For any extension M/N of algebraic number fields the group

(8) T = {α ∈M∗ : there exists t ∈ N such that αt ∈ N∗}/N∗
is finite.

P r o o f. We can assume that M/N is normal. If αt ∈ N∗ then denoting
(α) =

∏
p pa(p) we have a(σp) = a(p) for any σ ∈ Gal(M/N). Hence we

can write
(α) = IOM ·

∏

e(p)>1

pa(p)

with a fractional ideal I in N . Let us now fix representatives I1, . . . , Ih of
all ideal classes in N . With an appropriate choice of j we obtain

(α) = (β)OM · IjOM ·
∏

e(p)>1

pa(p)

with β ∈ N∗ and hence α = βγ, where γ ∈ M∗ is an S-unit for S large
enough and chosen independently of α. Therefore the group T is finitely
generated and hence finite.

The main result of this paper is the following theorem.

Theorem 3. Let F/Q be a finite abelian extension with Galois group G
and for any subfield E of F let R(E) denote the group of α ∈ E∗ satisfying
the multiplicative relation

(9)
∏

σ∈G
σ(α)aσ = 1,

where (aσ)σ∈G is a fixed sequence of integers.
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• If det(aστ )σ,τ∈G 6= 0 then R(F ) is a finite group (containing only roots
of unity).
• If det(aστ )σ,τ∈G = 0 then R(F ) is infinitely generated. More pre-

cisely , set

H =
{
χ ∈ Ĝ :

∑

σ∈G
χ(σ)aσ = 0

}
,

H = {σ ∈ G : χ(σ) = 1 for all χ ∈ H}.
Then the factor group R(FH)/R(E) has infinite rank for any proper subfield
E of FH (the fixed field of H) whereas R(F )/R(FH) is finite with exponent
dividing w, the number of roots of unity in F .

R e m a r k 1. The link between multiplicative relations connecting conju-
gate algebraic numbers and group determinants was earlier pointed out in
[8] but, as mentioned above, a little bit different problem was tackled there.

R e m a r k 2. We want to point out that the following proof provides
more than the fact that R(FH)/R(E) has infinite rank. Actually, R(FH)
contains a free subgroup U of infinite rank with U ∩ R(E) = {1} for any
proper subfield E of FH .

R e m a r k 3. Theorem 3 suggests introducing the following distinction.
If α ∈ R(F ) and if degQ α

k = degQ α for all k ∈ N then α is called a
strong solution, otherwise a weak solution. Using this terminology the main
assertion of Theorem 3 (combined with Remark 2) is that all strong solutions
are contained in FH and that the free subgroup U of R(FH) mentioned in
Remark 2 contains only strong solutions α with degQ α = [FH : Q] with the
only exception α = 1.

P r o o f o f T h e o r e m 3. The proof of the first part is essentially con-
tained in [8]; cf. also the end of the proof of Proposition 3 in [3].

In order to prove the second part consider the group ring Z[G] and set

R =
∑

σ∈G
aσσ ∈ Z[G].

Furthermore, for any subgroup K of G set

V (K) = {L ∈ C[G/K] : R · L = 0 (in C[G/K])},
where the group ring C[G/K] is considered as a Z[G]-module via σ · τK =
(στ)K. If

L =
∑

τ∈G/K
xττ (xτ ∈ C)

then R · L = 0 is equivalent to the linear system

(xτ−1)τ∈G/K · (a(K)
τ% )τ,%∈G/K = (0),
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in which a
(K)
τ% =

∑
σ∈τ% aσ. By Lemma 3 we obtain

(10) V (K) = linC
{ ∑

τ∈G/K
χ(K)(τ)τ : χ(K) ∈ H(K)

}
,

where
H(K) =

{
χ(K) ∈ Ĝ/K :

∑

τ∈G/K
χ(K)(τ)a(K)

τ = 0
}
.

Every character χ(K) of G/K can be uniquely lifted to a character χ of G
that is trivial on K. It is easy to verify that∑

τ∈G/K
χ(K)(τ)a(K)

τ =
∑

σ∈G
χ(σ)aσ

and therefore the lifted character χ is in H if χ(K) ∈ H(K). Next we will
prove that

(11) σ · L = L for all σ ∈ H and L ∈ V (K).

By (10) this follows from

σ ·
∑

τ∈G/K
χ(K)(τ)τ = χ(σ−1)

∑

τ∈G/K
χ(K)(στ)στ = χ(σ−1)L

and from the definition of H.
Now fix α ∈ F satisfying (9) and consider the fractional ideal (α). We

can write
(α) =

∏
p

pL(p),

where in the above finite product different p divide different rational primes
and L(p) ∈ Z[G/K(p)], where K(p) is the decomposition group of p. Since
α satisfies (9) it follows from the unique factorization of fractional ideals
that for any p in the above product,

R · L(p) = 0 (in Z[G/K(p)]).

Therefore L(p) ∈ V (K(p)) and by (11),

σ · L(p) = L(p)

and hence

(12) (α)σ = (α) for all σ ∈ H,
i.e. σ(α) = εσα for some εσ ∈ O∗F . Consequently, we obtain

αh = NF/FH (α) · ε,
where h is the order of H and ε ∈ O∗F . All three numbers in the above
equation are elements of R(F ) and NF/FH (α) belongs even to R(FH). Since
the real units multiplied by roots of unity are of index 1 or 2 in the full group
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of units ([6, Ch. 3, Prop. 3.6]) there exists a natural number k depending
only on F such that εk ∈ O∗F+ .

Now choose a unit η ∈ O∗F+ such that NF+/Q(η) = 1 and η generates a
Z[Gal(F+/Q)]-module of finite index m in O∗F+(6, [Ch. 3, Theorem 3.9]).
We identify the group Gal(F+/Q) with G/K where K corresponds to F+

(actually #K ≤ 2). Let us write

εkm = ηL

with L ∈ Z[G/K]. Since εkm ∈ R(F+) and
∏

τ∈G/K
τ(η)bτ = 1 iff bτ = const

it follows that R·L = a·NG/K for some integer a, where NG/K =
∑
τ∈G/K τ .

If
∑
σ∈G aσ = 0 then L ∈ V (K), and if

∑
σ∈G aσ = A 6= 0 then

L =
a

A
NG/K + L′, where L′ ∈ V (K).

In both cases we can conclude that (11) is still satisfied. Hence εkm ∈ O∗FH
and denoting t = hkm we obtain αt ∈ FH . Since R(F )/R(FH) can be
embedded in (8) Lemma 4 implies its finiteness. By (12) we obtain, for any
σ ∈ H,

αt = σ(α)t = εtσα
t

and hence εσ is a root of unity. Since εwσ = 1 we already get σ(αw) =
σ(α)w = αw and therefore αw ∈ FH . This means that the exponent of
R(F )/R(FH) divides w.

For the rest of the proof we preserve our earlier notation, but specify it
for K = {id} and therefore suppress any indices connected with K. For any
σ ∈ G \H define

Vσ = {L ∈ V : (1− σ) · L = 0}.
Assume for a moment that there exists σ ∈ G \ H satisfying Vσ = V . By
(10) we would have in particular

∑

τ∈G
χ(τ)τ =

∑

τ∈G
χ(τ)στ

and hence χ(σ) = 1 for any χ ∈ H, which contradicts the choice of σ. So we
have proved

dimC Vσ < dimC V = #H for all σ ∈ G \H.
But by a standard linear algebra argument and by Lemma 3,

dimZ(V ∩ Z[G]) = #H,
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and therefore the set

(V ∩ Z[G])
∖ ⋃

σ∈G\H
(Vσ ∩ Z[G])

contains non-zero elements. Choose one of them and denote it by L. Now
take a free algebraic integer γ and define α = α(γ) = γL. Obviously α
satisfies (9) by the definition of V (K) and α ∈ FH by property (11). Fur-
thermore,

(13) (1− σ) · L 6= 0 for all σ ∈ G \H
by the choice of L. Since γ is free and

(1− σ) · L 6= c ·
∑

τ∈G
τ

we have α1−σ = γ(1−σ)·L 6∈ Q. In particular, α 6= ασ for any σ ∈ G \ H.
This proves that Q(α) = FH .

In a standard way we construct an infinite sequence γj ∈ OF satisfying
(3) such that their norms are pairwise relatively prime and set αj = γLj . Let
E be a proper subfield of FH . As in Lemma 1 define (γj) = pjIj . Suppose
that

∏
j α

kj
j ∈ E with some kj 6= 0. Then there exists σ ∈ G \H such that

pkjσLj = pkjLj and hence (1− σ) · L = 0, contrary to (13). This finishes the
proof of Theorem 3.

4. Applications. The aim of this section is to provide a complete de-
scription of relations of length 3,

(14) xa1x
b
2x
c
3 = 1 (a, b, c ∈ Z \ {0}),

between distinct roots of irreducible polynomials with abelian splitting field.
Essentially we prove that (under the assumption |a| ≤ |b| ≤ |c|) (14) has a
solution if and only if

|a| = |b| = |c| or |a|+ |b| = |c|.
The statement of Theorem 4, which contains Theorem 1 as a special case, is
much more precise and takes into account the degree of the solutions. Case 2
of Theorem 4 seems not to be as satisfactory as Case 1. But the example
given in Remark 4 indicates that we cannot expect much more in general.
Furthermore, this example provides solutions in the case |a|+ |b| = |c|.

Theorem 4. Let f(x) ∈ Q[x] be an irreducible polynomial of degree n
with abelian Galois group G.

C a s e 1: a± b± c 6= 0 for any choice of signs.

• a = b = −c: If 6 -n and if f(x) is non-cyclotomic then no three distinct
roots x1, x2, x3 of f(x) satisfy (14).
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If 6 |n then using a proper Tschirnhausen transformation one can ob-
tain from f(x) an irreducible non-cyclotomic polynomial f∗(x) having three
distinct roots x∗1, x

∗
2, x
∗
3 satisfying (14). Moreover ,

degQ (x∗1)k = n for any k ∈ N.
• a = b = c: The same assertion as in the case a = b = −c holds but 6

must be replaced by 3.
• |a| 6= |b| or |a| 6= |c| or |b| 6= |c|: If f(x) is non-cyclotomic then no

three distinct roots x1, x2, x3 of f(x) satisfy (14).

C a s e 2: a± b± c = 0 for a certain choice of signs.

• a+ b+ c 6= 0 and 2 -n: If f(x) is non-cyclotomic then no three distinct
roots x1, x2, x3 of f(x) satisfy (14).
• a+ b+ c = 0 and w < h, where

(15) h = min
σ 6=τ∈G\{id}

#〈σ, τ〉

and w is the number of roots of unity contained in the splitting field of f(x).
Then no three distinct roots of f(x) satisfy (14).
• Remaining cases: If three distinct roots x1, x2, x3 of f(x) satisfy (14),

then the numbers x1, x
±1
2 , x±1

3 differ multiplicatively by roots of unity and
the signs at the exponents of x2, x3 are identical with the signs in front of
b, c in the vanishing sum a± b± c = 0. In particular ,

degQ x
w
1 < n.

R e m a r k 4. It should be mentioned that our approach is solely based on
algebraic considerations. However, the last assertion of Theorem 4 does not
hold only in the case of abelian splitting fields. It can be generally proved
by a slight modification of the geometric argument of [9, Lemma 1]. The
following example will show that it cannot be improved, even in the abelian
case. (We will consider the case a+b+c = 0. The other cases can be treated
similarly.)

Let F = Q(εp), where εp is primitive pth root of unity and p a prime
sufficiently large. Now choose k, l with p - kl(k − l) and

p | a+ kb+ lc.

Then εp satisfies (17) where σ, τ are defined by σ(εp) = εkp and τ(εp) = εlp.
Now take any β ∈ R(FH) (where H = 〈σ, τ〉) satisfying

FH = Q(βk) for any k ∈ N
and set

f(x) =
∏

%∈G
(x− %(βεp)).
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From βw ∈ Q(βεp) and Q(βw) = Q(β) it follows that β ∈ Q(βεp) and finally
εp ∈ Q(βεp). Hence f(x) is irreducible and obviously βεp ∈ R(F ).

P r o o f o f T h e o r e m 4. C a s e 1. First we consider the case a = b = −c.
If (14) holds and if f(x) is non-cyclotomic then by Theorem 3 and Lemma 3
there exist χ ∈ Ĝ and σ1, σ2, σ3 ∈ G such that

χ(σ1) + χ(σ2) = χ(σ3).

One of the numbers χ(σ2σ
−1
1 ), χ(σ3σ

−1
1 ) must be a 6-th primitive root of

unity, whence 6 |n = |G|.
Let

G =
r∏

j=1

〈τj〉

be the second decomposition of G, i.e. the above product is direct and

ord τj | ord τj+1 for j = 1, . . . , r − 1.

Since 6 | ord τr we can define

σ1 = id, σ2 = τ
1
3 ord τr
r , σ3 = τ

1
6 ord τr
r

and the remaining elements of G can be ordered arbitrarily.
We apply Theorem 3 to the relation

(16) σ1(α)a · σ2(α)a · σ3(α)−a = 1.

All characters χ ∈ Ĝ satisfying

χ(τr) = exp
(

2πi
ord τr

)

are contained in H and therefore H = {id}. Hence we can choose α ∈
F satisfying (16) and Q(α) = Q(αk) = F for any k ∈ N. Therefore the
irreducible polynomial

f∗(x) =
n∏

i=1

(x− σi(α))

has three distinct roots x∗1, x
∗
2, x
∗
3 satisfying (14).

The proof in the case a = b = c is essentially the same.
In the remaining cases it follows from [5] (see also [7, Theorem 4]) that

aχ(σ1) + bχ(σ2) + cχ(σ3) 6= 0.

Hence the first part of Theorem 3 applies.
C a s e 2. Assume that there exist non-trivial distinct σ, τ ∈ G and α ∈ F

such that F = Q(α) and

(17) αa·id +bσ+cτ = 1.
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If χ ∈ H then χ(σ), χ(τ) ∈ {−1, 1}. Furthermore, since a± b± c = 0 holds
for a unique choice of signs we see that both χ(σ) and χ(τ) are independent
of χ ∈ H.

If a+ b+ c 6= 0 then χ(σ) = −1 or χ(τ) = −1 and hence 2 |n. Therefore
there are no relations for odd n.

Next observe that in the case a + b + c = 0 we have σ, τ ∈ H and
therefore [F : FH ] = #H ≥ h. If α ∈ R(F ) then αw ∈ FH and hence
[F : FH ] = [FH(α) : FH ] ≤ w, which contradicts the assumption w < h.

In order to prove the last part note that always

{id, σ, τ, στ, στ3} ∩H 6= {id}.
Thus H 6= {id} and it follows from Theorem 3 that

αw, ασw, ατw ∈ FH ⊂ F
and FH 6= F . If αw, ασw, ατw are pairwise distinct we can repeat the same
reasoning and obtain

αww1 , ασww1 , ατww1 ∈ E,
where w1 is the number of roots of unity in an appropriate field E which
is strictly contained in FH . Consequently, there exists a natural number W
such that α%W = ανW with %, ν ∈ {id, σ, τ}. Since the ratio α%/αν is a root
of unity we already get α%w = ανw.

Now suppose that a + b + c = 0. Then it follows from (17) that the
third conjugate differs from the first two by a root of unity. Next, consider
the case a + b − c = 0. Then {%, ν} = {id, σ}. Otherwise f(x) would be a
cyclotomic polynomial since there are no non-trivial relations of length 2
(see [2]). Hence α−τ differs from α by a root of unity. The other cases can
be treated similarly. This proves the last assertion of Theorem 4.

R e m a r k 5. Basically it is possible to extend the preceding classification
to describe all relations up to length 9 using the results of [1].

Acknowledgements. The authors want to thank an anonymous referee
for pointing out reference [8] and for some useful remarks improving our
presentation.
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